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Abstract

In this work, we use bivariate splines to find the approximation of the solutions to three

variational models, the ROF model, TV-Lp model and the Chan-Vese Active Contour model.

We start by showing first variational models have solutions in the spline space, and the

solutions are unique and stable. And then we go on to prove that the solutions in the spline

space approximate the solution in the Sobolev space or the BV space, according to the shape

of the domain. Finally, we study the discretization of the Chan-Vese Active Contour Model

in the level set setting. Numerical examples in image processing based on finite difference

are included.
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Chapter 1

Introduction

Many problems in computer vision, e.g., image processing can be formulated as minimization

problems. Among them an influential one is the ROF model proposed by Rudin, Osher and

Fatemi in [44], which solves the following minimization problem

min
u∈BV (Ω)

∫
Ω

|∇u|dx+
1

λ

∫
Ω

|u− f |2dx.

The ROF model has been studied extensively. See [44], [1], [12], [5], [10], [23], and many

references in [47]. Many numerical methods have be proposed to to find the numerical

approximation. Wang and Lucier have shown in [53] that if Ω = [0, 1]2 the unit square, and

f is a two dimensional matrix of size k × k, the solution u, a k × k matrix, to the following

minimization problem.

Ek(u) =
k−1∑
i,j=0

h2|(∇u)ij|+
1

2λ

k−1∑
i,j=0

h2(uij − gij)2, h =
1

k
,

converges to the solution of the solution of ROF model in BV space as h → 0. However,

their proof can not be easily extended to the case when Ω is a non rectangular polygon. To
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solve this problem, we propose to use spline function to solve the ROF model. A bivariate

spline function is a piece-wise polynomial function defined on a triangulation of a polygonal

domain with enough smoothness. The main reason we use splines is due to their capability

to approximate functions on complicated regions and their accuracy of evaluation, which

is critical in image resizing and inpainting. Our main contribution in this dissertation is

we show that the minimizer in a a finite dimensional space, such as bivariate spline space,

converges to the minimizer in (1)the space of bounded variation BV (Ω), when the domain

Ω is a rectangle, (2)the Sobolev space W 1,1(Ω), when Ω is a polygon. Moreover, we give an

iterative algorithm to compute the bivariate spline approximation and prove the convergence.

For the image denoising problem, we assume the original image u0 : Ω ⊂ R2 → R

is corrupted by a white noise ε ∼ N(0, σ2), such that the corrupted image f = u0 + ε. In

statistic settings, by the maximum likelyhood method, the best estimation of σ2 is
∫

Ω
|u−f |2.

This gives one reason we use the L2 term as the fidelity term in the ROF model. However,

if we generalize the distribution of the error term ε from normal distribution to the whole

Laplacian distribution family, then by the maximum likelyhood method, the fidelity term

also needs to be changed adapted. That is the reason why we introduce a more general

model–the TV-Lp model, in which the fidelity term is a Lp term. Similar to the method we

use to study the ROF model, we also use the minimizer in a finite dimensional space, e.x,

the spline space, to approximate the minimizer in the BV space. A similar approximation

property is deduced. Finally, we give an iterative algorithm to compute the bivariate spline

approximation and extablish the convergence.

It is known when the size of the triangulation is small enough, the spline function can

approximate a discontinuous function well, the computation time increases simultaneously.

Therefore, in some applications, e.g., image denoising, we might want to decompose the

image into several regions in each of which the image are sufficiently smooth, instead of

finding the spline approximation on the whole image domain. The active contour method
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proposed in [15] by Tony F. Chan and Luminita A. Vese is another energy-based method

which has its application in image segmentation. In this dissertation, we deduce the Euler-

Lagrange equation of the Active Contour Model and give a finite difference scheme to find the

numerical solution. Several numerical examples of image segmentation and the consequent

triangulations based on these segmentations are given at the end of the chapter.

This dissertation is divided into five chapters. In Chapter 2, we review some preliminary

knowledge. First we review the properties of the bivariate splines we use in our numerical

analysis. Next we give an analysis of the underling reason to use the ROF model for image

processing, e.g., image denoising. Then we review some properties of the BV space used

in the ROF model, especially some important results concerning the well-posedness of the

minimization problem. Finally in this chapter, we review some basic mathematical tools used

in this dissertation, such as mollification, subdifferential convex function, and some basic

inequalities. In Chapter 3 and Chapter 4, we show our main results of this dissertation: the

analysis of the ROF and TV-Lp model in the finite dimensional space. Finally, in Chapter

5 we explain about the Chan-Vese Active Contour method we mentioned above for image

segmentation.
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Chapter 2

Preliminary

2.1 Bivariate Splines

In this section we outline some basic properties and theories of bivariate splines which will be

used in our application to the ROF model and TV-Lp model. We refer to [36] for most spline

results presented in this section. Let Ω be a polynomial domain in R2. Let 4 := {t1, ..., tN}

be a collection of triangles such that Ω =
⋃N
i=1 ti and if a pair of triangles in 4 intersect,

then their intersection is either a common vertex or a common edge. For each t, we write

|t| for the length of its longest edge, and ρt for the radius of the largest disk that can be

inscribed in t. We call the ratio κt :=
|t|
ρt

the shape parameter of t, |4| := max{|t|, t ∈ 4}

the size of the triangle. Finally, denote ρ4 := max{ρt, t ∈ 4}.

Definition 2.1.1 (β-Quasi-Uniform Triangulation). Let 0 < β < infty. A triangulation

4 is a β-quasi-uniform triangulation provided that

|4|
ρ4
≤ β.

Definition 2.1.2 (Spline Space). Fix r ≥ 0 and d > r. Let Cr(Ω) be the class of all rth
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continuously differentiable functions over Ω. We call

Srd(4) = {s ∈ Cr(Ω), s|t ∈ Pd,∀t ∈ 4}

the spline space of degree d and smoothness r over triangulation 4, where Pd is the space of

all polynomials of degree ≤ d and t is a triangle in 4.

When working with polynomials on triangulations, the barycentric coordinates are more

handy than the Cartesian coordinates. Let t = 〈(x1, y1), (x2, y2), (x3, y3)〉 = 〈v1, v2, v3〉 be a

non-degenerate triangle. Then any point v := (x, y) has a unique representation of the form

v = b1v1 + b2v2 + b3v3 with 1 = b1 + b2 + b3. The number b1, b2, b3 are called barycentric

coordinates of the point v with respect to the triangle t. We use the Bernstein-Bézier

polynomials to form a basis for polynomials over a given triangle. Therefore we can write

any polynomial of degree d over a single triangle uniquely in terms of Bernstein-Bézier

polynomials. We call this the B-form of a polynomial.

Definition 2.1.3 (Bernstein-Bézier Polynomials). A Bernstein-Bézier polynomial of degree

d is defined by

Bd
ijk(x, y) =

d!

i!j!k!
bi1b

j
2b
k
3,

where i, j, k are non-negative integers with i+ j + k = d.

Theorem 2.1.1 The set

Bd := {Bd
ijk}i+j+k=d

of Bernstein-Bézier polynomials is a basis for the space of polynomials Pd.

Definition 2.1.4 (B-Form). Let s ∈ Pd satisfy

s|t =
∑

i+j+k=d

cijkB
d
ijk(x, y).

11



Next we explain about the conditions on which polynomials over each single triangle can

be connected smoothly to form our splines on Ω.

Theorem 2.1.2 (Smoothness). Let t = 〈v1, v2, v3〉 and t̃ = 〈v4, v3, v2〉 be triangles sharing

the edge e := 〈v2, v3〉. Let

p(v) =
∑

i+j+k=d

cijkB
d
ijk(v)

and

p̃(v) =
∑

i+j+k=d

c̃ijkB̃
d
ijk(v)

where {Bd
ijk} and {B̃d

ijk} are Bernstein-Bézier polynomials associated to t and t̃ respectively.

Suppose u is any direction not parallel to e. Denote Dn
u the nth directional derivative in u.

Then

Dn
up(v) = Dn

u p̃(v),

v ∈ e, n = 0, ..., r if and only if

c̃ijk =
∑

ν+µ+κ=n

cν,k+µ,j+κB
n
νµκ(v4)

for j + k = d− n and n = 0, ..., r.

Let c be the coefficient vector of the B-form of our spline. In practice we can write

the smoothness conditions in a linear system Hc = 0, where H is a rectangular matrix

determined by the conditions imposed in Theorem 2.1.2.

Next we review some calculus facts of spline functions.

Theorem 2.1.3 (Integration). Let p be a polynomial written in B-form over a triangle t
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with coefficients cijk, i+ j + k = d. Then

∫
t

p(x, y)dxdy =
At(
d+2

2

) ∑
i+j+k=d

cijk,

where At is the area of t.

Theorem 2.1.4 (Inner Product).

∫
t

Bijk(x, y)Bνµκ(x, y)dxdy = At

(
i+ν
i

)(
j+µ
j

)(
k+κ
k

)(
2d
d

)(
2d+2

2

) .

Scattered data fitting using splines by discrete least square and Lagrange multiplier

method are a typical application of splines. Given scattered data {(xi, yi, f(xi, yi)), i =

1, ..., N} where N is a relatively large number. Let Ω be the convex hull of the given data

location and 4 a triangulation of Ω. We look for lf ∈ Srd(4) such that

N∑
i=1

|lf (xi, yi)− f(xi, yi)|2 = min
s∈Srd(4)

|l(xi, yi)− f(xi, yi)|2 (2.1)

subject to Hc = 0.

Here c is the coefficient vector of the B-form of spline function, and Hc = 0 is the smoothness

conditions imposed in the Theorem 2.1.2.

If the data locations are evenly distributed over4 with respect to d, then for each triangle

t, the matrix Bt := [Bd
ijk(vl)|t, i + j + k = d, vl ∈ t] is of full rank. Since there are

(
d+2

2

)
such combinations of triples (i, j, k) subject to 0 ≤ i, j, k < ∞ and i + j + k = d, the size

of Bt is Mt-by-
(
d+2

2

)
, where Mt is the number of points vl’s in t. Let B := diag(Bt, t ∈ 4),

then any spline function s ∈ Srd(Ω) can be written as s = Bc for some coefficient vector c.

Suppose there are R triangles in 4, then B>B is a full rank square matrix of size R
(
d+2

2

)
-

by-R
(
d+2

2

)
. To solve the constrained discrete least square problem we use the Lagrange
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multiplier method. Let

L(c) :=
N∑
i=1

|l(xi − yi)− f(xi, yi)|2 = ‖Bc− f‖2

where f is the vector of f(xi, yi)’s, and

G(c, α) = L(c, α) = L(c, α) + α>Hc.

By the Lagrange multiplier method, we solve

∂

∂c
G(c, α) = 2B>Bc− 2B′f +H>α = 0

∂

∂α
G(c, α) = Hc = 0.

This is equivalent to solve the linear system

 H> 2B>B

0 H


 α

c

 =

 2B>f

0

 .

One of the main reasons we want to use splines is because they have a nice property: the

optimal approximation order. We denote by W k,p(Ω) the Sobolev space of locally summable

functions u : Ω→ R such that for each multi-index α with |α| ≤ k, Dαu exists in weak sense

and belongs to Lp(Ω). Define |f |Ω,m,p the Lp norm of the mth derivatives of f over Ω that is,

|u|Ω,k,p :=

( ∑
ν+µ=k

‖Dν
1D

µ
2u‖

p
Ω,p

)1/p

, for 1 ≤ p <∞, (2.2)

and define ‖f‖Ω,p =

(
1

AΩ

∫
Ω

|f(x)|qdx
)1/p

.
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We first use the so-called Markov inequality to compare the size of the derivative of a

polynomial with the size of the polynomial itself on a given triangle t. (See [36] for a proof.)

Theorem 2.1.5 Let t := 〈v1, v2, v3〉 be a triangle, and fix 1 ≤ q ≤ ∞. Then there exists a

constant K depending only on d such that for every polynomial p ∈ Pd, and any nonnegative

integers α and β with 0 ≤ α + β ≤ d,

‖Dα
1D

β
2p‖t,q ≤

K

ρα+β
t

‖p‖t,q, 0 ≤ α + β ≤ d, (2.3)

where ρt denotes the radius of the largest circle inscribed in t. Here ‖ · ‖t,p is the Lp norm

over t.

Next we have the following approximation property (cf. [35] and [36]):

Theorem 2.1.6 Assume d ≥ 3r + 2 and let 4 be a triangulation of Ω. Then there exists

a quasi-interpolatory operator Qf ∈ Srd(4) mapping f ∈ L1(Ω) into Srd(4) such that Qf

achieves the optimal approximation order: if f ∈ Wm+1,p(Ω),

‖Dα
1D

β
2 (Qf − f)‖Ω,p ≤ C|4|m+1−α−β|f |Ω,m+1,p (2.4)

for all α + β ≤ m + 1 with 0 ≤ m ≤ d. Here the constant C depends only on the degree d

and the smallest angle θ4 and may be dependent on the Lipschitz condition on the boundary

of Ω.

We suppose that the data locations Q = {xi, i = 1, · · · , n} satisfy the conditions(cf.

[31]), that for every s ∈ Srd(Ω) and every triangle t ∈ 4, there exist a positive constant F1,

independent of s and t, such that

F1‖s‖t,∞ ≤ (
∑
v∈V∩t

s(v)2)1/2. (2.5)
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And let F2 be the largest number of data sites in a triangle t ∈ 4. That is, we have

{∑
v∈V∩t

s(v)2

}1/2

≤ F2‖s‖t,∞. (2.6)

Then we have the following approximation property of the least square minimizer lf of (2.1).

Theorem 2.1.7 Suppose that d ≥ 3r + 2 and 4 is a β quasi-uniform triangulation, and

there exist two positive constants F1 and F2 such that (2.1) and (2.6) are satisfied. Then

there exists a constant C depending on d and β such that for every function f in Sobolev

space Wm+1,∞(Ω) with 0 ≤ m ≤ d such that

‖f − lf‖Ω,∞ ≤ C
F2

F1

|4|m+1|f |Ω,m+1,∞.

2.2 Energy Models for Image Restoration

Variational and PDE-based approaches have been well studied in image restoration problem.

One early model is introduced in 1977 by Tikhonov and Arsenin to find the minimize of the

following functional.

F (u) =

∫
Ω

|u− u0|2dx+ λ

∫
Ω

|∇u|2dx, (2.7)

where ∇ is the standard gradient. The first term in F (u) measures the fidelity to the data.

The second is a regularization term. We search for a u that best fits the data so that its

gradient is small. The parameter λ is a positive weighting constant. The minimization

problem admits a unique solution in the functional space

W 1,2(Ω) = {u ∈ L2(Ω);∇u ∈ L2(Ω)},
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characterized by the Euler-Lagrange equation

u− u0 − λ4u = 0 (2.8)

with the Neumann boundary condition

∂u

∂n
= 0 on ∂Ω (n is the outward normal to ∂Ω)

However this is not a good solution to image restoration problem, because the Laplacian

operator has very strong isotropic smoothing properties which annihilate the noise as well

as edges as it evolves. In (2.7), the regularization term penalizes too much the gradients

corresponding at edges. One may then decrease p in order to preserve the edges as much as

possible. That gives one reason why we should discuss the following model, with 1 ≤ p < 2.

E(u) =

∫
Ω

|u− u0|2dx+ λ

∫
Ω

|∇u|pdx. (2.9)

Furthermore, Rudin, Osher, and Fatemi [43, 44] proposed to use the L1 norm to measure

the magnitude of u, that is to find the minimizer in the W 1,1(Ω) space. Let us study the

following energy (cf. [6, 7]) for the influence of the smoothing term.

E(u) =
1

2

∫
Ω

|u0 − u|2dx+ λ

∫
Ω

φ(|∇u|)dx, (2.10)

which is characterized by the Euler-Lagrange equation:

u− u0 − λdiv

(
φ′(|∇u|)
|∇u|

∇u
)

= 0. (2.11)
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It can be shown that its diffusion term div

(
φ′(|∇u|)
|∇u|

∇u
)

term can be decomposed into a

weighted sum of normal and tangent directional second derivative to the contour lines(lines

along which the intensity is constant). More precisely, for each point x where |∇u(x)| 6=

0, its normal direction is characterized by the vector N(x) =
∇u(x)

|∇u(x)|
=

1

|∇u(x)|
(ux, uy)

and tangent direction by T (x) =
1

|∇u(x)|
(−uy, ux), |T (x)| = 1, T (x) orthogonal to N(x).

We denote by uTT and uNN the second derivatives of u in T -direction and N -direction

respectively:

uTT = T>∇2uT, uNN = N>∇2uN.

Here

∇2u =

 uxx uxy

uyx uyy

 .

The projection operator PN = NN>, PT = TT>. And since N ·T = 0, we have PN +PT = I,

where I is the identity matrix. It follows that

uNN + uTT = T>∇2uT +N>∇2uN = tr(T>∇2uT +N>∇2uN)

= tr(∇2u(TT> +NN>)) = tr(∇2u) = ∆u,

or in another words,

uNN + uTT = div(∇u).
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We can go on to show that the curvature of u

div

(
∇u
|∇u|

)
= ∇

(
1

|∇u|

)
· ∇u+

1

|∇u|
div(∇u)

= − 1

|∇u|2
∇|∇u| · ∇u+

1

|∇u|
(uTT + uNN)

=
1

|∇u|

(
−∇2u

∇u
|∇u|

· ∇u
|∇u|

+ uTT + uNN

)
=

1

|∇u|
(−uNN + uTT + uNN) =

uTT
|∇u|

.

Now we can rewrite the diffusion term of (2.11) as a weighted sum of uNN and uTT :

div

(
φ′(|∇u|)
|∇u|

∇u
)

= ∇(φ′(|∇u|)) · ∇u
|∇u|

+ φ′(|∇u|)div

(
∇u
|∇u|

)
= φ′′(|∇u|)

(
∇2u

∇u
|∇u|

· ∇u
|∇u|

)
+ φ′(|∇u|) uTT

|∇u|

= φ′′(|∇u|)uNN +
φ′(|∇u|)
|∇u|

uTT .

In a neighborhood of an edge C, the image presents a strong gradient. If we want to

preserve the edge, it is preferable to diffuse along C(in the T -direction) and not across it. In

another word, we would like to annihilate the diffusion in the N -direction. That is:

lim
s→+∞

φ′(s)

s
= β > 0,

and

lim
s→+∞

φ′′(s) = 0.

However, it is possible that both φ′(s)
s

and φ′′(s) will approaches to 0 as s → ∞ so we can
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assume φ′(s)
s

and φ′′(s) both converge to zero but at different rates:

lim
s→+∞

φ′′(s)

φ′(s)/s
= 0.

Suppose φ(s) = sz then we have

lim
s→+∞

z(z − 1)sz−2s

zsz−1
= z − 1 = 0

φ(s) ' s

To summarize, the assumption imposed on φ(s) are


φ : [0,∞) 7→ [0,∞);

φ′′(0) > 0;

φ(s) ' s,when s→ +∞

For example, φ(s) = |s|, and φ(s) =
√

1 + s2 are such two suitable candidates. Especially,

when φ(s) =
√

1 + s2, the smoothing term in the energy model is the surface area of s, and

the corresponding diffusion term div

(
∇s√

1 + |∇s|2

)
is the curvature of surface function s.

2.3 Bounded Variational Penalty Methods

In previous section, we solve the minimization problem in W 1,1(Ω) space. However, in a lot

of applications the quantity we study can be discontinuous across hypersurfaces, or edges

in image processing. Therefore the classical Sobolev space is sometimes too smooth for

these applications. One approach is to relax the problem to the BV space, i.e. to solve the
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following unconstrained minimization problem in BV space

min
u∈BV

J(u) +
1

λ

∫
Ω

‖u− f‖2dx. (2.12)

where J(u) =
∫

Ω
|∇u|dx is the total variation of u. In [46], a slightly more general penalty

functional than the BV seminorm is considered, denoted Jε. For sufficiently smooth u, Jε is

defined by

Jε(u) =

∫
Ω

√
ε+ |∇u|2dx, (2.13)

where ε ≥ 0. A variation definition of Jε that extends (2.13) to nonsmooth function u is

given in [1]. Also in [1], the existence and uniqueness of (2.12) are discussed as well as the

effect of taking small ε > 0 rather than ε = 0.

Let us review some properties of BV functions. Let Ω be a convex region inRd, d = 1, 2, 3,

whose boundary ∂Ω is Lipschitz continuous.

Definition 2.3.1 (BV Seminorm). Let

J0(u) = sup
v∈V

∫
Ω

(−udivv)dx,

where the set of test functions

V := {v ∈ C1
0(Ω;Rd) : |v| ≤ 1 for all x ∈ Ω)}.

We call J0(u) the BV seminorm, or total variation of u.

If u ∈ C1(Ω), one can show using integration by parts that

J0(u) =

∫
Ω

|∇u|dx,
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because

−
∫

Ω

udiv(v)dx+

∫
∂Ω

u (v · n)︸ ︷︷ ︸
=0

dx =

∫
Ω

∇u · vdx. (2.14)

Then take the supremum over V , we have

sup
v∈V

∫
Ω

∇u · vdx =

∫
Ω

|∇u|dx.

Definition 2.3.2 (BV Space). The space of functions of bounded variation on Ω is defined

by

BV (Ω) = {u ∈ L1(Ω) : J0(u) ≤ ∞}.

The BV norm is given by

‖u‖BV := ‖u‖1 + J0(u).

We should notice that the BV (Ω) is complete, therefore a Banach space. And it is easy to

see W 1,1(Ω) ⊂ BV (Ω) ⊂ L1(Ω). Since W 1,1 is dense in L1, for any u ∈ BV (Ω), there exists a

sequence in W 1,1(Ω) converging to u in L1. The following theorem shows that every function

u in BV (Ω) can be approximated, in certain sense, by C∞ functions, and consequently by

W 1,1 functions.

Theorem 2.3.1 (cf. [28]) Let u ∈ BV (Ω). Then there exists a sequence {uj} in C∞(Ω)

such that

lim
j→∞

∫
Ω

|uj − u|dx = 0,

and

lim
j→∞

∫
Ω

|∇uj|dx =

∫
Ω

|∇u|dx.

Since C∞(Ω) is dense in W 1,1(Ω) with respect to L1 topology, the above theorem holds for

{uj} in W 1,1(Ω) also.
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Remark. The above theorem also shows that, if using W 1,1 seminorm as the regulization

term, the minimization problem (2.12) might not admit a solution, because the convergent

sequence might converge to a minimizer in the BV space, not in W 1,1. Because W 1,1 is a

proper space of BV .

Now, we give a definition of Jε for nonsmooth functions according to [1]. Let us identify

the convex functional f(x) =
√
|x|2 + ε with its second conjugate, or Fenchel transform

√
ε+ |x|2 = sup{x · y +

√
ε(1− |y|2) : |y| ≤ 1}, (2.15)

the supremum being attained for y =
x√

ε+ |x|2
. Define

Jε(u) := sup
v∈V

∫
Ω

(
−udiv(v) +

√
ε(1− |v|2)

)
dx. (2.16)

Theorem 2.3.2 (cf.[1]) If u ∈ W 1,1(Ω), then

Jε(u) =

∫
Ω

√
ε+ |∇u|2dx.

Proof. Integration by parts gives

∫
Ω

(
−udiv(v) +

√
ε(1− |v|2)

)
dx =

∫
Ω

(
∇u · v +

√
ε(1− |v|2)

)
dx

It follows from (2.15) that

∫
Ω

(
−u div(v) +

√
ε(1− |v|2)

)
dx ≤

∫
Ω

√
ε+ |∇u|2dx.

Consequently, Jε(u) ≤
∫

Ω

√
ε+ |∇u|2dx. On the other hand, take v̄ =

∇u√
ε+ |∇u|2

, and
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observe that ∫
Ω

(
−udiv(v̄) +

√
ε(1− |v̄|2)

)
dx

and v̄ ∈ C(Ω;Rd with |v̄(x)| ≤ 1 for all x ∈ Ω. By multiplying v̄ a suitable characteristic

function compactly supported in Ω and then mollifying, one can obtain v ∈ V ∩ C∞0 (Ω) for

which
∫

Ω

(
−udiv(v) +

√
ε(1− |v|2)

)
dx is arbitrarily close to

∫
Ω

√
ε+ |∇u|2.

Theorem 2.3.3 (Convexity). For ε ≥ 0, Jε is convex.

Proof. Let 0 ≤ γ ≤ 1 and u1, u2 ∈ Lp(ω). For any v ∈ V ,

∫
Ω

(
γu1 + (1− γ)u2)div(v) +

√
ε(1− |v|2)

)
dx

= γ

∫
Ω

(
u1div(v) +

√
ε(1− |v|2)

)
dx+ (1− γ)

∫
Ω

(
u2div(v) +

√
ε(1− |v|2)

)
dx

≤ γJε(u1) + (1− γ)Jε(u2).

Taking the supremum in the top line over v ∈ V gives the convexity of Jε.

The next theorem shows that both J0 and Jε are effective in BV (Ω), and J0 is the

pointwise limit of J0.

Theorem 2.3.4 (c.f. [1]) (i) For any ε > 0 and u ∈ L1(Ω), J0(u) ≤ ∞ if and only if

Jε ≤ ∞; (ii) For any u ∈ BV (Ω),

lim
ε→0

Jε(u) = J0(u).

Define the BV -bounded set

D := {u ∈ BV (Ω), ‖u‖BV ≤ B},

for some constant B > 0. Let d be the dimension of the Euclidean space. Now, we discuss
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the relatively compactness of the BV -bounded set D in Lp(Ω), the lower semicontinuity and

coerciveness of Jε, which are critical for the discussion of the existence and uniqueness of

minimizer for (2.12).

Theorem 2.3.5 (c.f. [1]) If D is a BV -bounded set, then D is relatively compact in Lp(Ω)

for 1 ≤ p ≤ d

d− 1
. S is bounded, and hence weakly compact for dimensions d ≥ 2, in Lp(Ω)

for p =
d

d− 1
.

Theorem 2.3.6 (c.f. [1]) For any ε ≥ 0, Jε is weakly lower semicontinuous with respect to

Lp topology for 1 ≤ p <∞.

Proof. Let un weakly converges to ū in Lp(Ω). For any v ∈ V , divv ∈ C(Ω) and hence,

lim
n→∞

∫
Ω

(
−ūdiv(v) +

√
ε(1− |v|2)

)
dx = lim

n→∞

∫
Ω

(
−undiv(v) +

√
ε(1− |v|2)

)
dx

= lim inf
n→∞

∫
Ω

(
−undiv(v) +

√
ε(1− |v|2)

)
dx

≤ Jε(un).

Take the supremum over v ∈ V gives Jε(ū) ≤ lim infn→∞ Jε(un)

We call a functional F BV -coercive if

F (u)→∞ whenever ‖u‖BV →∞.

Next we explain about the other two important properties of the energy functional in (2.12)

for the existence and uniqueness of the problem.

Lemma 2.3.1 (c.f. [1]) Let

F (u) = Jε(u) +
1

λ
‖u− f‖2

2.
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with ε ≥ 0, then F (u) is weakly lower semicontinuous and BV -coercive.

Finally, we have the existence and uniqueness of solution to (2.12) in the following theo-

rem.

Theorem 2.3.7 (c.f. [1]) Suppose that F is BV -coercive. If 1 ≤ p <
d

d− 1
and F is

semicontinuous, then problem

min
u∈Lp(Ω)

F (u)

has a solution. If in addition p =
d

d− 1
, dimension d ≥ 2, and F is weakly lower semi-

continuous, then a solution also exists. In either case, the solution is unique if F is strictly

convex.

2.4 Mollifier and Mollification

Definition 2.4.1 Define η ∈ C∞(Ω), by

η(x) :=

 Cexp
(

1
|x|2−1

)
, if |x| < 1

0, if |x| ≥ 1.
(2.17)

the constant C > 0 selected so that ∫
Ω

ηdx = 1.

For each ε > 0, set

ηε(x) :=
C

εn
η
(x
ε

)
we call η the standard mollifier. The function ηε are C∞ and satisfy

∫
Ω

ηε = 1, spt(ηε) ⊂ B(0, ε).
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Definition 2.4.2 If f : Ωε → R is locally integrable define its mollification

f ε := ηε ∗ f in Ω.

That is

f ε(x) =

∫
Ωε

ηε(x− y)f(y)dy =

∫
B(0,ε)

ηε(y)f(x− y)dy

for x ∈ Ω.

Theorem 2.4.1 (Properties of mollifiers) (i) f ε ∈ C∞(Ωε).

(ii) f ε → f a.e. as ε→ 0.

(iii) If f ∈ C(Ω), then f ε → f uniformly on compact subsets of Ω.

(iv) If 1 ≤ p ≤ ∞ and f ∈ LPloc(Ω), then f ε → f in LPloc(Ω).

Lemma 2.4.1 (cf. [52]) If u ∈ BV (Ω), then

∫
Ω

|∇uε| ≤
∫

Ω

|∇u|.

2.5 Convex function and Subdifferential

Since the functionals we study are convex, we shall discuss some basic properties of convex

function here. First we give the definition of subdifferential functions.

Definition 2.5.1 If F : U → R is a convex function defined on a convex open set in the

Euclidean space Rn, a vector v in that space is called a subgradient at a point u0 in U if for

any u in U one has

F (u)− F (u0) ≥ 〈v, u− u0〉.

The set of subgradients at u0 is called the subdifferential at u0 and is denoted ∂F (u).
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Then we have the following characterization:

u∗ ∈ ∂F (u) if and only if F (u) is finite and (2.18)

〈v − u, u∗〉+ F (u) ≤ F (v), ∀v ∈ V.

Now we have the well-known non expensive property for the minimizer of a convex

functional.

Theorem 2.5.1 .Given

I(u, f) := G(u) +
1

λ

∫
Ω

|u− f |2dx, (2.19)

where G is a convex functional. If uf and ug are the minimizers of I(u, f) and I(u, g), for

some given functions f and g in L2(Ω), then

‖uf − ug‖2 ≤ ‖f − g‖2.

Proof. Since G is convex, by (2.18) we have

〈∂G(uf ), uf − ug〉 ≥ G(uf )−G(ug),

and

〈∂G(ug), uf − ug〉 ≤ G(uf )−G(ug).

where ∂G is the subderivative of G. It follows that

〈∂G(uf )− ∂G(ug), uf − ug〉 ≥ 0. (2.20)
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The minimizers of I(u, f) and I(u, g) are characterized by the Euler-Lagrangue equations

∂G(uf ) =
f − uf
λ

,

and

∂G(ug) =
g − ug
λ

respectively. It follows that

∂G(uf )− ∂G(ug) +
uf − ug

λ
=
f − g
λ

.

Then take the inner product with uf − ug on both sides, we have

〈∂G(uf )− ∂G(ug), uf − ug〉+
1

λ
‖uf − ug‖2

2 =
1

λ
〈f − g, uf − ug〉.

Recall that the first term on the left hand-side above is non-negative, therefore we have

1

λ
‖uf − ug‖2

2 ≤
1

λ
〈f − g, uf − ug〉 ≤

1

λ
‖f − g‖2‖uf − ug‖2.

That is

‖uf − ug‖2 ≤ ‖f − g‖.

This shows that if g is very close to f , the minimizer ug is very close to the minimizer uf .

2.6 Inequalities

In our work, we will use the following inequalities.

Cauchy-Schwarz ineqaulity: ‖xy‖ ≤ ‖x‖‖y‖.
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Höder’s inequality: Assume 1 ≤ p, q ≤ ∞,
1

p
+

1

q
= 1. Then if u ∈ LpΩ, v ∈ Lq(Ω),

we have ∫
Ω

|uv|dx ≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Jensen’s inequality: Assume that f : R → R is convex, and Ω ⊂ RN is open and

bounded. Let u : Ω→ R be integrable. Then

f

(
−
∫

Ω

udx

)
≤
(
−
∫

Ω

f(u)dx

)
,

where −
∫

Ω

udx denotes the mean value of u over Ω.

Minkowski’s inequality: Assume 1 ≤ p <∞ and u, v ∈ Lp(Ω). Then

‖u+ v‖Lp(Ω) ≤ ‖u‖Lp(Ω) + ‖v‖Lp(Ω).

Young’s inequality: Let 1 < p, q <∞,
1

p
+

1

q
= 1. Then:

ab ≤ ap

p
+
bq

q
(a, b > 0).
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Chapter 3

Bivariate Spline Approximation for

the ROF Model

In this chapter we the bivariate splines approach to approximate the minimizer of the well-

known ROF model:

min
u∈BV (Ω)

|u|BV +
1

2λ

∫
Ω

|u− f |2, (3.1)

where BV (Ω) stands for the space of all functions of bounded variation over Ω, |u|BV denotes

the semi-norm in BV (Ω), and f is a given function. As a by-product, we propose a new

spline method for scattered data fitting by approximating the minimizer above based on

discrete image values.

The minimization in (4.1) has been studied for about twenty years. See [44], [1], [12],

[5], [10], [23], and many references in [47]. Many numerical methods have been proposed to

approximate the minimizer. Typically, one first regularizes the minimization by considering

the following ε-version of the ROF model:

min
u∈BV (Ω)

∫
Ω

√
ε+ |∇u|2 +

1

2λ

∫
Ω

|u− f |2, (3.2)
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where ∇u is the standard gradient of u. Here the first integral is well defined for u ∈ W 1,1(Ω)

which is dense in BV (Ω) with respect to L1 topology. But for u ∈ BV (Ω)\W 1,1(Ω), we use

Acar and Vogel’s equivalent formula (2.16). In addition to the prime and dual algorithm (cf.

[10]) and projected gradient algorithm (cf. [23]) to numerically solve the minimizer of (4.1)

directly, finite difference and finite element methods have been used for numerical solution

of (3.2) by solving its Euler-Lagrange equation

div

(
∇u√

ε+ |∇u|2

)
− 1

λ
(u− f) = 0 (3.3)

or its time dependent version

ut = div

(
∇u√

ε+ |∇u|2

)
− 1

λ
(u− f) (3.4)

starting with u(x, y, 0) = u0 together with Dirichlet or Neumann boundary condition. We

refer to [50], [19], [26], and [27] for theoretical studies of finite difference and finite element

methods.

To the best knowledge of Dr. Lai and myself, bivariate splines have not been used to

solve the nonlinear PDE (3.3) nor time dependent PDE (3.4) in the literature so far. For

convenience, let ε = 1. It is known(cf. [?]) that the following minimization

min{E(u), u ∈ BV (Ω)}, (3.5)

where the energy functional E(u) is defined by

E(u) =

∫
Ω

√
1 + |∇u|2dx+

1

2λ

1

AΩ

∫
Ω

|u− f |2dx (3.6)

has a unique solution, where AΩ is the area of polygonal domain Ω. We use uf to denote
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the minimizer. The discussion of the existence and uniqueness of the minimizer of (3.5) can

be found in [1] and [12]. Similarly, we know that

min{E(u), u ∈ Srd(4)}, (3.7)

has a unique solution. We shall denote by Sf the minimizer of (3.7). Finally, in practice, we

are given discrete noised image values over Ω. That is, we have {(xi, fi), i = 1, · · · , n} with

xi ∈ Ω and noised function values fi for i = 1, · · · , n. Let

Ed(u) =

∫
Ω

√
1 + |∇u(x)|2dx+

1

2λ

1

n

n∑
i=1

|u(xi)− fi|2 (3.8)

be an energy functional based on the discrete noised image values. We use bivariate splines

to solve the following minimization problem:

min{Ed(u), u ∈ Srd(Ω)}, (3.9)

and denote the solution by sf .

One of our main results is in this chapter to show

Theorem 3.0.1 Suppose Ω is a bounded domain with Lipschitz boundary and 4 is a β-

quasi-uniform triangulation of Ω. If uf ∈ W 1,1(Ω), then Sf converges to uf in L2(Ω) norm

as the size |4| of triangulation 4 goes to zero. More precisely,

‖Sf − uf‖L2(Ω) → 0, when |4| → 0.

When uf ∈ W 1,2(Ω),

‖Sf − uf‖L2(Ω) ≤ C
√
|4|
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for a positive constant C independent of 4.

Next we shall discuss how to compute the minimizer Sf of (3.7). First the minimizer Sf

satisfies the following nonlinear equations: letting {φ1, · · · , φN} be a basis for S,

∂

∂t
E(Sf + tφj, f)

∣∣
t=0

=

∫
Ω

∇Sf · ∇φj√
1 + |∇Sf |2

dx+
1

λ

1

AΩ

∫
Ω

(Sf − f)φjdx = 0 (3.10)

for all basis functions φj, j = 1, · · · , N . As these are nonlinear equations, we will use a

fixed point iterative algorithm as in [19]. Our next result is to show the convergence of the

iterative algorithm. Our analysis is completely different from the one given in [19].

3.1 Existence, Uniqueness and Stability of Solutions Sf

in S

In this section we will talk about the existence, uniqueness and the stablity of the bivariate

spline solution Sf to (3.7). We begin with the following

Lemma 3.1.1 Assume that the triangulation4 is β-quasi-uniform. The minimization prob-

lem (3.7) has one and only one solution over the finite dimensional space Srd(Ω).

Proof. Let s0 ∈ S be a spline approximation of f , e.g., s0 satisfies

∫
Ω

|s0 − f |2 = min
s∈S

∫
Ω

|s− f |2 (3.11)

Let U be a subset of S defined by

U = {u ∈ S, I(u) ≤ I(s0) + 1} (3.12)
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Clearly, s0 ∈ U , so U is not an empty set. We now show that U is bounded in L2(Ω) norm.

For convenience, let

‖f‖2 :=

(
1

AΩ

∫
Ω

|f(x)|2dx
)1/2

denote the norm for L2(Ω). Indeed, for any u ∈ U ,

‖u− f‖2
2 ≤ 2λ

(
1

2λ
‖u− f‖2

2 +

∫
Ω

√
1 + |∇u|2dx

)
= 2λI(u) ≤ 2λ(I(s0) + 1). (3.13)

Thus we have

‖u‖2 ≤ ‖u− f‖2 + ‖f‖2 ≤ (2λ(I(s0) + 1))1/2 + ‖f‖2. (3.14)

That is, U is a a bounded set. Since U is a subset of a finite dimensional space, U is compact.

Let {uj} ∈ U be a sequence such that,

lim
j→+∞

E(uj) = inf
u∈S

E(u).

By the compactness for U , there exists a subsequence, say uj again and ũ s.t. uj converges

to ũ in L2(Ω) norm.

Next we claim I(ũ) = infu∈S I(u). It is sufficient to prove that

lim
j→∞

∫
Ω

√
1 + |∇uj|2dx =

∫
Ω

√
1 + |∇ũ|2dx (3.15)
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Indeed, for any w and fixed v ∈ S, we have

∣∣∣∣∫
Ω

√
1 + |∇w|2dx−

∫
Ω

√
1 + |∇v|2dx

∣∣∣∣ ≤ 1

2

∫
Ω

|∇w −∇v| |∇w +∇v|dx

≤ 1

2

(∫
Ω

|∇(w − v)|2dx
) 1

2
(∫

Ω

|∇(w + v)|2dx
) 1

2

=
AΩ

2
‖∇(w − v)‖2 ‖∇(w + v)‖2.

That is, we have

∣∣∣∣∫
Ω

√
1 + |∇w|2dx−

∫
Ω

√
1 + |∇v|2dx

∣∣∣∣ ≤ AΩ

2
‖∇(w − v)‖2 (‖∇w‖2 + ‖∇v‖2). (3.16)

Now we need to use Markov’s inequality (cf. Theorem 2.1.5) to show that for any spline

s = w, v, w − v ∈ S, ∫
Ω

|∇s|2dx ≤ Cβ2

|4|2

∫
Ω

|s|2dx.

It follows from (3.16) that

∣∣∣∣∫
Ω

√
1 + |∇uj|2dx−

∫
Ω

√
1 + |∇ũ|2dx

∣∣∣∣ ≤ C

2

β2

|4|2
‖uj − ũ‖2 (‖uj‖2 + ‖ũ‖2).

The convergence of uj to ũ in L2 norm implies the claim (3.15).

The uniqueness follows directly from the strict convexity of the functional E(u). These

complete the proof.

Lemma 3.1.2 Assume that the triangulation 4 is β-quasi-uniform and suppose that the

data sites xi, i = 1, · · · , n satisfy the condition (2.1). Then the minimization problem (3.9)

has one and only one solution.
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Proof. The proof is almost the same as in the proof of Lemma 3.1.1, where
1

AΩ

∫
Ω

|u−f |2dx

has to be replaced by
1

n

n∑
i=1

|u(xi)− fi|2. But we are not able to show that u is bounded in

L2 norm unless we use the condition in (2.1). Indeed, similar to the proof in Lemma 3.1.1,

we have
n∑
i=1

|u(xi)|2

is bounded. Since u ∈ S, we use (2.1) to have

‖u‖∞,Ω ≤
1

F1

(
n∑
i=1

|u(xi)|2
)1/2

and hence,

∫
Ω

|u|2dx is bounded. The remaining the proof is again similar to the correspond-

ing part of the proof of Lemma 3.1.1. We may leave the detail to the interested reader.

Once we have the existence, the solution is unique due to the strictly convexity of Id(u).

3.2 Properties of Minimizer of Continuous Functional

In this section we discuss the properties of the minimizer of the continuous functional (3.2).

Since
∫

Ω

√
1 + |∇u|2dx is a convex functional of u, by Theorem 2.5.1, we have the well-known

contraction property for the minimizer of a convex functional.

Lemma 3.2.1 (Contraction).Suppose we have another function g ∈ L2(Ω). Let Sg ∈ S be

the minimizer of (3.7) associated with g. Then the norm of the difference of Sf and Sg is

bounded by the norm of the difference of f and g, i.e.

‖Sf − Sg‖2 ≤ ‖f − g‖2. (3.17)
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Also we can give an exact value for the energy functionals I(Sf ) in the following lemma.

Lemma 3.2.2 Let Sf be the minimizer of (3.7). Then we have the following equation for

I(Sf ),

E(Sf ) =
1

2λAΩ

(‖f‖2
2 − ‖Sf‖2

2) +

∫
Ω

1√
1 + |∇Sf |2

dx. (3.18)

Proof. By using (3.10), Sf satisfies

∫
Ω

∇Sf · ∇Sf√
1 + |∇Sf |2

dx =
1

λ

1

AΩ

∫
Ω

(f − Sf )Sfdx

Adding 1
2λAΩ
‖f − Sf‖2

2 to both sides above, we get

I(Sf )−
∫

Ω

1√
1 + |∇Sf |2

dx =
1

2λAΩ

‖f − Sf‖2
2 +

1

λ

1

AΩ

∫
Ω

(f − Sf )Sfdx

=
1

2λAΩ

(‖f‖2
2 − ‖Sf‖2

2).

This proves the result in the lemma.

3.3 Approximation of Sf and sf to uf

In this section, we show that Sf and sf approximate uf . We first extend the arguments in

[17] to show the convergence of Sf and sf to uf , the analysis will require uf ∈ W 2,∞(Ω).

As an image function may not have such high regularity, next we use the ideas from [53]

to show the convergence which only require uf ∈ W 1,1(or in BV (Ω), if Ω is a rectangular

region, which will be discussed in Chapter 4).

Let S be an N -dimensional space, sN be an approximation of uf in S, e.g., sN is the

discrete least squares spline of given data, and Sf be the minimizer of (3.7) in S. Define the
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error term between uf and Sf by

EN =

∫
Ω

|∇(uf − Sf )|2√
1 + |∇Sf |2

dx+
1

2λ

1

AΩ

∫
Ω

|uf − Sf |2dx. (3.19)

then we have the following approximation property of Sf to uf .

Lemma 3.3.1 Suppose that uf can be approximated by sN well in the following sense that

∫
Ω

|∇(uf − sN)|2dx+
1

λ

1

AΩ

∫
Ω

|uf − sN |2dx→ 0, N →∞. (3.20)

Then Sf can approximates uf also very well in the sense that EN → 0, as N →∞.

Proof. Recall the minimizer Sf of (3.7) satisfies the following equations:

∫
Ω

∇Sf · ∇φj√
1 + |∇Sf |2

dx+
1

λ

1

AΩ

∫
Ω

(Sf − f)φjdx = 0, j = 1, ..., N. (3.21)

for every φj, j = 1, ..., N . Also from (3.5) we have

∫
Ω

∇uf√
1 + |∇uf |2

∇φjdx+
1

λ

1

AΩ

∫
Ω

ufφjdx =
1

λ

1

AΩ

∫
Ω

fφjdx, j = 1, ..., N. (3.22)

The subtraction of (3.21) and (3.22) yields

∫
Ω

(
∇uf√

1 + |∇uf |2
− ∇Sf√

1 + |∇Sf |2

)
· ∇φj +

1

λ

1

AΩ

∫
Ω

(uf − Sf )φj = 0. (3.23)

For convenience, we introduce the following notation for the first term of EN :

ẼN =

∫
Ω

|∇(uf − Sf )|2√
1 + |Sf |2

dx (3.24)
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It is easy to see

ẼN =

∫
Ω

∇(uf − Sf ) · ∇(uf − sN)√
1 + |∇Sf |2

dx+

∫
Ω

∇(uf − Sf ) · ∇(sN − Sf )√
1 + |∇Sf |2

dx, (3.25)

where sN is an approximation of uf in S. The first term gives

∫
Ω

1√
1 + |∇Sf |2

∇(uf − Sf ) · ∇(uf − sN)dx ≤

(∫
Ω

|∇(uf − sN)|2√
1 + |∇Sf |2

) 1
2

Ẽ
1
2
N . (3.26)

The second term of (3.25) gives the following two terms:

∫
Ω

∇(uf − Sf ) · ∇(sN − Sf )√
1 + |∇Sf |2

dx

=

∫
Ω

(
∇uf√

1 + |∇uf |2
− ∇Sf√

1 + |∇Sf |2

)
· ∇(sN − Sf )dx

+

∫
Ω

(
∇uf√

1 + |∇Sf |2
− ∇uf√

1 + |∇uf |2

)
· ∇(sN − Sf )dx. (3.27)

By equation in (3.23) with replace φj by sN − Sf , the first term in (3.27) satisfies

∫
Ω

(
∇uf√

1 + |∇uf |2
− ∇Sf√

1 + |∇Sf |2

)
· ∇(sN − Sf )dx (3.28)

= −1

λ

∫
Ω

(uf − Sf )(sN − Sf )dx

= −1

λ

∫
Ω

(uf − Sf )2dx− 1

λ

∫
Ω

(uf − Sf )(sN − uf )dx

≤ −1

λ

∫
Ω

(uf − Sf )2dx+
1

λ
‖uf − Sf‖2‖uf − sN‖2.
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The second term in (3.27) satisfies

∫
Ω

(
∇uf√

1 + |∇Sf |2
− ∇uf√

1 + |∇uf |2

)
∇(sN − Sf )dx (3.29)

≤
∫

Ω

|∇uf | |∇(uf − Sf )|√
1 + |∇uf |2

√
1 + |∇Sf |2

|∇(sN − Sf )|dx.

Letting

γ(u) = max
x∈Ω

|∇u|√
1 + |∇u|2

< 1,

the inequality in (3.29) can be rewritten as

∫
Ω

(
∇uf√

1 + |∇Sf |2
− ∇uf√

1 + |∇uf |2

)
∇(sN − Sf )dx (3.30)

≤ γ(uf )

∫
Ω

|∇(uf − Sf )||∇(sN − Sf )|√
1 + |∇Sf |2

dx

≤ γ(uf )

(∫
Ω

|∇(uf − Sf )|2√
1 + |∇Sf |2

dx+

∫
Ω

|∇(uf − Sf )||∇(uf − sN)|√
1 + |∇Sf |2

)

≤ γ(uf )

ẼN + Ẽ
1/2
N

(∫
Ω

|∇(uf − sN)|2√
1 + |∇Sf |2

)1/2
 .
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Now let us consider the whole error term (3.19). By the discussion above, we have

EN = ẼN +
1

2λ
‖uf − Sf‖2

2

≤ Ẽ
1/2
N

(∫
Ω

|∇(uf − sN)|2√
1 + |∇Sf |2

dx

)1/2

+
1

2λ
‖uf − Sf‖2‖uf − sN‖2

+ γ(uf )

ẼN + Ẽ
1/2
N

(∫
Ω

|∇(uf − sN)|2√
1 + |∇Sf |2

dx

)1/2


≤ (1 + γ(uf ))Ẽ
1/2
N

(∫
Ω

|∇(uf − sN)|2√
1 + |∇Sf |2

dx

)1/2

+
1

2λ
‖uf − Sf‖2,Ω‖uf − sN‖2,Ω + γ(uf )ẼN

≤ 2(ẼN +
1

2λ
‖uf − Sf‖2

2)
1
2

(∫
Ω

|∇(uf − sN)|√
1 + |∇Sf |2

dx+
1

2λ
‖uf − sN‖2

) 1
2

+ γ(uf )ẼN

= 2E
1
2
N

(∫
Ω

|∇(uf − sN)|√
1 + |∇Sf |2

dx+
1

2λ
‖uf − sN‖2

) 1
2

+ γ(uf )ẼN .

Since ẼN ≤ EN , we can rewrite the above inequality as follows.

(1− γ(uf ))EN ≤ E
1
2
N

(
4

∫
Ω

|∇(uf − sN)|2dx+
2

λ
‖uf − sN‖2

2

) 1
2

.

That is, we have

E
1
2
N ≤

2

1− γ(uf )

(∫
Ω

|∇(uf − sN)|2dx+
1

2λ

1

AΩ

∫
Ω

(uf − sN)2

) 1
2

.

Therefore, if uf can be approximated by sN very well in the sense of (3.20), then EN → 0.

That is, Sf approximates uf . These complete the proof.

Similarly, we can prove
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Lemma 3.3.2 Suppose that uf can be approximated by sN well in the following sense that

∫
Ω

|∇(uf − sN)|2dx+
1

λ

1

n

n∑
i=1

(uf (xi)− sN(xi))
2 → 0, n,N →∞. (3.31)

Then the minimizer sf of (3.9) can approximates uf also very well in the following sense:

∫
Ω

|∇(uf − sf )|2√
1 + |∇sf |2

dx+
1

2λ

1

n

n∑
i=1

|uf (xi)− sf (xi)|2 → 0 (3.32)

as n and N go to ∞.

We now discuss when the conditions (3.20) and (3.31) will hold. We mainly use Theo-

rems 2.1.6 and 2.1.7. When uf ∈ H2(Ω), the approximation power in Theorem 2.1.6 shows

that (3.20) holds if sN is the quasi-interpolant of f . For the condition (3.31), we may choose

sN to be the discrete least squares spline approximation lf of uf in Theorem 2.1.7. Hence,

we conclude the following

Theorem 3.3.1 Suppose that uf ∈ H2(Ω). Then Sf converges to uf with respect to L2

topology as |4| goes to 0. Furthermore, suppose that the data locations satisfy the conditions

in (2.1) and (2.6). Then sf converges to uf as |4| goes to zero in the sense (3.32).

Proof. We just need to prove that the conditions (3.20) and (3.31) under our hypothesis.

First take sN = Qf in Theorem 2.1.6, then

‖∇(sN − uf )‖Ω,2 ≤ C|4||f |Ω,2,2,

and

‖sN − uf‖Ω,2 ≤ C|4|2|f |Ω,2,2.

By embedding of Lebesgue Spaces, we have ‖∇(sN−uf )‖Ω,1 ≤ C‖∇(sN−uf )‖Ω,2. Therefore,

the condition (3.20) holds. Next take sN the least square spline of uf in Theorem 2.1.7, then
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we have

‖uf − sN‖Ω,∞ ≤ C
F1

F2

|4||uf |Ω,1,∞.

Then by Kondrachov embedding theorem, H2(Ω) = W 2,2(Ω) ⊂ W 1,∞(Ω) when Ω ∈ R2,

and hence we have |uf |Ω,1,∞ ≤ C‖uf‖H2(Ω). Therefore, ‖uf − sN‖Ω,∞ → 0 as |4| → 0, and

consequently 1
n

∑n
i=1(uf (xi)− sN(xi))

2 → 0, as n,N →∞.

In general, uf may not be in H2(Ω). When f is a noised image, we can only assume that

uf ∈ H1+α(Ω) = Lip(α,L2(Ω)), a fractional Sobolev space for some α > 0. In this case,

we need a result like the one in Theorem 2.1.6 for functions in a fractional Sobolev space,

e.g. Hm+α(Ω), for α > 0. The study of the approximation order of bivariate splines using a

fractional Sobolve space norm is beyond the scope of this paper. We leave the problem to

the interested reader.

Next we shall show that Sf converges to uf , the minimizer of (3.5) for the same λ, when

uf ∈ W 1,1(Ω), which has a lower regularity than the space W 2,∞(Ω) as the Theorem 3.3.1

requires.

Lemma 3.3.3 Let uf be the solution to (3.5). For any u ∈ BV(Ω),

‖u− uf‖2
2 ≤ 2λAΩ(E(u)− E(uf )). (3.33)

In particular, we have

‖Sf − uf‖2
2 ≤ 2λAΩ(E(Sf )− E(uf )). (3.34)

Proof. Using the concept of sub-differentiation and its basic property (see, e.g. [24]), we

have

0 = ∂E(uf ) = ∂J(uf )−
1

λAΩ

(f − uf ) and 〈∂J(uf ), u− uf〉 ≤ J(u)− J(uf ),
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where J(u) =

∫
Ω

√
1 + |∇u|2dx. From the above equations, it follows

1

λAΩ

∫
Ω

(f − uf )(u− uf )dx ≤
∫

Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx. (3.35)

We can write

E(u)− E(uf )

=

∫
Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx+

1

2λ|AΩ|

(∫
Ω

|u− f |2dx−
∫

Ω

|uf − f |2dx
)

=

∫
Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx+

1

2λ|AΩ|

(∫
Ω

(u− uf + uf − f)2dx−
∫

Ω

|uf − f |2dx
)

=

∫
Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx+

1

λ|AΩ|

∫
Ω

(u− uf )(uf − f)dx+
1

2λ|AΩ|

∫
Ω

|u− uf |2dx

≥ 1

2λ|AΩ|

∫
Ω

|u− uf |2dx

by (3.35). Therefore the inequality (3.33) holds. Hence, we have (3.34).

Next we need to show that E(Sf ) − E(uf ) → 0. To this end, we recall two standard

concepts. Since Ω ⊂ R2 is an region with piecewise smooth boundary ∂Ω and uf is assumed

to be in W 1,1(Ω), using the extension theorem in [45], there exists a linear operator E :

W 1,1(Ω)→ W 1,1(R2) such that,

(i)E(uf )|Ω = uf

(ii)E maps W 1,1(Ω) continuously into W 1,1(R2):

‖E(uf )‖W 1,1(R2) ≤ C‖uf‖W 1,1(Ω). (3.36)

Note that E(uf ) is a compactly supported function in W 1,1(R2). Thus, without loss of

generality we may assume uf ∈ W 1,1(R2).
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Let uεf be the mollification of uf defined by

uεf (x) =

∫
Ωε

ηε(x− y)uf (y)dy =

∫
B(x,ε)

ηε(x− y)uf (y)dy,

where Ωε := {x ∈ R2 | dist(x,Ω) < ε}. It is known that ‖uεf − uf‖2 → 0 as ε → 0 and

uεf ∈ C∞0 (Ωε). See, e.g. [25].

Lemma 3.3.4 If u ∈ W 1,2(Ω),

‖uε − u‖ ≤ C|u|W 1,2(Ω)ε (3.37)

for a positive constant C independent of ε and f .

Proof.

|uε − u| =
∣∣∣∣∫
B(x,ε)

ηε(x− y)u(y) dy −
∫
B(x,ε)

ηε(x− y) dyu(x)

∣∣∣∣
≤
∣∣∣∣∫
B(x,ε)

ηε(x− y)(u(y)− u(x)) dy

∣∣∣∣ (3.38)

Rewrite u(y)− u(x) in its integral form

u(y)− u(x) =

∫ 1

0

∇u(x+ t(y − x)) · (y − x) dt.

Note that |y − x| ≤ ε, then

|u(y)− u(x)| ≤
∫ 1

0

|∇u(x+ t(y − x)| dt · ε.
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Apply the above inequality to (3.38),

|uε − u| ≤
∫
B(x,ε)

ηε(x− y)|u(y)− u(x)| dy

≤
∫
B(x,ε)

ηε(x− y)

∫ 1

0

|∇u(x+ t(y − x))| dt · ε dy

Now square both sides, and use the convexity of square function(twice)

|uε − u|2 ≤
(∫

B(x,ε)

ηε(x− y)

∫ 1

0

|∇u(x+ t(y − x))| dt · ε dy
)2

≤
∫
B(x,ε)

ηε(x− y)

(∫ 1

0

|∇u(x+ t(y − x))| dt
)2

ε2 dy

≤
∫
B(x,ε)

ε2ηε(x− y)

∫ 1

0

|∇u(x+ t(y − x))|2 dt dy

Integrate both sides over Ω and use the fact that ηε is bounded by

ηε(x) ≤ C

ε2
,

then

∫
Ω

|uε − u|2 dx ≤
∫

Ω

∫
B(x,ε)

ε2ηε(x− y)

∫ 1

0

|∇u(x+ t(y − x))|2 dt dy dx

≤ C

∫
Ω

∫
B(0,ε)

∫ 1

0

|∇u(x+ tz))|2 dt dz dx (let z = y − x)

≤ C

∫ 1

0

∫
B(0,ε)

∫
Ω

|∇u(x+ tz)|2 dx dz dt

≤ C|u|2W 1,2(Ωε))
ε2

≤ C|u|2W 1,2(Ω))ε
2.

Taking square root on both sides gives the result.
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Our general plan to show E(Sf ) − E(uf ) → 0 is to establish the following sequence of

inequalities:

E(uf ) ≤ E(Sf ) ≤ E(Quεf ) ≤ E(uεf ) + err(|4|, ε) ≤ E(uf ) + errε + err(|4|, ε),

where Quεf is a spline approximation of uεf as in Theorem 2.2 and err(|4|, ε) and errε are

error terms which will go to zero when ε and |4| go to zero.

We first show E(uεf ) approximates E(uf ).

Lemma 3.3.5 Let uεf be the mollification of uf defined above. Then E(uεf ) approximates

E(uf ), when ε → 0. In particular, when uf ∈ W 1,2(Ω), E(uεf ) − E(uf ) ≤ Cε for a positive

constant dependent on uf .

Proof. First we claim that

E(uεf ) ≤ E(uf ) + errε

for an error term errε

errε =

∫
Ωε\Ω

√
1 + |∇uf (y)|2dy +

1

2λ

(
‖uεf − uf‖2

2 + 2‖uεf − uf‖2 ‖uf − f‖2

)
(3.39)

which will be shown to go to zero when ε→ 0 below.

By the convexity of
√

1 + |t|2 and the property of the mollifier, we have

√
1 + |∇uεf (x)|2 =

√
1 +

∣∣∣∣∫
B(0,ε)

ηε(x− y)∇uf (y)dy

∣∣∣∣2 ≤ ∫
B(x,ε)

ηε(x− y)
√

1 + |∇uf (y)|2dy.
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It follows that

∫
Ω

√
1 + |uεf (x)|2dx ≤

∫
Ω

∫
B(x,ε)

ηε(x− y)
√

1 + |∇uf (y)|2dydx.

≤
∫

Ωε

√
1 + |∇uf (y)|2

∫
B(y,ε)

ηε(x− y)dxdy

=

∫
Ωε

√
1 + |∇uf (y)|2dy.

=

∫
Ω

√
1 + |∇uf (y)|2dy +

∫
Ωε\Ω

√
1 + |∇uf (y)|2dy.

By uf ∈ W 1,1(R2) and (3.36), it follows that

∫
Ωε\Ω

√
1 + |∇uf (y)|2dy ≤

∫
Ωε\Ω

(1 + |∇uf (y)|) dy → 0, as ε→ 0.

Next we have

1

2λ
‖uεf − f‖2

2 ≤
1

2λ

(
‖uεf − uf‖2

2 + 2‖uεf − uf‖2‖uf − f‖2 + ‖uf − f‖2
2

)
.

Since ‖uεf − uf‖2 → 0 as explained above and ‖uf − f‖2 is bounded because
1

2λ
‖uf − f‖2 ≤

E(0),

1

2λ

(
‖uεf − uf‖2

2 + 2‖uεf − uf‖2‖uf − f‖2

)
→ 0, as ε→ 0.

This finishes the proof of our claim.

Clearly, uεf ∈ W 1,1(Ω) ⊂ BV (Ω). As uf is the minimizer in BV (Ω), it follows that

E(uf ) ≤ E(uεf ) ≤ E(uf ) + errε,

which implies E(uεf ) approximates E(uf ) when ε→ 0.

When uf ∈ W 1,2(Ω), the above analysis applies. Together with (??), we use (3.39) to
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conclude

errε ≤ C|uf |W 1,2(Ω)ε.

We next estimate E(Quεf )− E(uεf ). To do so, we need semi-norm |uεf |W 2,1(Ωε).

Lemma 3.3.6 For any fixed ε > 0, uεf ∈ W 2,1(Ωε) and

|uεf |W 2,1(Ωε) ≤
C

ε
|uf |W 1,1(Ω) (3.40)

for a constant C > 0.

Proof. Due to the mollification, uεf ∈ W 2,1(Ωε). Letting D1 denote the partial deriva-

tive with respect to the first variable, we consider ‖D1D1u
ε
f‖L1(Ωε). Recall that uεf (x) =∫

B(x,ε)
ηε(x− y)uf (y)dx. We have

D1D1u
ε
f = −

∫
B(x,ε)

D1uf (y)D1ηε(x− y)dy.

It follows that

|D1D1u
ε
f |L1(Ωε) =

∫
Ωε

∣∣∣∣∫
B(x,ε)

D1uf (y)D1ηε(x− y)dy

∣∣∣∣ dx
≤

∫
Ω

∫
B(x,ε)

|D1uf (y)||D1ηε(x− y)|dydx

≤
∫

Ωε

|D1uf (y)|
∫
B(y,ε)

|D1ηε(x− y)|dxdy

=

∫
Ωε

|D1uf (y)|dy
∫
B(0,ε)

|D1ηε(x)|dx.

Since

|D1ηε(x)| ≤ 8C exp(−2)

ε3
,
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we have

|D1D1u
ε
f |L1(Ωε) ≤ ‖D1uf‖L1(Ω)

C exp(−2)

ε3

∫
B(0,ε)

dx ≤ |uf |W 1,1(Ω)

C ′

ε
(3.41)

for a positive constant C ′. Using the similar arguments, we can show that ‖D1D2u
ε
f‖L1(Ωε)

and ‖D2D2u
ε
f‖L1(Ωε) have the same upper bound as in (3.41). And thus, we prove that

|uεf |W 2,1(Ωε) ≤
C

ε
|uf |W 1,1(Ω)

for another positive constant C > 0.

Recall4 is a triangulation of Ω. Let4′ = {ti} be a new triangulation of Ωε with4 ⊂ 4′

and |4′| = |4|. Using Theorem 2.1.6, we can choose Quεf ∈ S(4′) such that

‖Dα
1D

β
2 (Q(uεf )− uεf )‖L1(Ωε) ≤ C|4|2−α−β|uεf |W 2,1(Ωε) (3.42)

for all α + β = 1.

Lemma 3.3.7 Let s̃ := Quεf |Ω be the restriction of Quεf on Ω which is a spline in S. Then

E(s̃) approximates E(uεf ), when |4|
ε
→ 0.

Proof. We first estimate the difference between |E(s̃)− E(uεf )| by

|E(s̃)− E(uεf )|

≤
∣∣∣∣∫

Ω

√
1 + |∇s̃|2 −

√
1 + |∇uεf |2dx

∣∣∣∣+
1

2λ

∣∣‖s̃− f‖2
2 − ‖uεf − f‖2

2

∣∣
≤

∣∣∣∣∫
Ω

√
1 + |∇s̃|2 −

√
1 + |∇uεf |2dx

∣∣∣∣+
1

2λ

(
‖s̃− uεf‖2

2 + 2‖s̃− uεf‖2 ‖uεf − f‖2

)
.

Let err(|4|, ε) be the term on the right-hand side of the inequality above. Let us show that

err(|4|, ε)→ 0, as |4|/ε→ 0. Note that Q(uεf ) is supported over Ωε by the construction of
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quasi-interpolatory operator Q.

‖∇(s̃− uεf )‖L1(Ω) ≤ ‖∇(Q(uεf )− uεf )‖L1(Ωε) ≤ C|4′||uεf |W 2,1(Ωε) ≤
C|4|
ε
|uf |W 1,1(Ω) (3.43)

by using the inequality in (3.42) with α + β = 1. Hence, we have

∣∣∣∣∫
Ω

√
1 + |∇s̃|2 −

√
1 + |∇uεf |2dx

∣∣∣∣ =

∣∣∣∣∣
∫

Ω

|∇s̃|2 − |∇uεf |2√
1 + |∇s̃|2

√
1 + |∇uεf |2

dx

∣∣∣∣∣
≤

∫
Ω

|∇s̃−∇uεf ||∇s̃+∇uεf |√
1 + |∇s̃|2

√
1 + |∇uεf |2

dx

≤ ‖∇(s̃− uεf )‖L1(Ω)

≤ C ′
|4|
ε
|uf |W 1,1(Ω).

Here both C and C ′ are positive constants independent of ε,4, uf .

It is not hard to see the quantity ‖uεf − f‖2 is bounded because

‖uεf − f‖2 ≤ ‖uεf − uf‖2 + ‖uf − f‖2 ≤ 1 +
√

2λAΩ‖f‖2

as ‖uεf −uf‖2 ≤ 1 if ε small enough and by using the property of the minimizer uf . By using

the well-known Sobolev inequality: for any function g ∈ W 1,1(Ωε),

‖g‖L2(Ωε) ≤ C|∇g|L1(Ωε)

for Ωε with C1 boundary (cf. [25]), we have,

‖s̃− uεf‖L2(Ω) ≤ ‖s̃− uεf‖L2(Ωε) ≤ C‖∇(s̃− uεf )‖L1(Ωε) ≤
C|4|
ε
|uf |W 1,1(Ω)

by (3.43). Therefore, we conclude that err(|4|, ε) → 0, as |4|/ε → 0, and thus E(s̃)
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approximates E(uεf ).

Summarizing the discussion above, we have

Theorem 3.3.2 Suppose that uf ∈ W 1,1(Ω). Then Sf approximates uf in L2(Ω) when

|4| → 0. In particular, when uf ∈ W 1,2(Ω),

‖Sf − uf‖2 ≤ C|uf |W 1,2(Ω)

√
|4|

for a positive constant C independent of |4|.

Proof. Since S ⊂ W 1,1(Ω), we have E(uf ) ≤ E(Sf ). Also s̃ ∈ S implies E(Sf ) ≤ E(s̃). By

Lemmas 3.3.5 and 3.3.7, we have

E(uf ) ≤ E(Sf ) ≤ E(s̃) ≤ E(uεf ) + err(|4|, ε) ≤ E(uf ) + errε + err(|4|, ε).

For each triangulation 4, we choose ε =
√
|4| which ensures |4|/ε → 0. Thus, the above

error terms go to zero as |4| → 0. By Lemma 3.3.3, Sf converges to uf in L2 norm.

When uf ∈ W 1,2(Ω), we have errε ≤ εC|uf |W 1,2(Ω) and err(|4|, ε) ≤ C
√
|4||uf |W 1,2(Ω)

as we trivially have |uf |W 1,1(Ω) ≤ C|uf |W 1,2(Ω) with positive constant C dependent only on

AΩ. These complete the proof.

3.4 A Fixed Point Algorithm and Its Convergence

The following iterations will be used to approximate Sf .

Algorithm 3.4.1 Given u(k), we find u(k+1) ∈ S such that

∫
Ω

∇u(k+1) · ∇φj√
1 + |∇u(k)|2

dx+
1

λAΩ

∫
Ω

u(k+1)φjdx =
1

λAΩ

∫
Ω

fφjdx, for all j = 1, ..., n. (3.44)
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We first show that the above iteration is well defined. Since u(k+1) ∈ S, it can be written

as u(k+1) =
∑n

i c
(k+1)
i φi. Plugging it in (4.31), we have

n∑
i

c
(k+1)
i

(∫
Ω

∇φi · ∇φj√
1 + |∇u(k)|2

dx+
1

λAΩ

∫
Ω

φiφjdx

)
=

1

λAΩ

∫
Ω

fφjdx, j = 1, ..., n. (3.45)

Denote by

D(k) := (d
(k)
i,j )N×N with d

(k)
i,j = λ

∫
Ω

∇φi · ∇φj√
1 + |∇u(k)|2

dx,

M := (mi,j)N×N with mi,j =
1

AΩ

∫
Ω

φiφjdx,

v := (vj, j = 1, · · · , N) with vj =
1

AΩ

∫
Ω

fφjdx.

Then to solve equation of (3.45) is equivalent to solving the equation

(D(k) +M)c(k+1) = v, (3.46)

where c(k+1) = [c
(k+1)
1 , c

(k+1)
2 , ..., c

(k+1)
n ]T . Furthermore, if imposing the smoothness conditions

Hc = 0 in Theorem 2.1.2, we need to solve the following linear systems

 H ′ D(k) +M

0 H


 α

c

 =

 v

0

 . (3.47)

Lemma 3.4.1 (3.46) has a unique solution c(k+1).

Proof. It is easy to prove D(k) is semi-positive definite and M is positive definite because,

for any nonzero c = (ci)n,

cTD(k)c = λ

∫
Ω

|
∑n

i ci∇φi|2√
1 + |∇u(k)|2

dx ≥ 0,
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and

cT M c =
1

AΩ

∫
Ω

|
n∑
i

ciφi|2dx > 0.

Moreover (D(k) + M) is also positive definite, and hence invertible. So (3.46) has a unique

solution.

Lemma 3.4.2 {u(k), k = 1, 2, · · · } are bounded in L2 norm by ‖f‖2 for all k > 0. That is,

‖u(k+1)‖2 ≤ ‖f‖2. (3.48)

Also, there exists a positive constant C dependent on β and |4| such that

‖∇u(k+1)‖2 ≤ C‖f‖2.

Proof. Multiply (c(k+1))T to both hand-side of (3.46), we have

λ

∫
Ω

|∇u(k+1)|2√
1 + |∇u(k)|2

dx+
1

AΩ

∫
Ω

|u(k+1)|2dx =
1

AΩ

∫
Ω

fu(k+1)dx. (3.49)

Since the first term of (3.49) are nonnegative, we have

‖u(k+1)‖2
2 ≤

1

AΩ

∫
Ω

fu(k+1) ≤ ‖f‖2‖u(k+1)‖2 (3.50)

which yields

‖u(k+1)‖2 ≤ ‖f‖2,

and hence ‖u(k+1)‖2 is bounded if f ∈ L2(Ω).

Let λmin is the smallest eigenvalue of M , then λmin > 0 by the positivity of M . Since

‖u(k)‖2
2 = (c(k))t ∗M ∗ c(k),
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then

λmin‖c(k)‖2
2 ≤ ‖u(k)‖2

2 ≤ ‖f‖2
2,

which implies

‖c(k)‖2
2 ≤

1

λmin
‖f‖2

2

Consider the matrix P = (pi,j)n×n, where pi,j =
∫

Ω
∇φi · ∇φjdx. Then ‖∇u(k)‖2

2 = (c(k))t ∗

P ∗ c(k). It is easy to see that P is also semi-positive definite . Suppose πmax is the largest

eigenvalue of P , then πmax ≥ 0, and

‖∇u(k)‖2
2 = (c(k))t ∗ P ∗ c(k) ≤ πmax‖c(k)‖2

2 ≤
πmax
λmin

‖f‖2
2

or

‖∇u(k)‖2 ≤
√
πmax
λmin

‖f‖2 (3.51)

which finishes the proof.

Next we need to show that the iterative algorithm above converges. We need the following

inequality. Note that the proof of the inequality is different from the one in Lemma 3.3.3.

The reason is that u(k+1) is not a minimizer of E(u) in S. Thus the technique of the sub-

differentiation can not be applied here. We have to give a different proof.

Lemma 3.4.3 If u(k+1) is the solution of our Algorithm 3.4.1, then the following inequality

holds

‖u(k) − u(k+1)‖2 ≤ 2λAΩ(E(u(k))− E(u(k+1))). (3.52)

Proof. First of all we use (4.31) to have

1

λAΩ

∫
Ω

(f − u(k+1))(u(k) − u(k+1))dx =

∫
Ω

∇u(k) · ∇u(k+1)√
1 + |∇u(k)|2

dx−
∫

Ω

|∇u(k+1)|2√
1 + |∇u(k)|2

dx
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since u(k) − u(k+1) is a linear combination of φj, j = 1, · · · , n. Then the following inequality

follows.

1

λAΩ

∫
Ω

(f−u(k+1))(u(k)−u(k+1))dx ≤
∫

Ω

|∇u(k)|2

2
√

1 + |∇u(k)|2
dx−

∫
Ω

|∇u(k+1)|2

2
√

1 + |∇u(k)|2
dx. (3.53)

Now we are ready to prove (3.52). The difference between E(u(k)) and E(u(k+1)) is

E(u(k))− E(u(k+1))

=

∫
Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

1

2λAΩ

∫
Ω

|u(k) − f |2 − |u(k+1) − f |2dx

=

∫
Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

1

2λAΩ

∫
Ω

(u(k) − u(k+1))(u(k) + u(k+1) − 2f)dx

=

∫
Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

∫
Ω

1

λAΩ

(u(k+1) − f)(u(k) − u(k+1))

+
1

2λAΩ

∫
Ω

|u(k) − u(k+1)|2dx

which yields the result of this lemma since the first two terms in the last equation above is

not negative. Indeed, by applying (4.35), we have

∫
Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

1

λAΩ

∫
Ω

(u(k+1) − f)(u(k) − u(k+1))

≥
∫

Ω

√
1 + |∇u(k)|2 −

√
1 + |∇u(k+1)|2dx−

∫
Ω

|∇u(k)|2

2
√

1 + |∇u(k)|2
dx+

∫
Ω

|∇u(k+1)|2

2
√

1 + |∇u(k)|2
dx

=

∫
Ω

2 + |∇u(k)|2 + |∇u(k+1)|2

2
√

1 + |∇u(k)|2
−
√

1 + |∇u(k+1)|2dx

≥
∫

Ω

√
1 + |∇u(k)|2

√
1 + |∇u(k+1)|2√

1 + |∇u(k)|2
−
√

1 + |∇u(k+1)|2dx = 0.

We have thus established the proof.

We are ready to show the convergence of u(k) to the minimizer Sf .
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Theorem 3.4.1 The sequence {u(k), k = 1, 2, · · · , } obtained from Algorithm 3.4.1 converges

to the true minimizer Sf .

Proof. By Lemma 3.4.2, the sequence {u(k), k = 1, · · · , } is bounded. Actually, we know

‖u(k)‖2 ≤ ‖f‖2. So there must be a convergent subsequence {u(nj), n1 < n2 < · · · <}.

Suppose u(nj) → ū. By Lemma 4.4.2, we see {E(u(k)), k = 1, 2, · · · , } is a decreasing sequence

and bounded below, so {E(u(k))} is convergent as well as any subsequence of it. We use

Lemma 4.4.2 to have

‖u(nj+1) − ū‖2
2 ≤ 2‖u(nj+1) − u(nj)‖2

2 + 2‖u(nj) − ū‖2
2

≤ 4λAΩ(E(u(nj))− E(u(nj+1))) + 2‖u(nj) − ū‖2
2 → 0,

which implies u(nj+1) → ū.

According to Markov’s inequality, i.e. Theorem 2.1.5, we have

∫
Ω

|∇u(nj) −∇ū|2dx ≤ β2

|4|2

∫
Ω

|u(nj) − ū|2dx. (3.54)

It follows from the convergence of u(nj) → ū that ∇u(nj) → ∇ū in L2 norm as well. Replacing

u(nj) by u(nj+1) above, we have ∇u(nj+1) → ∇ū too by the convergence of u(nj+1) → ū.

As u(nj), u(nj+1) and ū are spline functions in S. The convergence of u(nj) and u(nj+1) to

ū, respectively implies the coefficients of u(nj) and u(nj+1) in terms of the basis functions

φj, j = 1, · · · , N are convergent to the coefficients of ū, respectively.

Since u(nj+1) solves the equations (4.31), we have

∫
Ω

∇u(nj+1) · ∇φj√
1 + |∇u(nj)|2

dx =

∫
Ω

f − u(nj+1)

λAΩ

φidx (3.55)
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for all φi, i = 1, · · · , N . Letting j →∞, we obtain

∫
Ω

∇ū · ∇φi√
1 + |∇ū|2

dx =

∫
Ω

f − ū
λAΩ

φidx (3.56)

for all i = 1, · · · , N . That is, ū is a local minimizer. Since the functional is convex, a local

minimizer is the global minimizer and hence, ū = Sf . Thus all convergent subsequences of

{u(k)} converge to Sf .

3.5 Numerical Results

We have implemented our bivariate spline approach in MATLAB and performed several

image enhancement experiments: image inpainting, image rescaling and wrinkle removal.

We shall briefly explain how to choose a polygonal domain, how to triangulate a polygonal

domain, how to use a bivariate spline space in following subsections. After these, we report

our numerical results.

We mainly use the standard Delaunay triangulation algorithm to find a triangulation of

a polygon. A key ingredient is to choose boundary points as equally-spaced as possible and

points inside the polygon as evenly-distributed as possible. If some points are clustered near

the boundary of the polygon, we have to thin a few point off. In addition, we check the

triangles from the Delaunay triangulation method to see which one is outside of the domain

and delete such triangles. Triangles in triangulations from our MATLAB code have almost

uniform in size and in area. In our computation we mainly use Bivariate Splines S1
3(Ω),

S1
5(Ω) and S1

7(Ω).

Example 3.5.1 (Image Inpainting) In Fig. 3.1, we show a damaged image and the re-

covered image by using the minimal surface area fitting splines. Assume that we can find

the locations of damaged parts, we use the known image values to recover the loss image
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data values. In the computation, we used the triangulations in Fig. 3.2. Fig 3.3 and Fig 3.4

demonstrate two examples of our approach to recover specified regions of damaged images

which have 50% lost and 60% data lost respectively. However, if there is a large number of

triangles in our triangulations, such as the case in Fig.3.2, then the size of linear system we

need to solve in 3.47 will be huge, because the size of D(k) is R
(
d+2

2

)
-by-R

(
d+2

2

)
, where R is

the number of triangles, and d is the degree of polynomial of the Bivariate splines we use.

This might cause the ”Out of Memory” problem in some computers. To solve this problem,

we use the domain decomposition technique developed in [37], which can transfer the problem

into solving a set of linear systems of small size.

Figure 3.1: Inpainting domain are marked by two blacked words. d = 3 and r = 1 are used
in our computation.

Example 3.5.2 (Image Scaling) Due to the accuracy of evaluation of spline funtions, we

can apply the minimum surface area fitting splines to image rescaling and compared our

method to the bicubic and bilinear interpolation methods provided by MATLAB function

”imresize”. In Fig. 3.5, the two images showed in the first column(not in actual size) are
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Figure 3.2: These two triangulations are used in our computation.

scaled by 10. One can notice that both the bicubic and bilinear interpolation methods lead

to the gibbs discontinuity effect at the edges of the two images, while our approach barely

show any such effect. In Fig. 3.6 and Fig. 3.7, our bivariate splines method is compared to

the bilinear method. Since the bilinear method only works on rectangular domain, the whole

rectangular region, including the dark area is enlarged. A shortcoming of this method is the

discontinuity across the boundary between the dark area and image leads to the jagged edges

on the boundary of the image. For our bivariate splines, due to the capability to approximate

functions on a flexible polygon domain, only the image itself is enlarged, which avoids the

jagged edges problem.

Example 3.5.3 (Wrinkle Removal) Finally we present a wrinkle removal experiment.

We are interested in reducing some wrinkles from a human face. We identify a couple

of regions of interest near eyes and cheeks and apply our bivariate spline approach over each

61



Original Image Damaged Image

Triangulations Recovered Image

Figure 3.3: Inpainting: Recovering specified region of an image of 50% data lost.

region. In Fig. 3.8, two images are shown. The human face on the right is clearly enhanced

in the areas near eyes and cheeks.

Example 3.5.4
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Original Image Damaged Image

Triangulations Recovered Image

Figure 3.4: Inpainting: Recovering specified region of an image of 60% data lost.
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Original Image MSA Spline Bicubic Bilinear

Figure 3.5: Images are scaled by 10 by using our spline method(d = 7, r = 1), Bicubic and
Bilinear interpolation respectively.

bilinear Method

Spline Method

Figure 3.6: Bilinear vs. Bivariate Splines
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bilinear Method Spline Method

Figure 3.7: Bilinear vs. Bivariate Splines

Figure 3.8: A face with wrinkles on the left and the face with reduced wrinkles on the right.
We use d = 3 and r = 1 in our computation.
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Position 1 Position 2

Position 2 Position 4

Figure 3.9: Enlarged pictures of 4 positions where wrinkles are removed.
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Chapter 4

Bivariate Splines Approximation to a

TV-Lp Model

Recall that the ROF model can be given in the following equivalent form:

min
u∈BV(Ω)

|u|BV +
1

2λ

∫
Ω

|u− f |2dx. (4.1)

Many extensions of the ROF model can be found in the literature [2], [3], and [4], [38], [39],

[14], [54], [55], and [22]. For example, the following TV-L1 model is closely related to the

original ROF model:

min
u∈BV(Ω)

|u|BV +
1

λ

∫
Ω

|u− f |dx. (4.2)

The above TV-L1 model was studied in the context of image denoising and deblurring

by many researchers as mentioned in the literatures above. As the energy functional

E(u) = |u|BV +
1

λ

∫
Ω

|u− f |dx

is convex and lower semi-continuous, it is easy to see the existence of the minimizers. How-

67



ever, due the fact that the energy functional is not strictly convex, the minimizers are not

unique. Many results related to the set of minimizers were obtained. For example, proper-

ties of maximum principle, monotonicity, commutation with constants, affine invariance and

contract invariance are studied. See [14], [55], and [22].

In addition to the TV-L1 model, the following TV-Lp model has been proposed in the

literature:

min
u∈BV(Ω)

|u|BV +
1

pλ

∫
Ω

|u− f |pdx (4.3)

for p ≥ 1. Besides p = 1 and p = 2, it is not clear in the literature that if this TV-Lp model

makes sense. We shall present a statistical explanation together with numerical examples to

show when the noises of an image are from random variables of p-exponential distribution

with p 6= 2, the TV-Lp model will be useful. Thus we shall discuss some properties of the

minimizers of the TV-Lp model. To compute the minimizers, we shall use the following

(ε, η)-version of TV-Lp model for p ≥ 1.

min
u∈BV(Ω)

∫
Ω

√
ε+ |∇u|2dx+

1

pλ

∫
Ω

(η + |u− f |2)p/2dx. (4.4)

for ε, η > 0.

It is shown that when ε→ 0,

Jε(u) :=

∫
Ω

√
ε+ |∇u|2dx.

converges to |u|BV . It is easy to see that when η → 0, the second term in the minimization

(4.4) converges to ‖f−u‖pp. Hence, the (ε, η) version of TV-Lp model gives an approximation

of the standard TV-Lp model (4.3).

When ε, η > 0, the energy functional Eε,η associated with (4.4) is strictly convex and

hence, the minimizer uf := uf,ε,η is unique in BV(Ω). We shall show that the minimizers of
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the (ε, η)-version of the TV-Lp has the stable and continuous properties. It is clear that we

can find the minimizers of the TV-Lp model in a finite dimensional space, e.g. finite element

space, or more generally bivariate spline space, Srd(4) which is the spline space of degree d

and smoothness r over triangulation 4. The key point is that the minimizers in the finite

dimensional space converge to the minimizers in the BV(Ω). The main result in this paper

is the following

Theorem 4.0.1 Fix p ≥ 1 η > 0 and ε > 0. Suppose f is bounded and uf is the minimizer

of (4.4). Suppose that a spline space S contains Srd(4) for a degree d ≥ 3r+2 as a subspace.

Let Sf be the minimizer of

min
u∈S

∫
Ω

√
ε+ |∇u|2dx+

1

pλ

∫
Ω

|u− f |pdx (4.5)

in S. Then

‖Sf − uf‖2 ≤ Cλ
√
|4|, (4.6)

where C is a positive constant independent of |4|, the size of triangulation 4.

This study leads to a numerical approach to compute an approximation of the minimizer

of the TV-Lp model for p ≥ 1. An iterative algorithm will be derived to solve the associated

nonlinear problem in the finite dimensional space. We shall show that the numerical algo-

rithm converges. Several numerical examples will be shown to demonstrate the effectiveness

and convenience for image denoising.

This chapter is organized as follows. First, we shall give a statistical explanation of the

TV-Lp model in §4.1. We then study the properties of the minimizers in §4.2. With these

preparation, we discuss how to approximate the minimizer of the TV-Lp model using spline

spaces in §4.3 and present an iterative algorithm and show that the iterative algorithm is

convergent in §5. Finally we show two examples to demonstrate that the TV-Lp model is
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indeed useful to denoise images whose contains some non-Gaussian noises.

4.1 A Statistical Explanation of the TV-Lp Model

Recall that the classic Rudin-Osher-Fetami (ROF) model for image denoising is the following

minimization:

min
u∈BV (Ω)

{|u|BV , subject to var(u− f) ≤ σ2
0} (4.7)

where f = u0 + ξ is a given noised image and u0 is the original image, and var(·) stands

for the standard variance. The minimizer uf is supposed to be the clean image which is

expected to be close to the original image u0. Thus it is expected that uf − f is very close

to ξ, i.e.,

uf − f ' ξ. (4.8)

In the discrete setting, suppose that f = {fi, · · · , fn} is a given image with fi = ui + ξi,

where ui are pixel values of grayscale and ξi are noise values. Suppose that ξi are from

independent identically distributed random variables whose mean is zero and variance σ2.

A standard method to estimate σ2 is

s2 =
1

n− 1

n∑
i=1

(ξi − ξ̄)2,

where ξ̄ =
1

n

∑n
i=1 ξi. It is known that s2 is an unbiased estimator. That is, E(s2) = σ2.

Note that ξ̄ ≈ 0. Thus, by (4.8),

s2 ' 1

n− 1

n∑
i=1

(ξi)
2 =

1

n− 1

n∑
i=1

(ui − fi)2 ' 1

AΩ

∫
Ω

|u− f |2dx
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where AΩ stands for the area of Ω. Hence, the ROF model can be rewritten as

min
u∈BV (Ω)

{|u|BV , subject to
1

AΩ

∫
Ω
|u− f |2dx ≤ σ2

0} (4.9)

By the Chambolle-Lions theorem [12], the minimization is equivalent to the following un-

constrained problems

min
u∈BV (Ω)

|u|BV +
1

2λ

∫
Ω

|u− f |2dx (4.10)

for some λ dependent on σ0 if σ0 ∈ (0,
1

AΩ

∫
Ω
|u0|2dx].

Furthermore, suppose that we have an a prior knowledge of the distribution of ξi. For ex-

ample, ξi are independent identically distributed random variables with the same probability

density function:

gp(x) =
Cp
b

exp
(
−
∣∣∣x
b

∣∣∣p) , p ≥ 1 (4.11)

with Cp =
p

2Γ(1/p)
and b being an fixed parameter. It is easy to see that the mean E(ξi) = 0

and the variance

σ2 = var(ξi) =
Γ(3/p)

Γ(1/p)
b2. (4.12)

One of the standard methods to estimate the parameter b in statistics is the maximum

likelihood method. Let us use the discrete setting to explain it again. For the given image

f = {f1, · · · , fn}, with the random variables ξi, i = 1, · · · , n which are iid with the same

probability density function gp, the event ξi, i = 1, · · · , n happens when the joint probability

L(ξ1, ξ2, · · · , ξn−1, ξn| b) =

(
Cp
b

)n
exp

(
−
∑n

i |ξi|p

bp

)

is maximized. To compute the maximum, it is equivalent to find the maximum of the
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logarithm of the above maximal likelihood function

logL = n log(Cp)− n log(b)−
∑n

i |ξi|p

bp
.

Thus, we solve

d log(L)

db
= −n

b
+
p
∑n

i |ξi|p

b(p+1)
= 0.

It follows that the maximum likelihood estimator b̂ for b is b̂ =

(
p

n

n∑
i=1

|ξi|p
)1/p

.

Therefore, the variance

var(u− f) = σ2 =
Γ(3/p)

Γ(1/p)
b2 ' Γ(3/p)

Γ(1/p)

(
p

n

n∑
i

|ξi|p
)2/p

=
Γ(3/p)

Γ(1/p)

(
p

n

n∑
i

|ui − fi|p
)2/p

≈ Γ(3/p)

Γ(1/p)

(
p

AΩ

∫
Ω

|u− f |p
)2/p

by (4.12) and (4.8) when n→∞. The ROF model in this case is

min
u∈BV (Ω)

{|u|BV , subject to
Γ(3/p)

Γ(1/p)

(
p

AΩ

∫
Ω

|u− f |p
)2/p

≤ σ2
0} (4.13)

Similar to the proof of the Chambolle-Lions theorem [12], the minimization is equivalent to

the following

min
u∈BV (Ω)

|u|BV +
p

2λ

(∫
Ω

|u− f |p
)2/p

(4.14)

for some λ dependent on σ0 if σ0 is not too big.

Lemma 4.1.1 The estimate b̂p :=
p

n

n∑
i

|ξi|p is a unbiased estimator for bp. However, when

p < 2, b̂2 =

(
p

n

n∑
i

|ξi|p
)2/p

is a biased estimator of b2 and hence the v̂ar(u−f) :=
Γ(3/p)

Γ(1/p)
b̂2

is a biased estimator of var(u− f).
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Proof. Since ξi are i.i.d.,

E(b̂p) = E

(
p

n

n∑
i

|ξi|p
)

= pE(|ε1|p) = 2pCp

∫ ∞
0

|x|p

b
exp

(
−
∣∣∣x
b

∣∣∣p) dx
= 2Cpb

pp

∫ ∞
0

yp exp(−yp)dy = bp

by using integration by parts.

On the other hand, as y = x2/p is a strict convex function when p < 2, by Jensen’s

inequality,

E(b̂2) = E((b̂p)2/p) > (E(b̂p))2/p = (bp)2/p = b2.

That is, b̂2 is a biased estimator of b2. Since var(u − f) =
Γ(3/p)

Γ(1/p)
b2, v̂ar(u − f) is also a

biased estimator of var(u− f).

Next let us point out that b̂p is a sufficient statistics in the sense that it summarizes all

information the entire random sample can provide about bp.

Lemma 4.1.2 The estimator b̂p in Lemma 4.1.1 is a sufficient estimator of bp.

Proof. Let u =
∑n

i |ξi|p be a random variable. Then the likelihood function of b is

L(ξ1, ..., ξn|b) =

(
Cp
b

)n
exp

(
− u
bp

)
.

By Fisher-Neyman factorization theorem (cf. [51]), u is a sufficient statistic of b. Therefore

b̂p is a sufficient estimator of bp.

Finally, since b̂p is unbiased and sufficient, by Rao-Blackwell theorem (cf. [51]), it is the

minimum-variance unbiased estimator. That is,

E((b̂p − bp)2) = min
ξ,unbiased r.v.

E((ξ − bp)2).
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Such a minimizer is unique.

Therefore it is better to use the unbiased estimator b̂p than b̂2 and hence, we consider

the model

min
u∈BV (Ω)

|u|BV +
1

pλ

∫
Ω

|u− f |pdx.

This justifies the TV-Lp model in this paper.

We shall explain how to generate such a random variable subject to probability density

function gp in the section on computational results together with numerical examples to

demonstrate the performance of TV-Lp model for p-exponential distributions.

4.2 Basic Properties of the (ε, η)-version TV-Lp Model

We first rewrite the (ε, η)-version of the TV-Lp model as follows:

min
u∈BV(Ω)

Eε,η(u) (4.15)

with energy functional

Eε,η(u) := Jε(u) +
1

pλ

∫
Ω

(η + (u− f)2)p/2 (4.16)

It is easy to see that when p ≥ 1 and η > 0, the minimization functional Eε,η is strictly

convex , weakly lower semi-continuous, BV -coercive and hence according to Theorem 2.3.7,

there exists a unique minimizer uf ∈ BV(Ω) for any ε ≥ 0. Similarly, when p > 1, η = 0 and

ε ≥ 0 or when p = 1, η = 0 and ε > 0, Eε,η is also strictly convex and lower semi-continuous.

Thus, the minimizer uf is unique. Only when p = 1 and η = 0 and ε = 0, the functional

Eε,η(u) is not strictly convex. The minimizers are not unique for certain λ > 0. See the

discussion in [14].

74



We shall further study other properties of uf in this section. We begin with the following

Lemma 4.2.1 Let uf be the minimizer of problem (4.15) for input f . Consider the setting

(p, ε, η) such that the minimizer uf is unique. If f is bounded, then uf is also bounded and

inf
x∈Ω

f(x) ≤ uf (x) ≤ sup
x∈Ω

f(x).

Proof. Let ūf be the truncation of uf by supx∈Ω f(x) and infx∈Ω f(x), i.e.,

ūf (y) =


supx∈Ω f(x), if uf (y) > supx∈Ω f(x)

uf (y), if infx∈Ω f(x) < uf (y) < supx∈Ω f(x)

infx∈Ω f(x), if infx∈Ω f(x) > uf (y).

It is easy to verify if uf ∈ W 1,1(Ω),

|ūf (y)− f(y)| ≤ |u(y)− f(y)|,∀y ∈ Ω

and ∫
Ω

√
ε+ |∇ūf |2 ≤

∫
Ω

√
ε+ |∇uf |2.

According to Theorem 2.3.1, for uf ∈ BV(Ω), we can find a sequence {un} in W 1,1(Ω) that

converges to uf in L1(Ω) and

lim
n→∞

∫
Ω

√
ε+ |∇un|2 =

∫
Ω

√
ε+ |∇uf |2.

We also have ūn converge to ūf in L1(Ω) as n tends to infinity, where ūn is the truncation
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of un. Note that the functional Jε(u) is lower semi-continuous (cf. [Acart-Vogel’94]). Then

∫
Ω

√
ε+ |∇ūf |2 ≤ lim

n→∞

∫
Ω

√
ε+ |∇ūn|2

≤ lim
n→∞

∫
Ω

√
ε+ |∇un|2 =

∫
Ω

√
ε+ |∇uf |2.

Then

Eε,η(ūf ) ≤ Eε,η(uf )

which implies ūf = uf because of the uniqueness of the solution.

We next present the continuous property of the minimizers.

Theorem 4.2.1 Fix p ≥ 1 and η > 0. Suppose uf is the solution of problem (4.4) with f

bounded. Then for any bounded function u with sup |u| ≤ sup |f |,

‖u− uf‖2 ≤ Cλ(Eε,η(u)− Eε,η(uf ))

for all ε ≥ 0, where C depends on sup |f | and η.

Proof. We first give the Euler-Lagrange equation for the minimizer uf of (4.15)

∂Jε(u) +
1

λ

uf − f
(ε+ (uf − f)2)1−p/2 = 0 (4.17)

Its equivalent inequality is

Jε(u)− Jε(uf ) ≥
〈
−1

λ

uf − f
(η + (uf − f)2)1−p/2 , u− uf

〉
, (4.18)

where 〈f, g〉 is the standard inner product in L2(Ω).

Following this calculation, we continue to compute the difference between two energies.
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Assume uf is the minimizer for an input function f , u is a Lp(Ω) function

Eε,η(u)− Eε,η(uf )

=
1

λ

∫
Ω

(η + (u− f)2)p/2 − (η + (uf − f)2)p/2 dx+ Jε(u)− Jε(uf ).

Using (4.18), we have

Eε,η(u)− Eε,η(uf )

≥ 1

λ

∫
Ω

(η + (u− f)2)p/2 − (η + (uf − f)2)p/2 dx

+

〈
−1

λ

uf − f
(η + (uf − f)2)1−p/2 , u− uf

〉

For simplicity we let

φη(x) =
1

p
(η + x2)p/2 (4.19)

which is convex and infinitely differentiable for all x when η > 0. Then

λ(Eε,η(u)− Eε,η(uf ))

≥
∫

Ω

φη(u− f)− φη(uf − f) dx− 〈φ′η(uf − f), u− uf〉

=

∫
Ω

φ′′η(ζ)(u− uf )2 dx (4.20)

where ζ is a function between u− f and uf − f . Direct calculation shows

φ′′η(y) =
(η + (p− 1)y2)

(η + y2)2−p/2 (4.21)

is a positive decreasing function which goes to zero when y →∞.

Lemma 4.2.1 and the assumption imply that both u − f and uf − f area bounded by
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2 sup |f | and hence,

φ′′(ζ) ≥ C

with C depending on sup |f | and η. Hence, the result follows.

With similar argument, we can show that

Theorem 4.2.2 Fix p ≥ 1 and η > 0. Suppose that f and g are bounded. Let uf and ug be

the minimizers of TV-Lp model (4.15) associated with images f and g, respectively. Then

‖uf − ug‖2 ≤ C‖f − g‖2

for all ε ≥ 0, where C > 0 depends on the bound of f and g as well as η.

Proof. Assume uf is the minimizer for f and ug is the minimizer for g, by the definition,

we have

〈∂Jε(uf ), ug − uf〉 ≤ J(ug)− J(uf )

〈∂Jε(ug), uf − ug〉 ≤ J(uf )− J(ug)

Adding these two inequalities, and using (4.18) we have

〈φ′η(ug − g)− φ′η(uf − f), ug − uf〉 ≤ 0.

Note that

φ′η(ug − g)− φ′η(uf − f) = φ′′η(ξ)(ug − uf + f − g). (4.22)
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It is easy to see

〈φ′′η(ξ)(ug − uf ), ug − uf〉

≤ 〈φ′′η(ξ)(g − f), ug − uf〉

≤ (〈φ′′η(ξ)(g − f), g − f〉)1/2(〈φ′′η(ξ)(ug − uf ), ug − uf〉)1/2

by Cauchy-Schwarz inequality. It thus follows

〈φ′′η(ξ)(ug − uf ), ug − uf〉 ≤ 〈φ′′η(ξ)(g − f), g − f〉. (4.23)

As φ′′η(ξ) is bounded from below and from above when ug and uf are bounded, the desired

inequality follows.

4.3 Bivariate Splines Approximation of the TV-Lp Model

To find the minimizers of the TV-Lp minimization, we approximate them by considering the

minimization problem in a finite dimensional space. For example, we can use continuous

piecewise linear finite element space Srd(4).

The minimization problem in the spline space is formulated as

min{Eε,δ(u), u ∈ S}. (4.24)

We shall study the relationship between the minimizer of (4.24) and the minimizer of

the original problem (4.15). Assuming Sf is the minimizer of (4.24), we shall prove that

Eε,η(Sf ) − Eε,η(uf ) → 0 as the size |4| of the triangulation tends to zero, where |4| is the

largest of the lengths of edges in 4.

We first introduce the notation of extension of functions on Ω = [0, 1] × [0, 1]: for any

79



function u defined on Ω, let Extu be the extension of u defined on R2 by first reflecting u

about the boundary of Ω and then periodically extending the resulting function to the whole

plane R2. For detail, see [53]. Let ψ be a standard symmetric non-negative mollifier and

define

uδ(x) =

∫
R2

Extu(x− y)ψ(
y

δ
)
dy

δ2
.

Lemma 4.3.1 Suppose f is bounded. Then

Eε,η(u
δ
f ) ≤ Eε,η(uf ) + Cδ|uf |BV

where C > 0 is a constant dependent on ‖f‖∞ and p.

Proof. First we claim that

∫
Ω

√
ε+ |∇uδf |2 ≤

∫
Ω

√
ε+ |∇uf |2

for δ small enough. Indeed, it is straightforward to verify that this inequality holds for

uf ∈ W 1,1(Ω) by using the convexity of Jε(u) and the property of the mollifier for any δ > 0.

For uf ∈ BV(Ω), the inequality still holds due to the fact that any BV function can be

approximated by W 1,1 functions in the sense of Theorem 2.3.1.

Next we have

∣∣∣∣∫
Ω

(η + (uδf − f)2)p/2 − (η + (uf − f)2)p/2
∣∣∣∣ ≤ ∫

Ω

∣∣φ′η(ξ)(uδf − uf )∣∣ ,
where φη(x) is the function defined in (4.19). Since f is bounded, we have uf is also bounded
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by Lemma 4.2.1, then

∣∣∣∣∫
Ω

(ε+ (uδf − f)2)p/2 − (ε+ (uf − f)2)p/2
∣∣∣∣

≤ C‖uδf − uf‖L1 ≤ Cδ|uf |BV,

where ω(uf , δ)L1 is the modulus of smoothness in L1(Ω). The last inequality follows from

the fact that BV space is identical to the Lipschitz space Lip(1, L1), see [18].

We need to use the following standard result.

Lemma 4.3.2 If u ∈ BV(Ω),

|uδ|W 2,1 ≤ C

δ
|u|BV

Proof. We have shown in Lemma 3.3.6 that the inequality holds for u ∈ W 1,1(Ω). The

inequality still holds by the facts in Theorem 2.3.1.

We now prove that the energy of the spline approximation is close to the energy of the

smoothed function.

Lemma 4.3.3 Suppose f is bounded. Suppose that S contains a spline space Srd(4) for a

degree d ≥ 3r+ 2 as a subspace. Let Quδf ∈ S be the quasi-interpolatory spline mentioned in

Theorem 2.1.6. Then

Eε,η(Qu
δ
f ) ≤ Eε,η(u

δ
f ) + C(

|∆|
δ

+ |∆|)|uf |BV.
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Proof. We estimate the difference between |Eε,η(Quδf )− Eε,η(uδf )| by

|Eε,η(Quδf )− Eε,η(uδf )|

≤
∣∣∣∣∫

Ω

√
1 + |∇Quδf |2 −

√
1 + |∇uεf |2dx

∣∣∣∣
+

1

λ

∣∣∣∣∫
Ω

(ε+ (Quδf − f)2)p/2 − (ε+ (uδf − f)2)p/2
∣∣∣∣ .

For the first term on the right side of the inequality

∣∣∣∣∫
Ω

√
ε+ |∇Quδf |2 −

√
ε+ |∇uδf |2dx

∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Ω

|∇Quδf |2 − |∇uδf |2√
1 + |∇Quδf |2 +

√
ε+ |∇ũδf |2

dx

∣∣∣∣∣∣∣
≤
∫

Ω

|∇Quδf −∇uδf ||∇Quδf +∇uδf |√
ε+ |∇Quδf |2 +

√
ε+ |∇ũδf |2

dx

≤ ‖∇(Quδf − uδf )‖L1

By Theorem 2.1.6(with m = 1),

‖∇(Quδf − uδf )‖L1 ≤ C|∆||uδf |W 2,1 ≤ C
|∆|
δ
|uf |BV

Here we have used Lemma 4.3.2.

For the second term, since f is bounded, uf , u
δ
f and Quδf are also bounded. We apply
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Theorem 2.1.6

∣∣∣∣∫
Ω

(η + (Quδf − f)2)p/2 − (η + (uδf − f)2)p/2
∣∣∣∣

≤
∫

Ω

∣∣φη(ξ)(Quδf − uδf )∣∣
≤ C

∫
Ω

|(Quδf − uδf )| dx

≤ C|∆||uδf |W 1,1 ≤ C|∆||uf |BV

The last inequality uses Theorem 2.4.1 that for any function u ∈ BV(Ω)

|uδ|W 1,1 ≤ |u|BV.

Summarized the discussion above, we have completed the proof.

Finally we are ready to prove the main result in this section

Theorem 4.3.1 Fix p ≥ 1 and η > 0. Suppose f is bounded. Suppose that S contains a

spline space Srd(4) for a degree d ≥ 3r + 2 as a subspace. Let δ =
√
|4|. Then

Eε,η(Sf )− Eε,η(uf ) ≤ C
√
|∆|Eε,η(0) (4.25)

for all ε ≥ 0, where C is a constant dependent on f, p, and the smallest angle θ4 of triangu-

lation 4. By Theorem 4.2.1,

‖Sf − uf‖2 ≤ Cλ
√
|4|, (4.26)

where C is another positive constant independent of |4|.

Proof. Combine Lemma 4.3.1 and Lemma 4.3.3. We have

Eε,η(uf ) ≤ Eε,η(Sf ) ≤ Eε,η(Qu
δ
f ) ≤ Eε,η(uf ) + C(

|∆|
δ

+ |∆|+ δ)|uf |BV.
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For δ =
√
|∆|, we have

Eε,η(Sf )− Eε,η(uf ) ≤ C
√
|∆| |uf |BV ≤ C

√
|∆|Eε,η(0).

The inequality (4.26) follows from (4.25) and Theorem 4.2.1 directly.

4.4 A Numerical Algorithm

In this section, we shall derive an iterative algorithm to compute the minimizers of the (ε, η)

TV-Lp model and show that the iterative algorithm converges. The discussion is similar to

the one in [33] where the minimizer of the TV-L2 model was considered. The proof has to

be carefully modified when p < 2. Thus, we present a detail discussion here. Recall

Eε,η(u) :=

∫
Ω

√
ε+ |∇u|2dx+

1

pλ

∫
Ω

(η + |u− f |2)p/2dx (4.27)

for ε ≥ 0 and η ≥ 0. Note that it is also defined for p > 0. We first have

Theorem 4.4.1 Fix p > 0, ε ≥ 0 and η > 0. There exists a solution of the following

minimization problem

min{Eε,η(s), s ∈ S}, (4.28)

where S is a spline space explained in the previous section. When p > 1 or when p = 1 and

η > 0, the minimizer is unique.

Proof. Let D := {Eε,η(s) ≤ Eε,η(0), s ∈ S}. It is not hard to see D ⊂ S is bounded

and hence, is compact. Note that Eε,η(u) is a continuous functional for any fixed p >

0, η ≥ 0, η > 0. Therefore there exists a spline Sf ∈ D which achieves the minimum, i.e.,

Eε,η(Sf ) ≤ Ek(s), s ∈ D.
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When p > 1 or when p = 1 and η > 0, the minimization functional Eε,η is strictly convex

and hence, the minimizer is unique.

Let us use Sf to be a minimizer of the minimization problem (4.28). Since η > 0, Eε,η(u)

is Gâteau differentiable. A minimizer Sf must happen at one of the stationary points. Let

φ1, ..., φn be a basis for spline space S. The following iteration algorithm will be used to

approximate Sf

Algorithm 4.4.1 Given u(k), we find u(k+1) ∈ S such that

∫
Ω

∇u(k+1) · ∇φj√
ε+ |∇u(k)|2

dx+
1

λ

∫
Ω

u(k+1)φj
(η + |u(k) − f |2)1−p/2dx

=
1

λ

∫
Ω

fφj
(η + |u(k) − f |2)1−p/2dx, ∀j = 1, ..., n. (4.29)

We first show that the above iteration is well defined. Since u(k+1) ∈ S, it can be written as

u(k+1) =
∑n

i c
(k+1)
i φi. Plugging it in (4.29), we have

n∑
i

c
(k+1)
i

(∫
Ω

∇φi · ∇φj√
ε+ |∇u(k)|2

dx+
1

λ

∫
Ω

φiφj
(η + |u(k) − f |2)1−p/2dx

)

=
1

λ

∫
Ω

fφj
η + |u(k) − f |2)1−p/2dx. (4.30)

Denote by

D(k) := (d
(k)
i,j )N×N with d

(k)
i,j = λ

∫
Ω

∇φi · ∇φj√
ε+ |∇u(k)|2

dx

M (k) := (m
(k)
i,j )N×N with mi,j =

∫
Ω

φiφj
(η + |u(k) − f |2)1−p/2dx,

v(k) := (v
(k)
j , j = 1, · · · , N) with vj =

∫
Ω

fφj
(η + |u(k) − f |2)1−p/2dx.
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Then to solve (4.30) is equivalent to solving the equation

(D(k) +M (k))c(k+1) = v(k), (4.31)

where c(k+1) = [c
(k+1)
1 , c

(k+1)
2 , ..., c

(k+1)
n ]T .

Theorem 4.4.2 The algorithm 4.4.1 has a unique solution in S.

Proof. It is easy to see D(k) is semi-positive definite and M is positive defined because, for

any nonzero c = (ci)n, because

cTD(k)c = λ

∫
Ω

|
∑n

i ci∇φi|2√
ε+ |∇u(k)|2

dx ≥ 0,

and

cT M (k) c =

∫
Ω

|
∑n

i ciφi|2

(η + |u(k) − f |2)1−p/2dx > 0.

Therefore (D(k) +M (k)) is also positive definite, and hence invertible. So (4.31) has a unique

solution and so does (4.29).

Next we show the iterative solution converges to the minimizer Sf in S. We need the

following few lemmas.

Lemma 4.4.1 For 0 < p ≤ 2, the following inequality holds

1

p

(
(η + x2)p/2 − (η + y2)p/2

)
≥ (x− y)2

2(η + x2)1−p/2 +
y(x− y)

(η + x2)1−p/2 (4.32)

for all x, y ≥ 0.
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Proof. Since

(η + x2)p/2 − (η + y2)p/2

=
(η + x2)− (η + x2)1−p/2(η + y2)p/2

(η + x2)1−p/2

=
η + x2 + py2 − pxy − (η + x2)1−p/2(η + y2)p/2

(η + x2)1−p/2 +
py(x− y)

(η + x2)1−p/2

By Young’s inequality which states that if 0 ≤ a, b ≤ 1 and a+ b = 1, then

ax+ by ≥ xayb, where x, y ≥ 0,

we have

η + x2 + py2 − pxy − (η + x2)1−p/2(η + y2)p/2 − p

2
(x− y)2

= (1− p

2
)(η + x2) +

p

2
(η + y2)− (η + x2)1−p/2(η + y2)p/2 ≥ 0.

It follows that

1

p

(
(η + x2)p/2 − (η + y2)p/2

)
≥ (x− y)2

2(η + x2)1−p/2 +
y(x− y)

(η + x2)1−p/2

Lemma 4.4.2 Let u(k+1) be the solution of our Algorithm 4.4.1. Suppose that 0 < p ≤ 2.

Then the following inequality holds

Eε,η(u
(k))− Eε,η(u(k+1)) ≥ 1

λ

∫
Ω

(u(k) − u(k+1))2

2(η + |u(k) − f |2)1−p/2dx (4.33)

where Eε,η(·) is the energy functional given in (4.15).
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Proof. Since

∫
Ω

|∇u|2

2
√
ε+ |∇u(k)|2

dx is a convex functional of u, by (4.29) and convexity, the

following inequality holds,

1

λ

∫
Ω

(f − u(k+1))(u(k) − u(k+1))

(η + |u(k) − f |2)1−p/2 dx ≤
∫

Ω

|∇u(k)|2

2
√
ε+ |∇u(k)|2

dx−
∫

Ω

|∇u(k+1)|2

2
√
ε+ |∇u(k)|2

dx.

With w(k) = u(k) − f , the above inequality can be rewritten as follows.

1

λ

∫
Ω

(−w(k+1))(w(k) − w(k+1))

(η + |w(k)|2)1−p/2 dx ≤
∫

Ω

|∇u(k)|2

2
√
ε+ |∇u(k)|2

dx−
∫

Ω

|∇u(k+1)|2

2
√
ε+ |∇u(k)|2

dx. (4.34)

Note that with (4.34), we have

∫
Ω

√
ε+ |∇u(k)| −

√
ε+ |∇u(k+1)|2dx+

1

λ

∫
Ω

(w(k+1))(w(k) − w(k+1))

(η + |w(k)|2)1−p/2 dx

≥
∫

Ω

√
ε+ |∇u(k)|2 −

√
ε+ |∇u(k+1)|2dx

−
∫

Ω

|∇u(k)|2

2
√
ε+ |∇u(k)|2

dx+

∫
Ω

|∇u(k+1)|2

2
√
ε+ |∇u(k)|2

dx

=

∫
Ω

2ε+ |∇u(k)|2 + |∇u(k+1)|2

2
√
ε+ |∇u(k)|2

−
√
ε+ |∇u(k+1)|2dx

≥
∫

Ω

√
ε+ |∇u(k)|2

√
ε+ |∇u(k+1)|2√

ε+ |∇u(k)|2
−
√
ε+ |∇u(k+1)|2dx = 0.

Letting x = w(k) and y = w(k+1) in (4.32) in Lemma 4.4.1, we have

1

p

(
(η + (w(k))2)p/2 − (η + (w(k+1))2)p/2

)
≥ (w(k) − w(k+1))2

2(η + (w(k))2)1−p/2 +
w(k+1)(w(k) − w(k+1))

(η + (w(k))2)1−p/2 (4.35)
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Now we are ready to prove (4.33). By using (4.35), the difference between Eε,η(u
(k)) and

Eε,η(u
(k+1)) is

Eε,η(u
(k))− Eε,η(u(k+1)) =

∫
Ω

(√
ε+ |∇u(k)| −

√
ε+ |∇u(k+1)|2

)
dx

+
1

pλ

∫
Ω

(
(η + |w(k)|2)p/2 − (η + |w(k+1)|2)p/2

)
dx

≥
∫

Ω

√
ε+ |∇u(k)| −

√
ε+ |∇u(k+1)|2dx+

1

λ

∫
Ω

w(k+1)(w(k) − w(k+1))

(η + |w(k)|2)1−p/2 dx︸ ︷︷ ︸
≥0

+
1

λ

∫
Ω

(w(k) − w(k))2

2(η + |w(k)|2)1−p/2dx

Since w(k) − w(k) = (u(k) − u(k)), we have thus established the proof.

Lemma 4.4.3 Suppose that p ∈ (0, 2] and η ≥ 0 and ε ≥ 0. If ‖f‖∞ is bounded, then

‖u(k)‖∞ ≤ C for some constant C independent of k.

Proof. From Theorem 4.4.2, we see that {Eε,η(u(k))} is a decreasing sequence. Thus,

λEε,η(u
(0)) ≥ λEε,η(u

(k)) ≥
∫

Ω

(η + |u(k) − f |2)p/2dx ≥
∫

Ω

|u(k) − f |pdx.

For p ≥ 1, we have

‖u(k)‖p ≤ ‖f‖p + ‖u(k) − f‖p ≤
(
λEε,η(u

(0))
)1/p

+ A
1/p
Ω ‖f‖∞

where AΩ is the area of Ω. It follows that ‖u(k)‖p is bounded. Similarly, when p ∈ (0, 1), we

have

‖u(k)‖pp ≤ ‖f‖pp + ‖u(k) − f‖pp ≤ λEε,η(u
(0)) + AΩ‖f‖p∞.

In finite dimensional space, ‖·‖p and ‖·‖∞ are equivalent. Therefore ‖u(k)‖∞ is also bounded.
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Lemma 4.4.4 If ‖f‖∞ is bounded, then ‖u(k+1) − u(k)‖2 → 0 as k →∞.

Proof. By Lemma 4.4.3, ‖f‖∞ is bounded implies ‖u(k)‖∞ is bounded. Therefore

|u(k) − f |2 ≤ (‖u(k)‖∞ + ‖f‖∞)2 <∞

Let ‖(η + |u(k) − f |2)1−p/2‖∞ = M . Then M <∞. By Lemma 4.4.2, we have

Eε,η(u
(k))− Eε,η(u(k+1)) ≥ 1

λ

∫
Ω

(u(k) − u(k+1))2

2(η + |u(k) − f |2)1−p/2dx

≥ 1

λM

∫
Ω

(u(k) − u(k+1))2dx,

that is,

‖u(k+1) − u(k)‖2 ≤ λM
(
Eε,η(u

(k))− Eε,η(u(k+1))
)
.

So {Eε,η(u(k))} is a decreasing sequence and bounded below, and hence converges, which

implies Eε,η(u
(k))− Eε,η(u(k+1))→ 0 and therefore ‖u(k+1) − u(k)‖2 → 0 as k →∞.

Theorem 4.4.3 Fix p > 1 or p = 1 with η > 0. The sequence u(k) obtained from Algo-

rithm 4.4.1 converges to the true minimizer Sf .

Proof. By Lemma 4.4.3, the sequence {u(k)} is bounded. So there must be a convergent

subsequence {u(nj)}. Suppose u(nj) → ū. We use Lemma 4.4.4 to have

‖u(nj+1) − ū‖2 ≤ ‖u(nj+1) − u(nj)‖2 + ‖u(nj) − ū‖2 → 0

which implies u(nj+1) → ū.

According to Markov’s inequality (cf. [36]), we have

∫
Ω

|∇u(nj) −∇ū|2dx ≤ β2

|4|2

∫
Ω

|u(nj) − ū|2dx, (4.36)
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where β > 0 is a constant dependent on the smallest angle θ4 of 4. It follows from the

convergence of u(nj) → ū that ∇u(nj) → ∇ū in L2 norm as well. Replace u(nj) by u(nj+1)

above, we have ∇u(nj+1) → ∇ū too by the convergence of u(nj+1) → ū. As u(nj), u(nj+1)

and ū are spline functions in Srd(4). The convergence of u(nj) and u(nj+1) to ū, respectively

implies the coefficients of u(nj) and u(nj+1) in terms of the basis functions φj, j = 1, · · · , N

are convergent to the coefficients of ū, respectively.

Since u(nj+1) solves the equations (4.29), we have

∫
Ω

∇u(nj+1) · ∇φj√
ε+ |∇u(nj)|2

dx+
1

λ

∫
Ω

u(nj+1)φj
(η + |u(k) − f |2)1−p/2dx

=
1

λ

∫
Ω

fφj
(η + |u(nj) − f |2)1−p/2dx,

for all φi, i = 1, · · · , N . Letting j →∞, we obtain

∫
Ω

∇ū · ∇φj√
ε+ |∇ū|2

dx+
1

λ

∫
Ω

ūφj
(η + |ū− f |2)1−p/2dx =

1

λ

∫
Ω

fφj
(η + |ū− f |2)1−p/2dx,

for all i = 1, · · · , N . That is, ū is a local minimizer. Since the functional is convex when

p > 1 or when p = 1 with η > 0, a local minimizer is the global minimizer and hence,

ū = Sf . Thus all convergent subsequences of {u(k)} converge to Sf , which implies {u(k)}

itself converges to Sf .

4.5 Numerical Examples

4.5.1 The Rejection Method

In this subsection we will discuss a method of generating noises following the distribution in

(4.11). It is called the rejection sampling, which can be implemented without the knowledge

of cumulated density function. It is also commonly called the acceptance-rejection method
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or ”accept-reject algorithm”.

Algorithm 4.5.1 (The Rejection Sampling Algorithm) Let M > 1 be a real number

and h be an envelope distribution.

1. Sample x from h(x), and u from uniform distribution over the unit interval U(0, 1).

2. Check weather or not u ≤ g(x)

Mh(x)
.

• if this holds, accept x as a realization of g(x).

• if not, reject the value x.

This algorithm generates random numbers from a probability distribution function g(x) by

using an envelope distribution Mh(x) for some M > 1. In this way, we generate random

noises subject to the p-exponential distribution. The distributions of Laplacian noises of

p = 1, p = 1.5 and p = 2 are shown in Fig. 4.1.

p = 1 p = 1.5 p = 2
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Figure 4.1: Distribution of Laplacian noises of p = 1, p = 1.5 and p = 2.

4.5.2 Numerical Results

Example 4.5.1 In this example we examine the convergency of our algorithm. That is, for

fixed triangulation size |4|, ‖u(k+1) − u(k)‖2 → 0, as k →∞.
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(a) First we try to illuminate that our algorithm converges regardless the shape of region.

To make our experiment more convincing, we use a figure from a natural environment. We

test our algorithm on seven triangulations of the following figure. The input function f is a

noised image with white noise of σ = 20. For each patch, we get a convergent sequence from

our numerical algorithm as shown in Fig. 4.3.

Figure 4.2: Triangulations used to test convergence of the algorithm.

(b)Second, we try to illuminate that our algorithm converges for all p value. The input

function f is a noised image with Laplacian noise p = 1, σ = 30 defined on a circular region.

We test the case when p = 1, p = 1.5 and p = 2. The result is show in

Example 4.5.2 Next we examine the convergence of the solution in the spline space to the

solution in the BV space. That is, for fixed p, when |4| → 0, uf (4) converges in L2 norm.

Example 4.5.3 It is well-known that for noised image with Gaussian noises, the original

ROF model (i.e. TVL2) is better than the TV-L1 model. We now present some evidence

that when an image polluted by noises subject to a Laplace distribution, the noised image
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is better denoised by the TV-Lp model than by the ROF model for p < 2. In this example,

we examine the effectiveness of our model. We try to give some evidence that the TV-Lp

model performs best to the Laplacian noise of the same p value. The input function is a sine

function over a circle domain with p = 1, p = 1.5 and p = 2 noises of σ = 30 respectively.

The results are shown in Table 4.1, 4.2 and 4.3 respectively. The clean figure is shown in

Fig. 4.5. And noised images and best recovered image are shown in Fig. 4.6, Fig. 4.7 and

Fig. 4.8 respectively.

Table 4.1: Denoising: Laplacian noises of p = 1.
p = 1 p = 1.5 p = 2

λ PSNR λ PSNR λ PSNR
0.05 33.40 0.5 33.17 0.5 32.28
0.1 33.48 1 33.21 2 32.33
1 31.48 2 33.0591 7 32.43
2 27.8108 3 32.7137 10 32.42

Table 4.2: Denoising: Laplacian noises of p = 1.5.
p = 1 p = 1.5 p = 2

λ PSNR λ PSNR λ PSNR
0.05 33.91 0.1 34.21 0.5 34.19
0.1 33.94 0.5 34.22 1 34.20
0.5 33.58 1 34.19 2 34.21
1 32.36 2 33.95 3 34.20

Table 4.3: Denoising: Laplacian noises of p = 2.
p = 1 p = 1.5 p = 2

λ PSNR λ PSNR λ PSNR
0.05 34.02 0.1 34.45 0.5 34.61
0.1 34.06 0.5 34.50 1 34.62
0.5 33.91 1 34.49 3 34.63
1 32.84 2 34.31 5 34.60
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Figure 4.3: Convergency of numerical algorithm on different regions.
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Figure 4.4: Convergency of numerical algorithm in different p values.
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Figure 4.5: Clean image
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Figure 4.6: Noised image of p = 1 and the denoised image with TV-Lp method with p = 1
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Figure 4.7: Noised image of p = 1 and the denoised image with TV-Lp method with p = 1
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Figure 4.8: Noised image of p = 1 and the denoised image with TV-Lp method with p = 1
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Chapter 5

Image Segmentation and

Triangulation

5.1 Level Set Method

In the application of image segmentation, we can use an interface(a curve) to separate one

region from another. To modify the interface we can assign a force F–the equation of motion

to control how to move each point of the interface. The force F is usually given according to

some physic mechanisms, for example, gravity, the ratio of the fluid density, and the surface

tension between two regions. In the figure 5.1, the interface in red separate the square

domain into regions and it is expanding under a force F .

However things get pretty complicated when the shape of the interface breaks into two

or try to cross over itself. Therefore, rather than follow the interface, the level set method

introduced by Osher and Sethian [40] consider the interface as the intersection of a surface

an the x-y plane, or in another word, the zero-level contour of a surface. Therefore, in two

dimensions, the level set method amounts to representing a closed curve Γ in a plane as the
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Figure 5.1: Level set method demonstration.

zero level set of a two-dimensional auxiliary function φ,

Γ = {(x, y)|φ(x, y|) = 0}

and then manipulating Γ implicitly by tracing the surface function φ(x, y) instead. In fig-

ure 5.2, the the intersection of red surface φ and the blue x-y plane yield a the cutting

planes in the first row. The boundary of the gray region is the interface Γ. One can see that

although the interface breaks into two curves, the topology of the surface doesn’t change

at all. At first glance, it might not be a good idea to trade a problem of a moving curve

into a problem of moving surface. Because we need to assign a force to each point on the

domain, instead of the curve only. It seems it will add on the cost of calculation. However,

the level set method processes some more critical properties – all the complicated problem

of breaking and merging curves.
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Figure 5.2: Demonstration of the change of the topology of the interface with level set
method.

5.2 Active Contour Method

The active contour method proposed in [15] by Tony F. Chan and Luminita A. Vese originates

from the idea of the level set method. Its basic idea is to evolve a closed curve to detect

objects in an image, subject to the minimization of an energy defined in (5.1) below. For

simplicity, let us assume that the image u is formed by two regions of approximatively

piecewise-constant intensities of two distinct values u1 and u2 and they are separated by a

contour C0 := {x : φ(x) = 0, x ∈ Ω}. The goal is to find the ”fittest” boundary C which best

approximates C0. One numerically computes an approximation C of C0. Then the image is

segmented into two distinguished regions: one is inside C and the other is outside C. In [15]
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the research considered the following minimization functional on C:

F (C) = µLength(C)+νArea(inside C)+

∫
inside(C)

|u(x)−u1|2dxdy+

∫
outside(C)

|u(x)−u2|2dx,

(5.1)

where C is a variable curve represented by level set {x : φ(x) = 0, x ∈ Ω}. In our compu-

tation, µ = ν = 1/2 and φ is approximated by a piecewise constant function over Ω. Here

u1 := u1(C) and u2 := u2(C) are the average values of the image inside and outside C,

respectively, which are defined as

u1 =

∫
inside(C)

u(x, y)dxdy and u2 =

∫
outside(C)

u(x, y)dxdy.

Then C0 is the minimizer of the fitting term

inf
C
F (C).

Here φ(x, y) is the surface function associated to the interface C in the level set method,

such that

φ(x, y) :=


> 0, (x, y) inside C

= 0, (x, y) on C

< 0, (x, y) outside C.

Recall that the Heavisible function H and Dirac Delta function δ are defined by

H(z) =

 1, z ≤ 0;

0, z < 0,

and

δ(z) =
d

dz
H(z).
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Then we have,

H(φ(x, y)) =

 1, (x, y) inside or on C;

0, otherwise,

|∇H(φ(x, y))| =

 1, (x, y) on C;

0, otherwise,

and

|∇H(φ(x, y))| = δ(φ(x, y))|∇φ(x, y)|.

Therefore, the length of C, the areas of the regions inside and outside C can be written

respectively as

Length(φ = 0) =

∫
Ω

δ(φ(x, y))|∇φ(x, y)|dxdy,

Area(φ ≥ 0) =

∫
Ω

H(φ(x, y))dxdy,

and

Area(φ < 0) =

∫
Ω

1−H(φ(x, y))dxdy.

Similarly u1 and u2 can be given as:

u1(φ) =

∫
Ω
u0(x, y)H(φ(x, y))dxdy∫

Ω
H(φ(x, y))dxdy

, (5.2)

u2(φ) =

∫
Ω
u0(x, y)(1−H(φ(x, y)))dxdy∫

Ω
(1−H(φ(x, y)))dxdy

. (5.3)

Moreover, we can rewrite the following integrations on the entire domain Ω:

∫
φ>0

|u0(x, y)− u1|2dxdy =

∫
Ω

|u0(x, y)− u1|2H(φ(x, y))dxdy,
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∫
φ<0

|u0(x, y)− u2|2dxdy =

∫
Ω

|u0(x, y)− u2|2(1−H(φ(x, y))|dxdy.

However, since the Heavisible function H and Dirac Delta function δ are not differentiable,

we use the following regularizations instead,

Hε(x) =
1

2
(1 +

2

π
arctan(

x

ε
)),

δε(x) =
ε2

(π(ε2 + x2))
.

Now we can rewrite the energy function (5.1) as

Fε(u1, u2, φ) = µ

∫
Ω

δε(φ)|∇φ|dxdy

+ ν

∫
Ω

Hε(φ)dxdy

+ λ1

∫
Ω

|u0 − u1|2Hε(φ)dxdy

+ λ2

∫
Ω

|u0 − u2|2(1−Hε(φ))dxdy (5.4)

Since the energy functional (5.4) is strictly convex, we just to need find a local minimum,

which is the solution of the Euler-Lagrange equation. Now we use the calculus of variation

method to calculate the Euler-Lagrange equation associated to the minimization problem of

the energy function (5.4). First, notice that

div

(
δε(φ)

∇φ
|∇φ|

)
= δ′ε(φ)|∇φ|+ δε(φ)div

(
∇φ
|∇φ|

)
.
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Let ~n be the normal vector of ∂Ω and ψ the test function. When t = 0, we have

d

dt

∫
Ω

δε(φ+ tψ)|∇(φ+ tψ)|dxdy

=

∫
Ω

δ′ε(φ)ψ|∇φ|dxdy +

∫
Ω

δε(φ)
∇φ
|∇φ|

· ∇ψ

=

∫
Ω

δ′ε(φ)ψ|∇φ|dxdy +

∫
∂Ω

δε(φ)
∇φ
|∇φ|

· −→n ψdxdy −
∫

Ω

div

(
δε(φ)

∇φ
|∇φ|

)
ψdxdy

=

∫
Ω

δ′ε(φ)ψ|∇φ|dxdy −
∫

Ω

div

(
δε(φ)

∇φ
|∇φ|

)
ψdxdy

= −
∫

Ω

δεdiv

(
∇φ
|∇φ|

)
ψdxdy,

and

d

dt
Hε(φ+ tψ) = δε(φ)ψ.

Assuming
d

dt
u1(φ + tψ)|t=0 = 0 and

d

dt
u2(φ + tψ)|t=0 = 0, then we get the following Euler-

Lagrange Equation of (5.4),

 0 = δε(φ)
(
µdiv

(
∇φ
|∇φ|

)
− ν − λ1|u0 − u1|2 + λ2|u0 − u2|2

)
, in Ω;

∂φ
∂−→n = 0, on ∂Ω;

(5.5)

Using the method of steepest descent, we can approximate the solution of the Euler-Lagrange

equation above by evolving the following time-flow partial differential equation


∂φ
∂t

= δε(φ)
(
µdiv

(
∇φ
|∇φ|

)
− ν − λ1|u0 − u1|2 + λ2|u0 − u2|2

)
, in(0,+∞)× Ω;

∂φ
∂−→n = 0, on(0,+∞)× ∂Ω;

φ(0, x, y) = φ0(x, y), when t = 0, (x, y) ∈ Ω.

(5.6)

After the discretization the above time flow PDE, in each iteration of numerical steps, we

need to update u1 and u2 according to (5.2) and (5.3).
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To deal with complicated images with more than two distinguished regions, we have to

apply the active contour segmentation method iteratively. We implement this method based

on numerical integration with equally-spaced grids. Figure 5.2 gives an example which shows

the process of the iterations. Figure (a) is the original image to be segmented. (b) is the

resulting image after the first iteration of the active contour method, the original images

is divided into two regions(black and white), or five separate regions A,B,C,D and E; In

figure (c) we go on to divide region A into three separate region A1,A2 and A4 by one more

iteration of the active contour method; (d) shows the combining the results of these two

iterations by assigning different colors to each separate region;

(a) (b)

(c) (d)

Figure 5.3: Application of iterative active contours in image segmentation.
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5.3 Numerical Algorithm – The Finite Difference Method

In this section we propose a finite difference scheme to approximate the partial differential

equation (5.6). Given ui,j = u(ih, jh), then the Forward difference, Backward difference,

and Central difference are defined by

∆+
x ui,j := ui+1,j − ui,j, ∆+

y ui,j := ui,j+1 − ui,j;

∆−x ui,j := ui,j − ui−1,j, ∆−y ui,j := ui,j − ui,j−1;

and

∆c
xui,j := ui+1,j − ui−1,j, ∆c

yui,j := ui,j+1 − ui,j−1.

All the three differences above can be used to approximate the first derivative
∂

∂x
(or

∂

∂y
).

It is up to the user to decide which scheme to use. For example we can approximate

|∇u|2 '
(

∆+
x ui,j
h

)2

+

(
∆c
yui,j

2h

)2

.

However when we design our scheme, a thumb of rule to follow is the scheme should treat all

grid points ”fairly”, that is using all grid points equally times. For example, if we use forward

difference ∆+
x to approximate the first derivative then we should use backward difference ∆−x

for the second derivative, e.x.,

uxx '
∆−x (∆+

x ui,j)

h2
=
ui+1,j − 2ui,j + ui−1,j

h2
.

Or in another word, the grid points we use should be symmetrically located around uij, e.x.,

uxy '
∆c
x∆

c
yui,j

(2h)2
=
ui+1,j+1 − ui−1,j+1 − ui+1,j−1 + ui−1,j−1

(2h)2
.
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Follow the same rule, we use the following scheme to approximate the Laplacian Operator,

∆u = div(∇u) =
∆−x
h

(
∆+
x uij
h

)
+

∆−y
h

(
∆+
y uij

h

)
=

1

h2
(∆−x ∆+

x uij + ∆−y ∆+
y uij) =

ui,j+1 − 2ui,j + ui,j−1

h2
+
ui,j+1 − 2ui,j + ui,j−1

h2
.

There are two basic types of finite difference schemes, the explicit and implicit schemes.

An explicit scheme is one which calculate the state of the system at a future time from the

state at the current time, i.e., if un = u(x, n∆t), un+1 = G(un) for some operator G, here .

In an implicit scheme, we find an approximation for the future state by solving a system of

equation involving both the future and current time step, i.e., G(un+1) = un. Generally, we

can attain higher order of approximation than the explicit scheme. However, for nonlinear

operator G, an implicit schemes is hard to implemented.

Since we are using finite difference scheme to approximate (5.6), we have to assume the

domain of function Ω is rectangular and the values of u0 on grid points {uij} are given. For

non rectangular domain, we can expand it to a rectangular domain by multiplying a charac-

teristic function. And we use the predictor-corrector method to design our numerical scheme.

In numerical analysis, a predictor-corrector is a two-step process which first calculates an

roughly approximation of the desired quality, and then refines this initial approximation by

another means. Denote ri the discretion of the nonlinear function 1√
1+|∇φ|2

in the diffusion

term div

(
∇φ√

1+|∇φ|2

)
. In order to follow the ”fair” rule, we use two set of approximations.

And since it is to approximate an nonlinear function, we use the explicit scheme here.

rxij =
1√

1 + ((4x
−φ

n
i,j)/h)2 + ((4y

cφni,j)/2h)2

ryij =
1√

1 + ((4y
−φ

n
i,j)/h)2 + ((4x

cφ
n
i,j)/2h)2
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Then we have

div

(
∇φ√

1 + |∇φ|2

)
' 1

h2

(
∆+
x (∆−x φijr

x
ij) + ∆+

y (∆−y φijr
y
ij)
)

=
1

h2

(
φi+1jr

x
i+1j + φi−1jr

x
ij + φij+1r

y
ij+1 + φij−1r

y
ij − φij(rxi+1j + rxij + ryij+1 + ryij)

)
.

Let

Cij = −
(
ν + λ1(ui,j − c1

i,j)
2 − λ2(ui,j − c2

i,j)
2
)
.

In the prediction step we first write down the implicit discrete form of (5.6)

φn+1
i,j − φni,j
4t

=
µδ(φn+1

i,j )

h2
(rxijφ

n+1
i−1,j + rxi+1jφ

n+1
i+1,j + ryijφ

n+1
i,j−1 + ryij+1φ

n+1
i,j+1)

−
µδ(φn+1

i,j )

h2
(rxi+1j + rxij + ryij+1 + ryij)φ

n+1
i,j − δ(φn+1

i,j )Cij (5.7)

+
τ

h2
(rxijφ

n+1
i−1,j + rxi+1jφ

n+1
i+1,j + ryijφ

n+1
i,j−1 + ryij+1φ

n+1
i,j+1)

− τ

h2
(rxi+1j + rxij + ryij+1 + ryij)φ

n+1
i,j .

Then move all the linear terms of φn+1
i,j to the left hand side:

(
1 +

(
µ4t
h2

δ(φn+1
i,j ) +

τ4t
h2

)
(rxij + rxi+1j + ryij + ryij+1)

)
φn+1
i,j − φni,j (5.8)

= 4tδ(φn+1
i,j )

( µ
h2

(rxijφ
n+1
i−1,j + rxi+1jφ

n+1
i+1,j + ryijφ

n+1
i,j−1 + ryij+1φ

n+1
i,j+1)

)
−4tδ(φn+1

i,j )Cij

+
τ4t
h2

(rxijφ
n+1
i−1,j + rxi+1jφ

n+1
i+1,j + ryijφ

n+1
i,j−1 + ryij+1φ

n+1
i,j+1).

Then we replace φn+1 in all nonlinear terms by φn:
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(
1 +

(
µ4t
h2

δ(φni,j) +
τ4t
h2

)
(rxij + rxi+1j + ryij + ryij+1)

)
φn+1
i,j − φni,j (5.9)

= 4tδ(φni,j)
( µ
h2

(rxijφ
n+1
i−1,j + rxi+1jφ

n+1
i+1,j + ryijφ

n+1
i,j−1 + ryij+1φ

n+1
i,j+1)

)
−4tδ(φni,j)Cij

+
τ4t
h2

(rxijφ
n+1
i−1,j + rxi+1jφ

n+1
i+1,j + ryijφ

n+1
i,j−1 + ryij+1φ

n+1
i,j+1).

To predict φn+1, we replace all linear terms of φn+1 by φn on the right hand side of (5.11),

and solve it to get the predictor φ̄n+1 as follows

(
1 +

(
µ4t
h2

δ(φni,j) +
τ4t
h2

)
(rxij + rxi+1j + ryij + ryij+1)

)
φ̄n+1
i,j − φni,j (5.10)

= 4tδ(φni,j)
( µ
h2

(rxijφ
n
i−1,j + rxi+1jφ

n
i+1,j + ryijφ

n
i,j−1 + ryij+1φ

n
i,j+1)

)
−4tδ(φni,j)Cij

+
τ4t
h2

(rxijφ
n
i−1,j + rxi+1jφ

n
i+1,j + ryijφ

n
i,j−1 + ryij+1φ

n
i,j+1).

Finally, in the correction step we replace φn+1 in all nonlinear terms, and the right hand side

of (5.11) with φ̄n+1,

(
1 +

(
µ4t
h2

δ(φ̄n+1
i,j ) +

τ4t
h2

)
(rxij + rxi+1j + ryij + ryij+1)

)
φn+1
i,j − φni,j (5.11)

= δ(φ̄n+1
i,j )

( µ
h2

(rxijφ̄
n+1
i−1,j + rxi+1jφ̄

n+1
i+1,j + ryijφ̄

n+1
i,j−1 + ryij+1φ̄

n+1
i,j+1)

)
− δ(φ̄n+1

i,j )Cij

+
τ

h2
(rxijφ̄

n+1
i−1,j + rxi+1jφ̄

n+1
i+1,j + ryijφ̄

n+1
i,j−1 + ryij+1φ̄

n+1
i,j+1).

Solving the above equation, we get φn+1.

5.4 Numerical Results

Example 5.4.1 In Fig. 5.4 and Fig. 5.5, we demonstrate using the active contour model

to separate distinguished textures. One can see that both zebra and leopard have different
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texture to their background. Once we have extracted the texture of the animals, we can use

the active contour method to separate the texture and the background.

Figure 5.4: Segmentation of Texture by Active Contour Method

Example 5.4.2 In Fig. 5.6, (b) is the segmentation after applying the Active Contour

Method on (a) directly. One can see that in this case, the two coarse patches can not be

distinguished, because the segmentation is carried out according to the grey level. After tak-

ing the gradient in (c), the two coarse patches are singled out by the Active Contour Method

in (d).

Example 5.4.3 Fig. 5.7 shows an example of triangulation according to the segmentation

result from the Active Contour Method.
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Figure 5.5: Segmentation of Texture by Active Contour Method

(a)Original Image (b) Segmentation of (a)

(c) Gradient Image of (a) (d) Segmentation of (c)

Figure 5.6: Segmentation according to grey level and gradient level respectively
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(a)Original Image (b) Segmentation of (a)

(c)Contour of (b) (d)Triangulation according to (b)

Figure 5.7: Triangulation according to the segmentation from Active Contour Method.
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