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Abstract. We show how to construct stable quasi-interpolation schemes in
the bivariate spline spaces S;(A) with d > 3r+2 which achieve optimal approx-
imation order. In addition to treating the usual max norm, we also give results
in the Ly norms, and show that the methods also approximate derivatives to op-
timal order. We pay special attention to the approximation constants, and show
that they depend only on the the smallest angle in the underlying triangulation
and the nature of the boundary of the domain.

AMS(MOS) Subject Classifications: 41A15, 41A63, 41A25, 65D10
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proximation Schemes, Super Splines.

§1. Introduction

Let Q be a bounded polygonal domain in R*. Given a finite triangulation A of €,
we are interested in spaces of splines of smoothness r and degree d of the form

SyA):={s € C"(Q): s|r € Py, forall T € A},

where Py denotes the space of polynomials of total degree at most d.

The main result of this paper is the following theorem which states the existence
of a quasi-interpolation operator @,,, which maps L;({2) into the spline space Sj(A)
in such a way that if f lies in a Sobolev space Wp’""'l(Q) with 0 < m < d, then
Q. [ approximates f and its derivatives to optimal order.

Theorem 1.1. Fixd > 3r + 2 and 0 < m < d. Then there exists a linear quasi-
interpolation operator ), mapping L1(2) into Sj(A) and a constant C' such that
if f is in the Sobolev space Wp’""'l(Q) with 1 < p < o0,

HD?Dlg(f - me)Hp’Q <C |A|m+1_a_ﬁ |f|m—|—1,P,Qv (1'1)
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for all0 < a+ 3 < m. Here |/A\| is the maximum of the diameters of the triangles in
A. If Q is convex, then the constant C depends only on d, p, m, and on the smallest
angle 5 in /. If Q is nonconvex, C' also depends on the Lipschitz constant Lag
associated with the boundary of Q.

Error bounds as in (1.1) are well-known in the finite element literature for
d > 4r + 1. The first attempt to establish (1.1) for the range d > 3r + 2 appears in
de Boor & Hollig [5], where the authors dealt with the case p = 00, a = 8 = 0, and
m = d. Later Chui & Lai [8] examined the same case for d = 3r + 2. Unfortunately,
both “proofs” were defective in that they involved a “constant” C' which was not
shown to be bounded, and in fact becomes arbitrarily large for triangulations which
contain near-singular vertices (see Sect. 7 below for a precise definition of such a
vertex). Recently, Chui, Hong, & Jia [7] gave a new argument for (1.1) in the case
p=o00, a+ [ =0, and m = d. It involves constructing a quasi-interpolant in a
certain super-spline subspace of S7(A).

In addition to providing what we believe is a simpler construction than in [7],
the purpose of this paper is to extend the earlier results by establishing (1.1) for

1) general 1 < p < oo,

2) all choices of 0 < m < d,

3) general 0 < o+ 3 <m,

4) general (not necessarily convex) domains €2.

The key to our approach is to work with a suitable super-spline subspace of Sj(A)
which is different than that in [7], and involves basis splines with smaller supports
(see Remark 1).

The outline of the paper is as follows. Sect. 2 is devoted to some preliminaries.
In Sect. 3 we develop some useful properties of triangulations. We establish a
number of properties of polynomials in Sect. 4. While some of these are well-known,
to make this paper as self-contained as possible, we present full proofs of most of
them. We develop a general framework for establishing error bounds for spline
quasi-interpolants in Sect. 5, and discuss domain points and smoothness conditions
in Sect. 6. Near-degenerate edges and near-singular vertices are discussed in Sect. 7,
and the phenomenon of propagation is explained in Sect. 8. In Sect. 9 we introduce
the super-spline spaces of interest here, and in Sect. 10 we use them to establish
our main result. We conclude the paper with several remarks.

§2. Preliminaries

In this paper € is assumed to be the union of a set of triangles. This means that the
boundary 0f? is piecewise linear, and thus is Lipschitz with a constant Lsq which
depends on the size of the angles between the edges of 9€2. The error bound (1.1)
is expressed in terms of the mesh-dependent L, norm

IDDS(F ~ QAL o = 3 IDIDY(F ~QuI!

TeA
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typically used in the finite-element literature. The expression on the right-hand
side of (1.1) involves the usual Sobolev semi-norms

1/p
Y IDiDyAb ] . 1<p<eo
|f|k,p,Q = v+u=k
Y. IDiDyfll g p=cc.
v+u==k

We shall make use of the following extension theorem of Stein [15], p. 181.

Lemma 2.1. Let Q) be a bounded domain whose boundary consists of piecewise
linear segments. Then there exists a linear extension operator E extending functions
from Q to R? so that

(a) E(fla =1,

(b) ID2DIB(A, g < Ko IDEDLS] o for all f € Wi+ (Q) and all 1 < p <
oo and 0 < a+ [ < m+ 1, where the constant K, is dependent on p, m, and
the Lipschitz constant Lgq of the boundary 0f2.

§3. Properties of Triangulations

In this section we introduce some useful notation, and collect several results needed
later. Suppose T is a triangle. Then

|T'| := the diameter of the smallest disk containing T, (3.1)

pr := the radius of the largest disk contained in T, (3.2)

A7 := the area of the triangle T', (3.3)

07 := the smallest angle in the triangle 7. (3.4)
By simple trigonometry, it is easy to see that
T 2

(A (3.5)

pr — sin(87/2)

Given a triangulation A = {T;}¥| of a set Q, at times we shall work with a
subset 7 of A consisting of a cluster of several triangles. We define

#7T :=the number of triangles in 7,

7 i=min pr
P T€7P ;

07 :=min 0
TeT

Ur = U T,

TeT
|Ur| :=diameter of the smallest disk containing Ur.
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For later use we need some estimates on these quantities, assuming that the
triangles of 7 are fairly closely clustered. To make this concept more precise,
suppose v is a vertex of a triangle in A. Then the star of v is the union of all
triangles which share the vertex v. We denote it by star'(v) := star(v). Similarly,
we define the star of order ¢ recursively by

star’(v) := {UT : T shares a vertex with a triangle in star’~'(v)}.
Lemma 3.1. Suppose T is a collection of triangles such that Uy C star(v). Then

- ZIVCZO (12V+1, g = 2k —I_ 17

3.6
Yoot a’?, =2k, (3.6)

where a := 27 /0.

Proof: We first consider the case where Uy = star(v). Suppose that there are N
vertices attached to v. Then clearly N6y < 27, and so N < 27/67. Since N is
also the number of triangles surrounding v, this establishes (3.6) for ¢ = 1.

We say that a vertex w is at level 5 with respect to v if we have to follow at
most j edges to get from w to v. If Uz = star’(v), then there are vertices at each
of the levels 0,...,¢. Moreover, by the above observation, the number of vertices
at level j is bounded by @/, and the total number of triangles surrounding vertices
at level j is at most a/*1!.

To get a bound on the number of triangles in star‘(v) in the case where ¢ =
2k + 1, it suffices to count the number of triangles surrounding vertices at levels
0,2,...,2k. This is at most @ + a® 4 - - - + a***1, which establishes (3.6) for £ odd.
When ¢ = 2k, we only have to count the triangles surrounding vertices at levels

1,3,....2k—1. O

Lemma 3.2. Suppose 7 is a set of triangles such that Ur is a connected subset
of start(v) for some vertex v. Then

LA (3.7)

T

where K3 := 2/[sin(f1 /2)(sin(67))"] with n = 2(2¢ — 1)7/67. Moreover, for any
two triangles T,T in Ur,

Ar .
T < K2, (3.8)
Ap =77
Proof: First we note that if e and € are any two edges of a triangle 7', then
le| < ble], (3.9)

where b = 1/sin(f7). Now any two triangles T and T in 7 are connected by a
path of edges which passes through at most 2¢ — 1 vertices. Since at most 27 /61
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triangles can touch any given vertex, this means that we can get from one edge of
T to an edge of T by crossing over at most n = 2(2¢ — 1) /67 edges. Each time we
cross an edge, the size of the next edge to be crossed is at most b larger. Combining
this with (3.5), we see that |emaz|/p7 < K3, where ep,q, is the longest edge in 7.

Now to prove (3.7), we observe that if + and y are two points in Ur at a
maximal distance apart, then z and y must be vertices of triangles in 7. Thus
there is a path of edges ey,...,ex from x to y going through v and involving at
most 2¢ edges. Thus |Ur| < 2l|emaqz|, and (3.7) follows.

To prove (3.8), we simply note that for any T,T € T, A < 7|emas|?> while
Ap > 71',027. O

84. Polynomial Approximation

Suppose that T is a given triangle with vertices v; = (z;,yi), ¢ = 1,2,3. Let Bldjk(v)
be the usual Bernstein polynomials of degree d associated with T for ¢ + 53 + k = d.
It 1s well known that these polynomials form a basis for Py, so that every polynomial
P € Py can be written uniquely in the form

Pv)= Y cijBi(v), (4.1)

i+j+k=d

and that >, 4y ijk(v) = 1. The representation (4.1) is called the Bernstein-
Bézier representation or B-form of P. It is common practice to associate the coef-
ficients c¢;;i with the set of domain points

(Z"Ul + j’l)z + kv3) }
d it jtk=d

D {€h - (42)

Owur first lemma shows that the B;ijk form a stable basis for Py.

Lemma 4.1. There exists a constant K, dependent only on d such that for any

polynomial P € Py,
lell, o 1

— < P <le 4.3
7 < g WPl <l (43)
for all 1 < p < oco. Here ¢ is the vector of coefficients of P in lexicographical order,
and
1/p

lellp = > leixl” ,  1<p<oo, (4.4)

i+it+k=d

el o :i+1ﬁrak><:d|cijk|a p = oo.

Proof: First we establish the inequality on the right of (4.3). For p = oo it follows
from the fact that the B;ijk are nonnegative and sum to 1. We now prove it for

5



1<p<oo. Let 1/p+1/g=1. Then writing P in B-form, we have

/
HP”;Tﬂ/T( Z |Cijk|p)< Z |B§ijk(:c,y)|q)p qudy

i+j+k=d i+j+k=d
p/q
d
< Z |Cijk|p/< Z Bijk(xay)> dz dy
i+j+k=d T it jtk=d
= D el Ar.
i+j+k=d

This establishes the right-hand side of (4.3).

We now establish the left-hand side of (4.3) for p = oo. Note that Ac = r
with A = (¢m(ns)) and r = P(ny,), where {¢,,} are the basis functions Bjji
and {n,} are the domain points {f?;k} in the same lexicographical order as the
coefficients in ¢. Note that the entries of the matrix A depend only on d. Since
interpolation at the .fgk by polynomials in Py is unique, A is invertible, and we get
llelloo < NA ool oo < JAT ool Plloo, 7 This gives the left-hand side of (4.3) for
p = oo with Ky := ||A™"| -

By mapping T to the standard simplex Ty = {(z,y),0 < z,y <1,z +y < 1},
and using the fact that all norms on the finite dimensional space of polynomi-
als are equivalent, i.e., ||P|ls,7, < K| P|p7,, it is easy to see that ||Pl|lec,7 <

KHPHP,T/A;/]D. Now the result for general p follows since Hc”ﬁ < (d"if) l|lc]|Z,. O

Our next lemma is a form of Markov inequality for polynomials in Pj.

Lemma 4.2. There exists a constant K5 dependent only on d such that for all
polynomials P € Py,

o IX’5 )
ID2DIPI < 2 Pl p 0Satf<d (45)
Pr
for all 1 < p < o0.

Proof: We consider only the case 1 < p < oco. The case p = oo is similar, and
simpler. Let u = vy — vy = (23 —21,y2 —y1) and v = v3 — vy = (T3 — 21,Y3 — Y1)
Then the directional derivatives of P are given by

DuP :(3:2 - ml)DxP + (yZ - yl)DyP
DUP :(515'3 — Cl/’l)DIP + (yg — yl)DyP

It follows that

D,P :(y3 —y1)Dy P — (y2 — yl)DvP7
247

DyP :(CL’Q — l’l)DUP — (CL’3 — ZL’l)DuP
24T



Now clearly,
prlys =yl < Ar,  prly: — | < Ar.

Combining these inequalities, we have

|y2——yﬂ
247

1
<5~ (IDuP(z,y)| +|DuP(z,y)]).
T

|y3 -

)
D, P(e.)| <2 D, Py + D, P(2.y)
T

The analogous estimate for |D,P| can be established in the same way.
It 1s well-known that

D,P(v)=d > (cijrk —cir1jk)Big' (v),
it k=d—1

where B?ﬁcl are the Bernstein basis polynomials of degree d —1 relative to 7. Using
Lemma 4.1 first on D, P and then on P, we now have

1/p

IDuPll, 7 <d| Az Y |(cijrin — ciy1k)l”
i+t k=d—1

< 24" |lell, < 24Ky || P, 1.

The analogous estimate for | D, P||, r can be established in the same way. Com-
bining these, we have

2dK,
T

1
ID:Ply 1 < 5= (1Pl 1D Plyr) < 25t 1Pl
This establishes (4.5) for @« = 1 and # = 0. The proof for « = 0 and 3 = 1 is
similar. The result for general o and 3 then follows by applying the D, and D,
derivatives repeatedly. O

Next we introduce the so-called averaged Taylor polynomials (cf. [6], p. 911F).
Let B(zo,y0,p) = {(z,y) € R* : ((z —20)> +(y—10)?)"/? < p} be the disk centered
about (zg,yo) with radius p. For simplicity, we write B := B(xq,yo,p). Let

cexp(=1/(1 = ((z = 20)* + (y = %0)*)/p*), if (x,y) € B(xo,¥0,p)

0, otherwise

gB(z,y) = {

be a mollifier or cut-off function such that / gB(z,y)dedy = 1.
R2
For any function f € C™(IR?), let

Dy Dy f(u,v)

A -y )’

Tm,(u,v)f($7y) = Z

a+g<m



be the Taylor polynomial of degree m of f at (u,v). Then the averaged Taylor
polynomaal of degree m over B(xg,yo,p) is defined as

Fm,Bf(xay) = / Tm,(u,v)f(xay)gB(uav) du dv. (46)

B(Io,yo,P)

Integrating by parts, we have the equivalent formula

Fm,Bf(l',y)
1
- Z 131 / Dngf(u,v)(:z; —u)®(y — U)ﬂgB(u,v)du dv
a+4<m Ol.ﬁ. B(z0,y0,p)
(_1)a+ﬂ anf o 8
— Z 131 f(u,v)De DY [(z —uw)*(y —v)’gp(u,v)] dudv,
at+B<m alp! B(z0,y0,p)

which shows that the averaged Taylor polynomial is well-defined for any integrable
function f € L1(B(zo,y0,p)). Clearly, F, pf is a polynomial of degree < m. It is
also known (cf. [6]) that

Lemma 4.3. Forany0 < a+ 3 <m and f € W1a+ﬁ(B($0,yo,p)),

Dgngm,Bf — Fm_a_ﬁ,B(Dgpgf).

We recall the following formula for the exact remainder of the classical Taylor
polynomial:

f(:Ev y) - Tm,(u,v)f(wv y)

—(m+1) Y (z —u)°(y —v) /0 DEDY f((z,y) +t(u — z,v — y))t™dt.

131
Q..
a+B=m+1 ﬂ

Here the differential operators Dy and Dy denote differentiation with respect to the
first and second variables, respectively. This implies that

f(l’,y) - Fm,Bf(xay)

-/ o gntu,) dudo — [ T oy £ (22 9)95 (1 0) dt
B(IO,yO,P) B(I07y0ap)
m+ 1 1 o P
- ¥ =t g5(u,0)(x — )y — ) x
atf=m+1 7 7 B(zo,y0,p) JO
Dngf((:z:, y) +t(u—z,v—y))t"dt du dv, (4.7)

and we immediately have



Lemma 4.4. For any polynomial f € Pp,, f = Fy,, Bf.

Given a triangle T € A, let By := B(xr,yr,pr) C T be the largest disk
contained in 7. We now estimate the norm of the operator Fy, g, .

Lemma 4.5. For any f € L,(T) with 1 < p < oo,

1o, Bz fllp 7 < Kol f]p,7-
Here Kg is a constant dependent only on 0.
Proof: We first note that
C4 .
|DeDP g, 7o (r2) < W, for all nonnegative integers «, 3.

T

Then for fixed (z,y) € T, by the Leibniz formula and (3.5)
D DY (x —u)*(y = v) gpr(u,0)]

< (2) (5 e w0ty =0 D DI g (0,0

a1 La an //31
B1<p
o ﬁ 3 B c,
< E T a1+8-F1 < 02 p2
__alia <a1> <ﬁl>| | p%_a1+ﬂ_ﬂ1+2 — / T
B1<p

for any (u,v) € R®. Using (3.5), we see that Cy is a constant dependent only on
the smallest angle 67 of T. Given 1 < p < oo, let 1/p+ 1/¢g = 1. Then for all
f € L,(T), using (3.5) again, we have

1B, By fllp, 7

1 N N
< 3l f, wopep e -0t - oPan o] due]
a+B<m T )
1 1/p
3 (o)
a—|—ﬁ§m T
1/q
(/ |D3Dg($—U)a(y—U)ﬂgBT(U,qududv)
Br p,T
1 1\¢ p/4 1/p
< —— | fllp7 / (/ (C‘ —) du dv) dzx dy
a—l%;m alf! ! T \JBr Zpgl‘
—2q 9 p/q 9 1/p
< Callfllpr ( (r"mo7) 17
< Cyllfllp,r-



Since Cy depends only on 87, this completes the proof. O

Our aim now is to give an error bound for how well the polynomial F, g, f
approximates the function f, assuming that f lies in a Sobolev space. We need
a bound not only on a single triangle 7', but also on the union Ur of a set 7 of
triangles in the triangulation A of .

Lemma 4.6. Fixm > 0 and let Ur be a polygonal domain consisting of the union
of a set T of triangles Iying in star(v) for some vertex v. Let T be an arbitrary

triangle in 7. Then there exists a positive constant K7 depending only on m, {,
01, and the Lipschitz constant of 02 such that for all f € me+1(U7),

IDEDS (f = Fagr ) lpur < Ko [UZ)™ P flins1,p,0r

for all 1 < p < oo.

Proof: We need only prove

If = Foo,Bs fllpur < Ko |Ur|™ Y flont1,p,07 5 (4.8)

since then Lemma 4.3 implies

DYDY (f = FnBr f) |lp,uz
<K7|Ur|™ ' =" P|DY DY flmt1—a—p.p,ur

<Ky |U7|m+1_a_ﬂ|f|m+1,p,UT'

To establish (4.8), we first use the Stein extension Theorem 2.1 to extend f to the

~

convex hull Ur of Uy. We continue to write f for the extended function. Then
|f|m—|—1,p,[/]\7 § I{1|f|m—|—1,p,UT

for any f € me+1(U7). Since U7 is a polygonal domain, the constant Ky depends
on the Lipschitz constant of the boundary of Uz, which in turn depends on the
smallest angle 87 and may also depend on the Lipschitz constant Lag if the bound-
ary of Ur contains a part of 9€2. Suppose T is an arbitrary triangle in 7. In view
of (4.7), we need an estimate for

/B /0 9By (u,v)(z —u)*(y — v)ﬁDngf((:v, y) +tu—z,v—y))t"dt du dv.

Let (p,v) = (z,y) + t(u — z,v — y). Then dudv dt =t* dudv dt. Let

(FL? V) — ($7 y)

D :={(u,v,t):t €(0,1] and ;

+(z — o,y —yo)| < pr}s
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where (29, yo) is the center of the disk Br. Then for (u,v,t) € By x(0,1], (g, v,t) €
D. Since

Vg =22+ —y)?/t<pr++(z—20)+(y— 1),

we have

BN, Vara i Ot
tO(ILL7 ) pT_|_\/(x_x0)2_|_y_y0)

<1t.

Thus, letting x, be the characteristic function of D, we have

/B / 9By (u,v) (2 —u)*(y — v)ﬁDngf((x, y) +t(u—z,0—y))t" dudodt

[ oo (P ) (o - )7 = ) DD g

/ ) (y — )P D2 D (s, ) %
{(z,y), BT>

/ Xp (110,098, ((2,y) + (0 — 2, v —y) /)t dt dp dv,

where ((z,y), Br) denotes the convex hull of (z,y) and Br. Note that

‘ /01 xp(w v, t)gs, (z,y) + (p — =, v — y)/t)t_?’dt‘

C 1
< t=3dt
pT tO(/’“a”)

Gy ((pT—I—\/:c—xo + (y — yo)? )2_1)

2% (n—2)* +(v—y)?
<c (1 p Lot (y‘W) (=2 + (=)™

By Lemma 3.2, we have

Ve —20)2 + (y —yo)? < U7 <

~ CQ = 261{3,
pT PT
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and letting ¢ be such that 1/p+ 1/q = 1, we have

m+1
Hf - Fm,BTfHP,UT § Z ( 0['/3’ )
a+B=m—+1
H / DR DY f(u)l(x = ) + (y =)V Ci(1 4 Cy)?
<(I’y)aBT> p,Ur
2 (m + 1)
< Ci(1+ Cy) Z ol
a+B=m+1
P 1/p
[/U (/ﬁ 1D DY f(p,v)((x — p)* + (y — 7/)2))(m_1)/2d/1d1/> dmdy]
T T

1/p

r/q
<C DeDOf||P . Uz|m=V4dud dzd
<o Y [/UTII 0L, ([ i D) doay

a+B=m+1
3 r/a AR
= C3|f|m+1,p;[/]\7 (|U,I|(m 1)q—|—2) |U7|2]

= C3|U7|m+1|f|m+1,p,UT'

Here, the constant C3 is dependent on the smallest angle 87. This completes the
proof. 0O

We remark that the proof of Lemma 4.6 is just a modification of Lemma (4.3.8)
in [6], p. 100.

§5. An Error Bound for Spline Quasi-interpolation

Let A be a triangulation of a bounded polygonal domain 2. In this section we in-
vestigate the approximation power of certain quasi-interpolation operators mapping
functions in L{(€2) into splines defined over A.

Theorem 5.1. Fix 0 < m < d. SupposeT is some finite index set, and let {¢¢ }¢er
be a set of splines in SY(A) such that

H1) there exists an integer ¢ such that for each £, the support of ¢¢ is contained
in star*(ve) for some vertex ve € A\;

H2) Kg := max; H¢€Hoo,ﬂ < o0;
H3) Ky := maxp #(371) < 0o, where o(¢¢) denotes the support of ¢¢ and

Sp:={f: T Co(ge)}. (5.1)

Suppose in addition that there exists a set of linear functionals {\¢ m }eer defined
on L1(Q) with the property that for all { € ', there is a triangle T; contained in
the support of ¢¢ with
K
Demfl < Al—l/‘;Hpr,Tﬁ for all f € Ly(Q) when 1< p < oo (5.2)
Tt

12



and

| Ae,m | < Kio|| flloo, e for all f € Loo(2) when p = oo (5.3)

for some constant Kyy. Finally, suppose that the corresponding quasi-interpolation
operator

Qumf =Y (Aemf)oe (5.4)

el

reproduces polynomials in the sense that

QnP =P for all PeceP,. (5.5)

Then there exists a constant C' depending only on the constants Ky, ..., K; appear-
ing in Lemmas 2.1, 3.1, 3.2, 4.1, 4.2, 4.5, and 4.6, and the constants {, Kg, Kg, Ky
above such that if f € me+1(Q), then

IDEDI(F = Qull o < CLAI™ | flurrs g (5.6)

forall0 <o+ <mandalll <p<oo.

Proof: We present the proof for 1 < p < oo; the proof for p = oo is similar and
simpler. For a fixed triangle T'in A, let U := |J{o(¢¢) : T C o(de)}. If we write T
for the set of triangles making up U, then in our earlier notation U = Ur. By HI,
Ur C star?*1(v) for some vertex v of T. By Lemma 4.6 there exists a polynomial
g of degree m so that

IDE Dy (f =, 1, < KrlUz ™| flansr p0r- (5.7)
Using (5.5), we have

IDEDJ(f ~ Quflll, 7 < IDD(F ~ )l o+ [DEDIQu(f — o)l

p, T’

Since T' C U, we can apply (5.7) to estimate the first term. We now examine the
second term in more detail.

For each £ € Y7, let T¢ be the triangle in (5.2). Now by H2, (3.7), (3.8), (4.5),
(5.2), and (5.7) for @ = 8 = 0, we have

/T Nem(f — g)[P|D2 D2 Gel? dedy

P
B [K5 K1
Pr 7

At
T =l Vel

K5 K- KsKyp
GIOTL?IUTI’”+1 | flmt1,p,07
T

< (K| &A™ 8 flagr por )

< K:
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where K1 1= [%](m‘H_a_ﬂ)fi'§a+ﬂ+2/p)fx’5K7K8K10. In view of H3, we get

102D} @u(f-0 = [ | 3 Aem(s = 9)D2 D] dody
EEXT

< (K| A7l por ) (5.8)

where K15 := K, /P Ky.

To complete the proof, we now add (5.7) and (5.8) together and sum over all
triangles T' € A. Since U7 contains other triangles besides T', some triangles appear
more than once in the sum on the right. However, a given triangle Tr appears on
the right only if it is associated with a triangle 77, on the left which lies in the set
star?*1(v), for some vertex v of Tg. But then Lemma 3.1 implies that there is a
constant K3 depending only on ¢ and 6 such that Tr enters at most K3 times
on the right. We conclude that

IDE DY (f = Qm Il @ < Kis(EF + KD) (1A 77 flmsr pa) "

and taking the p-th root, we get (5.6). O

Clearly, we could have normalized the splines ¢¢ appearing in Theorem 5.1 so
that the constant Kg = 1. However, we have not done that here since in using this
result later, it is more convenient to normalize our splines in a different way.

§6. Domain Points and Smoothness Conditions

It is well known that the space of splines SY(A) is in one-to-one correspondence
with the set of domain points

Da = {fgk : T is a triangle in A}, (6.1)

where the fgk are defined in (4.2). For each point £ € Da, let ¢ be the linear
functional such that for any spline s € SY(A),

ves := the Bézier coefficient of sy associated with the domain point £,  (6.2)

where st is the polynomial which agrees with s on 7. Suppose S is a linear
subspace of SY(A). We recall [3] that a subset I of Da is called a determining set
for § provided that for any s € S, the coefficients of s are uniquely determined
by the set {cg}eer. I is called a minimal determining set for S if there is no
determining set with fewer elements. There is a convenient way to recognize when
a given determining set I' is minimal. Suppose that for each £ € T', it is possible to
construct a spline ¢¢ € S such that

TYnbe = Oy ¢, allnp e T. (6.3)
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Then as shown in [3], the splines ¢, are linearly independent and form a basis for
S.

When T is a minimal determining set for S, the splines ¢¢ satisfying (6.3) can
be constructed as follows. Given { € T', to construct ¢, we first set the coefficients
of ¢¢ corresponding to domain points n € T' so that (6.3) holds. Then we solve
for the remaining coefficients of ¢¢ taking care to satisfy all of the smoothness
conditions required to make ¢¢ lie in &. We shall use this approach in Sect. 9 below
to construct a basis of locally supported splines for a certain super-spline subspace
S of Sj(A).

We devote the remainder of this section to a discussion of how to use smooth-
ness conditions between adjacent polynomial pieces of a spline to solve for coef-
ficients. Suppose T = (vy,v2,v3) and T = (v4,v9,v3) are two adjacent triangles
which share a common edge e = (vy,v3). Let {ijk} and {B’Zd]k} be the Bernstein-

Bézier basis polynomials associated with T and T, respectively. Then it is well-
known (cf. [4] and [9]) that the two polynomials

p(v)i= Y cijpBhi(v) (6.4)

i+j+k=d

and

plv)i= Y @B, (6.5)

i+j+k=d

join together with smoothness C'™ across the edge e if and only if

Cmjk = Z c,,,j_|_u,k+,{B%K(v4), all y+k=d—m and m=20,...,r.
v+ut+k=m
(6.6)
Assuming that the coefficients appearing on the right-hand side of (6.6) are
known, we can use the equation to solve for ¢y, ;. The following lemma shows that
this is a stable process.

Lemma 6.1. Suppose s is a spline in Sj(A), and that p and p are its restrictions
to a pair of adjoining triangles T and T as described above. Suppose the coeffi-
cients {c;ji }i<r Of p are known, and that C' := max;<, |cijx|. Then the coefficients
{€mjk }m<r of p can be computed from (6.6), and are bounded by K14C, where K14
is a constant depending only on the smallest angle A in the triangulation.

Proof: Suppose
vy = avy + Py + yus. (6.7)

We claim that the a, 3, v are bounded by a constant depending only on 6. Indeed,
each of them is a ratio of the areas of two triangles which share a common edge.
The area of the triangle T' with edges e and € separated by an angle 6 is given by
Ap = Lle||é]sinf. Now by (3.9), the edges of T and of T are of comparable size
with a constant depending only on A, and the result follows. O

15



The smoothness conditions can also be used in a different way to compute
coefficients. We recall that if T' = (vy, vy, v3), then the distance of the domain point
i:g‘k from the vertex vy is defined to be dist(fi:gk, v1) 1= d—1, with similar definitions
for the other two vertices, while the distance of f?;k from the edge (vo,v3) is ¢, with
similar definitions for the other two edges. Given a vertex v, we define the ring of
radius m around v to be the set R, (v):= {n: dist(n,v) = m}. The disk of radius
m around v is Dy (v) := {n : dist(n,v) < m}. We also define the arc ay, .(v)
around v associated with an edge e := (v,u) to be the set of domain points in the

ring Ry, (v) whose distance to (v,u) is at most r.

Lemma 6.2. Let T = (vy,v3,v3) and T = (v4,vq,v3) be two adjacent triangles
such that (6.7) holds with a,y # 0. Suppose we know the coefficients of a spline
s € SJ(A) for all domain points in the disk Dp—q(ve) with m > r. Let ¢; =
T be the coefficients of p := s|p on the arc afn’e(vQ) associated with the

edge e := (vy,v3), and let ¢; := Cg:d—m,m—i be those of p := 5|7 on the same arc.

Suppose that the coefficients ¢; and ¢; are known fort € {r —q+1,...,r} and that
the coefficients cq, ..., cr_24 are also known for some q with r + 1 > 2q. Then the
coefficients ¢; and ¢; are uniquely determined for all 0 <1 < r. Moreover, if C' is the
maximum of the known coefficients, then the computed coefficients are bounded by
K,5C, where Ky5 is a constant depending only on d, the smallest angle 6 in the
! where a, 3,7 are as in (6.7).

t,d—m,m—1

triangulation, and the size of o' and vy~

Proof: Versions of the first assertion can be found in [5,8,11]. Since the coefficients
€o,...,Cr—24 can be computed from the smoothness conditions, Lemma 6.1 provides
a bound on their size in terms of the known coefficients. To bound the size of the
remaining computed coefficients, we recall from Lemma 3.3 of [11] that the vector

xr = (Cr—q7 <y Cr—2g+1,Cr—2g+15- - - 7C,ﬂ_q)

is uniquely determined by a system of equations of the form Mz = y, where M 1s
a nonsingular matrix with

ol I

1 1
q! (g—1)!
det M = ka'' ™ o,
1 1 .
(2g—1)! (2¢—2)! q!

for some constants ¢1, 7 and k depending only on r,¢,d. Now the arguments in
the proof of Lemma 6.1 provide a bound on the components of y, while det M is
bounded away from zero by a constant depending on the size of ™! and y~1. O

Lemma 6.2 cannot be used when the edge e is degenerate, i.e., when v = 0 in
(6.7). In fact, since we want to control the size of computed coefficients, we cannot
use the lemma whenever v is small. This will have an effect on the way in which
we construct a minimal determining set for our super-spline space.
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§7. Near-Degenerate Edges and Near-Singular Vertices

We need generalizations of the well-known concepts of a degenerate edge and a
singular vertex.

Definition 7.1. Suppose T = (v1,vy,vs3) and T = (v4,vs,v3) are two triangles
which share an edge e = (va,v3). Suppose that «, (3, v are the barycentric co-
ordinates of vy relative to T' as defined in (6.7). Then we say that the edge e is
6-near-degenerate at vy provided v < §. We write E5 p(v2) for the collection of all
such edges.

In the case where e € &% (v2), the edges (v1,v2) and (v4,v2) are collinear,
and the edge e = (v2,v3) is a classical degenerate edge. We are interested in near-
degenerate edges for small §. In this case, the cardinality of €% ,(u) can only be
one, two, or four. Moreover, no edge can be near-degenerate at both ends.

Definition 7.2. Ifv is a vertex with #E% (v) = 4, then we call v a §-near-singular
vertez. We write V3¢ for the set of all such vertices.

If v € V34, then the vertex v is a classical singular vertex formed by the
intersection of two lines. For small 4, it is impossible for two neighboring vertices
to both belong to V§ ¢ since as we observed above, no edge can be near-degenerate
at both ends. We also note that if v & V4, then there must be at least one edge
attached to v which does not belong to &% (v).

The following lemma will be used in the Section 9 to deal with near-singular
vertices. Given a triangle 7', let

=14, ri=|(r+1)/2], (7.1)

and define
-1
T ._ T +7r—2k
U{Szd i— kk}z r4+1° L= U{fi,d—i—k,k}f:,:_k+1a

+r—2
U{‘f,],d 1— ] z r—|—17 U{g,],d 1—J f;:]—lj—l

These sets are illustrated in Fig. 1.

Lemma 7.3. Suppose v € Vi ¢ is attached to the four neighbors vy,...,vs4 (in
counterclockwise order). Let A, be the corresponding triangulation consisting of
the four triangles T; := (v,v;,viq1), t = 1,...,4, where vs is identified with v,. Let

T,:={6eDN _(v): e¢LMULTUKTT UK}, (7.2)

and let s € Sg’d_r_l(Av) be the space of C" splines of degree d on /\, which are
C?=r=1 continuous at v (see Sect. 9 for a general definition of super-splines). Then
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Fig. 1. Domain points in Lemma 7.3 with » =8, »r =4, p = 12, and d = 26.

if 6 is sufficiently small, the coefficients of s associated with domain points in the
disk Dg_r—_1(v) are uniquely determined by the coefficients associated with domain
points in the set

Ay =T, UK UK UK UK. (7.3)

Moreover, there exists a positive constant 6y depending only on d and the smallest
angle O, in A, such that if 6 < &y, then |c¢| < K16C for all € € Dq—r—1(v), where
C :=maxgey, |c¢| and Ky is a constant depending only on d and 0.

Proof: Without loss of generality, we may assume that 7' = T. Let

V3 =1V + V1 + a3va

vy =F1v + PBavy + P3vs.

Suppose that all of the coefficients of s corresponding to domain points in A, have
been fixed. Since s is in C4~"~! around the vertex v, it suffices to show that the
unspecified coefficients in TN Dg_,—_1(v) (namely those with subscripts lying in £
and in /3) are uniquely determined by the smoothness conditions. We put these
coeflicients into a vector ¢ in the order

Cry2,di—1Cr43,d7—2 Cr+a,d—1,7—27" "2 Cput1,d,00 "2 Cptr,d—r+1,00 (7.4)
followed by
Cry2,7—1,d Cr43,7—2,d> Cr+a,;i—2,d—1> " Cput1,0,d> " Cput7,0,d—i+1" (7.5)
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where d = d—p—1. (Here we have suppressed the superscript T' on the coefficients to
simplify the notation). The vector ¢ has length 2m with m := 1424 -4+7 = (H;).
Note that the coefficients in both (7.4) and (7.5) fall naturally into subsets of size
1,2,...,7.

Now we write down all smoothness conditions of the form (6.6) across the edge
ez := (v,v7) which involve the coefficients in both KTt and K2, In addition, we

write the conditions across e; := (v,vy) which involve the coefficients in both KT
and KT+, We need to exercise some care in the order in which we write down these
conditions. We start with those associated with edge e;. As the first equation, we
write the C%~# condition which involves only the coefficient Crgodiot from L. Next
we write two conditions, namely the C?~# and C¢~#*! conditions which involve
only the three coefficients from £ with third subscript £ > 7 — 2. Finally, we write
the 7 conditions for C?~* up to C?~"~! which involve all the coefficients in £. So
far this is a total of m conditions. We now repeat the process for the conditions
across the edge ey, and end up with a system of the form

(g §>CZR, (7.6)

where all four blocks in the matrix are of size m x m.
We now examine these blocks in detail. The matrix A is a lower triangular
block matrix of the form

Ay
X A2
A= ,
X X
X X ... Ar

where

A, = afa;i_ﬁci
is an ¢ X ¢ matrix with &; := Z;;E(d —u+ 7). Here C; := J\L(m);h:o,
where M; is a nonzero product of factorials. The matrix A has a similar structure
with

A =pisyCn

Now observe that every entry of B involves some positive power of as, while
every entry of B involves some positive power of 3. The remaining «; and f3;
are bounded away from 0 by a constant depending on the smallest angle 64 in A.

Let D(é) be the determinant of the matrix in (7.6). Then D(0) = det(A) det(fi)
is bounded below by a positive constant Dy which depends only on d and 6a.
But then by continuity, there exists a 6y depending only on d and 6 such that

D(é) > Dy/2 for all 6 < 6. O
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68. Propagation

In the following section we are going to use the approach described in the previous
section to construct a set of locally supported splines {¢¢}eer which satisfy the
duality condition (6.3) and properties H1 — H3 of Theorem 5.1. This requires a
careful choice of I'. As observed in [3,10,11], to this end it is useful to separate the
domain points in D into certain subsets. Given a triangle 7' := (vy,vq,v3), let
DZ(vg) = {E € Dr : dist(&,vp) < ,LL}
AT (vg) := {€ € Dr : dist(€,ve) > g, dist(€,e0) <,
dist(€, ep42) < r}
ct .= {E epl: dist(&,vj) <d—r, j= 1,2,3},

(8.1)

where we define e; := (v¢, v¢41) and identify veq3 with ve. We also define

fT(eg) = {f € Dy : dist(€,e¢) < r}
ST(eg) = {f € fT(eg) s |dist(€, ve) — dist(&, vy )| < d — 3r — 2}
Gl(er) :={€ € FT(er) : dist(€,v) < dist(£,veyq) and
¢ D, (ve)UAT(ve) UE(er)}
GEer):=1{6 € FT(er) : dist(€,v¢) > dist(€,vey1) and
¢ D, (ver1) UAT (ve41) UET (er).}

The following lemma is implicit in several earlier papers [3, 10,11].

Lemma 8.1. Suppose T := (vy,v3,v3) and T = (v4,v2,v3) are two adjoining
triangles sharing the edge e := (vy,v3), and that e ¢ Exp(v2) U Enp(vs). Suppose
s is a spline in §j(A) whose coefficients are known for all domain points in DE(vz),

D;I;(Ug), and ET(e). Suppose the coefficients are also known for all points in any two
of the sets AT(va), AT (vy) or GI(e), and for all points in any two of the sets AT (v3),
AT (v3), or g},{(e). Then all unspecified coefficients of s in {£ € Dar(vy) U Day(vs) :

d(&,e) < r} are uniquely determined by the smoothness conditions.

Proof: We alternately compute the coefficients in the arcs afn’e(vg) and
afn’e(vg,) foreach m = p+1,...,2r, using Lemma 6.1 or Lemma 6.2, depending on
which coefficients are given. O

Note that in Lemma 8.1, if e is degenerate at vy, we cannot choose both
AT(vy) and AT (vy). In order to control the size of coefficients (cf. Lemma 6.2) we
should also avoid this choice whenever e is near-degenerate at v,. The analogous
observation holds at vs. A careful examination of Lemma 8.1 shows that if s has
nonzero coeflicients for some points in Dy, (v2), then the computed coefficients can
be nonzero for some points in Da,(vs). We refer to this as propagation. We are
particularly concerned about getting nonzero coefficients in one of the sets AT (v3)
or AT(v3), since these can then propagate further. The following lemma shows how
such propagation can be stopped.
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Lemma8.2. Let T and T be as in Lemma 8.1 where v3 ¢ Vns. Supposes € Sj(A)
is a spline whose coefficients are zero for all domain points in a set I'g which contains
the sets ID;J;(’UQ), ID;J;(U;;), AT(v3), GE(e), and GL(e), where e is the edge (va,v3).

Suppose Ty also contains either T (e) or ET(e). Then the coefficients of s associated
with points in AT (v3) must be zero.

Proof: Suppose 'y contains £7(e) - the other case is similar. Applying Lemma 6.1,
it can be checked that the coefficients of s associated with domain points in €7 (e),

Qg(e), and g},{(e) must be zero. Then using the smoothness conditions of Lemma 6.1
to compute coefficients in AT (v3) gives only zero values. O

89. A Space of Super-splines with a Stable Local Basis

Let 6¢ be the constant defined in Lemma 7.3, and suppose vy, ..., v, are the interior
vertices of A. Let p:= (p1,...,pn) with
o 4 6o
pi = d—r—1, v € VNS (9.1)
T otherwise,

where y is defined in (7.1). We shall prove Theorem 1.1 by applying Theorem 5.1
to the super-spline space

SS = SP(A)={s € SH(A): s€CPi(v;), i=1,...,n}, (9.2)

where s € C'?i(v;) means that for each 0 < v+ p < p;, there is a number diy’“ such
that D;D55|T(vi) = d;’" for all triangles T sharing the vertex v;.

In the sequel we hold ¢y fixed, and so for ease of notation we drop it from the
notation. In particular, given any triangulation A whose smallest angle exceeds
O, we write Vyg 1= V]&\?S(A) and Enyp = Ef\?D(A) for the sets of near-singular
vertices and near-degenerate edges in A\, respectively. Let

Vii={v: # Envp(v) =1}, 1 =0,1,2.

Our aim now is to construct a stable basis for &S (see Theorem 9.2 below).
Following the discussion in Sect. 6, we need to describe an appropriate minimal
determining set [' for & in such a way that the corresponding set of basis functions
{¢¢}eer possess properties H1 — H3 of Theorem 5.1. To get these properties requires
considerable care in the choice of T'.

Theorem 9.1. Choose the set I' as follows:

1) For each vertex v € Vnsg, pick a triangle T with vertex at v and choose all
points in the set Dz(v).

2) For each vertex v € Vg, pick a triangle T with first vertex at v and choose all
points in the set

T,:={¢eDl__(v): £¢gLTuLTuKTUKTY. (9.3)
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3) For each edge e := (v,u) with v,u € Vns, include the set £T(e), where T is
a triangle containing the edge e. If e is a boundary edge, there is only one
such triangle, while if it is an interior edge, we can choose either of the two
triangles containing e. If e is a boundary edge, also include the two sets G} (e)
and g}{’(e).

4) Suppose v € Vnsg is connected to vy,...,v, In clockwise order. Let T; :=
(v,0,0i41) fore =1,...,n—1, and set Ty := T}, := (v, vy, v1) if v is an interior
vertex. Suppose 1 <iy < --- <ip <n are such that e;; € Enp(v;; ) U EnD(v),
where e; := (v,v;) fort =1,...,n. Let J, := {i1,...,1x}.

a) Include the sets gfii_l(e”) for all 1 < j <k such that v;; ¢ Vns.
b) Include the sets ATi(v) for all 1 <i <n — 1 such that i € J,.

¢) Include .AT"(U) if v is an interior vertex.
5) For all triangles T = (v,u,w) with u,v,w € Vns, include the set CT.

Then T' is a minimal determining set for &S, and there exists a corresponding basis
for &S consisting of splines {¢¢ }¢er satisfying properties H1 — H3 of Theorem 5.1.

Proof: We claim that I' is well-defined. In particular, a simple geometric argument
shows that for any interior vertex v ¢ Vg, there is always at least one edge attached
to v which is not near degenerate at either end. In the numbering of the edges in
item 4 above, we can choose this edge to be (v,v,). The construction in step 4)
insures that for each interior vertex v € Vyg and edge e; := (v,v;) attached to it,
if v; € Vns, then T includes exactly one of the two sets AT (v) or GTi-1(e;).

We now show that I' is a determining set, 1.e., if we prescribe the coefficients
of a spline s € & corresponding to all the points in I', then all other coefficients of
s can be uniquely computed. This can be done as follows:

Step 1. Compute coefficients for all domain points lying in disks of the form D, (v)
for v € Vns. Note that for such vertices v, s € C*(v) while I' includes all points
in one sub triangle intersected with D,(v). Then all coefficients in the disk D,(v)
can be uniquely computed using Lemma 6.1.

Step 2. Use Lemma 7.3 to compute coefficients for points in the disks Dg_,—1(v)
for each near singular vertex v € Vyg.

Step 3. Use Lemma 8.1 to compute coefficients corresponding to points in the disks
Dyr(v) for v € Vns. We proceed by first doing all rings of size p + 1 around all
such vertices, then all rings of size pu + 2, etc., until we have completed the rings
of size 2r. In computing coefficients in a ring R,(v), we process one arc ay, (v)
after another, always proceeding in a clockwise direction. To show that this process
works, we have to show how to start it, and that once started we can continue
all the way around the vertex. Consider the arc ay, .. (v) associated with the edge
e; = (v, v;), and suppose we already know the coefficients associated with ATi-1(v).
Then Lemma 8.1 can be applied to compute all coefficients on the arc. The set T’
includes the sets needed to apply the lemma since
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if v; € Vs, then G} (ei) C Da_r_1(vi) C T,

if e; € Enp(vi) but v; € Vg, then QLTi_l(ei) crT,
if e; € Enp(v), then gfi—l(ei) crT,

otherwise ¢; ¢ Enp(v) U Enp(vi), and ATi(v) C T.

It remains to show how to start the process. If v is a boundary vertex, we can
start with the arc af, ., (v) since AT (v) is contained in T. If v is an interior vertex,

we can start with the arc af, . (v) since A (v) is contained in T.

Step 4. Compute coefficients corresponding to domain points in sets of the form
ET(€) \ [D2r(v) U Dyr(u)] which are not already known. In this case the points in
ET(e) are in T, where T and T are the two triangles sharing the edge ¢ = (v, u)
with v,u € Vng, and Lemma 6.1 can be applied.

For each { € T', we now construct a locally supported ¢¢ which satisfies the
duality condition (6.3). First we set the coefficient corresponding to £ to 1, and the
coefficients corresponding to all other n € I" to 0. We then solve for the remaining
coefficients of ¢, as described above. We note that the computed coefficients remain
bounded by a constant depending only on d and 6. In particular, Lemma 6.2 is
only used to compute coefficients in a ring R,,(v) when v € Vyg, so that the
numbers o~ ! and y7! entering into the bound on the size of the coefficients in
Lemma 6.2 are themselves bounded by a constant depending on d and 6. This
assures that the ¢¢ satisfy hypothesis H2 of Theorem 5.1. Since I' is a determining
set and ¢ satisfy (6.3), by the discussion in Sect. 6 we conclude that I' is a minimal
determining set with dim &S = #I, and {¢¢ }¢er is a basis for SS.

We now discuss the support properties of ¢¢ for £ € I'. Let T'g(§) = T'\ {{}.
Then all of the coeflicients of ¢¢ associated with points in I'g(£) are set to zero. We
consider several cases depending on where £ lies.

Case 1: Suppose £ € CT for some triangle T. Since the coefficients corresponding
to points in CT do not enter any smoothness conditions, we conclude that the only
nonzero coefficient of ¢, is the one corresponding to ¢, and thus the support of ¢,

1s T

Case 2: Suppose £ € ET(e) where e := (v,u) is a boundary edge of a triangle T,
and that £ € Dy,(v) U Dyr(u). Then the coeflicient corresponding to £ does not
enter any smoothness conditions, and thus remains the only nonzero coefficient of
o¢. It follows that the support of ¢, is T

Case $: Suppose £ € ET(e) \ (Dgr(vg) U DzTr(vg)), where T' = (vy,v3,v3) and T =
(v4,v3,v3) are two triangles sharing an interior edge e = (vy, v3) with vy, vs € Vns.
Then the coefficients of ¢¢ corresponding to points in DI (v2) U DI (v3) will be
zero, and carrying out Step 4, we can get nonzero coefficients for points in the set
ET(e). Since all other coefficients are zero, we conclude that the support of ¢ is

TUT.
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Case 4: Suppose u ¢ Vyg and that £ lies in some set of the form D, (u), AT (u),
GT(e), or ET(e) N Dyy(u), where T is a triangle attached to u and e is an edge
attached to u. We assume v is an interior vertex (the case where it is a boundary
vertex is similar). Let uq,...,u, and w1, ..., w,, be the vertices in clockwise order
which lie on the boundaries of star(u) and of star?(u), respectively. Note that T'g(£)
includes the disks D, (v) for all v # u. It also includes the set 'y, for all u; € Vns.
We now show that the nonzero coefficient ¢¢ can propagate to points in the disks
D3r(u;), and even to some points in the disks D, (w; ), but not to any points beyond
star®(u). There are two subcases:

(a) Suppose u; ¢ Vns. We show that propagation beyond star(u;) along the edge
eij = (u;,wj) is blocked. This is clear if w; € Vg since D,(u;) C I'y. Now
suppose w; € Vns. Since we process the arcs around wj in clockwise order, it
suffices to show that the coefficients associated with points in A% (w;) are zero,
where Tj; is the triangle with vertices u;,w;,v in counter-clockwise order for
some v. This is automatic if e;; is not near-degenerate at either end since then
[o(£) contains ATii (w;) itself by the choice of T' (see item 4). Now suppose e;;
is near-degenerate at either u; or w;. Then by the choice of I', I'g(£) contains
both GTii (e;;) and G (e;;), where T;; is the other triangle sharing the edge
e;j. Lemma 8.2 then implies that the coefficients associated with points in
ATii(w;) are zero.

(b) Suppose u; € Vng. Then applying Lemma 7.3, the nonzero coefficient ¢¢ can
propagate to the disk Dy, (w;) around the vertex w; which lies on the opposite
side from the near singular vertex u;. Note that w; € Vygand D, (w;) C To(§).
Now arguing as in subcase (a) with u; replaced by w;, we see that there is no
propagation beyond star(w;), and thus not beyond star?(u;).

We conclude that the support of ¢, lies in

star(u) U U star(u;) U star®(u;) C  star®(u).

u; VN s u; EVNs

Case 5: Suppose £ € ', where u € Vng. All coefficients associated with points in
the disks of the form Dl:f(v) with v € Vg are zero. Let vq,...,v4 be the vertices
attached to v. Since it is impossible for two near-singular vertices to be neighbors,
v; € Vng for ¢ = 1,...,4. Now nonzero coefficients associated with points in T,
may propagate to points in the disks of radius 2r around the vertices vq,...,v4.
However, since D,(v;) C I'o(§), arguing as in Case 4(a), we see that they cannot
propagate any further, and thus the support of ¢¢ is contained in star?(u).

We have shown that the splines {¢¢}ecr satisfy properties H1 — H2 of The-
orem 5.1. It remains to verify that the ¢, satisfy H3 of the theorem. Fix T :=
(v1,v2,v3), and let ¥¢ be the set of { such that the support o(¢¢) includes T.
By the support properties of the ¢, each £ € X7 must lie in a triangle which
is contained in U?_ star®(v;). Now by Lemma 3.1 the number of such triangles
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is bounded by a constant C' depending only on 8. Since each triangle contains
at most (d_;z) domain points, it follows that the cardinality of X7 is bounded by
c(*$?). o

We conclude this section by showing that a natural renorming of the splines
{¢¢}eer in Theorem 5.1 provides a p-stable basis for SS.

Theorem 9.2. Fix 1 < p < oo. Let ® := {¢)y = (ATé)_l/pqég}gEF, where for each
€, T¢ is the triangle containing {. Then ® forms a p-stable basis for & in the sense
that there exist constants K7 and Kg dependent only on 8 such that

Kirllely < 1) cetelly < Kaslelly (94)
Lel
for all choices of the coefficient vector ¢ = (¢g)eer.

Proof: We consider the case 1 < p < oo as the case p = oo is similar (and simpler).
First we establish the upper bound in (9.4). Suppose s = Zfer cepe. Fix a triangle
T, and let 7 be the set (5.1). By the uniform boundedness of the ¢,

At
P _ (A —1/p P < KPKP P
/I | /I § ce(Ar, )7 /P ¢ (s Ky Helg? E |ce]

Eer T'f EEXT
where Kg and Kg are the constants in H2 and H3 of Theorem 5.1. For each £ € X,

T and T both liein o(¢¢). Thus, Lemma 3.2 with £ = 3 implies max¢exn, Ar/A1, <
K2

We now sum over all triangles T'. A given ¢ can appear more than once on
the right-hand side. In fact, the number of times it appears is equal to the number
of triangles in the support of ¢¢. Since o(¢¢) is contained in star®(ve) for some
vertex vg, the number of triangles it contains is bounded by the constant K, with

¢ =3 in Lemma 3.1. Thus,
Isly = 30 [ bl < KaBERERY™ el
TeA

and the proof of the upper bound in (9.4) is complete.

We now establish the lower bound in (9.4). Given a triangle T', we first estimate
the size of the coefficients c¢ for £ € T'. For these £, we have T; = T, and in view
of the normalization, the Bernstein-Bézier coefficient of the polynomial s7 which
agrees with s on T is c5(AT)_1/p. Now applying Lemma 4.1, we get

Y el =Ar D fee(Ar) PP < KF sl
EeTnT EeTNT
Summing over all 7', we get
lelp < > > leel” < K7lIs|lp o
TEAEETAT

and the proof is complete. 0O
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§10. Proof of Theorem 1.1

We are now in a position to apply Theorem 5.1 to establish our main theorem.
Let {¢¢}eer be the basis functions for & constructed in the previous section. We
now define corresponding linear functionals and an associated quasi-interpolation
operator.

Choose { € T, and suppose T¢ is a triangle in which £ lies. Let B, be the
largest disk contained in T¢. Then for any function f € Lq({2), we define

Aemf = Ye(Fm,Br, f),

where Fm,BTé f 1s the averaged Taylor polynomial associated with f, and 7 is the
functional which when applied to a polynomial written in B-form, picks off the
Bézier coefficient corresponding to the domain point &, cf. (6.2). Note that A¢
is a linear functional, and the value of A¢ ,, f depends only on values of f on the
triangle T¢.

We have already seen in the previous section that the basis functions ¢, satisfy
the hypotheses H1 — H3 of Theorem 5.1. Using Lemmas 4.1 and 4.5, we have

I§—4 ]{4]’-{6
T T

This shows that condition (5.2) of Theorem 5.1 is satisfied.

We now show that @), reproduces polynomials of degree m. Given f € Py,
let Eger ag ¢ be its unique expansion in terms of ¢¢. By Lemma 4.4, Fm,BTﬁ f=7f
for each £ € T'. Thus, A¢mf = ’Yme,BTﬁf = 7vef = ag¢ for all £ € T', which implies
that Q@ f = f. When m = d, Fd,BTéf = f|T‘f for any spline f € &. Then the
same argument shows that ()4 reproduces all of &S.

We have now verified that () satisfies all of the hypotheses of Theorem 5.1, and
our main result Theorem 1.1 follows immediately.

§11. Remarks

Remark 1. The basis splines constructed in Theorem 9.1 have maximal support
on sets of the form star®(v). The approximation results for the uniform norm given
in [7] are based on a different super-spline space. Some of their basis elements have
supports of the form starl™/21+1 ().

Remark 2. General super-spline spaces with variable degrees of additional smooth-
ness at the vertices were introduced in [14]. For d > 3r+2, local bases for them were
constructed in [11]. However, the focus there was on dimension, and so the bases
were constructed without concern for their stability in the presence of near-singular
vertices or near-degenerate edges.
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Remark 3. When d > 4r + 1, the approximation results can be established using
the standard super-spline spaces which are well-known in finite-element analysis,
see e.g. [14]. Those spaces have stable bases with supports which are of the form
star(v).

Remark 4. The estimate (1.1) can be generalized further by measuring the error
on the left-hand side in a ¢ norm, where 1 < p < ¢ < oo. In this case the exponent
of |A| on the right-hand side is replaced by m +1 —a — 3 —1/p+ 1/q. (See [13]

for the univariate case).

Remark 5. When d < 3r + 2 the approximation order by splines has been estab-
lished only for special triangulations, see [12].

Remark 6. Since we have constructed a basis for it, it is a simple matter to
provide an explicit dimension formulae for the super-spline space &S in (9.2). We
do not bother to give the formulae, but do observe that in contrast to usual super-
spline spaces, the dimension of & does not change as near-singular vertices become
singular. This is the key to our construction of a stable basis.

Acknowledgments. We would like to thank the referees for their careful reading
of the manuscript, and for pointing out a gap in the original version of Theorem 9.1.
We would also like to thank Oleg Davydov for helpful suggestions for making the
final manuscript as precise as possible.

References

1. Adams, R., Sobolev Spaces, Academic Press, New York, 1975.

2. Alfeld, P., M. Neamtu, and L. L. Schumaker, Dimension and local bases of
homogeneous spline spaces, STAM J. Math. Anal. 27 (1996), 1482-1501.

3. Alfeld, P. and L. L. Schumaker, The dimension of bivariate spline spaces of
smoothness r for degree d > 4r 4+ 1, Constr. Approx. 3 (1987), 189-197.

4. de Boor, C., B—form basics, in Geometric Modeling: Algorithms and New
Trends, G. E. Farin (ed), SIAM Publications, Philadelphia, 1987, 131-148.

5. de Boor, C. and K. Hollig, Approximation power of smooth bivariate pp func-
tions, Math. Z. 197 (1988), 343-363.

6. Brenner, S. C. and L. R. Scott, The Mathematical Theory of Finite Element
Methods, Springer-Verlag, New York, 1994.

7. Chui, C. K., Dong Hong, and Rong-Qing Jia, Stability of optimal order ap-
proximation by bivariate splines over arbitrary triangulations, Trans. Amer.

Math. Soc. 347 (1995), 3301-3318.

8. Chui, C. K. and M. J. Lai, On bivariate super vertex splines, Constr. Approx.
6 (1990), 399-419.

9. Farin, G., Triangular Bernstein-Bézier patches, Comput. Aided Geom. Design
3 (1986), 83-127.

27



10.

11.

12.

13.
14.

15.

Hong, Dong, Spaces of bivariate spline functions over triangulation, Approx.

Theory Appl. 7 (1991), 56-75.

Ibrahim, A. and L. L. Schumaker, Super spline spaces of smoothness r and

degree d > 3r 4+ 2, Constr. Approx. 7 (1991), 401-423.

Jia, R. Q., Approximation order from certain spaces of smooth bivariate splines
on a three-direction mesh, Trans. Amer. Math. Soc. 295 (1986), 199-212.

Schumaker, L.L., Spline Functions: Basic Theory, Wiley, New York, 1981.

Schumaker, L. L., On super splines and finite elements, STAM J. Numer. Anal.
26 (1989), 997-1005.

Stein, E. M., Singular Integrals and Differentiability Properties of Functions,
Princeton Univ. Press, Princeton, New Jersey, 1970.

28



