Course Number: MATH 4500/6500							
Course Title:	Introduction to Numerical Analysis						
Text Book:	Numerical Analysis R. Burden&D. Faires						
Instructor:	Ming-Jun Lai	Phone Number:	(706)542-2065				
Email:	mjlai@math.uga.edu						
Office:	Grad. Study 540	Office Hour:	2:00–3:00 MWF or by Appointment				

This is the first one of two courses on numerical analysis. We plan to cover the material in the text as much as possible. Graduate Students with math. major in this class are strongly suggested to read related chapters in a more advanced text book: "An Introduction to Numerical Analysis" written by K. Atkinson. We will use MATLAB to do programs to implement the algorithms we learn in this course.

The prerequisite of this course is MATH2500. In addition, students are expected to be taking or have taken a course on advanced calculus and elementary differential equation.

We will have three midterm in-class tests and one final in-class test, in addition to eight computer projects assigned below. Problems in the tests and computer projects are based on exercises in the text. So after each section is lectured, do the exercises in the section, even though they are not required to turn in.

Tentative Schedule

Date 8/18M 8/20W 8/22F	Topics Review on Calculus Round-off Error Computer Arithmetics	Sections $\S{1.1}$ $\S{1.2}$ $\S{1.3}$	Project Assignment and Due
8/25M 8/27W 8/29F	Introduction to Matlab The Bisection Method Fixed Point Iteration	$\S{2.1}$ $\S{2.2}$	Project #1 Assignment
9/1M 9/3W 9/5F	Labor Day (no class) Newton's Method Error Analysis	$\S{2.3}$ $\S{2.4}$	
9/8M 9/10W 9/12F	Accelerating Convergence Müller Method TEST 1	$\S{2.5}$ $\S{2.6}$	Project#1 Due Project# 2 Assignment
9/15M 9/17W 9/19F	Lagrange Interpolation I Lagrange Interpolation II Iterative Interpolation		Project #2 Due
9/22M 9/24W 9/26F	Divided Differences Newton's Interpolation Hermite's Interpolation	§3.2 §3.3 §3.3	Project # 3 Assignment
9/29M 10/1W 10/3F	Natural Cubic Splines Clamped Cubic Splines Parametric Curves	$ \begin{array}{l} & & \\ & & $	Project #3 Due Project #4 Assignment
10/6M 10/8W 10/10F	Review TEST 2 Numerical Differentiation	$\S4.1$	
10/13M	Rechardson's Extrapolation	$\S4.2$	Project #4 Due

10/15W 10/17F	Numerical Integration I Numerical Integration II		${}^{\S 4.3}_{\S 4.3}$		
10/20M 10/22W 10/24F	Composite Numerical Interpolation Romberg Interpolation Review				Project #5 Assigment
10/27M	TEST 3				
10/29W	Elmentary Theory of Initial Value Prob 35 th				Project #5 Due
$10/31\mathrm{F}$	Euler's Method		$\S{5.2}$		u
11/3M	Taylor's Method				
11/5W	Runge-Kutta's Method		$\S{5.4}$		Project #6 Assignment
$11/7\mathrm{F}$	Runge-Kutta's Method II		$\S{5.4}$		
11/10M	Runge-Kutta-Fehlberg Method		$\S5.5$		
11/12W	Multistep Methods		$\S5.6$		Project $#6$ Due
11/14F	Multistep Methods II		$\S5.6$		Project $\#7$ Assignment
11/17M	Variable Step-Size Multistep	Method	$\S5.7$		
11/19W	Systems of Differential Equat		$\S5.9$		
11/21F	Systems of Differential Equat	ions	$\S5.9$		Project $\#7$ Due
11/24	Thanksgiving Holiday				
11/26	Thanksgiving Holiday				
11/28	Thanksgiving Holiday				
12/1	Extrapolation Methods		$\S5.8$		
12/3	Stability		$\S{5.10}$		
12/5	Stability		$\S{5.10}$		
12/8	Stiff Differential Equations		$\S{5.11}$		Project #8 Assignment
12/9	Review for Final				
12/10	Reading Day				
12/12F	Final Examination				TEST 4
					Project #8 Due
Grading Policy:					
Three Tests	(100 pts each)			300 pts	
FINAL TEST				100 pts	
Eight Projects	(50 pts each)			400 pts	
Total				800 pts	
	Group I*	Group II	**		
А	1	90%+			
В		80%+			
С	60% +	70% +			
D	50% +	60% +			
F	50%-	60% -			

* Group I: MATH4500 Students; MAT6500 Graduate Students with applied sciences and education majors; ** Group II: MATH6500 Graduate Students with Math. major.