Construction of Bivariate Compactly Supported
Biorthogonal Box Spline Wavelets with
Arbitrarily High Regularities

by

Wenjie He” and Ming-Jun Lai %

Abstract. We give a simple formula for the duals of the filters associated
with bivariate box spline functions. We show how to construct bivariate non-
separable compactly supported biorthogonal wavelets associated with box spline
functions which have arbitrarily high regularities.

1. Introduction

Let Bjm,n be the bivariate box spline function whose Fourier transform is

N 1 — i1 1 — eiw2 1— 6z(w1—|—w2)
Bim,n(w1, =\ — EEEr— —_ ] .
Lm (@1, @2) ( w1 ) < 1Wwa ) < (w1 + ws) )

(For properties of box spline functions, see [3] and [2]. For computation of these
bivariate box spline functions, see [4] and [13].) It is known that Bj,, . gener-
ates a multi-resolution approximation of Ly(R?) (cf. [14]). We are interested in
constructing a compactly supported function B’me generating a multi-resolution
approximation of L2(R2) which is a biorthogonal dual to By, in the following

sense:

// Bl,m,n(x —],’y — k)él,m,n(x _ j/7y _ k/)d:l’}dy = 6j,j’6k,k’ (11)
R?
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for all integers 7,k € Z, where ¢ is the standard Kronecker notation defined by
0;r =017 #kand §;; =11if j =k and Z is the collection of all integers.

In the univariate setting, for B-spline function B,,, biorthogonal dual function
B,, were constructed in [7]. Also, compactly supported biorthogonal wavelets as-
sociated with B,, were constructed there. Since bivariate box splines are a natural
generalization of B-spline functions, several attempts have been made to construct
these types of biorthogonal wavelets associated with box spline function Bjp, p.
See, e.g., [6], [15], [8] and [16]. So far compactly supported biorthogonal wavelets
associated with box spline By 1,1 have been constructed ([8]). The construction of
these wavelets associated with general Bj ., » has remained a challenge since then.

We are furthermore interested in constructing compactly supported biorthog-
onal wavelets v;,7 = 1,2,3 and L/;j,j = 1,2,3 and two families of FIR filters

{M;,j =0,1,2,3} and {J;,j = 0,1,2,3} with

(w1 wa) = Mi(e'F e FVByp o (2, 22) . j=1,2,3, 1.2
J J 1, 2 2

and . R o w
(wi,wa)=J; (7,5 ) Brmn (—, =), j=1,2,3, 1.3
7 J ERELS) 2 2

such that the dilations and translates of the ;’s and ;/;j’s form two dual Riesz bases
for Ly(R?) (cf. [7] for the univariate setting) and the two families form an exact
reconstruction of synthesis/analysis filter bank for image/data processing (see [21]
and [8].) R

In this paper, we shall give an explicit formula for Bl,m,n for any given positive
integers I,m, and n in §2 and a matrix extension scheme to construct M;’s and
J;’s which lead to compactly supported biorthogonal wavelets with arbitrarily high
regularities in §3. Finally, we shall give examples of these wavelets in §4. The
regularities of these biorthogonal wavelets are studied in §2. The estimate of the
regularities is based on an excellent theory developed in [10]. The proof of the
fact that these ¢;’s and v;’s generate two dual Riesz bases may be based on a
straightforward generalization of the arguments for the univariate setting in [7] or
based on the multivariate theory in [5]. We sincerely thank the pioneer researchers
for their theories which lay a solid foundation for biorthogonal wavelets. We thus
concentrate ourselves on the construction of concrete examples while omitting the
details of the generalization here. Our contribution in this paper is just the explicit

formula together with the matrix extension scheme.
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2. Construction of Compactly Supported Biorthogonal Dual Functions

2.1. Construction of a Biorthogonal Mask J, and Dual By,

Denote z; = €'t and 29 = ¢'“2. Let

[ m n
1+ 2 1+ 2 1+212
1\/_/0(21,22):< 5 1) ( 5 2) ( 21 2)

be a mask associated with the box spline function By, .. We look for a mask

Jo(z1,2z2) in the form

n—l n—m m—n
_ 1+ 2 1+ 2 1+2z12z
JO(ZI,ZQ):< 5 1) ( 5 2) (#) H(z1,22)D(z125) (2.1)

with n > [,n > m and odd integer m > n such that

Mo(z1,22)Jo(21,22) + Mo(—21,22)Jo(—21, 22)

(21, 2)Jc I (2.2)
+ Mo (21, —22)Jo(21, —22) + Mo(—21, —22)Jo(—21, —22) = 1.

Let us first recall a well-known fact that there exists a polynomial Py(y) of
degree < N such that

(1—y)VPn(y)+y"Pn(l—y)=1. (2.3)

An explicit formula for Py(y) was given in [9] which leads to the construction of

the well-known compactly supported orthonormal wavelets. That is,

Pn(y) = Nz_:l (N _kl * k) y*. (2.4)

k=0

We shall give another derivation of this polynomial Py which ultimately leads to
the formulation for H and D above. We have

Theorem 2.1. Let 7 > n and m = 2m + 1. Let Jo(z1,22) be defined in (2.1) with
H and D defined by

1 A1—k k
2n — 1 1+21 1+ 2 l—211—2

0

1
|

~
I

and

D(ei(w1+w2)) = e_i(w1+w2)NPﬁ+m (SiIl2 <WI —;wZ)) . (26)
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Then Jy is a dual of M, satistying (2.2).
Proof. We first note that

2N -1
. 2N — 1 L
12(1—y+y)2N1=Z< " >(1—y)2N1kyk

k=0
N—-1

N-1
. 2N —1 . IN—1—k k 2N -1 oL 2N—-1—4
_kﬂ< )ﬂ v) v+ (ano1o¢) -9y

£=0

k
=(1—yYVN_1<2A;_1>(1—yY“4_%ﬁ

We have thus obtained another formulation for Py in (2.4):
N-1
UED S G A (27)
k=0
By the uniqueness of the solution for equation (2.3) with deg(Pn) < N —1, we can
conclude that the two formulas (2.4) and (2.7) are equivalent. We need to use this
fact later. We then note that
1—|—2122_1—|—211—|—22 1—211—29
2 2 2 2 2
By letting H(z1,z22) be defined in (2.5), we have, similar to the new derivation of
Pn(y) above,

1—|—2122 Qﬁ_l_ 1—|—211—|—22+1—211—22 2n=1
2 S\ 2 2 2 2

O N B e S PP PPN
s k 2 2 2 2

1
|

0
n

N L 9m—1 T4z 142\ 1=z 1 =2\
\27 -1 2 2 2 2

£
1+2114+2 n 1—211—2\"
:( 2 ! 2 2) H(Z1,22)—|- < 2 ! 2) H(—Zl,—ZQ)

2

and similarly,

1—2122 271_1_ 1—211—|—22+1—|—211—22 2=l
2 B 2 2 2 2

1—2114+2 n 1+211—2 n
:( 5 ! D) 2) H(_21722)‘|’< ! 2) H(Zl,—Zz)

2 2



With the definition of Jy in (2.1), (2.2) may be simplified as follows:

47\40(21,22),]0(21,22) + _[-\40(—21, —ZQ)Jo(—Zl, —22)
+ 1\40(—21722),]0(—21, 22) + 1140(21, —ZQ)J()(Zl, —22)

1+2114+2 n 1—211—2 n
< 5 ! 5 2) H(Zl,ZZ)‘I—( 5 ! 5 2) H(—Zl,—ZQ)] X
1 m
(%) D(212)
1—2114+2 n 1+211—2 n
+ [( 5 ! 5 2) H(—Zl,22)+< 5 ! 5 2) H(Zl,—ZQ)] X

1 _ m
(T) D(—2122)
1 2n+m—1 1 i 2n+m—1
:(%) D(s122) + (T) D(—122).

Let m = 2m + 1 and N = 72 + m. Recall z; = ¢! and z5 = ¢'“2. Then the last

equation may be simplified further:

N
<C082 w1 ;—wZ) ei(w1+w2)ND(ei(w1+wQ))

wi +w N . .
Let y = sin® (%) and recognize that ¢(“1t@2)Np(eilertw:)y — py(y). We can
see that the above equation is just the left-hand side of (2.3). Therefore, we have
established the results of Theorem 2.1. N

We remark here that the filter Jo(z1,22) is a linear phase filter. It is known
that

o0

Bimnlwnw2) = [[ Mo (7,65 ) € Ly(R?). (2.8)
k=1

We now construct the dual functions Bl,m,n associated with box spline By, » by
letting

Blmnwl,wg HJO (e 3 e;"?>. (2.9)
We shall study the regularity of the dual functions Bl,m,n in the next subsection.

2.2. Fourier Based Techniques for the Smoothness of the Dual By, .
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To make Bl,m,n € Lo (RZ), we split Jy into jo and jo as follows and estimate their

infinite products:

- E— 14+ 212
Jo(ZhZz): <#

)ﬁl—n D(z127)

and

n—I n—m
= 1+=2 1+=
Jo(Zl,Zz): < 2 1) < 2 2) H(Zl,ZQ).

We first consider ,%(21,22). For H(z,z2), it is clear that

n—1 n—1—k k
2n — 1\ [14+21 14 2 l—211—2
2 <
|H(Zl’22)|—kz_o< k )‘ 2 2 ‘ 2 2
&2 Wi wp IR Wy wyk
= COS — COS — sin — sin —
— k 2 2 2 2
<~_1<2ﬁ—1> L wy\A—1—k L w1k 2
< Z 1 (cos —) (sm —) X
k=0
£ () (3
k cos” —= sin® —
k=0

(o) (%))’

where P is the polynomial defined in (2.7) which is equivalent to (2.4). Similarly,

we have

1
2

‘H (eﬂ“’l,eﬂ“”)‘ < (Pﬁ(sim2 wl)Pﬁ(SiHZ wQ))

= (P,:L (4s1n w—(l—smz —))P~ <4sm w2 (l—sm2 ﬂ>>>§
2 2 2 2

By applying the results developed in [10], i.e., in Lemmas 7.1.1 — 7.1.8, we have

C (1w |) (14 foop])) TTrmextbm)Fa los, £ ()

>0

—~ 4u.)1 ZUJ_2
H Jo (e 2k e 2"~‘>
k=1

—n+max(l,m lo¢n
< O ((1 4 [wr|)(1 + |wo])) ~PFmaxtmtaiogs
= C (1 + w1 ])(1 + |w)) (72 Ptmaxttm)

where v = 1223 < 2and 1—% > 0. Here, we have used the fact Py(3/4) <
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Next we consider jo(zl,ZQ). We note that |D(z122)| = Pn (sin2 %) and
apply the results in [10] again, i.e., Lemmas 7.1.1-7.1.8 to get

< C(1 4 |y + wy) "+ HIo8 Pr ()

< (1 |y + w2t (e

— C(l + |w1 + w2|)(u—2)7/r\z+uﬁ+n—1'

., m large enough such

Since v = 1223
that
(v—=2m+vin+n—-1<0,
and hence,
o)
H Jo (eiz_’i,ei;_’f> <C
k>1

for a positive constant C'. Therefore, we can choose i large enough that max(l, m)—
(1- %)ﬁ < —1/2 and then m large enough that (v —2)m +vn+n —1 < 0 such
that

< CO((1 4 wr|)(1 + |wp])) " m2itmaxtbm) ¢ 1, (R2),

[e%¢)

L ;L2
[Ln(e%.e'%)
k=1

By choosing 7 even larger, especially, for any a@ > 0, n > (max(l,m) + 1+ «a)/(1 —

w1 L2
2k ,€e ok

Finally, by a straightforward generalization of Lemma 6.2.2 in [10] in the bivariate

v/2), we can make

(14 Jwr DL + |w21)) e L'(R?).

setting, we can show that Bl,m,n is a compactly supported function. Summarizing
the discussions above, we have obtained the following

Theorem 2.2. Let n and m be large enough. Then B’me is a well-defined com-
pactly supported Ly function. Furthermore, for any a > 0, B m ., € C*(R?) if 1o
and m sufficiently large, e.g.,

2(max(l,m)+ 2+ «) s 2leog(?))/ log(2) +n—1

“log(3)/1og(2) 2 log(3)/log(2) |

2.3. Biorthogonality and Riesz Basis Property

We next show that B’me defined in (2.9) is a biorthogonal dual to By, , in the
sense of (1.1). We have
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Theorem 2.3. Let n and m be sufficiently large. Then E’me generates a multi-
resolution approximation of Lz(R2). Also, Bim,n 1s a biorthogonal dual of By p.

We shall use the results, more precisely, Theorem 3.3 developed in [5] to prove
Theorem 2.3 although there is a more general result available in the more current
literature (cf. [20]). By Lemma 3.2 in [5] which is a generalization of the univariate

result in [7], we first see that Bl,m,n 1s continuous and §l7m7n(0,0)§17m7n(0,0) =1
and then we need to show the following

Lemma 2.4. For any sufficiently large integers n and m,

> " 1B n((w1,w2) + 270 Bim n((w1,w2) + 270) > Cy > 0. (2.10)
(€2

Proof. Recall from (2.1) that

i-\lo (ezw17ezw2) JO <61w1761w2)‘

_ ‘ 1+ elw1 n ‘ 14+ plw2 n ‘1 + ei(w1+w2) m ‘H (eiwl’eiw2)| ‘D (eiw1—|—w2)>‘
2 2 2
> cosﬂ " cosw—2 " COSM ‘H<€iwla€iw2)‘
2 2 2

since ‘D (eiw1+“’2)‘ > 1 for any (wy,w2) € R%

Note that the sum on the left of the inequality (2.10) is a periodic func-
tiAon. We only need/\to show (2.10) for (wy,wz) € [—m, 7% It is easy to see that
|B’l7m’n(w1,w2)| = |B’l7m7n(—w1, —wsz)|. Thus, we only need to consider the inequal-
ity (2.10) for (w1,w2) € [—m, 7] x [0, 7].

Note also that

o 2n —1 Lowy . waNk w1 Wy \ 11—k
Z (— sin — sin —> (cos — COS —) .
k 2 2 2 2

k=0

iw1 iLUQ _
[H (e e)] =

For (wy,wz) € [—7,0] x [0,7], we have |H (e, e™?)| > |cos“L cos 2|1 and

hence,

(o) (o) ~ 1
T1 |7 (65, 65) | > T Jeos o= wr_ ("
2 2
€ ,6 = COS 2k—|—1 COS 2k—|—1
i WL gip @ |l
. S111 2 Sin B
T w1 wo
2 2
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by an elementary inequality sinx > %:z: for x € [0, ]. Therefore, for (wi,ws) €
[—m,0] x [0,7], we have

w1 + w2

T (%))

" (sin%)" sin 7(“’1;“’2) <2>2n_2
wa w1tws N
2 2 T
2

Therefore, the inequality (2.10) holds for (wy,ws) € [—7,0] x [0

For (wy,wq) € [0, 7] x [0, 7], we first note that |H(1, 1)| =1
continuous. There exists a § > 0 such that for (wy,ws) € [0, §]?,
On the other hand, we have

.

bl

and H (e, e'2) is
H(e o) 2 1

[H(e™ e2) = 1] > C(jwr] + Jw])

or

[H(e™,e™2)] 21— C|Jwr| + |wo]

)-
There exist an integer k¢ such that for C’ ‘zko | + ‘Qko ‘ < By another elemen-

1
2"
w1,

tary inequality: 1 —z > e¢72* for 0 <z < 1, we have for (wy,w;) € [0,6] x [0, 6],
0 W ko 0 W .
[T (= ) [ =TT o ()] TT Ja (50
k=1 k=1 k=ko+1
ko oo
1\™ jwi] + ||
2 5 H (1 -C ko+k

ol
[=)

_ o 1 (|wiltles]
e 2CZk=1 2k ( PL )

Y

I
N /N /™~ /N

g lenltles]
2ko

o

ol
o
|
—

v
9]

V
o

N N N NS
ol

N = N = N =

Here, we have assumed that ¢

B wa)Bumatenn)] 2 () (3) et >0
s

7+ Therefore,



10

for (wy,wsz) € [0,6] x [0, 6].

For (w1,wy) € [0, 7] X [6, 7], we consider a term

Bimon((@1,02) + (0, —27) Br.mn (w1, w2) + (0, —277)).

Note that 0< 2L < T 0720 (w2 =20 T g0 _pc@nfwnzim
2 2 2 2 2 2 2
We have
sin% n> g " sin “’2;2” < sing
=t —\n) -7 - F—g
and .
(sin%) < (sin(ﬁ/?))m
wi1tws—2m — :
GLter T T—204/2
Also, we have
Lwq Lwo—2m

[H(e'> e 2|

! 2n—1 . w1 . wp —2m k w1 wy — 2 poiok
— sin s sin s cos s Cos 21

k=0

{nghi

S w1 wo — 27
> |cos s coS s

for j > 1. Thus, for (wy,ws) € [0, 7] X [6, 7], we have

w9

B\ mn(wy,wy — 2m)

NPT L |
2> SlIl = sin 71 sin QT
— w1 wo —27
77 T 2 2

é
2
2a+m—1
sm =
> 0.

Similarly for the case (w1,w2) € [6, 7] x [0, 7]. Therefore, we conclude the proof of
Lemma 2.4. R

Lmn(wi,wy — 2%)‘

| V

The same arguments in the proof above can also show that
> " [Bimn((wi,w2) + 2702 > Oy (2.11)
LEZ?

It follows from Theorem 2.2 that

> " Bimn((wi,w2) + 2702 < O (2.12)
LeZ2
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Thus, letting

Vo = span{Bi,m,a(x — j,y — k), (j, k) € Z°},
the inequalities (2.11) and (2.12) imply that {ma’n(:z: — 5y — k), (5, k) € Z%} is
a Riesz basis for Vj. Letting Vi := {f(x/2F,y/2%) : Vf(z,y) € Vi } for k € Z, we
can show that [ J, Vi is dense in Ly(R?) and [, Vi = {0}. We leave the detail to
the interested reader. Thus, we conclude that él,m,n generates a multi-resolution
approximation of Ly(R?). These complete the proof of Theorem 2.3. W

3. Construction of Compactly Supported Biorthogonal Wavelets
Let us start with the image/data analysis and synthesis filter bank in Fig. 1.

S o(k

MO(WHl {yo(k)} . L TS o (w)—

N

S Y1 jo

{s(k)} g {5(k)}

3

5 {pa(k)} | &
\b(w#»l {y2(k)} & TS T (w)—

3

4

S s(k 8
o] W) 4| ] Lo

Fig. 1. A four band analysis/synthesis filter bank.
2 0
0 2

Ji, J2, J3} are two families of filters. In order to have § in Fig. 1 reconstructed

In Fig. 1, S = [ denotes a sampling matrix and {My, My, My, M3} and {Jy,

exactly, these two families of filters must satisfy the following
1\40(21722) 1\41(21722) 1\42(21722) 1\43(21722)

1\40(—21722) 1\41(—21722) _Z\JQ(—Zl,ZQ) 1\43(—21722)

1\40(21,—22) 1\41(21,—22) 1\42(21,—22) 1\43(21,—22)

_.Z\[Q(—Zl,—ZQ) 1\41(—21,—22) 1\42(—21,—22) 1\43(—21,—22) (3 1)

Jo(Zl,ZQ) 1
Jl(Zl,ZQ) o 0
JQ(Zl,ZQ) - 0
_Jg(Zl,ZQ) 0
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(cf., e.g., [22], [21] and [8]). For convenience, let us denote by A(My, My, M, , M)
the coefficient matrix in (3.1).

If we have these two families of filters, we may define biorthogonal wavelets as in
(1.2) and (1.3). In order to have compactly supported wavelets we need M;, J;,j =
1,2,3 to be polynomials in (21, 22 ). Thus, the invertible matrix A(My, My, Mz, M3)
must have a monomial determinant, i.e., Cz] z¥.

To this end, we rewrite M;,j = 0, 1, 2,3 in its polyphase form (cf. [23])

Mj(z1,22) = fijo(25,25) + 21 fn (21, 23) + 22 fja (21, 25) + 2122 (2, 23).
Similarly we have

Mj(=21,22) = fio(21, 23) = 21 fin (o1, 23) + 22 fa (27, 73) — 22 fa (21, 23)
Mj(z1,—22) = fio(21,25) + 211 (21, 23) — za fia(27, 23) — 7122 fa(21, 23)
Mi(—z,—2) = fjo(zl,zg) — zlfﬂ(zf,zg) — ZQf]‘Q(Z%,Zg) + zlefjg(zf,zg).

We can easily check
A(J\fo, M, , 1\42, 1\43)

1 1 1 1 1 0 0 0 foo  fio fao  fao
|1 -1 1 —1]]0 z 0 O for fuir fa fa
11 -1 -1 0 0 = 0 for fiz fa2 fa2 |

1 -1 -1 1 0 0 0 =212 fos  fiz faz  fa3

where fj = fijr(2%,23)’s. Thus we have the following well-known fact (cf. [10, p.
318]).

Lemma 3.1. Given M, the existence of the matrix A(My, My, My, Ms) such that

its determinant is a monomial C’zl” 2v is equivalent to the existence of [fiklo<jk<s

whose determinant is a monomial.

It is clear from the expression of My(z1,22) associated with box spline By p, »
that Mo(z1,22), Mo(—21,22), Mo(21, —22), Mo(—2z1, —22) have no common zeros in
C?, where C denotes the usual complex space. It follows that foo, fo1, fo2, fo3 have
NO COMMON Zeros.

We further claim that for My(21, 22), the first three polyphase terms foo(z27, 23 ),

fo1(2%,22), fo2(27,22) have no common zero in (C)2.

(2%,2%2) € (C)? is a common zero of foo, fo1, foz- Then we have

Indeed, let us suppose

_:\40(21 5 22
1140(—21 , Z9

47\40(21, —ZQ

122f03(2172§)
= —Z1Z2f03(21 ) 23)
= —%1%2 fos (27, 23)

= 2122 f03(21,23)

(3.2)

e’ e e e

1\40(—21, —ZQ
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That is,

T+2\ (142" (1+256\" [(1-z\[1+2% 1_2122
2 2 2 N 2 2
. 1—|—§1 ! 1—22 " 1—2122 n_ 1—21 ! 1—22 1—|—le2
N 2 2 2 N 2 2

3.3)

~~

It is easy to see that none of the above four terms is zero. Thus it follows that
(T+20) (14 2)™ = (1= 2)' (1 = 2)™

and

(1 =21+ 2)™ =142 = 3)"
It follows that
(1 =GO+ 2™ = (1= (2))H1 = 59)*™

and
(142071 = (22)")™ = (1= 20)*(1 = (22)")™

That is, |1 4+ 25| = |1 — 23| and |1+ 21| = |1 — Z1|. Therefore, it follows z; = a7 and
Zy = bt with : = v/—1 and a, b being real numbers. Putting 2y = az and 2, = In
back into the four terms (3.3), we have

(57) (57) () = (57 (59) (%)
(5 (50 = () 05

By taking the absolute value of both sides, we get

or

|1 —ab| = |1+ abl.

Thus, it follows ab = 0. Then z; = 0 or 2, = 0 or both. If 2, = 0, we will get a
contradiction Z; = —1 after putting 2; = 0 into (3.3). Similar for 2, = 0 or both
z1 = 0 and 2, = 0. Therefore, we have verified the claim. Let us formulate the
claim as follows.
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Lemma 3.2. Write

1 "1 "1 2\
11‘4[0(21722):< ‘;Z1> < —I;Zz> ( -|—22122>

= foo(Zfazg) + 21f01(2f723) + szoz(Zfazg) + 2122f03(Z%aZ§)

in the polyphase form. Then foo, fo1, fo2 have no common zeros in (C)?2.

Lemma 3.3. Suppose that fo;,7 = 0,...,3 are polynomials in (z1,z2). Suppose
that foo, fo1, fo2 have no common zeros in (C)?. Then there exist fi j,j =0,1,2,3
and k = 1,2, 3 such that the matrix [fi jlo<k, j<s Is of determinant 1.

Proof. By the well-known Hilbert Nullstellensatz (cf. [11]), there exist polynomials
Do, P1, p2 such that pg foo + p1for + p2foz = 1. Then it is easy to check that

_foo 1 0 0
fo1 0 1 0
fo2 0 0 1
L fos  —po(1 — fos) —pi(1— fo3) —p2(1 — fo3)
r 1 0 0 0 foo 1 .0 0
B 0 1 0 0 y for 0 1 0
0 0 1 0 for 0 0 1
L—po(1 — fo3) —p1(1— fo3) —p2(1— fo3) 1 1 0 00

which is obviously of determinant —1. This completes the proof. W

By Lemma 3.2, for My, we can find 4\21, My, M such that A(M,, M, M,, J\Nfg)
has a determinant which is monomial C'z] 2§ for some j and k and a constant C' # 0.
By the definition of determinant of matrices,

Czl 2k = det(A(My, My, My, Ms))
= _Z\/I()(Zl 5 22)1‘10(21 5 22) —|— _2\40(—21 5 2’2)1‘10(—21, 2’2) (34:)
+ Moy (21, —22)Ag(21, —22) + Mo (=21, —22)Ag(—21, —22)

which has only the terms whose exponents of z; and z, are even, where Ay de-
notes the cofactor of My(z1,22). That is, j = 23, and k¥ = 2k’ and hence,
det(A(My, My, My, Ms)) = C’ijl,zgkl. Without loss of generality, we may sim-
ply assume

det(A(My, My, My, Ms)) = 1

by absorbing C’ij/zgk/ in one of M, M,, and M. Let us invert the matrix
(A(My, My, My, M3))T. From the definition of the inverse matrix, we know there
exists Jg, J1, J2, and J3 such that

(A(My, My, My, M3)T)™" = A(Jy, T, Ta, T3)
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or equivalently,
~ -1 ~ ~ ~
(4CJ0, 71,72, 75)) = (A(My, My, B, 05))

Since the determinant is 1, we know that, by Cramer’s rule, Mj is equal to the
cofactor of Jy in matrix A(Jg, J1,Jo, J3). In particular, we have

21(—21722) 22(—21722) 23(—21722)
_LF\/I()(Zl,ZQ) = det _Jl(Zl, —22) _JQ(Zl, —22) _J3(Zl, —22) . (35)
Jl(—Zl,—Zz) Jz(—Zl,—Zz) Js(—Zly—Zz)

Note that expanding according to the first column of A(jo,jl ,Jo2, J3) and by using
the definition of the inverse matrix, we have

1= det(A(jo,jl,jz,jgg)
= jO(Zl,ZQ).ZV[O(Zl’ZQ) —|— jo(—Zl, 22)1\40(—21722) —|— jo(Zl, —22)]\40(21, —22)
+ jo(—Zl, —22)1\40(—21, —22).

Replacing the first column of matrix A(Jy, J1,J2,J3) by a column [Jo(z1, 22),
Jo(—21,22), Jo(z1,—22), Jo(—21,—22)]T, we get a new matrix A(Jo,Jy, 2, J3)

whose determinant is

det(A(jo,jl,jz,jg)
:70(21, 22)1\40(21 s 22) + 70(—21, ZQ).Z\/I()(—Zl s 22) + 70(21, —22)1\40(21, —22)
+ 70(—217 —z9)Mo(—z1,—22)
=1

by (2.2). We compute the inverse of A(Jg, J1,J2,J3) and write
A(To, T1, T2, T3) ™" = A(qo, My, Mo, M3)".

By the definition of the inverse matrices, it is now easy to recognize that ¢y = M,
since (3.5). That is, we have

A(To, Tv, T2, T3) A(Mo, My, My, M) " =T
where I denotes the identity matrix of 4 x 4 or
A(My, My, My, M3)A(To, T1, T2, T3) =1

which implies (3.1). Therefore, we have obtained the following
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Theorem 3.4. Let My(z1,22) = (H;Zl)l (14;2)"1 (H';”Q)n and Jy given in The-

orem 2.1. Then there exist My, My, M3 and .Jy,.J,, Js such that the exact recon-
struction condition (3.1) holds.

By extending the arguments in [7] to the two dimensional setting or using a
result in [5] or [19], we can conclude the following. The details of the proof or

verifications are omitted here.

Theorem 3.5. Let b;, j = 1,2,3 and ¢, j = 1,2,3 be defined in (1.2) and (1.3)

using the M;’s and J;’s constructed above. Let

ik (600 (T,y) = 275 (27 — 04,27 y — £y)
Uik () (T y) =27 (27 e — 04,27Fy — 0y)

for (61762) € ZZ, ke Z, and y = 1,2,3. Then the ¢j7k7(£17£2)78 and 772;]‘7]67(41742)78
constitute two dual Riesz bases of Ly(R?).

4. Examples and Remarks

Let us explain the detail for constructing compactly supported biorthogonal box

spline wavelets. For a box spline function Bj , », we have

I m n
142 14 2z 1+ 2129
M, = .

We first compute M, My, M; such that A(MO,M,MZ,M?,) has a determinant
C’zf]zgk for a constant C' and some j and k. To this end, we express My in its

polyphase form:
My(21,22) = fol=1, 23) + 21 fi(21.23) + 22 fa(21, 23) + 2122 fa(21, 23)
and we find polynomials pg, p1, p2 such that
pofo+pifi+pafa=1
by Grobner’s basis method (cf. [1, pp. 53-56.]). Such pg,p1,p2 are not unique.

They are dependent on the ordering of monomial basis of bivariate polynomials.
For example, we have, for the case associated with the box spline function By j 1,

po =4,p1 = —4z7,ps = 4.
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For the case associated with the box spline B, 5 1, we have

po =24+ 16232,
p1 =10 — 423,
p2 = —6 — 3625.

For the case associated with By 5 », we have

po = 46 + 6027 + 222723

5 1524
P =5 =652 — 11 99,2,2
13 1522 6122 672222
Pz="5 21_ 22_ 212_112%23'

(In fact, we have implemented the Grobner basis method in MATHEMATICA and
we are able to produce pg, p1, p2 for any box spline function By, ». We have tested
our programs for all [,m,n <4.) With these pg, p1,p2, we first form

A(My, My, My, Ms)
11 1 1

1 0 0 0
/1 -1 1 -1 0 =1 0 0 ] y
1 1 -1 -1 0 0 =z 0
L1 -1 -1 1 0 0 0 z129
_f() 1 0 0
£ 0 1 0
£ 0 0 1
Lfs —po(1—f3) —pi(1—f3) —p2(l—fs)

Next we find the inverse of A(M, M, , 1\22, MP,)T:
A(jo, 71 s 72, 73) = (A(.Z\Io s 1\2/1, J\ZQ , J\Zg )T)_l .

For any desirable smoothness a@ > 0, we choose n and m as in §2 such that
Bl,mm € C*(R?*). For the n and m, we have J; as defined in (2.1) together
with (2.5) and (2.6). Replacing the first column of A(Jy, J1, 2, J3)T by a vector
[Jo(21,22), Jo(—z1,22), Jo(2z1, —22), Jo(—21, —22)]T, we finally compute

A(My, My, My, Ms) = (A(Jo, J1, T2, J3)T) 7",

Once we have M;’s and J;’s, we use (1.2) and (1.3) to obtain wavelets t;’s and
¢;’s. All the computations above for small I, m, n have been performed by MATH-
EMATICA. We include our MATHEMATICA program in the appendix.
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In the following, we list n and m such that Bl,m,n € C’a(RZ) for small values
(I,m,n). For these small values (I,m,n), we may improve the estimate of 7 and
m in Theorem 2.2 by using the results in [18]. Indeed, recall from Table 1 in [18],
we have, for Daubechies’ scaling function ¢, with "minimum phase”, the largest

exponent «(n) such that

/ (1+ |w|)a(n)|<2;n(w)|dw < o0

— 0

forn =3,---,9. That is,

3

4

5

6

7

8

9

a(n)

1.0831

1.6066

1.9424

2.1637

2.4348

2.7358

3.0432

~

For example, for By 1,1, we choose nn = 3 and write Jo(z1,22) = Jo(21,22)Jo(21, 22)
with

R 1+2 2 1+2 2 - 1+ 212 m—1
J0(21722)2< D) 1) ( 5 2) H(thz),e]o(Zl,Zz):(#) D(lez)-

Then we have

[Tt e s
R? 14
2 2

s 1—|—6“;_kl 1—|—el:_"~‘2 . 9, Wi . 9, W2
§/R2H< 5 )( 5 ) {Pg(sm (grri ) Pasin® ()

k=1

1/2
dwl dCUQ

<C /R2(1 + fwr (1 + |u)2|)|§33(w1)|$3(w2)|dw1dw2

<C [ @rlo @ Batenidor [ @+ oal) B

— 0 — 0

<0

To make H ‘jo(eiw1/2k76iw2/2k)‘ < C', we use Theorem 2.2 to choose m = 25 >
3v

k=1
°(
2—v

)) + 1 with v = log3/log2. Therefore, B17171 € C° Similarly, we can
find other n and m to make 317171 € C' or C? and so on. We summarize our

computation as follows:

Bl,m,n

l,m,n l,m,n

St
St
I

-1
St
I
\.©
S
I
-1
[

) e
N
u'_‘

S | S | e
S S
Il

S| O | W

RHIRUIRE
Il

Tt | DN
-J
3t
Il
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Remark 1. It is easy to see that the size of the two low-pass filters M, and Jy
are quite different. To balance these two filters, we may factor D into two square
roots and factor H into Hy and Hy with |Hy| = |H3|. The details will be discussed
in our forthcoming paper on the construction of two filters My and .J; which have
the same size.

Remark 2. It is also easy to see that the construction of biorthogonal wavelets in
the bivariate setting may be generalized to higher dimensional setting. For details,

the reader is referred to another forthcoming paper of ours.

Remark 3. In the above construction, we require that Jy have the same exponent
n for the terms (1 4 z1) and (1 + z2) in (2.1). It is interesting to find the explicit
formula for Jy in the form of

-1 m—m n—n
- 1+ 2 142 14212
J0(21722)=< 5 1) < 5 2) (721 2) L(z1,22)

for any integers [ and m with [ —1 > 0 and i — m > 0. In fact, we are able to

construct this polynomial L by using MATHEMATICA. However, a general explicit
formulation for L is still under investigation.

Acknowledgment. The authors wish to thank the referees for their suggestions
and comments and for providing with several references to make this paper more
readable. Also they thank one of the referees for pointing out the newly available
preprints [12] and [17] where the construction of biorthogonal box spline wavelets
have been treated in a different method using the fundamental refinable functions
computed in [16] and a generalization of the new formula (2.7) for Py was given in

12).
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Appendix

The following is a program in MATHEMATICA which produces the masks
My, My, M3 and Jy, Jq, Jo, Js for the given mask associated with box spline function
Bi11 0or By or By s and for a given smoothness.

(* This MATHEMATICA program computes dual filters associated with box

spline functions with three direction sets (1,1,1), (2,2,1), (2,2,2). *)

n=1; m=1; (* For (1,1,1), choose n=1 and m=1. For (2,2,1), choose n=2,m=1.

For (2,2,2), choose n=2 and m=2. Choose nt and mt large enough for a

smooth biorthogonal wavelets. If m=1, mt=m+ even integer.

If m=2, mt=m+odd integer since mt must be an odd integer. *)

nt=n+2;mt=m+10; mh=mt—1;

(* The mask associated with box spline is *)

Boxp_y J:=(14%)" n (1+y)" n (14+x y)° m/(2" (2 n+m));

(* Compute the polyphases of the mask. *)

f0[x_,y_]:=(Box[x,y|+Box[—x,y|+Box[x,—y]+Box[—x,—y] ) /4;
f1[x-,y-]:=(Box[x,y] —Box[—x,y]+Box[x,—y] —-Box[—x,—y]) /(4 x);
2[5y J=(Box .y} + Box| —.v] Box{x, ] Box[—x,—y])/(4 v):
£3[x.y ] =(Box .v]~Box|—x.v] Box(x, ]+ Box|—x,—y])/(4 x v):

(* Check if polyphases are right.*)
testl=Expand[Box[x,y]—(f0[x,y]+x fl[x,y]+y £2[x,y] +x v £3[x,y])];
(* Input the known polynomials p0, pl, p2. *)

I n==1 && m==1,

{ pO[x_y_]:=4;
pllx_yJi=—4x" 2;
p2[x_y|:=4; },

] n==2 && m==1,

{ pO[x_,y_]:=24416*y" 2;

plix_y_|:=10—4*y" 2;

p2[x.y]:=—6-36%y" 2; },

] n==2 && m==2,

pO[x_y_]:=46 + 60*x" 2 4 22%x" 2%y~ 2:

pl[x_y_]:=5/2 — 65*x" 2 — 15*x" 4/24 22*x" 2%y~ 2;

p2[x_y]:=13/2 —15%x" 2/2—61*y" 2/2—67*x" 2*y"~ 2/2—11*x" 2*y" 4; |]];
If[m > 2|jn > 2, Print[”Error: m and n must be less than 3.”]; Abort][ ;]
(* Check if Hilbert Nullstellensatz applies correctly. *)
test2=Expand[p0[x,y] {0[x,y]+pl[x,y] f1[x,y]+p2[x,y] £2[x,y]];

Al={{ f0[x,y].f1[x.y].£2[x,y].£3[x.y] },

{ 170707_p0[X7Y] (1_f3[X7Y])}7

{071707_p1[X7Y] (1_f3[X7Y])}7

{0.0.1,-p2iy] (1-3[e])} )
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A2={{1,0,0,0}, {0, 2,0,0},{0,0,y,0}, {0,0,0, 2y} };
A3={{1,1,1,1},{1,-1,1,~1},{1,1, -1, -1}, {1, —1,—1,1}};
AMT=A3 . A2 . Transpose[Al];

(* AMT is a desirable matrix extension from the mask. *)
AJT=Inverse[AMT];

(* Compute the dual mask. *)

Boxt[x_,y_]:=(14x)" nt (14+y)" nt (1+x y)" mt/(2" (nt+nt+mt));
H[x_,y-J:= Sum[ Binomial[2 nt—1k] ((14x) (14+y))" (nt—1-k)
(%) (1-¥))" &, { KO nt—1}]/4" (nt—1)

Nl=nt+mh/2;

Dau[z_]:=Sum[ Binomial[N1-1+k k]| z" k, {k,0,N1-1}];
DD[z]=2z" (=N1) Dau[l/2—z/4—1/(4 z)];

(* Check if box spline mask is dual to the mask we need. *)
See[x.,y-]=Boxt[x,y] H[x,y] DD[x y];
test3=Simplify[Expand[See[x,y]|+See[—x,y]+See[x,—y]|+See[—x,—y]]];
(* Now the dual mask JO is *)

nw=nt—n; mw=mt—m;

JO[xy_]:== (14x)" nw (14+y)" nw (1+x y)" mw/(2" (awHnw+mw))
H[x,y] DD[x y];

(* Absorb the determinant of AJT into J3. *)

DET=Det[AJT]; jt3=AJT[[4]]; jt4=DET" (—1) jt3;
JT=Append[Drop[AJT, {4,4}],jt4];

(* Replace jt1 by JO and its variants. *)
aa={J0[x,y],J0[—x,y],J0[x,—¥],JO[—x,~¥]};
JN=Prepend[Drop[JT,{1,1}],aal;

MN=Inverse[Transpose[JN]];

(* Check if the first row consists of box spline mask and its variants. *)

testd=Expand[MN][[1]]];

(* The four masks M0, M1, M2, M3 are given below. *)
MS=Factor[Expand[Transpose[MN][[1]]]];

(* The four masks JO, J1, J2, J3 are given below. *)
JS=Factor[Expand[Transpose[JN][[1]]]];

(* Check if MN and JN are inverse each other. *)
testb=Expand[Transpose[MN] . JNJ;



