Syllabus for Mat2250, fall, 2009

Instructor: Ming-Jun Lai
Office: Room 540 Boyd Graduate Studies Building
Office Hours: 2:30-3:30pm Monday, Wednesday and Friday or by appointment
Email Address: mjlai@math.uga.edu
Webpage: www.math.uga.edu/~mjlai/teaching.html
Phone Number: 542-2065
Text: Hass, Weir, and Thomas, University Calculus

Course Objectives

We learn how to compute limits, derivatives, and anti-derivatives of functions and how to use these concepts to do application problems. We shall also learn how to integrate a function for various functions.

Academic Honesty

As a University of Georgia student, you have agreed to abide by the Universitys academic honesty policy, A Culture of Honesty, and the Student Honor Code. All academic work must meet the standards described in A Culture of Honesty found at: www.uga.edu/honesty. Lack of knowledge of the academic honesty policy is not a reasonable explanation for a violation. Questions related to course assignments and the academic honesty policy should be directed to the instructor.

Dates		Section		Topics and Recommended Exercises
			\quad Chapter 2: Limits and Continuity	

Chapter 3: Differentiation

9/4F	$\S 3.1$	The Derivative as a Function
	$\S 3.1$	\#1, 3, 6, 9, 10, 13, 17, 27-30, 31, 33, 43, 44
9/8T	§3.2	Differentiation Rules for Polynomials, Exponentials, Products, and Quotients
	§3.2	\#1, 3, 5, 7, 11, 15
9/9W	$\S 3.2$	\# 17, 18, 21, 23, 24, 27, 28,29, 33
9/11F	§3.2	\# 35, 39, 43, 47, 49, 50, 53, 58, 62, 63
9/14M	§3.3	The Derivative as a Rate of Change
	§3.3	\#1, 5, 7, 10, 11, 15 (HW DUE)
9/15T	§3.3	17, 18, 21, 23, 26, 29
9/16W	$\S 3.4$	Derivatives of Trigonometric Functions
	$\S 3.4$	\#1, 5, 8, 9, 11, 13, 16, 20, 25, 27, 35, 37, 47
9/18F	$\S 3.5$	The Chain Rule and Parametric Equations [N.B. Skip parametric formula for $d^{2} y / d x^{2}$.]
	§3.5	\#1, 3, 5, 9, 11, 15, 17, 19, 24, 27, 31, 35, 41, 45, 47
9/21M	§3.5	\# 50, 51, 55, 57, 59, 61, 71, 73, 81, 83, 86, 95, 99, 112, 115 (HW DUE)
9/22T	§3.6	Implicit Differentiation
	$\S 3.6$	\#1, 5, 11, 17, 19, 25, 39, 44, 51
9/23W	$\S 3.7$	Derivatives of Inverse Functions and Logarithms
	§3.7	\#3, 11, 13, 21, 25, 27, 29, 32, 41, 51
9/25F	§3.7	\#57, 61, 64, 65, 91, 93, 95,98
9/29M	$\S 3.8$	Inverse Trigonometric Functions
	$\S 3.8$	\#1, 3, 7, 21, 23, 30, 33, 34, 42, 43, 48, 54(HW DUE)
9/29T	$\S 3.9$	Related Rates
	§3.9	\#1, 2, 3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19
9/30W	§3.9	\#22, 23, 25, 30, 31, 35
10/2F	§3.10	Linearization and Differentials
	§3.10	\#3, 8, 11, 15, 16, 39, 43, 45, 53, 54, 56, 61, 62, [65]
10/5M		Review for Test II
		Additional and Advanced Exercises: \#6, 8, 19, 20
10/6T		Test II and (HW DUE)
		Chapter 4: Applications of Derivatives
10/7W	§4.1	Extreme Values of Functions
	§4.1	\# 1-14, 15, 17, 19, 21, 25, 27, 29, 31, 33, 39
10/9F	§4.1	\#41, 43, 49, 51, 55, 61, 66, 67, [70], 72
10/12M	§4.2	The Mean Value Theorem
	§4.2	\#5, 6, 7, 9, 12, 13, 15, 19, 23, 25, 27, 31
10/13T	§4.2	\#35, 39, 41, 45, 46, 59, 66a (HW DUE)
10/14W	§4.3	Monotonic Functions and the First Derivative Test
	§4.3	\#1, 3, 5, 7, 9, 13, 17, 21, 25, 31, 43, 47, 49, [58]
10/15F	§4.4	Concavity and Curve Sketching
	§4.4	\#1, 3, 11, 15, 17, 21
10/19M	§4.4	\#25, 30, 33, 37, 53, 59, 69;
10/20T	§4.4	p. 309: \# 55, 57, 59 (HW DUE)

10/21W	$\S 4.5$	Applied Optimization
	§4.5	\#1, 3, 4, 5, 7, 11, 12, 14
10/23F	$\S 4.5$	\#20, [22], [24], [25], 27
10/26M	§4.5	\#32, 33, 41, 44
10/27T	$\S 4.6$	Indeterminate Forms and L'Hôpital's Rule
	§4.6	\#3, 5, 9, 15, 19, 21, 23, 25 (HW DUE)
10/28W	§4.6	\#47, 51, 53, 61, 63
11/2M	$\S 4.7$	Newton's Method
	$\S 4.7$	\#1, 3, 5, 13, 16
11/3T	$\S 4.8$	Antiderivatives
	§4.8	\#1, 5, 7, 13, 15, 19, 23, 31, 33, 39 (HW DUE)
11/4W	$\S 4.8$	\# 43, 45, 55, 59, 61, 65
11/6F	§4.8	\#87, 89, 91, 95, 103, 117, 118, 119, 120
11/9M		Review for Test III
		Additional and Advanced Exercises: \#13, 15, 17, 22, 35
11/10T		Test III and (HW DUE)
		Chapter 5: Integration
11/11W	§5.1	Estimating with Finite Sums, Sigma Notation and Limits of Finite Sums
	$\S 5.1$	\#1, 3, 5, 7, 11, 19, [21, 22]
11/13F	$\S 5.2$	\#1, 3, 7, 9, 13, 15, 19, 29, 35, 39
11/16M	§5.3	The Definite Integral
	$\S 5.3$	\#1, 3, 5, 9, 11, 13, 17, 19, 27, 31, 35
11/17T	$\S 5.3$	\#55, 59, 63, 65, 66, [77], [79], [82] (HW DUE)
11/18W	$\S 5.4$	The Fundamental Theorem of Calculus
	§5.4	\#1, 3, 5, 7, 9, 11, 17, 23, 27, 29, 33, 35, 39
11/20F	$\S 5.4$	\#41, 43, 45, 47, 49, 53, 55, 58, 61-64, 73, 75
11/30M	§5.5	Indefinite Integrals and the Substitution Rule
	$\S 5.5$	\# $1,3,5,7,9,13,17,19,22,23,29$
12/1T	$\S 5.5$	\#39, 43, 49, 51, 61, 67 (HW DUE)
12/2W	$\S 5.6$	Substitution and Area Between Curves
	§5.6	\#1, 3, 7, 13, 25, 27, 31, 39, 47, 51, 53, 55
12/4F	$\S 5.6$	\# 57, 67, 77, 81, 85, 89, 99, 103, [115, 116]
12/7M		Review for Test IV
		Additional and Advanced Exercises: \#4, 5, 6, 30, 31, 32,
12/8T		Test IV and (HW DUE)
		Final Examination Times
12/14		12:20-1:10pm \rightarrow 12:00-3:00pm
12/16		$1: 25-2: 15 \mathrm{pm} \rightarrow 12: 00-3: 00 \mathrm{pm}$

Note that Problems listed in brackets are best saved for the better students, as are the recommended "Additional and Advanced Exercises."

Grading Policy:

TEST I 100 points
TEST II 100 points
TEST III 100 points
TEST IV 100 points
Home Work 200 points
Final Exam. 200 points
Total 800 points

Fixed Scale

A	$90+\%$	A- $87-90 _\%$	B+	$83-87 _\%$	B	$80-83_{-} \%$	
B-	$77-80 _\%$	C+	$73-77_{-} \%$	C	$67-73 _\%$	C-	$63-67 _\%$

D $53-63-\% \mid \mathrm{F} \quad<53 \%$
The course syllabus is a general plan for the course; deviations announced to the class by the instructor may be necessary

