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Abstract

We first explain the research problem of finding the sparse solution
of underdetermined linear systems with some applications. Then we
explain three different approaches how to solve the sparse solution:
the ℓ1 approach, the orthogonal greedy approach, and the ℓq approach
with 0 < q ≤ 1. We mainly survey recent results and present some
new or simplified proofs. In particular, we give a good reason why
the orthogonal greedy algorithm converges and why it can be used to
find the sparse solution. About the restricted isometry property (RIP)
of matrices, we provide an elementary proof to a known result that
the probability that the random matrix with iid Gaussian variables
possesses the PIP is strictly positive.

1 The Research Problem

Given a matrix Φ of size m× n with m ≤ n, let

Rk = {Φx,x ∈ Rn, ‖x‖0 ≤ k}

be the range of Φ of all the k-component vectors, where ‖x‖0 stands for the
number of the nonzero components of x.
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Throughout this article, Φ is assumed to be of full rank. For a vector
y ∈ Rk, we solve the following minimization problem

min{‖x‖0, x ∈ R
n, Φx = y}. (1)

The solution of the above problem is called the sparse solution of y = Φx.
It is clear that the above problem can be solved in a finite time. Indeed,

write Φ = [φ1, φ2, · · · , φn] with φi being a m × 1 vector. One can choose
m columns, say A = [φi1 , · · · , φim] from Φ to form a m ×m linear system:
Az = y. If A is nonsingular, one can find a solution z. By exhausting all
m × m nonsingular submatrices from Φ and solving all such linear system
of equations, one can see which solution has the smallest number of nonzero
entries.

However, there could be Cn
m such nonsingular linear systems from Φx = y

which need to be solved. For example, a rectangular matrix Φ with entries
(xj)

i, i = 0, · · · , m, j = 1, · · · , n for distinct real numbers xi’s. Any m ×m
sub-matrix from Φ is of full rank. The number Cn

m grows exponentially fast
as m and n go to ∞. For example, when n = 2m, Cn

m ≈ 2n. A common
case m = 512 and n = 1024 needs to solve at least 2512 linear systems of
size 512×512. This is impossible to do within a hour using current available
computer. That is, the above method to solve Eq. (1) needs non-polynomial
time. Are there any other methods to solve the above problem? Before we
answer this question, let us see why we want to solve the problem in the next
section.

Remark 1.1 When m = n, Φx = y is a standard linear system and the
solution is unique if Φ is of full rank. We have already known the Gaussian
elimination method can be used to solve such linear systems.

Remark 1.2 When m > n, one may not be able to have Φx = y. Instead,
one asks to find x which minimizes the quantity ‖Φx − y‖2, where ‖ · ‖2 is
the discrete ℓ2 norm. This is a standard least squares problem. When Φ is
not full rank, one usually solves the following minimal norm solution using
standard least squares methods. That is, find x such that

min{‖x‖2, x ∈ SA ⊂ R
n, }. (2)

and
SA := {x ∈ R

n, ‖Φx− y‖2 = min
z
‖Φz− y‖2}. (3)
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The solution can be found by using the pseudo inverse or using the singular
value decomposition.

Remark 1.3 When each column of Φ is normalized to be 1, Φ is called a
dictionary. When ΦΦT = Im with identity matrix Im of size m × m, Φ is
called a tight frame. We shall use these two concepts in later sections.

2 Why do we find the sparse solutions?

In this section we give several reasons why we want to solve the sparse solution
of underdetermined systems of linear equations.

2.1 Motivation: Signal and Image Compression

This is the most direct and natural application. Suppose that a signal or an
image y is represented by using a tight frame Φ of size m × n with m < n.
We look for a sparse approximation x satisfying

min{‖x‖0, x ∈ R
n, ‖Φx− y‖ ≤ θ}, (4)

where θ > 0 is a tolerance. In particular, for lossless compression, i.e., θ = 0,
the above (4) is the our research problem (1).

2.2 Motivation: Compressed Sensing

We are interested in economically recording information about a vector x
in R

n. First of all, we allocate m nonadaptive questions to ask about x.
Each question takes the form of a linear functional applied to x. Thus, the
information we obtain from the questions is given by

y = Φx,

where Φ is a matrix of m×n. In general, m is much smaller than n since x is a
compressible data vector. Let ∆ be a decoder that provides an approximation
x∗ to x using the information that y holds. That is, ∆y = x∗ ≈ x. Typically,
the mapping ∆ is nonlinear. The central question of compressed sensing is
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to find a good set of questions and a good decoder (Φ, ∆) so that we can find
a good approximation x∗ of x. See, e.g. [Candés’06].

For example, when x ∈ Rn with ‖x‖0 ≤ k << n, one wants to know
which components of x are not zero and what values are. We can design
some vectors Φ to question x by inner product. Thus, we get y = Φx ∈ Rk.
To find x, we solve our research problem (1).

For another example, suppose that a data vector z is a set of compressible
data, i.e., there exists a vector x ∈ Rn with only k nonzero entries such that
z = Ax for an invertible matrix A of n× n. Suppose that the questions can
be represented in the form y = Cz with m× n matrix C. Since z ∈ Rk, i.e.,
z = Ax, we have

y = CAx. (5)

Certainly it is necessary to question z m times with m > k. That is, we have
k < m < n.

If C is chosen in the form ΦA−1 for some rectangular matrix Φ of size
m×n, we need to solve the following minimization problem in order to record
the data z economically.

y = Cz = ΦA−1Ax = Φx. (6)

The problem is to find the sparse representation x satisfying the above (6)
which is the same as (1).

2.3 Motivation: Error Correcting Codes

Let z be a vector encoded x by a redundant linear system A of size m × n
with m > n. That is, z = Ax is transmitted through a noisy channel. The
channel corrupts some random entries of z, resulting a new vector w = z+v.
Finding the vector v is equivalent to correcting the errors.

To this end, we extend A to a square matrix B of size m×m by adding
A⊥, i.e, B = [A; A⊥]. Assume that A satisfies AT A = In, where In is the
identity matrix of n. Then we can choose A⊥ such that BBT = Im the
identity matrix of size m. Clearly,

BTw = BTz + BTv =

[
x
0

]
+

[
ATv

(A⊥)Tv

]
.

Let y = (A⊥)Tv which is the last m − n entries of BTw. Since z is in the
codeword space V which is a linear span of columns of the matrix A, (A⊥)Tv
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is not in the codeword space and is the only information about v available
to the receiver.

If the receiver is able to solve the minimization problem Eq.(1) with
Φ = (A⊥)T . That is, find the sparsest solution v such that y = (A⊥)Tv.
Then we can get the correct x. Thus, this error correcting problem is again
equivalent to the sparsest solution problem Eq. (1). See [Candes and Tao’05]
and [Candes, Romberg, Tao’06] for more detail.

2.4 Motivation: Cryptography

Although large prime numbers are currently used for secure data transmis-
sion, it is possible to use underdetermined systems of linear equations instead.
The ideas can be described as follows. Suppose that we have a class of ma-
trices Φ of size m × n with m < n which admit a computationally efficient
algorithm for solving the minimization Eq.(1) for any given y which is in
the range Rk. Let Ψ be an invertible random matrix of size m × m and
A = ΨΦ. Suppose that a receiver wants to get a secret data vector x from a
customer, e.g., a vector consisting of credit card number, expiration date, and
the name on the credit card. The receiver sends to the customer the matrix
A in a public channel. After receiving A the customer computes z = Ax and
sends z to the receiver in a public channel. As we mentioned above, finding
the sparse solution x from z using matrix A is non-polynomial time. With
overwhelming probability, such x can not be found by other parties.

However, the receiver is able to get x by solving y = Ψ−1z = Φx which is
our research problem Eq. (1). By changing Ψ frequently enough, the receiver
is able to get the secured data every time while the hacker is impossible to
decode the data.

2.5 Motivation: Recovery of Loss Data

Let z be an image and z̃ be a partial image of z. That is, z loses some
data to become z̃. Suppose that we know the location where the data are
lost. We would like to recover the original image from the partial image
z̃. Let Φ be a tight wavelet frame such that x = Φz is the most sparse
representation for z. Let Ψ be the residual matrix from Φ by dropping off
the columns corresponding to the unavailable entries, i.e., the missing data
locations. Note that ΦT Φ = Im and hence, ΨTΨ = Iℓ with ℓ < m.
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It follows that ΨTx = ΨT Φz = z̃ by the orthonormality of columns of
Φ. Thus, we need to find the sparsest solution x from the given z̃ such that
z̃ = ΨTx which is exactly the same problem as our research problem(1). Once
we have x, we can find z which is z = Φx. See [Aharon, Elad, Bruckstein’06]
for numerical experiments.

3 The ℓ1 Approach

Although the problem in Eq. (1) needs a non-polynomial time to solve (cf.
[Natarajan95]) in general, it can be much more effectively solved by using
many other methods, e.g., ℓ1 minimization approach, reweighted ℓ1 method,
OGA(orthogonal greedy algorithm), and the ℓq approach. Let us review these
approaches in the following subsections and following sections.

The ℓ1 minimization problem is the following

min{‖x‖1, x ∈ R
n, Φx = y}, (7)

where ‖x‖1 =
∑n

i=1 |xi| for x = (x1, x2, · · · , xn)T . The solution ∆1Φx is
called the ℓ1 solution of y = Φx. Since the ℓ1 minimization problem is equiv-
alent to the linear programming, this converts the problem into a tractable
computational problem. (See [Lai and Wenston’04] for a justification of the
equivalence and a computational algorithm for ℓ1 minimization.) A matlab
ℓ1 minimization program is available on-line.

But one has to study when the (P1) solution (the solution of Eq. (7))
is also the (P0) solution (the solution of Eq. (1)). There are two concepts:
mutual coherence(MC) and restricted isometric property (RIP) of the matrix
Φ to help describe the situation.

3.1 The Mutual Coherence

Let us begin with the spark of matrix A, the smallest possible number σ such
that there exists σ columns from A that are linearly dependent. It is clear
that σ(A) ≤ rank(A) + 1. The following theorem is belong to [Donoho and
Elad’03].

Theorem 3.1 A representation y = Φx is necessarily the sparsest possible
if ‖x‖0 < spark(Φ)/2.
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Proof. Suppose that there are two sparse solutions x1 and x2 with
‖x1‖0 ≤ k and ‖x2‖0 ≤ k solving y = Φx. Then Φ(x1 − x2) = 0. So
‖(x1 − x2)‖0 ≤ 2k but, ‖(x1 − x2)‖0 ≥ spark(Φ). It follows that k ≥
spark(Φ)/2. Hence, when k < spark(Φ)/2, the sparsest solution is unique.
That is, if one find a solution x of Φx = y with ‖x‖0 < spark(Φ)/2, then x
is the sparse solution.

Next we introduce the concept of mutual coherence of matrix Φ. Assume
that each column of Φ is normalized. That is, Φ is a dictionary. Let G = ΦT Φ
which is a square matrix of size n × n. Write G = (gij)1≤i,j≤n, the mutual
coherence of Φ is

M = M(Φ) = max
1≤i,j≤n

i6=j

|gij|.

Clearly, M ≤ 1. We would like to have matrix Φ such that its mutual
coherence M is as small as possible.

However, M(Φ) can not be too small. We have

Lemma 3.2 If n ≥ 2m, then M(Φ) ≥ (2m)−1/2.

Proof. Indeed, let λi, i = 1, · · · , n be eigenvalues of G. Since G is
positive semi-definite, all λi ≥ 0. Since the rank of G is equal to m, only m
nonzero λi. Since

∑
i λi is equal to the trace of G which is n since gii = 1.

That is,

n =
∑

i

λi ≤
√

m

√∑

i

λ2
i . (8)

On the other hand, using a property of the Frobenius norm of G, we have

∑

i

λ2
i = ‖G‖2F =

∑

1≤i,j≤n

(gij)
2. (9)

It follows from Eq. (8) and (9) that

(n2 − n)M(Φ)2 + n ≥
∑

1≤i,j≤n

(gij)
2 ≥ n2

m

That is, M(Φ) ≥
√

n−m
m(n−1)

. In particular, when n ≥ 2m, we have M(Φ) ≥
(2m)−1/2. That is, M(Φ) ∈ ((2m)−1/2, 1].

With M(Φ), we can prove the following (cf. [Donoho and Elad03])
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Theorem 3.3 Let Spark(Φ) be the spark of Φ and M(Φ) be the coherence of
Φ. Then

Spark(Φ) > 1/M(Φ).

Next we need the following lemma.

Lemma 3.4 Let k < 1/M + 1. For any S ⊂ {1, · · · , n} with #(S) ≤ k and
ΦS be the matrix consisting of the k columns of Φ with column indices in S.
Then the kth singular value of ΦS is bounded below by (1−M(k− 1))1/2 and
above by (1 + M(k − 1))1/2.

Proof. For any vector v ∈ Rn with support on S, we have

vT Gv = vSΦT
SΦSvS = ‖v‖2 +

∑

i6=j
i,j∈S

vigijvj.

Since

‖
∑

i6=j
i,j∈S

vigijvj‖ ≤ M
∑

i6=j
i,j∈S

|vivj |

≤ M

(
∑

i,j∈S

|vivj| − ‖v‖22

)

≤ M‖v‖22(k − 1),

we have

vSΦT
SΦSvS ≥ ‖v‖22 −M(k − 1)‖v‖22 = (1−M(k − 1))‖v‖22.

Similarly,

vTGv = vSΦT
SΦSvS = ‖v‖2 +

∑

i6=j

i,j∈S

vigijvj

≤ ‖v‖22 + M(k − 1)‖v‖22 = (1 + M(k − 1))‖v‖22.

These complete the proof.
We first show that if k < (1 + 1/M)/2 and for any y ∈ Rk, the sparse

solution of Eq. (1) is unique.

Lemma 3.5 Suppose k < (1+1/M)/2. For any y ∈ Rk, the sparse solution
of Eq. (1) is unique.
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Proof. Let y = Φx0 ∈ Rk. Let x1 be a solution of Eq. (1) with
‖x1‖0 ≤ k. Then ‖x0 − x1‖0 ≤ 2k. By Lemma 3.4, we have

(1−M(2k − 1))‖x0 − x1‖22 ≤ ‖Φ(x0 − x1)‖22 = 0.

Since 1−M(2k − 1) 6= 0, it follows that x0 = x1.
In order to fully understand the computation of Eq. (7), we next intro-

duce a variance of Eq. (7): solve the following minimization problem

min{‖x‖1, x ∈ R
n, ‖Φx− y‖2 ≤ δ}, (10)

where y = Φx0 +z with ‖z‖2 ≤ ǫ < δ and x0 ∈ R
n is a vector with k nonzero

entries, that is, Φx0 ∈ Rk. Hence, we consider the case that y has some
measurement error and compute a solution x within accuracy δ.

Theorem 3.6 Let M be the mutual coherence of Φ. Suppose that

k < (1/M + 1)/4.

For any x0 with ‖x0‖0 ≤ k, let x̂ǫ,δ be the solution of Eq. (10). Then

‖x̂ǫ,δ − x0‖22 ≤
(ǫ + δ)2

1−M(4k − 1)
.

Proof. Write w = x̂ǫ,δ − x0. Clearly, ‖x̂ǫ,δ‖1 = ‖w + x0‖1 ≤ ‖x0‖1 when
computing the ℓ1 minimization. Let S ⊂ {1, 2, · · · , n} be the index set where
x0 is supported. Since ‖w + x0‖1 ≥ ‖x0‖1 −

∑
i∈S |wi| +

∑
i∈Ŝ |wi|, we have∑

i∈Ŝ |wi| ≤
∑

i∈S |wi| or

‖w‖1 ≤ 2
∑

i∈S

|wi| ≤ 2
√

k‖w‖2, (11)

where Ŝ denotes the complement set of S in {1, 2, · · · , n}.
On the other hand, ‖Φx̂ǫ,δ − y‖2 ≤ δ and y = Φx0 + z imply that

‖Φw + z‖2 ≤ δ. That is, ‖Φw‖2 ≤ ‖Φw + z‖2 + ǫ ≤ δ + ǫ.
Finally, ‖Φw‖22 = ‖w‖22 + wT (G − I)w ≥ ‖w‖22 − M(‖w‖21 − ‖w‖22) ≥

(1 + M)‖w‖22 −M4k‖w‖22 by the estimate (11) above. It follows that

‖w‖22 ≤
1

1 + M − 4Mk
‖Φw‖22 ≤

(ǫ + δ)2

1−M(4k − 1)
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by the estimate in the previous paragraph. This concludes the result in this
theorem.

Next we look at the (ǫ, δ) variance of the (P0) problem: to solve the
following minimization problem

min{‖x‖0, x ∈ R
n, ‖Φx− y‖2 ≤ δ}, (12)

where y = Φx0 + z with ‖z‖2 ≤ ǫ and Φx0 ∈ Rk. Then we can prove

Theorem 3.7 Let M be the mutual coherence of Φ. Suppose that

k < (1/M + 1)/2.

For any x0 with ‖x0‖0 ≤ k, let x̃ǫ,δ be the solution of Eq. (12). Then

‖x̃ǫ,δ − x0‖22 ≤
(ǫ + δ)2

1−M(2k − 1)
.

Proof. By Lemma 3.4, we have

‖x̃ǫ,δ − x0‖22 ≤
1

1−M(2k − 1)
‖Φ(x̃ǫ,δ − x0)‖22

=
1

1−M(2k − 1)
‖Φx̃ǫ,δ − y + z‖22 ≤

(ǫ + δ)2

1−M(2k − 1)
.

This completes the proof.
Both theorems above were proved in [Donoho, Elad and Temlyakov’06].

In particular, the proof of Theorem 3.7 above is a much simplified version of
the one in [Donoho, Elad and Temlyakov’06]. It is easy to see that there is a
gap between the requirements of k. That is, one is to require k < (1+1/M)/4
by any ℓ1 method and the other is to require k < (1 + 1/M)/2 by an ℓ0

method. Thus, the ℓ1 method is not optimal yet. It is interesting to know
how we can increase k when using the ℓ1 method.

3.2 RIP

Another approach is to use the so-called Restricted Isometry Property(RIP)
of the matrix Φ. Letting 0 < k < m be an integer and AT be a submatrix of A
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which consists of columns of A whose column indices are in T ⊂ {1, 2, · · · , n},
the k restricted isometry constant δk of A is the smallest quantity such that

(1− δk)‖x‖22 ≤ ‖ATx‖22 ≤ (1 + δk)‖x‖22 (13)

for all subset T with #(T ) ≤ k. If a matrix A has such a constant δk > 0 for
some k, A possesses RIP. With this concept, it is easy to see that if δ2k < 1,
then the solution of Eq. (1) is unique. Indeed, if there were two solutions x1

and x2 such that
Φ(x1 − x2) = 0,

then we choose the index set T which contains the indices of the nonzero
entries of x1 − x2 and see that #(T ) ≤ 2k which implies

(1− δ2k)‖x1 − x2‖22 ≤ ‖ΦT (x2 − x2)‖22 = 0.

It follows that ‖x1 − x2‖2 = 0 when δ2k < 1. That is, the solution is unique.
Furthermore,

Theorem 3.8 ([Candes, Romberg, and Tao’06]) Suppose that k ≥ 1 such
that

δ3k + 3δ4k < 2

and let x ∈ Rn be a vector with ‖x‖0 ≤ k. Then for y = Φx, the solution of
Eq. (7) is unique and equal to x.

This result is recently simplified slightly in the following way:

Theorem 3.9 ([Candes’08]) Suppose that k ≥ 1 such that

δ2k <
√

2− 1.

Let x ∈ Rn be a vector with ‖x‖0 ≤ k. Then for y = Ax, the solution of Eq.
(7) is unique and equal to x. In fact

‖x− x∗‖2 ≤
2(1 + ρ)

1− ρ
‖Ax− Ax∗‖2 +

2

1− ρ
‖x− x∗

T‖1.

where x∗ is the (P1) solution (the solution of Eq. (7) and x∗
T is the vector of

the k largest components of x∗. Here ρ = δ2k√
2−1

.
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As we have already known that δ2k <
√

2− 1 < 1 which implies that the
sparse solution is unique. The above result mainly explains that the (P1)
solution (the solution of Eq. (7)) is equal to the (P0) solution (the solution
of Eq. (1)).

The results are consequences of the following Theorem 5.2 and hence we
omit the proofs of the above two theorems here.

Let us discuss what kind of matrices Φ satisfies the RIP. So far there is no
explicit construction of matrices of any size which possess the RIP. Instead,
there are a couple of constructions based on random matrices which satisfy
the RIP with overwhelming probability. In [Candés, Romberg, and Tao’06],
the following results were proved using the measure concentration technique
(cf. [Ledoux’01]).

Theorem 3.10 Suppose that A = [aij ]1≤i≤m,1≤j≤n be a matrix with entries
aij being iid Gaussian random variables with mean zero and variance 1/

√
m.

Then the probability

P
(∣∣‖Φx‖22 − ‖x‖22

∣∣ ≤ ǫ‖x‖22
)
≥ 1−

(
n

k

)
(1 + 2/ǫ)ke−mǫ2/c. (14)

for any vector x ∈ Rn with ‖x‖0 = k, where c > 2 is a constant and ‖x‖0
denotes the number of nonzero entries of vector x.

Once we choose k < m such that
(

n
k

)
(1 + 2/ǫ)ke−mǫ2/c < 1 small enough,

we will have a good probability to have a matrix satisfying the RIP. Indeed,
since

(
n
k

)
≤ (n/e)k,

(
n

k

)
(1 + 2/ǫ)ke−mǫ2/c ≤ e−mǫ2/c+k ln(n/e)+k ln(1+2/ǫ).

As long as m > kc ln(n(1 + 2/ǫ)/e)/ǫ2, we have

P
(∣∣‖Φx‖22 − ‖x‖22

∣∣ ≤ ǫ‖x‖22
)

> 0.

That is, a matrix with RIP can be found with positive probability.
Theorem 3.10 can be simply proved based on the following theorem (cf.

[Baranuik, Daveport, DeVore, Wakin’08]).
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Theorem 3.11 Suppose that A = [aij ]1≤i≤m,1≤j≤n be a matrix with entries
aij being iid Gaussian random variables with mean zero and variance 1/

√
m.

Then for any ǫ > 0, the probability

P(
∣∣‖Ax‖22 − ‖x‖22

∣∣ < ǫ‖x‖22) ≥ 1− 2 exp(−ǫ2m

c
), (15)

where c is a positive constant independent of ǫ and ‖x‖2 for any x ∈ Rn.

In general, there are many other random matrices satisfying the above
probability estimate. Typically, matrices with sub-Gaussian random vari-
ables possess the RIP. See [Mendelson, Pajor, and Tomczak-Jaegermann’07,
’08]. In addition to the measure concentration approach, there are several
other ideas to prove the results in the above theorem. For example, [Pisier’86]
and [Lai’08]. We refer to [Lai’08] for an elementary proof of Theorems 3.11
and 3.10 and similar theorems for sub-Gaussian random matrices. For con-
venience, we borrow the proof of Theorem 3.11 from [Lai’08] and present it
in the Appendix for interested reader.

3.3 The re-weighted ℓ1 Method

The re-weighted ℓ1 minimization is the following iterations:
(1) for k = 0, solve the standard ℓ1 problem:

min{‖x‖1, x ∈ R
n, Ax = y}, (16)

(2) for k > 0, find x(k) which solves the following weighted ℓ1 problem:

min

n∑

i=1

|xi|
wi

, x ∈ R
n, Ax = y}, (17)

with wi = |x(k−1)
i |+ ǫ for k = 1, 2, 3, · · · , n.

This method is introduced in [Candés, Watkin, and Boyd’07]. The re-
searchers gave some heuristic reasons that the algorithm above converges
much faster than the standard ℓ1 method. It is still interesting why the
method works better in theory.
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4 The OGA Approach

There are many versions of the Optimal Greedy Algorithm(OGA) avail-
able in the literature. See [Temlyakov’00], [Temlyakov’03], [Tropp’04], and
[Petukhov’06]. We mainly explain the optimal greedy algorithm (OGA) pro-
posed by A. Petukhov in 2006 when Φ is obtained from a tight wavelet frame.
That is, Φ is a matrix whose columns are frame components φi, i = 1, · · · , n
satisfying ΦΦT = Im, where Im is the identity matrix of size m ×m. It has
two distinct advantages: (1) Iterative steps for the least squares solution and
(2) more than one terms are chosen in each iteration.

Let Λ be an index set which is a subset of {1, 2, · · · , n} and Λ̃ be the
complement of Λ in {1, 2, · · · , n}. Also let PΛ be the diagonal matrix of size
n× n with entries to be 1 if the index is in Λ and 0 otherwise.

Suppose that we have a fixed index set Λ. We first introduce a com-
putationally efficient algorithm for finding coefficients of the linear combi-
nation fΛ =

∑
i∈Λ aiφi which is the least squares approximation of f , i.e.,

‖f − fΛ‖2 = min{‖f − g‖2, g ∈ SΛ} where f ∈ Rm is a given vector in Rm

and SΛ is the span of φi, i ∈ Λ. In general, fΛ can be computed directly by
inverting a Gram matrix [〈φi, φj〉]i,j∈Λ. When m is large, it is more efficient
to use the following algorithm to find an approximation of fΛ.

Algorithm LSA (least squares approximation): Set k = 0, g0 =
f, f 0 = 0. For k ≥ 1, let gk = gk−1−ΦPΛΦT gk−1 and fk = fk−1+ΦPΛΦT gk−1.
Stop the iterations when gk − gk−1 is very small.

We have the following

Theorem 4.1 The sequence fk converges to fΛ in the following sense:

‖fk − fΛ‖2 ≤ (1− γ2)k/2‖fΛ‖2,

where γ is the least non-zero singular value of the matrix ΦΛ.

Proof. We rewrite gk as gk = gk
Λ+ g̃k, where gk

Λ is the best approximation
of gk using the span of columns from ΦΛ. Clearly, g0

Λ = fΛ. For k ≥ 1,
gk
Λ = gk−1

Λ − ΦPΛΦT gk−1
Λ since the best approximation operator in Rm is a

linear operator. Similar for fk
Λ = fk−1

Λ + ΦPΛΦT gk−1
Λ . Note that fk

Λ = fk for
all k ≥ 0. We have

fk + gk
Λ = fk

Λ + gk
Λ = fk−1

Λ + gk−1
Λ = · · · = f 0

Λ + g0
Λ = fΛ.
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It follows that

‖fk − fΛ‖2 = ‖gk
Λ‖2 = ‖(I − ΦPΛΦT )gk−1

Λ ‖2.

Note that I − ΦPΛΦT = Φ(I − PΛ)ΦT and hence

‖I − ΦPΛΦT‖2 ≤ ‖Φ(I − PΛ)ΦT‖2 ≤ (1− γ2)1/2.

Therefore,

‖fk − fΛ‖2 = ‖gk
Λ‖2 ≤ (1− γ2)1/2‖gk−1

Λ ‖2
≤ · · · ≤ (1− γ2)k/2‖g0

Λ‖2 = (1− γ2)k/2‖fΛ‖2.

This completes the proof.
We are now ready to present the Petukhov version of orthogonal greedy

algorithm (OGA).
Algorithm OGA: Set Λ0 = ∅, g0 = f, f 0 = 0. Choose a threshold r ∈ (0, 1]
and a precision ǫ > 0;

Step 1. For k ≥ 1, find Mk = maxi/∈Λk−1
|〈gk−1, φi/‖φi‖〉|; and Let Λk =

Λk−1 ∪ {i, |〈gk−1, φi/‖φi‖〉 ≥ rMk};
Step 2. Apply Algorithm LSA above over Λk to approximate gk−1 to find

fΛk
and gΛk

. Update fk = fk−1 + fΛk
and gk = gk−1 − fΛk

.
Step 3. If ‖f − fk‖2 ≤ ǫ, we stop the algorithm. Otherwise we advance

k to k + 1 and go to Step 1.
There is lack of theory to justify why the above OGA is convergent in the

original paper [Petukhov’06] and in the literature so far. We now present an
analysis of the convergence of the above OGA.

Theorem 4.2 Suppose that Φ of size n × N has the RIP for order k with
1 ≤ k ≤ n. Then the above OGA converges.

Proof. Without loss of generality we may assume that Λm = {1, 2, · · · , nm}
for some nm < n, where m = 1, 2, · · · . Let

Gm = [〈φi, φj〉]1≤i,j≤nm

be the Grammian matrix. Define

am ≤ ‖Gm‖2 ≤ bm
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to be the smallest and largest eigenvalues of symmetric Gm. The RIP of Φ
for integer nm implies that am > 0 for m = 1, 2, · · · , m0 with nm0

= n.
We first observe that the best approximation fΛm

= Φ−1
m [〈f, φi〉]T1≤i≤nm

.
Then due to the result in Theorem 4.1, let us for simplicity, assume

that fΛm
is the best approximation of Rm−1(f). We next note that for i ∈

Λm\Λm−1,
|〈Rm−1(f), φi/‖φi‖〉| ≥ rMm

with

Mm = max
i/∈Λm−1

|〈Rm−1(f), φi/‖φi‖〉| = max
i=1,··· ,n

|〈Rm−1(f), φi/‖φi‖〉|

≥ |
n∑

i=1

αi〈Rm−1(f), φi〉|

for any αi such that
∑n

i=1 |αi| ≤ 1. Assume that f =
∑n

i=1 ciφi with∑n
i=1 |ci| ≤ 1 (with appropriate normalization). It follows that

Mm ≥ |〈Rm−1(f), f〉| = ‖Rm−1(f)‖2.

Hence we have

‖Rm(f)‖2 = 〈Rm−1(f)− fΛm
, Rm−1(f)− fΛm

〉 = ‖Rm−1(f)‖2 − ‖fΛm
‖2

and

‖fΛm
‖2 = ‖Φ−1

m [〈Rm−1(f), φi]
T
i=1,··· ,nm

‖2

≥ 1

a2
m

‖ [〈Rm−1(f), φi]
T
i=1,··· ,nm

‖2

≥ 1

a2
m

r2n2
m‖Rm−1(f)‖2.

That is,

‖Rm(f)‖2 = ‖Rm−1(f)‖2 − ‖fΛm
‖2 ≤ ‖Rm−1(f)‖2 − 1

a2
m

r2n2
m‖Rm−1(f)‖2.

Summing the above inequality over m = 1, · · · , k, we get

‖Rk(f)‖2 ≤ ‖R0(f)‖2−r2
k∑

m=1

1

am

n2
m‖Rm−1(f)‖2 ≤ ‖f‖2−r2

k∑

m=1

1

am

n2
m‖Rk(f)‖2.
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because of the monotonicity of ‖Rm(f)‖. In other words,

(r2
k∑

m=1

1

am

n2
m + 1)‖Rk(f)‖2 ≤ ‖f‖2.

As
∑k

m=1 n2
m diverges and am nonincreases, ‖Rk(f)‖ has to converge to zero.

This completes a proof of the convergence of this OGA.

The OGA can be used to solve our research problem Eq. (1). For y ∈ Rk,
the OGA algorithm uses the indices which are associated with the terms
|〈y, φi〉|, i ∈ {1, 2, · · · , n} which is ≥ r% of the largest value. As the size of
Λi increases, it finds an approximation xOGA,ǫ such that ΦxOGA,ǫ is closed to
y within the given ǫ. That is, ‖ΦxOGA,ǫ − y‖ ≤ ǫ.

We now explain why xOGA,ǫ is a good approximation of x. Due to the
construction, the number of nonzero entries ‖xOGA,ǫ‖0 = k∗ << n. Similar
to the RIP, let αk, βk ≥ 0 be the best constants in the inequalities

αk‖z‖2 ≤ ‖Φz‖2 ≤ βk‖z‖2, for all ‖z‖0 ≤ k.

Then since ‖x− xOGA,ǫ‖0 ≤ k + k∗,

‖x− xOGA,ǫ‖2αk+k∗ ≤ ‖Φ(x− xOGA,ǫ)‖2 = ‖y− ΦxOGA,ǫ‖2 ≤ ǫ.

That is, we have

‖x− xOGA,ǫ‖2 ≤
ǫ

αk+k∗

.

In particular, when k∗ ≤ k, all we need is to assume that α2k > 0 and
hence xOGA,ǫ is away from x by ǫ/α2k.

Next we need to show that k∗ ≤ k may happen. Assume that each
column of Φ is normalized. For y = Φx with x = (x1, x2, · · · , xn)T , without
loss of generality, we may assume that the support of x is S = {1, 2, · · · , k},
|xk| = min{|xj| 6= 0, i = 1, · · · , n}, and |x1| = ‖x‖∞.

Suppose that

k ≤ 1

2M
+

1

2
, (18)

where M = M(Φ) stands for the mutual coherence of Φ. Then we can claim
that the support(xOGA,ǫ) ⊂ support(x). Recall Φ = [φ1, · · · , φn] with φi
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being the ith column of Φ. Let us first compute the inner products of y with
φi’s.

|〈y, φi〉| = |〈Φx, φi〉| = |
k∑

j=1

〈xjφj, φi〉|.

and

|
k∑

j=1

〈xj)φj , φi〉| ≥ |〈x1φ1, φi〉| −
k∑

j=2

|〈xjφj, φi〉|.

In particular, we have

|〈y, φ1〉| ≥ |x1| −M(k − 1)|x2|.

and

|〈y, φi〉| ≤ |
k∑

j=1

〈xjφj, φi〉| ≤ |x1|kM.

By our assumption in Eq. (18), we have

|x1| −M(k − 1)|x2| ≥ |x1| −M(k − 1)|x1| ≥ |x1|kM.

it follows that
|〈y, φ1〉| ≥ |〈y, φi〉|, ∀i ≥ 2.

That is, the largest inner product is |〈y, φ1〉|.
Furthermore, let us assume

k ≤ 1

(1 + r)M

( |xk|
|x1|

+ M

)
or rk|x1|M ≤ |xk| −M(k − 1)|x1|, (19)

where r is the positive constant r < 1 employed in the OGA.
Then for 2 ≤ j ≤ k, |〈y, φj〉| ≥ |xj| −M(k− 1)|x1| ≥ |xk| −M(k− 1)|x1|

and r|〈y, φ1〉| ≤ rk|x1|M . It follows that |〈y, φj〉| ≥ r|〈y, φ1〉|. That is, the
first greedy step in the above OGA picks up all the indices of the nonzero
entries of x.

In particular, when the nonzero entries of x are 1 in absolute value, the
condition in Eq. (19) is simplified to

k ≤ 1

(1 + r)M
(1 + M).
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That is, if k satisfies Eq. (18), then k satisfies Eq. (19). Under the condition
in (18) or the conditions in (18) and (19), the OGA picks all the entries
φ1, · · · , φk. Hence, the support(xOGA,ǫ) is the same as the support of x.

Furthermore, ‖xOGA,ǫ − x‖1 ≤
√

k‖x∗ − x‖2. Since ‖Φ(xOGA,ǫ − x)‖2 =
‖ΦxOGA,ǫ − y‖2 ≤ ǫ, we have

ǫ2 ≥ ‖Φ(xOGA,ǫ − x)‖22
= ‖xOGA,ǫ − x‖2 + (xOGA,ǫ − x)T (G− I)(xOGA,ǫ − x)
≥ ‖xOGA,ǫ − x‖22 −M(‖xOGA,ǫ − x‖21 − ‖xOGA,ǫ − x‖22)
= (1 + M)‖xOGA,ǫ − x‖22 −Mk‖xOGA,ǫ − x‖22.

That is,

‖xOGA,ǫ − x‖22 ≤
ǫ2

1−M(k − 1)
.

That is, under the assumption that the sparsity of x is small, i.e., Eq. (18),
xOGA,ǫ approximates the sparse solution x very well.

4.1 L1 Greedy Algorithm

Recently, Kozlov and Petukhov proposed a new greedy algorithm (cf. [Kozlov
and Petukhov’08]). It is called L1 Greedy Algorithm. The algorithm starts
with the solution of the ℓ1 minimization under the constraint Az0 = y.

[1] Let z0 be the solution of the ℓ1 minimization under the constraint Az = y
among z ∈ Rn.

[2] Let M = ‖z0‖∞.

[3] For i = 1, · · · , N , let W ∈ Rn be a weighted vector with 1 in the all
entries except for those entries which are 1/10000 when |zi−1

j | ≥ 0.8M ,
1 ≤ j ≤ n.

[4] Solve the weighted ℓ1 minimization problem

min{
n∑

j=1

|zi|/wi, Az = y, z ∈ Rn}

and let zi be the solution.
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[5] If zi is not yet a sparse solution, let M = 0.8M and return to Step 3.

The algorithm works well for random matrix A of size 512×1024. It is in-
teresting to give an analysis of the convergence or reasons why the algorithm
works.

5 The ℓq Approach

Let

‖x‖q = (
n∑

i=1

|xi|q)1/q

be the standard ℓq quasi-norm for 0 < q < 1. It is easy to see that lim
q→0+

‖x‖qq =

‖x‖0. We can use ‖x‖qq to approximate ‖x‖0. Thus, we consider the following
minimization

min{‖x‖qq, x ∈ R
n, Φx = y}. (20)

for 0 < q ≤ 1 as an approximation of the original research problem Eq. (1).
A solution of the above minimization is denoted by ∆qΦx.

5.1 Recent Results on the ℓq Approach

The several ℓq methods were studied recently in [Chartrand’07], [Foucart and
Lai’08], [Davies and Gribonval’08] and [R. Saab and Ö. Yilmaz’08]. The first
piece of results is shown in [Chartrand’07]

Theorem 5.1 Let q ∈ (0, 1]. Suppose that there exists a k > 1 such that the
matrix Φ has RIP constant such that

δks + k2/q−1δ(k+1)s < k2/q−1 − 1.

Then the solution of Eq. (20) is the sparest solution.

One can see that this result is a generalization of Theorem 3.10. When
q = 1 and k = 3, the above condition is the condition in Theorem 3.10.
In fact, the proof is a generalization of the proof in [Candés, Romberg, and
Tao’06] for ℓ1 norm to ℓq quasi-norm. In [Foucart and Lai’08], we felt that
the non-homogeneity of the Restricted Isometry Property (13) contradicted
the consistency of the problem with respect to measurement amplification,
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or in other words, that it was in conflict with the equivalence of all the linear
systems (c A)z = cy, c ∈ R. Instead, we introduce αk, βk ≥ 0 to be the best
constants in the inequalities

αk‖z‖2 ≤ ‖Az‖2 ≤ βk‖z‖2, ‖z‖0 ≤ k.

Our results are to be stated in terms of a quantity invariant under the change
A← c A, namely

γ2s :=
β2s

2

α2s
2
≥ 1.

In fact, α2
k = 1− δk and β2

k = 1+ δk. We use this slightly modified version of
RIP and work through the arguments of [Candes, Romberg, Tao’06] in terms
of quasi-norm ℓq to get the following theorem.

Our main result in this section is the following (see [Foucart and Lai’08]
for a proof)

Theorem 5.2 Given 0 < q ≤ 1, if

γ2t − 1 < 4(
√

2− 1)

(
t

s

)1/q−1/2

for some integer t ≥ s, (21)

then every s-sparse vector is exactly recovered by solving Eq. (20).

Corollary 5.3 Under the assumption that

γ2s < 4
√

2− 3 ≈ 2.6569, (22)

every s-sparse vector is exactly recovered by solving (7).

When q = 1, this result slightly improves Candès’ condition in Theorem
3.9, since the constant γ2s is expressed in terms of the Restricted Isometry
Constant δ2s as

γ2s =
1 + δ2s

1− δ2s
,

hence the condition (22) becomes δ2s < 2(3−
√

2)/7 ≈ 0.4531.
The second special instance we are pointing out corresponds to the choice

t = s + 1. In this case, Condition (21) reads

γ2s+2 < 1 + 4(
√

2− 1)

(
1 +

1

s

)1/q−1/2

.

The right-hand side of this inequality tends to infinity as q approaches zero.
The following result is then straightforward.
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Corollary 5.4 Under the assumption that

γ2s+2 < +∞,

every s-sparse vector is exactly recovered by solving (20) for some q > 0 small
enough.

The key point is to show for any v which is in the null space of Φ, i.e,
Φv = 0, ‖vS‖q < ‖vS̄‖q unless v = 0, where S stands for the index set of the
nonzero entries of the solution x ∈ Rk, vS denotes the vector v restricted in
S with other entries being zero and S̄ is the complement indices of S.

This is indeed the case since for v = x − x∗ in the null space of Φ,
‖vS̄‖q ≤ ‖vS‖q, where x∗ is the solution of Eq. (20) and x is the sparse
vector supported on S satisfying Φx = y. Combining the above inequality,
we have a contradiction that ‖vS‖q < ‖vS‖q unless v = 0. Thus, the solution
of the minimization is the exact solution if we can show ‖vS‖q < ‖vS̄‖q. This
inequality was recognized in [Grinoval and Nielson’03]. The condition (21)
in Theorem 5.2 implies this inequality.

5.2 More about the ℓq Approach

We first show that the minimization problem Eq. (20) has a solution for
q > 0. That is, the existence of the solution is independent of the RIP of Φ.
See [Foucart and Lai’08] for a proof.

Theorem 5.5 Fix 0 < q < 1. There exists a solution ∆qAx solving Eq.
(20).

We next consider the situation that the measurements y are imperfect.
That is, y = Φx0 + e with unknown perturbation e which is bounded by a
known amount ‖e‖2 ≤ θ. In this case we consider the following

min{‖x‖qq, x ∈ R
n, ‖Φx− y‖2 ≤ θ}. (23)

A solution of the above minimization is denoted by ∆q,θΦx. As in the previ-
ous section, we have

Theorem 5.6 Fix 0 < q < 1 and θ > 0. There exists a solution ∆q,θΦx
solving Eq. (23).
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In [Saab and Yilmaz’08], they extended the proof in [Candes’08] in the
ℓq setting. They have

Theorem 5.7 Let q ∈ (0, 1]. Suppose that δks + k2/q−1δ(k+1)s < k2/q−1 − 1
for some k > 1 with kS ∈ Z+. Let x∗ be the solution of Eq. (23). Then

‖x− x∗‖q2 ≤ C1η
p +

C2

s1−q/2
∆s(x)q

q

for two positive constants C1 and C2.

Here, the quantity ∆k(x)q denotes the error of best k-term approximation
to x with respect to the ℓq-quasinorm, that is

∆k(x)q := inf
‖z‖0≤k

‖x− z‖q.

The above theorem is an extension of Chartrand’s result (cf. Theorem 5.1).
Next we state another main theoretical result of this survey. We refer to
[Foucart and Lai’08] for a proof.

Theorem 5.8 Given 0 < q ≤ 1, if Condition (21) holds, i.e. if

γ2t − 1 < 4(
√

2− 1)

(
t

s

)1/q−1/2

for some integer t ≥ s, (24)

then a solution x∗ of (Pq,θ) approximate the original vector x with errors

‖x− x∗‖q ≤ C1 · σs(x)q + D1 · s1/q−1/2 · θ, (25)

‖x− x∗‖2 ≤ C2 ·
σs(x)q

t1/q−1/2
+ D2 · θ. (26)

The constants C1, C2, D1, and D2 depend only on q, γ2t, and the ratio s/t.

Comparison of the results in Theorems 5.8 and 5.7 is given in [Saab and
Yilmaz’08]. It concludes that when k is around 2, the sufficient condition
(24) is weaker while the condition in Theorem 5.7 is weaker when k > 2.
Numerical experiemental results in [Foucart and Lai’08] show that the ℓq

method is able to 100% recovery all the sparse vectors with sparsity is about
s = m/2. That is, in order to have ks ≤ m, k is about 2.

Next we consider that negative results discussed in [Davies and Gribno-
val’08]. That is, when the ℓq method may fail.
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Theorem 5.9 For any ǫ > 0, there exists an integer s and dictionary Φ with
a restricted isometry constant δ2s ≤ 1/

√
2 + ǫ for which ℓ1 method fails on

some k sparse vector.

Now the gap between the positive result δ2s = 2(3−
√

2)/7 = 0.4531 and
the negative result δ2s = 1/

√
2 + ǫ = 0.7071 is about 0.2540. In general,

Davies and Gribnoval consider a special matrix Φ which has a unit spectral
norm, i.e.,

‖Φ‖2 = sup
y 6=0

‖Φy‖2
‖y‖2

= 1.

Then they define

σ2
k(Φ) := min

y∈
‖y‖0≤k

‖Φy‖2
‖y‖2

which is equal to α2
k in [Foucart and Lai’08].

Theorem 5.10 Fix 0 < q ≤ 1 and let 0 < ηq < 1 be the unique positive
solution to

η2/q
q + 1 =

2

p
(1− ηp).

For any ǫ > 0, there exist integers s ≥ 1, N ≥ 2s + 1 and a minimally
redundant unit spectral norm tight frame ΦN−1×N with

σ2
2s(Φ) ≥ 1− 2

2− q
ηq − ǫ

for which there exists an s-sparse vector which cannot be uniquely recovered
by the ℓq method.

5.3 Numerical Computation of the ℓq Approach

The minimization problem (Pq) suggested to recover x is nonconvex, Follow-
ing [Foucart and Lai’08], we introduce an algorithm to compute a minimizer
of the approximated problem, for which we give an informal but detailed
justification.

We shall proceed iteratively, starting from a vector z0 satisfying Az0 = y,
which is a reasonable guess for x, and constructing a sequence (zn) recursively
by defining zn+1 as a solution of the minimization problem

minimize
z∈RN

N∑

i=1

|zi|
(|zn,i|+ ǫn)1−q

subject to Az = y. (27)
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Here, the sequence (ǫn) is a nonincreasing sequence of positive numbers. It
might be prescribed from the start or defined during the iterative process.
In practice, we will take limn→∞ ǫn = 0. We shall now concentrate on con-
vergence issues. We start with the following

Proposition 5.11 For any nonincreasing sequence (ǫn) of positive numbers
and for any initial vector z0 satisfying Az0 = y, the sequence (zn) defined by
(27) admits a convergent subsequence.

Similar to the proof of Theorem 5.5, we can see that the solution of the
above minimization exists. We further show that the solution xǫ of Eq.(27)
will converge to the solution Eq. (20). For convenience, let x̂ be a solution
of Eq. (20).

Theorem 5.12 Fix 0 < q ≤ 1. Let xǫ be the solution of Eq. (27). Then xǫ

converges to x̂ as ǫ→ 0+.

The new minimization problem Eq. (27) can be solved using ℓ1 method
since Fq,ǫ(x) is a weighted ℓ1 norm.

Proposition 5.13 Given 0 < q < 1 and the original s-sparse vector x, there
exists η > 0 such that, if

ǫn < η and ‖zn − x‖∞ < η for some n, (28)

then the algorithm 27 produces the exact solution. That is,

zk = x for all k > n.

The constant η depends only on q, x, and γ2s.

Lemma 5.14 Given 0 < q ≤ 1 and an s-sparse vector x, if Condition (21)
holds, i.e. if

γ2t − 1 < 4(
√

2− 1)

(
t

s

)1/q−1/2

for some integer t ≥ s,

then for any vector z satisfying Az = y, one has

‖z− x‖qq ≤ C
[
‖z‖qq − ‖x‖qq

]
,

for some constant C depending only on q, γ2t, and the ratio s/t.
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Figure 1: Comparison of ℓ1, ℓq, and OGA methods for sparest solutions

Finally we present the following

Proposition 5.15 Given 0 < q < 1 and the original s-sparse vector x, if
Condition (21) holds, i.e. if

γ2t − 1 < 4(
√

2− 1)

(
t

s

)1/q−1/2

for some integer t ≥ s,

then there exists ζ > 0 such that, for any nonnegative ǫ less than ζ, the vector
x is exactly recovered by solving (27). The constant ζ depends only on N , q,
x, γ2t, and the ratio s/t.

Numerical results show that our ℓq approximation method works well. In
Figure 1, we present the frequencies of the exact recovery using various meth-
ods for Gaussian random matrix of size 128× 512 for various sparse vectors.
For each sparsity, we randomly generate the Gaussian random matrix Φ and
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a vector x with the given sparsity and tested various methods to solve the x
for 100 times. The number of exact recovery by each method is divided by
100 to obtain the frequency for the method.
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6 Appendix 1: Gaussian Random Matrices

Let A = [aij ]1≤i≤m,1≤j≤n be a rectangular matrix with aij being iid Gaussian
random variables with mean zero and variance σ2. Let x = (x1, · · · , xn)T ∈
Rn be a vector. We use ‖x‖2 denotes the norm of x. Consider a random
variable X = (X1, · · · , Xm)T with Xi = (

∑n
j=1 aijxj)

2, i = 1, · · · , m. Since

E(aij) = 0, we have E(Xi) = σ2‖x‖22 for all i. Let ξi = Xi −E(Xi) be a new
random variable and let

Sm =

m∑

i=1

ξi

be the sum of these new independent random variables. It is easy to see that

Sm = ‖Ax‖22 −mσ2‖x‖22.

In this section, we are interested in proving the following inequality.

Theorem 6.1 For any ǫ > 0, the probability

P(|‖Ax‖22 −mσ2‖x‖22| < ǫ‖x‖22) ≥ 1− 2 exp(− ǫ2m

(mσ2)(cǫ + 2mσ2)
), (29)

where c is a positive constant independent of ǫ and ‖x‖2.

We plan to use the Bernstein inequality (cf. [Buldygin andKozachenko’00,
p.27]) to prove this result. For convenience, we state the inequality below.
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Theorem 6.2 Suppose that ξi, 1 ≤ i ≤ m are independent random variables
with E(ξi) = 0 and E(ξ2

i ) = ν2
i < ∞, 1 ≤ i ≤ m. Let Sm =

∑m
i=1 ξi.

Moreover, suppose that there exists a constant H > 0 such that

|E(ξk
i )| ≤

m!

2
ν2

i H
k−2 (30)

for all integer k > 1 and all i = 1, · · · , m. Then the following inequality
holds for all t > 0: the probability

P(|Sm| > t) ≤ exp

{
− t2

2(tH +
∑m

i=1 ν2
i )

}
.

Proof. (The proof of Theorem 6.1.) We need to study Eq. (30) for
ξi = Xi − E(Xi) for k ≥ 3 since for k = 2, Eq. (30) is satisfied trivially.

For convenience, let µ = E(Xi) = σ2‖x‖22. It is easy to see E(|ξi|2) = 2µ2.
Thus, ν2

i = 2µ2. For k ≥ 3, we have

E(|ξi|k) = E((Xi − µ)k) =

k∑

j=0

(
k

j

)
E(Xj

i )(−1)k−jµk−j.

Let us spend some effort to compute E(Xj
i ). We have

E(Xj
i ) = E(

n∑

j=1

aijxj)
2j =

∑

j1+···+jn=2j

(2j)!

j1! · · · jn!
E(aj1

i,1a
j2
i,2 · · ·ajn

i,n)xj1
1 · · ·xjn

n .

Note that E(aℓ
ij) = 0 for all odd integers ℓ and it is known (using integration

by parts) that E(aℓ
ij) =

ℓ!

2ℓ/2(ℓ/2)!
σℓ for even integers ℓ. Since aij are iid

random variables, we have

E(Xj
i ) =

∑

2j1+···+2jn=2j

(2j)!

(2j1)! · · · (2jn)!
E(a2j1

i,1 a2j2
i,2 · · ·a2jn

i,n )(x1)
2j1 · · · (xn)2jn

=
(2j)!

j!

∑

j1+···+jn=j

j!

(2j1)! · · · (2jn)!

(2j1)! · · · (2jn)!

2jj1! · · · jn!
σ2j(x1)

2j1 · · ·x2jn

n

=
(2j)!σ2j

2jj!
(

n∑

j=1

x2
j )

j
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=
(2j)!

2jj!
σ2j‖x‖2j

2 =
(2j)!

2jj!
µj.

Thus,

E(|ξi|k) ≤
k∑

j=0

(
k

j

)
(2j)!

2jj!
µjµk−j.

By using Stirling’s formula, we have
(2j)!

2jj!
≤ 2jj!/2 ≤ 2jk!/2 and hence,

|E(|ξi|k)| ≤
k∑

j=0

(
k

j

)
2jk!

2
µk

=
k!

2
3kµk =

k!

2
2σ4‖x‖42

9

2
3k−2(σ2‖x‖22)k−2

≤ k!

2
2σ4‖x‖42Hk−2

with H = 13.5σ2‖x‖22. That is, Eq. (30) is satisfied for k ≥ 3. By
Theorem6.2, we have

P (|‖Ax‖22 −mσ2‖x‖22| > t) ≤ 2 exp

{
− t2

2(t13.5µ + 2mµ2)

}
. (31)

Choosing t = ǫ‖x‖22, we have t13.5µ + 2mµ2 = σ2‖x‖42(13.5ǫ + 2mσ2) and
the above probability yields:

P (|‖Ax‖22 −mσ2‖x‖22| > ǫ‖x‖22) ≤ 2 exp

{
− ǫ2m

2(mσ2)(13.5ǫ + 2mσ2)

}
. (32)

In other word, the desirable result of Theorem 6.1 is proved.
We remark that when σ = 1/

√
m, the estimate Eq. (29) gives a proof of

Theorem 3.11. For this special case, we have

Theorem 6.3 Suppose that ξ is a Gaussian random variable with mean zero
and variance σ2. Let A be an m × n matrix whose entries are iid copies of
ξ. For any ǫ > 0, the probability

P(|‖Ax‖22 −mσ2‖x‖22| < ǫnσ2‖x‖22) ≥ 1− 2 exp

{
−ǫ2m

c

}
, (33)

where c is a positive constant independent of ǫ and ‖x‖2.
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Proof. (The Proof of Theorem 6.3.) For a random matrix A of size
m× n with entries aij being iid Gaussian random variables with zero mean
and variance σ2, then we use ǫmσ2 for ǫ in Eq. (32). Then we have

P(
∣∣‖Ax‖22 −mσ2‖x‖22

∣∣ > ǫmσ2‖x‖22) ≤ 2 exp

{
− ǫ2m

2(ǫ13.5 + 2)

}
. (34)

This completes a proof of Theorem 6.3.
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