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Abstract

Given a set of scattered data, we usually use a minimal energy
method to find Lagrange interpolation based on bivariate spline spaces
over a triangulation of the scattered data locations. It is known that
the approximation order of the minimal energy spline interpolation is
only 2 in terms of the size of triangulation. To improve this order of
approximation, we propose several new schemes in this paper. Mainly
we follow the ideas of clamped cubic interpolatory splines and not-a-
knot interpolatory splines in the univariate setting and extend them
to the bivariate setting. In addition, instead of the energy functional
of the second order, we propose to use higher order versions. We shall
present some theoretical analysis as well as many numerical results
to demonstrate that our bivariate spline interpolation schemes indeed
have a higher order of approximation than the classic minimal energy
interpolatory splines.
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1 Introduction

Suppose V = {(xi, yi)}ni=1 is a set of data locations lying in a domain Ω ⊂ R2.
Let△ be a triangulation of the data locations. Let {zi, i = 1, · · · , n} be given
real values. We would like to construct a smooth function s ∈ Cr(Ω) with
r ≥ 1.

s(vi) = zi, i = 1, . . . , n. (1.1)

We shall use the space of polynomial splines

Sr
d(△) := {s ∈ Cr(Ω) : s|T ∈ Pd, ∀T ∈ △},

where d > r is a given integer, Pd is the space of bivariate polynomials of
degree d, and △ is a triangulation of the given data locations. This problem
is known as bivariate spline Lagrange interpolation. A classic solution to this
problem is the so-called minimal energy method (cf., e.g. [3]) which finds the
spline s∗ ∈ S1

5(△) satisfying (1.1) such that

E2(s
∗) = min{E2(s) : s(vi) = zi, i = 1, . . . , n, s ∈ S1

5(△)},

where

E2(s) =

∫
Ω

[s2xx + 2s2xy + s2yy]dxdy (1.2)

is called thin-plate energy functional. Of course, we can find other meth-
ods to do Lagrange interpolation without minimizing an energy functional
(cf., e.g. [13],[14],[15]). For example, in [14], the researchers use C1 splines
based on Clough-Tocher triangulation to do interpolation and also point out
that their Lagrange interpolation schemes possess the optimal approximation
order. Indeed, they combined extra smoothness conditions, Clouch-Tocher
splitting technique, and interpolation conditions to locally determine the
MDS(minimal determine set) around each triangle and then fix all the re-
maining coefficients of a bivariate interpolatory spline. As we use the minimal
energy method to globally fix all the extra coefficients besides interpolatory
conditions, the surface of interpolatory spline created by the minimal energy
method has minimal variation and oscillations. It is known that the approx-
imation order of the interpolatory spline obtained by the minimal energy
method is 2 in terms of the size of triangulation (cf. [4]). In [4], the re-
searchers explained that the order of approximation will not increase even if
one increases the degree of spline spaces. A numerical experiment is provided
to show that the order is only 2 for different degrees.

How to increase the approximation order when doing scattered data inter-
polation is the main motivation of this paper. One approach is to interpolate
derivative values in addition to function values. In [12], bivariate Hermite
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interpolatory splines were studied. The authors of their paper [12] estab-
lished the approximation order of the bivariate spline Hermite interpolation
scheme. The approximation order is indeed increased. See Theorem 2.2 for
a special case m = 3. More precisely, for any integer m ≥ 2, let

Em(f) =

∫
Ω

[ m∑
k=0

(
m

k

)[
(Dx)

k(Dy)
m−kf

]2]
dxdy (1.3)

be a general energy functional. A Hermite interpolatory spline s∗ ∈ Sm−1
d (△)

for an appropriate d, e.g. d ≥ 3m− 1 satisfying

Dα
xD

β
y s

∗(xi, yi) = fi,α,β, α + β ≤ m− 2, (1.4)

such that

Em(s
∗) = min{Em(s), s ∈ Sm−1

d (△), s satisfies (1.4)}.

Although such Hermite interpolatory splines have a higher order of approx-
imation, in practice, we may not have these derivatives at all vertices or it
needs a lot of effort and/or high cost to collect these derivative values.

The purpose of this paper is to construct several interpolatory spline
schemes without using all derivative information. Recall as observed in the
end of the paper [4], the error behavior is similar to the well-known natural

cubic spline which minimizes the univariate energy
∫ b

a
[s′′(x)]2dx among all

smooth functions that interpolate given values at points a = x0 < · · · <
xn = b. That is, numerical experiments show that the approximation of a
minimal energy spline is better inside the underlying domain than near the
boundary. It is also well-known that the full cubic spline space (with no
special boundary conditions) has approximation power O(h4) where h is the
mesh size, but the interpolating natural spline only has approximation order
O(h2). This loss of accuracy is due to the natural boundary conditions, and
indeed the interpolating spline does exhibit O(h4) accuracy in a compact
subset of [a, b] which stays away from the boundary. Carl de Boor suggested
that the analogous situation might also hold for bivariate minimal energy
splines (cf. [4]). But the bivariate spline space is much more complicated
than univariate spline space. There are too many extra coefficients besides
the interpolatory conditions need to be fixed in the bivariate spline setting.
So we have to use the minimal energy method or other methods to solve this
situation. Thus we propose the following new bivariate interpolatory spline
schemes.

Clamped Interpolation Scheme: We find the spline function s∗ ∈
S2
d(△) satisfying the interpolation conditions (1.1) as well as boundary Her-

mite interpolation conditions

Dα
xD

β
y s

∗(xi, yi) = fi,α,β, α + β ≤ m− 2, (xi, yi) ∈ ∂Ω, (1.5)
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which minimizes E3, where ∂Ω denotes the boundary of Ω. Here d ≥ 8
if △ is a general triangulation or appropriate d if △ is a Cough-Tocher or
Powell-Sabin refinement of triangulation or a FVS triangulation. See, e.g.,
[11].

Numerical experiments and a theoretical study show that the approxi-
mation order of this scheme is comparable to that of the bivariate Hermite
spline interpolation discussed in [12], where the Hermite interpolatory splines
use the derivatives at all vertices. Thus our clamped interpolatory splines
are better in the sense that we use only derivatives at boundary vertices.

Again we face the challenge that we may not have boundary derivatives
available for general real-life practical problems. Thus, we propose three
different approaches to overcome this difficulty in Sect. 4.

Lagrange Interpolation Scheme with E3: The easiest approach is
do nothing. That is, we find an s∗ ∈ S2

8(△) satisfying (1.1) which minimizes
higher order energy functional E3. Our numerical experiments clearly show
that Lagrange interpolation using E3 is much better than that of using E2.

Least Squares Scheme: We construct a least squares polynomial fit-
ting to function values nearby a boundary vertex vb and use its derivative to
approximate the true derivatives at vb. Then we use clamped spline inter-
polation discussed avove. We will explain this approach in more details in
Sect. 4.2.

Multiple Point Scheme: In this approach, we propose to use the mul-
tiple point method to estimate the derivative value at all boundary vertices.
Once having these estimating boundary derivative values, we can clamp down
the spline interpolation. Again we will discuss this scheme in Sect. 4.3.

The above two schemes are motivated by the Clamped C2 cubic interpo-
latory splines. Numerical examples show that it has a higher approximation
order. We should also explore the ideas of not-a-knot splines in the univariate
setting (cf. [2]). This leads to

Boundary CT Scheme: Given a triangulation △ of all data locations,
we first refine all the triangles in △ by Clough-Tocher refinement to get a
new triangulation △CT . The boundary CT scheme is to find an interpolatory
spline on △CT by adding smoother conditions on the boundary triangles to
force the reproduction of cubic polynomials on boundary triangles in △. We
will explain more detail in Sect. 5. Numerical examples show that this
scheme is better than Lagrange interpolation.

The paper is organized as follows. In Sect. 2 we briefly review some
well-known Bernstein-Bézier notation. More details can be found in [11]. In
Sect. 3 we present the Clamped interpolation scheme together with numeri-
cal examples to demonstrate their advantage. Also we give some theoretical
study to justify the higher order approximation is possible in the same sec-
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tion. In Sect. 4 we discuss several approaches of estimating the derivatives
using function values. Then we present some numerical examples to show
the advantage of each scheme in the same Section. In Sect. 5, we shall ex-
plain the boundary CT schemes. Finally, we give some remarks about the
approximation property of interpolation schemes in Sect. 6.

2 Preliminaries

Given a triangulation △ and integers 0 ≤ r < d, we write

Sr
d(△) := {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ △}

for the usual space of splines of degree d and smoothness r, where Pd is the(
d+2
2

)
dimensional space of bivariate polynomials of degree d. Throughout

the paper we shall make extensive use of the well-known Bernstein-Bézier
representation of splines. For each triangle T = ⟨v1, v2, v3⟩ in △ with vertices
v1, v2, v3, the corresponding polynomial piece s|T is written in the form

s|T =
∑

i+j+k=d

cTijkB
d
ijk,

where Bd
ijk are the Bernstein-Bézier polynomials of degree d associated with

T . In particular, if (λ1, λ2, λ3) are the barycentric coordinates of any point
u ∈ R2 in term of the triangle T , then

Bd
ijk(u) :=

d!

i!j!k!
λi
1λ

j
2λ

k
3, i+ j + k = d

Usually, we associate the Bernstein-Bézier coefficients {cTijk}i+j+k=d with the
domain points {ξTijk := (iv1 + jv2 + kv3)/d}i+j+k=d.

Definition 2.1 Let β < ∞. A triangulation △ is said to be β-quasi-uniform
provided that |△| ≤ βρ△, where |△| is the maximum of the diameters of the
triangles in △, and ρ△ is the minimum of the radii of the incircles of triangles
of △.

It is easy to see that if △ is β-quasi-uniform, then the smallest angle in
△ is bounded below by 2/β.

Recall that a determining set for a spline space S ⊆ S0
d(△) is a subset M

of the set of domain points such that if s ∈ S and cξ = 0 for all ξ ∈ M, then
cξ = 0 for all domain points. The set M is called a minimal determining set
(MDS) for S if there is no smaller determining set. It is known that M is a
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MDS for S if and only if every spline s ∈ S is uniquely determined by its
set of B-coefficients{cξ}ξ∈M.

Suppose that T := ⟨v1, v2, v3⟩ and T̂ := ⟨v4, v3, v2⟩ are two adjoining
triangles from △ which share the edge e := ⟨v2, v3⟩, and let

s|T =
∑

i+j+k=d

cijkB
d
ijk,

s|T̂ =
∑

i+j+k=d

ĉijkB̂
d
ijk,

where Bd
ijk and B̂d

ijk are the Bernstein polynomials of degree d on the triangles

T and T̂ , respectively. Given integers 0 ≤ n ≤ j ≤ d, let τnj,e be the linear
functional defined on S0

d(△) by

τnj,es := cn,d−j,j−n −
∑

ν+µ+κ=n

ĉν,µ+j−n,κ+d−jB̂
n
νµκ(v1).

It is called smoothness functional of order n. Clearly a spline s ∈ S0
d(△)

belongs to Cr(Ω) for some r > 0 if and only if

τnm,es = 0, n ≤ m ≤ d, 0 ≤ n ≤ r

So we shall often make use of smoothness conditions to calculate one coeffi-
cient of a spline in terms of others.

About the approximation order of interpolatory spline spaces, the follow-
ing result can be found in [12].

Theorem 2.2 Suppose△ is a β-quasi-uniform triangulation and f ∈ C3(Ω).
Then there exists a constant K depending only on d, β and f such that the
Hermite interpolant sf ∈ S2

d(△) satisfying (1.4) with m = 3 possesses

∥f − sf∥L∞(Ω) ≤ K|△|3|f |3,∞,Ω,

where |△| is the mesh size of △ (ie., the diameter of the largest triangle),
and |f |3,∞,Ω is the maximum norm of the 3th derivatives of f over Ω.

When d < 8, similar approximation results are available for some special
spline spaces, see [5], [7], [8], [9] and [10].
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3 Clamped Interpolation Scheme

Recall that an energy functional Em(f) is an expression for the amount of
potential energy in a thin elastic plate f that passes through the data points
V . In this scheme, we use the energy functional E3(f) in (1.3) when m = 3.
That is

E3(f) =

∫
Ω

[ 3∑
k=0

(
3

k

)[
(Dx)

k(Dy)
3−kf

]2]
dxdy. (3.1)

Let VB be the list of all boundary vertices. Thus the clamped interpolation
scheme can be formulated as follows: find a spline s∗ ∈ S2

d(△) such that

s∗(vi) = zi, Dxs
∗(vj) = z1,0j , Dys

∗(vj) = z0,1j , vi ∈ V, vj ∈ VB (3.2)

and

E3(s
∗) = min{E3(s) : s(vi) = zi, Dxs(vj) = z1,0j ,

Dys(vj) = z0,1j , vi ∈ V, vj ∈ VB, s ∈ S2
d(△)}. (3.3)

Note that the above scheme can be implemented using the approach pro-
posed in [1]. Before we present a theoretical study the approximation pow-
er of this scheme, we first demonstrate several numerical experiments by
comparing the approximation orders of minimal energy splines and Hermite
interpolatory splines for different test functions.

Example 3.1 (a) Suppose ♢ is a uniform partition of the unit square do-
main Ω := [0, 1] × [0, 1] into N2 subsquares. Let S2

8(△♢) be a C2 spline
space, where △♢ is the triangulation obtained by inserting one diagonal of
each subsquare in ♢. We use the following test functions:

f1(x, y) = (x+ 1)3 + (y + 1)3

f2(x, y) = sin(2(x− y))
f3(x, y) = 0.75 exp(−0.25(9x− 2)2 − 0.25(9y − 2)2)

+ 0.75 exp(−(9x+ 1)2/49− (9y + 1)/10)
+ 0.5 exp(−0.25(9x− 7)2 − 0.25(9y − 3)2)
− 0.2 exp(−(9x− 4)2 − (9y − 7)2),

where f3 is the well-known Franke function. We use these function values
and derivative values at the grid points (i/N, j/N), i, j = 0, · · · , N to have a
set of scattered Hermite data. We approximated these functions for choices
N = 4, 8, 16, 32 which corresponds to repeatedly halving the mash size (see
Fig 1) using three different methods: classic minimal energy method for La-
grange interpolation using S1

5(△) (cf. [1]), minimal energy method for Her-
mite Interpolation using S2

8(△) (cf. [12]) and our proposed clamped spline
interpolation in S2

8(△). Table 1(a). gives the maximum errors for all these
three methods computed based on 201× 201 equally-spaced points over Ω.
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Figure 1: Triangulations (a) for choice N = 4, 8, 16, 32

f1 \ N 4 8 16 32
Lagrange Interp. 6.85e− 002 1.70e− 002 4.20e− 003 1.04e− 003
Hermite Interp. 2.55e− 004 3.18e− 005 3.95e− 006 3.78e− 007
Clamped Interp. 5.95e− 004 6.12e− 005 7.56e− 006 9.80e− 007
f2 \ N 4 8 16 32
Lagrange Interp. 2.38e− 002 5.32e− 003 1.31e− 003 3.20e− 004
Hermite Interp. 2.74e− 004 3.15e− 005 3.69e− 006 3.19e− 007
Clamped Interp. 4.27e− 004 7.37e− 005 9.92e− 006 6.58e− 007
f3 \ N 4 8 16 32
Lagrange Interp. 9.28e− 002 5.01e− 002 4.12e− 003 5.63e− 004
Hermite Interp. 4.15e− 002 7.64e− 003 2.05e− 004 6.68e− 005
Clamped Interp. 8.13e− 002 3.62e− 002 7.44e− 004 8.24e− 005

Table 1(a). Maximum errors for various test functions

(b) Although the above numerical results are based on uniform triangula-
tions, similar numerical results can be obtained for arbitrary triangulations.
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Figure 2: Triangulations (b) for choice N = 5, 9, 17, 33

For example, we perturb the triangulations in Fig. 1 to have new triangula-
tions as shown in Fig.2.

f1 \ N 5 9 17 33
Lagrange Interp. 6.16e− 002 2.26e− 002 4.04e− 003 1.16e− 003
Hermite Interp. 3.85e− 004 6.43e− 005 6.72e− 006 1.97e− 006
Clamped Interp. 8.16e− 004 1.02e− 004 1.14e− 005 5.66e− 006
f2 \ N 5 9 17 33
Lagrange Interp. 2.22e− 002 6.61e− 003 1.44e− 003 3.06e− 004
Hermite Interp. 2.72e− 004 5.65e− 005 2.14e− 005 6.48e− 006
Clamped Interp. 5.29e− 004 1.32e− 004 4.67e− 005 9.01e− 006
f3 \ N 5 9 17 33
Lagrange Interp. 1.19e− 001 8.54e− 002 4.98e− 003 8.43e− 004
Hermite Interp. 4.11e− 002 2.26e− 002 3.14e− 004 8.15e− 005
Clamped Interp. 1.21e− 001 6.19e− 002 7.51e− 004 1.77e− 004

Table 1(b). Maximum errors for various test functions
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We use the same testing functions and same three methods to show that
the approximation order of these splines are not dependent whether they are
uniform or not. Table 1(b) gives the maximum errors of these three spline
interpolatory schemes computed based on 201×201 equally-spaced points over
domain.

Discussion: From Tables 1(a) and 1(b) we can see the maximum error
of clamped interpolation is almost the same as that of Hermite interpolation.
This show that our clamped interpolatory splines has an advantage over the
Hermite interpolatory splines. Thus we recommend to use boundary Hermite
interpolation(clamped interpolation) instead of the global Hermite interpola-
tion when functions to be interpolated are smooth functions.

We now study the approximation order of our clamped interpolatory s-
plines. First we convert the clamped spline interpolation problem (3.3) into
a standard approximation problem in Hilbert space. Let

X := {f ∈ B(Ω) : f |T ∈ W 2
∞(T ), all triangles T in △}

where B(Ω) is the set of all bounded real-valued functions on Ω. For each
triangle T in △, Let

⟨f, g⟩XT
:=

∫
T

[
3∑

k=0

(
3

k

)[
(
∂

∂x
)k(

∂

∂y
)3−kf(

∂

∂x
)k(

∂

∂y
)3−kg

]]
dxdy.

Then the following

⟨f, g⟩X :=
∑
T∈△

⟨f, g⟩XT

defines a semi-definite inner-product on X. Let ∥f∥XT
and ∥f∥X be the

associated semi-norms.
Suppose S ⊆ S2

d(△) is a spline subspace on a triangulation △, and that
S has a stable local basis {Bξ}ξ∈M corresponding to a minimal determining
set M containing the set of vertices V of △ as explained in [11]. Let VB be
the collection of the boundary vertices, then it is easy to see the ⟨·, ·⟩X is an
inner-product on the linear space

W := {s ∈ S : s(v) = 0, v ∈ V,
∂

∂x
s(vb) = 0,

∂

∂y
s(vb) = 0, v ∈ V, vb ∈ VB}.

(3.4)
Given a triangle T , let star0(T ) = T , and

starq(T ) :=
∪

{T ∈ △ : T ∩ starq−1(T ) ̸= ∅}, q ≥ 1.

Lemma 3.2 Suppose ⟨w,w⟩X = 0 for some w ∈ W , Then w = 0.
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Proof: Since ⟨w,w⟩X = 0 for some w ∈ W , then w is function of degree 2
on △. Let TB =< v1, v2, v3 > be a boundary triangle with boundary vertices
v1, v2 ∈ VB. First we use w(vi) = 0, i = 1, 2, 3 to determine the domain
points at the vertices. Next we can determine the last three domains points
ξ110, ξ101 and ξ011 by wx(vi) = 0 and wy(vi) = 0 for i = 1, 2. Then for any
triangle T ∈ star(TB), we can use the C1 smoothness condition to determine
the domain points ξ110, ξ101 and ξ011 in T . Remember that remaining domain
points can be determined by function w vanishes at all vertices. Using the
this way, we can see w = 0 on all boundary triangles. The C1 conditions
imply that w at the vertices v connected to boundary triangles satisfies

∂

∂x
w(v) = 0,

∂

∂y
w(v) = 0

in addition to w(v) = 0. We can repeat the above arguments to see w = 0
over triangles next to the boundary triangles. In this way, we see w = 0 on
in any triangle in triangulation △. So it follows that w ≡ 0. ♠

According to the Lemma 3.2, then W equipped with the inner-product
⟨·, ·⟩X is a Hilbert space. Let

Uf := {s ∈ S : s(v) = f(v), v ∈ V,
∂

∂x
s(vb) = fx(vb),

∂

∂x
s(vb) = fy(vb), v ∈ V, vb ∈ VB} (3.5)

be set of all splines in S that interpolate function value at the points of V
and derivative value at points of VB. Then we choose a spline Sf ∈ S such
that

E3(Sf ) = min
s∈Uf

E3(s) (3.6)

Given f , suppose sf is any spline in the set Uf defined in (3.5). Then it
is easy to see that the solution Sf ∈ S to the clamped spline interpolation
problem (3.6) is equal to sf−Psf , where P is the linear projector P : X → W
defined by

E3(g − Pg) = min
w∈W

E3(g − w)

for all g ∈ X. Since W is a Hilbert space with respect to ⟨·, ·⟩X , Pg is
uniquely defined, and is characterized by

⟨g − Pg, w⟩X = 0, for all w ∈ W.

Moreover, using the Cauchy-Schwarz inequality, it is easy to see that

∥Pg∥X ≤ ∥g∥X

for all g ∈ X.
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Figure 3: F(T): Union of T and its three neighboring triangles

Lemma 3.3 Let T = ⟨v1, v2, v3⟩ be an interior triangle in a triangulation
△ in the sense that there exist three triangles in △ each of which shares a
common edge with T . Let F (T ) be the union of T and the three neighboring
triangles. Let vi+3 be the opposite vertex of vi in F (T ) for i = 1, 2, 3. See
Fig. 3. Suppose that all six vertices vi, i = 1, · · · , 6 do not lie on the locus of
any bivariate quadratic polynomial. Suppose that f ∈ W 2

∞(T ) satisfies

f(vi) = 0

for i = 1, . . . , 6. Then for all v ∈ T ,

|f(v)| ≤ C1|T |3|f |3,∞,F (T ). (3.7)

Proof: The assumed hypotheses on the six vertices immediately imply the
existence and uniqueness of bivariate quadratic polynomial verifying the con-
ditions p(vi) = gi, i = 1, 2, · · · , 6.

Let K :=
|F (T )|
|T |

be the ratio of the length of edge in star(T ) and in T .

Given v ∈ F (T ), we can write v = v1 + t(v2 − v1) + u(v3 − v1) with |t| ≤ K
and |u| ≤ K. Let g(t, u) = f(v1 + t(v2 − v1) + u(v3 − v1)) for v ∈ star(T ). It
is easy to see

f(v1) = g(0, 0), f(v2) = g(1, 0), f(v3) = g(0, 1)
f(v4) = g(t1, u2), f(v5) = g(t2, u2), f(v6) = g(t3, u3)

for some fixed constants ti and ui for i = 1, 2, 3. Since f(vi) = 0 for
i = 1, . . . , 6, we can get g(0, 0) = 0, g(1, 0) = 0, g(0, 1) = 0, g(t1, u1) =
0, g(t2, u2) = 0, g(t3, u3) = 0 . By Taylor’s expansion, we have

0 = g(1, 0) = g(0, 0) + gt(0, 0) +
1

2
gtt(0, 0) +R1, (3.8)
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0 = g(0, 1) = g(0, 0) + gu(0, 0) +
1

2
guu(0, 0) +R2, (3.9)

0 = g(t1, u1) = g(0, 0) + t1gt(0, 0) + u1gu(0, 0) +
1

2
t21gtt(0, 0)

+ t1u1gtu(0, 0) +
1

2
u2
1guu(0, 0) +R3, (3.10)

0 = g(t2, u2) = g(0, 0) + t2gt(0, 0) + u2gu(0, 0) +
1

2
t22gtt(0, 0)

+ t2u2gtu(0, 0) +
1

2
u2
2guu(0, 0) +R4, (3.11)

and

0 = g(t3, u4) = g(0, 0) + t3gt(0, 0) + u3gu(0, 0) +
1

2
t23gtt(0, 0)

+ t3u3gtu(0, 0) +
1

2
u2
3guu(0, 0) +R5, (3.12)

where R1, . . . , R5 are remainder terms. It easy to see Ri = Ki|g|3,∞,star(T ) for
some constants Ki, i = 1, . . . , 5. We have


1 0 1

2
0 0

0 1 0 0 1
2

t1 u1
1
2
t21 t1u1

1
2
u2
1

t2 u2
1
2
t22 t2u2

1
2
u2
2

t3 u3
1
2
t23 t3u3

1
2
u2
3




gt(0, 0)
gu(0, 0)
gtt(0, 0)
gtu(0, 0)
guu(0, 0)

 = |g|3,∞,star(T )


K1

K2

K3

K4

K5


It is easy to see, the matrix above is invertible since the assumption. We

can get
|gt(0, 0)| ≤ K6|g|3,∞,star(T ),

|gu(0, 0)| ≤ K7|g|3,∞,star(T ),

|gtt(0, 0)| ≤ K8|g|3,∞,star(T ),

|gtu(0, 0)| ≤ K9|g|3,∞,star(T ),

|guu(0, 0)| ≤ K10|g|3,∞,star(T )

where Ki, i = 6, . . . , 10 are positive constants. Thus

|f(v)| = |g(t, u)| ≤ |g(0, 0)|+K|gt(0, 0)|+K|gu(0, 0)|
+
1

2
K2|gtt(0, 0)|+K2|gtu(0, 0)|+

1

2
K2|guu(0, 0)|+K11|g|3,∞,star(T )

≤ K12|g|3,∞,star(T ).

Since |g|3,∞,star(T ) ≤ K13|f |3,∞,star(T )|star(T )|3 = K3K13|f |3,∞,star(T )|T |3, we
conclude that (3.7) holds. ♠
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Lemma 3.4 Let T = ⟨v1, v2, v3⟩ be a boundary triangle with boundary vertex
v1 in triangulation △ and v4 be the opposite vertex of v1 in neighbor triangle
of T . Suppose that f ∈ W 2

∞(T ) satisfies

f(vi) = 0, i = 1, 2, 3, 4 and fx(v1) = 0 fy(v1) = 0.

Then for all v ∈ T ,
|f(v)| ≤ C2|T |3|f |3,∞,star(T ). (3.13)

Proof: Let K :=
|F (T )|
|T |

be the ratio of the length of edge in star(T ) and

in T . Given v ∈ star(T ), we can write v = v1 + t(v2 − v1) + u(v3 − v1)
with |t| ≤ K and |u| ≤ K. Let g(t, u) = f(v1 + t(v2 − v1) + u(v3 − v1)) for
v ∈ star(T ). It is easy to see

f(v1) = g(0, 0), f(v2) = g(1, 0),
f(v3) = g(0, 1) f(v4) = g(t1, u2),

for some fixed constants ti and ui for i = 1, . . . , 4. Since fx(v1) = 0, fy(v1) = 0
and f(vi) = 0 for i = 1, . . . , 4, we can get g(0, 0) = 0, g(1, 0) = 0, g(0, 1) =
0, g(t1, u1) = 0, gt(0, 0) = 0, gu(0, 0) = 0 . By Taylor’s expansion, we have

0 = g(1, 0) = g(0, 0) + gt(0, 0) +
1

2
gtt(0, 0) +R1, (3.14)

0 = g(0, 1) = g(0, 0) + gu(0, 0) +
1

2
guu(0, 0) +R2, (3.15)

and

0 = g(t1, u1) = g(0, 0) + t1gt(0, 0) + u1gu(0, 0) +
1

2
t21gtt(0, 0)

+ t1u1gtu(0, 0) +
1

2
u2
1guu(0, 0) +R3, (3.16)

where R1, . . . , R3 are remainder terms. Next we can use the same method in
Lemma 3.3 to get (3.13). ♠

Recall from [12], we have

Theorem 3.5 Suppose △ is a β-quasi-uniform triangulation △. Suppose
that {Bξ}ξ∈M is a stable local basis for S2

d(△) with d ≥ 8 corresponding to a
minimal determining set M containing the set V of vertices of △. Then

|Pg|3,∞,Ω ≤ C3|g|3,∞,Ω for all g ∈ X, (3.17)

where C3 depends only on d,l, r, and β.
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We are now ready to prove the main theoretical result in this paper:

Theorem 3.6 Suppose △ is a β-quasi-uniform triangulation. Suppose that
f ∈ C3(Ω). Then there exists a constant C depending only on d, β and f
such that the clamped spline interpolant Sf defined in (3.6) satisfies

∥f − Sf∥L∞(Ω) ≤ C|△|3|f |3,∞,Ω (3.18)

Proof: Given a function f ∈ C3(Ω), let sf ∈ Uf be the Hermite interpolant
spline of f as in Theorem 2.2. We know that

∥f − sf∥L∞(Ω) ≤ K|△|3|f |3,∞,Ω

and
|sf |3,∞,Ω ≤ |f |3,∞,Ω +K|△|3|f |3,∞,Ω = C0|f |3,∞,Ω,

where C0 = 1 +K|△|3.
We recall that Psf = sf − Sf . By Theorem 3.5,

|sf − Sf |3,∞,Ω = |Psf |3,∞,Ω ≤ C3|sf |3,∞,Ω.

Since (sf (v) − Sf (v)) = 0 for all vertices v of △ and
∂

∂x
(sf (vb) − Sf (vb)) =

0,
∂

∂y
(sf (vb) − Sf (vb)) = 0 for all boundary vertices vb of △, by Lemma 3.3

and 3.4,
∥sf − Sf∥L∞(Ω) ≤ C4|△|3|sf − Sf |3,∞,Ω

and hence,
∥sf − Sf∥L∞(Ω) ≤ C0C3C4|△|3|f |3,∞,Ω

where C4 = max{C1, C2}. Then the error bound (3.18) follows from

∥f − Sf∥L∞(Ω) ≤ ∥f − sf∥L∞(Ω) + ∥sf − Sf∥L∞(Ω).

This completes the proof. ♠

4 Estimate of Boundary Derivatives

When a set of data is given, we may not have boundary derivatives. In this
case, we have to estimate their values. There are many local techniques to
estimate derivatives based on discrete function values in the literature. We
discuss three different approaches to see how they affect on the approximation
of the minimal energy spline interpolation.
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4.1 Lagrange Interpolation Scheme with E3

As we do not have derivative values at the boundary, the easiest approach
is to do nothing. That is, we just simply use Lagrange interpolatory scheme
with E3 based on the spline space S2

8(△) as the clamped spline interpolation.
That is to find a spline s∗ ∈ S2

8(△) satisfying (1.1) such that

E3(s
∗) = min{E3(s) : s(vi) = zi, i = 1, . . . , n, s ∈ S2

8(△)}.

The existence and uniqueness of such minimizing spline s∗ are the similar
to the clamped spline interpolation. We leave the proof to the interested
reader. We note that one could find an s∗ ∈ S1

5(△) satisfying (1.1) which
minimizes higher order energy functional E3 instead of E2. Our numerical
experiments clearly show that this idea does not work. See Remark 6.1 in
Section 6.

Example 4.1 In this example we demonstrate the effectiveness of energy
functionals E2(f) and E3(f). We use the triangulations in Figures 1 and 2,
testing functions and spline spaces as in Example 3.1 while replacing energy
functional E3(f) by E2(f) for the Lagrange spline interpolation using S2

8(△).
Tables 2(a) and 2(b), respectively give the maximum errors of clamped spline
interpolation and Lagrange spline interpolation on different triangulation.

f1 \ N 4 8 16 32
Clamped Interp. 5.95e− 004 6.12e− 005 7.56e− 006 9.80e− 007
Lagrange use E3 6.01e− 003 6.62e− 004 8.23e− 005 9.69e− 006
Lagrange use E2 6.85e− 002 1.70e− 002 4.21e− 003 1.06e− 003
f2 \ N 4 8 16 32
Clamped Interp. 4.27e− 004 7.37e− 005 9.92e− 006 6.58e− 007
Lagrange use E3 4.03e− 003 4.10e− 004 5.91e− 005 6.47e− 006
Lagrange use E2 2.38e− 002 5.51e− 003 1.32e− 003 3.20e− 004
f3 \ N 4 8 16 32
Clamped Interp. 8.13e− 002 3.62e− 002 7.44e− 004 8.24e− 005
Lagrange use E3 1.59e− 001 3.65e− 002 1.25e− 003 1.11e− 004
Lagrange use E2 9.28e− 002 5.01e− 002 4.18e− 003 5.63e− 004

Table 2(a). Maximum errors on triangulation in Figure 1
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f1 \ N 5 9 17 33
Clamped Interp. 8.16e− 004 1.02e− 004 1.14e− 005 5.66e− 006
Lagrange use E3 6.92e− 003 8.24e− 004 8.03e− 005 1.38e− 005
Lagrange use E2 6.16e− 002 2.26e− 002 4.04e− 003 1.12e− 003
f2 \ N 5 9 17 33
Clamped Interp. 5.29e− 004 1.32e− 004 4.67e− 005 9.01e− 006
Lagrange use E3 4.41e− 003 4.10e− 004 7.30e− 005 2.11e− 005
Lagrange use E2 2.22e− 002 5.31e− 003 1.44e− 003 3.06e− 004
f3 \ N 5 9 17 33
Clamped Interp. 1.21e− 001 6.19e− 002 7.51e− 004 1.77e− 004
Lagrange use E3 1.59e− 001 6.47e− 002 1.43e− 003 2.50e− 004
Lagrange use E2 1.19e− 001 8.54e− 002 4.98e− 003 8.43e− 004

Table 2(b). Maximum errors on triangulation in Figure 2

Discussion: From Tables 2, it is clear to see that the maximum errors
of the Lagrange interpolation using E3 are much better than that of using E2.
Thus we recommend to use E3 for practical purpose.

4.2 Least Squares Approach

One obvious approach is to use least squares estimate of derivatives based
on discrete function values. The main idea is to construct the least squares
polynomial of degree, say 1 from several points nearby a boundary vertex vb
and use the derivatives of the least squares polynomials for approximating
derivatives at vb. Assuming v1, v2, . . . , vm are m vertices which are connected
to vb by an edge of △. We solve

min
a,b,c

m∑
i=1

|a+ bx+ cy − f(vi)|2

Then we use b for Dxf(vb) and c for Dyf(vb). Similarly, we can construct the
least squares polynomial of higher order degrees. That is, let v1, v2, · · · , vm
are vertices of △ which are connected to vb by at most two edges of △. Sup-
pose g(x, y) is the bivariate polynomial of degree 2 which solves the following
minimization problem

min
c1,c2,··· ,c6

m∑
j=1

|c1 + c2xj + c3yj + c4xjyj + c5x
2
j + c6y

2
j − f(vj)|2, (4.1)

where vj = (xj, yj). Then we use the derivative of g(x, y) to approximate the
derivatives of f at vb. We call these estimates the LSd2 method. It is easy
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to see the least squares method can reproduce all polynomials of degree 2.
Also one can easily extend this method to improve the accuracy by adding
more nearby function values and using higher order polynomials. That is,
we can have LSd3 and LSd4 methods which can reproduce all polynomials
of degree 3 and 4, respectively.

We will list the maximum error of estimating derivatives by least squares
approach in the following subsection.

4.3 Multiple Point Approach

Let us start with a concrete example to explain the multiple point methods.
Let v1, v2, . . . , v5 be five vertices which are connected to a boundary vertex
vb. Suppose

Dxf(vb) = c1f(vb) + c2f(v1) + c3f(v2) + c4f(v3) + c5f(v4) + c6f(v5) (4.2)

for some coefficients to be solved as follows. Using Taylor formula, we have

f(vi) = f(vb) + (xi − xb)Dxf(vb) + (yi − yb)Dyf(vb)

+
(xi − xb)

2

2
D2

xf(vb) +
(yi − yb)

2

2
D2

yf(vb)

+ (xi − xb)(yi − yb)Dxf(vb)Dyf(vb) +O(h3),

for i = 1, 2, . . . , 5. Then replacing each f(vi) in equation (4.2), we can get
the following equations:

1 0 0 0 0 0

1 x1 − xb y1 − yb
(x1−xb)

2

2
(y1−yb)

2

2
(x1 − xb)(y1 − yb)

1 x2 − xb y2 − yb
(x2−xb)

2

2
(y2−yb)

2

2
(x2 − xb)(y2 − yb)

1 x3 − xb y3 − yb
(x3−xb)

2

2
(y3−yb)

2

2
(x3 − xb)(y3 − yb)

1 x4 − xb y4 − yb
(x4−xb)

2

2
(y4−yb)

2

2
(x4 − xb)(y4 − yb)

1 x5 − xb y5 − yb
(x5−xb)

2

2
(y5−yb)

2

2
(x5 − xb)(y5 − yb)



T 
c1
c2
c3
c4
c5
c6

 =


0
1
0
0
0
0

 .

We will assume that the matrix above is invertible. In fact, there are usually
more than 5 points near to vb and we have many choices of the linear system
above. We should choose the coefficient matrix which has the smallest con-
dition number. Solving above matrix, we can have coefficients ci to get an
approximation of Dxf(vb). Similarly we can estimate Dyf(vb) in the same
way. We call this method Five Points method. It is easy to see the error
term in this method is O(h3).

Of course, we can increase the accuracy to O(h4) by constructing the
Nine Points method or O(h5) by the Fourteen Points method. The details
are omitted here.
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Here we list the maximum errors of estimating derivatives by different
methods on different triangulations in Figure 1 and 2.

f1 4 8 16 32
LSd2 method 2.05e− 001 5.11e− 002 1.28e− 002 3.21e− 003
LSd3 method 7.54e− 015 1.24e− 014 1.24e− 014 1.59e− 014
LSd4 method 1.86e− 014 2.30e− 014 1.08e− 014 2.48e− 014
Five points 1.25e− 001 3.13e− 002 7.84e− 003 2.02e− 003
Nine points 1.24e− 014 2.48e− 014 4.97e− 014 9.94e− 014
Fourteen points 2.48e− 014 3.37e− 014 9.23e− 014 1.70e− 013
f2 4 8 16 32
LSd2 method 1.4564 7.24e− 001 3.54e− 001 1.74e− 001
LSd3 method 5.35e− 001 1.72e− 001 4.68e− 002 1.21e− 002
LSd4 method 9.22e− 001 7.34e− 002 7.42e− 003 8.19e− 004
Five points 1.63e− 001 4.14e− 002 1.04e− 002 2.63e− 003
Nine points 5.99e− 002 7.74e− 003 9.74e− 004 1.21e− 004
Fourteen points 2.37e− 002 1.51e− 003 9.73e− 005 6.09e− 006
f3 4 8 16 32
LSd2 method 1.2907 1.8718 3.20e− 001 1.27e− 001
LSd3 method 4.5926 2.1971 4.62e− 001 5.69e− 002
LSd4 method 1.24e+ 001 1.1238 5.42e− 001 2.58e− 002
Five points 1.1808 1.1224 2.50e− 001 4.91e− 002
Nine points 3.3594 7.41e− 001 2.88e− 001 1.53e− 002
Fourteen points 5.0417 8.55e− 001 1.12e− 001 2.40e− 002
Table 3(a). Maximum errors of derivatives on uniform triangulation

From the Table 3(a), we can see that maximum error of the multiple
point approach is better than that of least squares approach on uniform
triangulation. So we recommend to use multiple point methods when dealing
with uniform triangulation. In addition, it is easy to see that five, nine and
fourteen points methods can reproduce derivatives of polynomials of degree
2, 3 and 4, respectively.
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f1 5 9 17 33
LSd2 method 2.05e− 001 5.29e− 002 3.02e− 002 3.41e− 003
LSd3 method 1.77e− 014 4.04e− 014 1.61e− 013 1.90e− 013
LSd4 method 3.46e− 014 9.90e− 014 3.48e− 013 2.23e− 013
Five points 1.93e− 001 1.10e− 001 1.40e− 001 9.75e− 002
Nine points 9.23e− 014 6.25e− 013 2.91e− 010 1.45e− 011
Fourteen points 1.20e− 013 1.36e− 012 4.14e− 012 8.64e− 012
f2 5 9 17 33
LSd2 method 1.5170 8.12e− 001 3.54e− 001 1.82e− 001
LSd3 method 5.59e− 001 2.11e− 001 4.75e− 002 1.31e− 002
LSd4 method 1.0029 8.95e− 002 7.31e− 003 8.86e− 004
Five points 2.41e− 001 1.29e− 001 2.03e− 002 5.69e− 002
Nine points 1.52e− 001 3.22e− 001 6.42e− 001 1.46e− 001
Fourteen points 1.3586 1.9773 1.71e− 002 2.12e− 003
f3 5 9 17 33
LSd2 method 1.6300 1.9581 3.32e− 001 1.22e− 001
LSd3 method 5.0691 2.6041 4.90e− 001 6.12e− 002
LSd4 method 1.30e+ 001 1.9237 3.61e− 001 4.54e− 002
Five points 1.3030 1.4635 2.52e− 001 1.0468
Nine points 1.28e+ 001 2.48e+ 001 1.68e+ 001 2.1297
Fourteen points 5.57e+ 001 2.73e+ 001 5.3694 3.1966
Table 3(b). Maximum errors of derivatives on arbitrary triangulation

Table 3(b) show that each method of multiple point approach does not
work well for arbitrary triangulations. So we recommend to use least squares
approach when dealing with arbitrary(non-uniform) triangulation.

Having these boundary derivative values, we can clamp down the spline
interpolation using E3 as in the previous section.

Example 4.2 We use the uniform triangulation in Figure 1, the arbitrary
triangulation in Figure 2, the same testing functions and spline spaces as in
Example 3.1 for each method. Table 4. lists the maximum errors of each
method together with Lagrange interpolation and clamped interpolation based
on energy functional E3.
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f1 \ N 4 8 16 32
Lagrange use E3 6.01e− 003 6.62e− 004 8.23e− 005 9.69e− 006
Five points 7.51e− 003 9.05e− 004 1.12e− 004 1.56e− 005
Nine points 5.95e− 004 6.12e− 005 7.56e− 006 9.80e− 007
Fourteen points 5.95e− 004 6.12e− 005 7.56e− 006 9.80e− 007
Clamped Interp. 5.95e− 004 6.12e− 005 7.56e− 006 9.80e− 007
f2 \ N 4 8 16 32
Lagrange use E3 4.02e− 003 2.41e− 003 5.91e− 005 6.47e− 006
Five points 7.71e− 003 1.12e− 003 1.44e− 004 1.46e− 005
Nine points 4.51e− 003 3.06e− 004 1.78e− 005 5.73e− 006
Fourteen points 1.81e− 003 1.14e− 004 1.12e− 005 5.61e− 006
Clamped Interp. 4.27e− 004 7.37e− 005 9.92e− 006 6.58e− 007
f3 \ N 4 8 16 32
Lagrange use E3 0.1592 0.0365 0.0012 1.11e− 004
Five points 1.12e− 001 3.92e− 002 3.22e− 003 3.02e− 004
Nine points 1.92e− 001 3.63e− 002 1.12e− 003 1.01e− 004
Fourteen points 3.26e− 001 3.10e− 002 1.41e− 003 1.11e− 004
Clamped Interp. 8.13e− 002 3.62e− 003 7.44e− 004 8.24e− 005

Table 4(a). Maximum errors for multiple point approach on unform triangulation

f1 \ N 5 9 17 33
Lagrange use E3 6.91e− 003 8.24e− 004 8.03e− 005 1.38e− 005
LSd2 method 1.09e− 002 1.41e− 003 1.67e− 004 2.15e− 005
LSd3 method 8.16e− 004 1.02e− 004 1.14e− 005 5.66e− 006
LSd4 method 8.16e− 004 1.02e− 004 1.14e− 005 5.66e− 006
Clamped Interp. 8.16e− 004 1.02e− 004 1.14e− 005 5.66e− 006
f2 \ N 5 9 17 33
Lagrange use E3 4.42e− 003 4.10e− 004 7.30e− 005 2.11e− 005
LSd2 method 6.76e− 002 1.69e− 002 4.11e− 003 9.93e− 004
LSd3 method 2.53e− 002 4.12e− 003 5.90e− 004 7.13e− 005
LSd4 method 4.45e− 002 1.81e− 003 9.16e− 005 1.89e− 005
Clamped Interp. 5.29e− 004 1.32e− 004 4.67e− 005 9.01e− 006
f3 \ N 5 9 17 33
Lagrange use E3 1.59e− 001 6.47e− 002 1.41e− 003 2.50e− 004
LSd2 method 1.21e− 001 4.32e− 002 4.51e− 003 7.41e− 004
LSd3 method 3.14e− 001 4.89e− 002 5.81e− 003 3.49e− 004
LSd4 method 7.13e− 001 3.14e− 002 4.61e− 003 2.05e− 004
Clamped Interp. 1.21e− 001 6.19e− 002 7.51e− 004 1.77e− 004

Table 4(b). Maximum errors for least squares approach on arbitrary triangulation

Discussion: From Table 4(a) and 4(b), we can see that 14 point method
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Figure 4: A given triangulation △ (left) and CT refinement (right)

and least squares LSd4 method are better than Lagrange interpolation on
uniform triangulation and arbitrary triangulation.

5 Boundary Clough-Tocher Scheme

In this section we study a generalization of the univariate not-a-knot cubic
spline interpolation (cf. [2]). Suppose V = {(xi, yi)}ni=1 is a set of data
locations and {zi, i = 1, · · · , n} are given real values. Given a triangulation
△ of the data locations (e.g., Fig 4 left), we first refine all the triangles in △
by Clough-Tocher refinement (see Fig 4 right) to get a new triangulation△CT

(see Fig 5 left). Let VCT be the collection of interior vertex in each triangles
and VBCT be the collection of interior vertex in each boundary triangles (see
Fig 5 right). Here we use the following special spline space

S2,3,4
7 (△CT ) := {s ∈ C2(△CT ) : s|T ∈ P3 ∀T ∈ △CT ,

and s ∈ C3(vCT ), ∀vCT ∈ VCT ,

and s ∈ C4(vBCT ) ∀vBCT ∈ VBCT}.

Then boundary CT scheme(BCT) is to find a spline s∗ ∈ S2,3,4
7 (△CT ) such

that

E3(s∗) = min{E3(s) : s(xi, yi) = zi, i = 1, . . . , n, s ∈ S2,3,4
7 (△CT )}.

Example 5.1 In this example we present numerical results based on a bound-
ary CT method over triangulations in Figures 1 and 2 and testing functions
as in Example 4.1. Table 5. lists the maximum errors of this method and
Lagrange interpolation method using E3 as we know from a previous section
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Figure 5: Triangulation △CT (left) and boundary triangles in △CT (right)

that E3 is better than E2. Table 6. lists the approximation order of this
method. Here we use S2

8(△) for Lagrange interpolation on triangulations of
data locations in Figures 1 and 2.

f1 \ N 4 8 16 32
BCT Scheme 6.01e− 003 6.43e− 004 4.93e− 005 4.96e− 006
Lagrange Int. with E3 6.01e− 003 6.62e− 004 8.23e− 005 9.69e− 006
f2 \ N 4 8 16 32
BCT Scheme 4.02e− 003 3.93e− 004 2.97e− 005 6.32e− 006
Lagrange Int. with E3 4.02e− 003 4.10e− 004 5.91e− 005 6.47e− 006
f3 \ N 4 8 16 32
BCT Scheme 1.59e− 001 3.62e− 002 2.37e− 004 7.37e− 005
Lagrange Int. with E3 8.13e− 002 3.62e− 002 7.44e− 004 8.24e− 005

Table 5(a). Maximum errors on triangulations in Figure 1

f1 \ N 5 9 17 33
BCT Scheme 5.21e− 003 3.15e− 004 5.56e− 005 1.15e− 005
Lagrange Int. with E3 6.91e− 003 8.24e− 004 8.03e− 005 1.38e− 005
f2 \ N 5 9 17 33
BCT Scheme 3.21e− 003 1.49e− 004 4.33e− 005 1.08e− 005
Lagrange Int. with E3 4.41e− 003 6.70e− 004 7.30e− 005 2.11e− 005
f3 \ N 5 9 17 33
BCT Scheme 3.80e− 001 5.47e− 002 1.31e− 003 1.56e− 004
Lagrange Int. with E3 1.59e− 001 6.47e− 002 1.41e− 003 2.50e− 004

Table 5(b). Maximum errors on triangulations in Figure 2
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Discussion: From Tables 5(a) and 5(b), we can see the maximum errors
of boundary CT scheme are slightly better than that of Lagrange interpolation
using E3. Thus we recommend the boundary CT scheme.

f1 9.33 13.04 9.94
f2 10.18 13.23 4.70
f3 4.40 15.27 3.22

Table 6(a). Approximation order on triangulations in Figure 1

f1 16.51 5.67 4.83
f2 21.48 3.44 4.01
f3 6.95 42.08 8.33

Table 6(b). Approximation order on triangulations in Figure 2

Discussion:From Table 6(a) and 6(b), we can see the approximation
order is higher than 4 which is what we expect.

Certainly, one can use other refinement method, e.g., the Powell-Sabin
refinements and even uniform refinement technique to replace the Clough-
Tocher method for constructing other interpolatory schemes with higher or-
der of approximation. We leave it to the interested readers.

6 Remark

We have some remarks in order.

Remark 6.1 According to the definition of E3, it requires the 3th derivatives
of bivariate spline. So it is necessary to use at least C2 spline functions and
only C1 splines are not enough. Let us present a table of maximum errors
to show that Lagrange interpolation using E3 based on spline space S1

5 on the
same triangulations as in Fig. 1. From the table, we can conclude that the
C1 quintic interpolatory splines do not converge at all. This shows that a C2

spline space using the energy functional E3 is necessary.

f \ N 4 8 16 32
f1 8.1745 3.8420 3.8144 55.7165
f2 0.3695 0.2639 0.0944 0.7254
f3 1.1835 0.3454 0.1937 2.8947

Remark 6.2 We list the approximation orders for various test functions
of each scheme on the triangulations in Fig. 1. The approximation orders
are computed by dividing maximum errors by the size of two consecutive
triangulations. We must point out that the approximation orders are different
from each other since the complexity of test functions are different.
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Lagrange using E2 4.02 4.04 4.20
Lagrange using E3 9.64 7.55 8.49
Hermite Interpolation 8.01 8.05 10.44

f1 Clamped Interpolation 9.72 8.09 7.71
BCT Scheme 9.33 13.04 9.93
Lagrange using E2 4.49 4.07 4.06
Lagrange using E3 1.66 40.06 9.13
Hermite Interpolation 8.69 8.53 11.56

f2 Clamped Interpolation 5.79 7.42 15.07
BCT Scheme 10.17 13.23 4.69
Lagrange using E2 1.85 12.21 7.28
Lagrange using E3 4.36 30.14 10.90
Hermite Interpolation 5.46 37.07 3.07

f3 Clamped Interpolation 2.24 48.65 9.02
BCT Scheme 4.40 152.74 3.21

Table 7: Approximation rates for various schemes

From the table 7, we can see that the approximation rates of Lagrange inter-
polation (using E2) are almost 4 = 22 which means the approximation order
is 2. Note that the approximation rates of Hermite and clamped interpolation
are almost 8 = 23 which confirmed our approximation theorem 3.6. And it is
easy to see the approximation rates of other schemes are bigger than 4 which
means each scheme has a higher order of approximation.

Remark 6.3 If a function is complicated, it will be hard to approximate. In
table 8, we list the maximum errors of sin(5π(x2 + y2)) using each scheme
on triangulation (a) (See Fig. 1).

sin(5π(x2 + y2)) \ N 4 8 16 32
Lagrange using E2 2.0883 2.3063 0.2309 0.0623
Lagrange using E3 2.0143 0.9771 0.0297 0.0073
Hermite Interpolation 1.8952 0.2505 0.0196 0.0038
Clamped Interpolation 2.1483 0.8078 0.0248 0.0051
BCT Scheme 2.1967 1.3477 0.2124 0.0461

Table 8: Maximum errors for various schemes

Remark 6.4 We could test the approximation order of interpolatory splines
using a higher order energy functional E4. Then it will require spline space
S3
11 and the dimension of the problems increases quickly. We are not able to

compute an interpolatory spline when refining triangulations 4 times.
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