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Abstract. We study the connection between minimizers of the dis-
crete and the continuous Rudin-Osher-Fatemi models. We use a central-
difference total variation term in the discrete ROF model and treat the
discrete input data as a projection of the continuous input data into the
discrete space. We employ a method developed in [13] with slight adap-
tion to the setting of the central-difference total variation ROF model.
We obtain an error bound between the discrete and the continuous min-
imizer in L? norm under the assumption that the continuous input data
are in Wh2.

1 Introduction

One of the most influential variational models for image denoising is the total
variation—based model proposed by Rudin, Osher and Fatemi(ROF) [I0]. This
model studies the following constrained minimization problem:

argm&n |u|Bv (1)

With/u:/g amd/|u—g|2:o2
7} 7} 2

where g is the input data, o is the standard deviation of the noise, 2 is the unit
square [0, 1]%, and |u|py is the total variation (TV) of u defined as follows. We
consider functions ¢ in the space of C! functions from 2 to R? with compact
support, i.e., [C(£2)]?. The variation of a function u € L'(£2) is then defined to
be

|u|By ::/ |Dul := sup / uV - ¢.
2 $€[CF(2)]?, |9|<1 point-wise J 2
For more details on functions of bounded variation, we refer the reader to [9].
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The existence and uniqueness of the minimizer of () have been studied by
Lions, Osher and Rudin [I1] and more completely by Acar and Vogel [1]. Cham-
bolle and Lions [4] proved that the constrained problem () is equivalent to the
following unconstrained problem:

) 1

arg min|ulgy + —/ lu — g|*. (2)
u 2A 0

They also proved more general results of existence and uniqueness of (). We

later call

Bw) = ulv + 55 [ lu— o )

the ROF energy functional.
On the computing side, the most commonly used discrete variational model
is based on the discrete energy

k—1 k—1
1
Br(u) = > Ni,j|(vu)i,j|+_2/\ > i (uig = gi5)?, (4)
i,j=0 1,5=0

where u is defined by a 2-dimensional matrix of size k x k, p; ; is related to the
scale k. A simple choice of p; ; is p; j = 1/k?. There are several possible choices
for the discrete gradient operator Vu [3], [5], and [13]. A common choice is

(Vu)ij = ((Vau)i g, (Vyu)ij),
with

Uiyt — Uij Uijy1 — Ui
(Vyu)ij = hnta T MY A (Vyu)ij = gl Ted
h h
where h = 1/k. On the boundary, u is assumed to satisfy the discrete Neumann
boundary conditions:

U—1,j = Uojs Ukj = Uk—1,;, (5)

Uj,—1 = Uj0, Uik = Ujk—1- (6)

The discrete function g; ; is the input image. Many efficient algorithms have
been developed to find the numerical minimizer of (@) [6], [2], [3].

It is not hard to show that Ej I'-converges to E (for the definition of I'-
convergence, we refer the reader to [7]), therefore, the sequence {u*}, minimizers
of Ej, converges to u, the minimizer of F, in L'(£2) and Ej(u*) converges to
E(u) as k tends to oo (cf. [1]).

It is interesting to know the rate of convergence and the convergence in other
norm, e.g., in L? norm. It is also interesting see the difference between the
continuous minimizer and the discrete minimizer. The authors in [I3] proved
that if the discrete energy Ej is equipped with a symmetrical discrete total
variation as defined in (7) and the discrete input data g* is the projection of the
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continuous input data g by taking average of g on each pixel, one can bound the
error between the discrete minimizer «* and the continuous u in L? norm by the
Lipschitz norm of g provided that g is in some Lipschitz space.

k—1 k E O\ 2 uk
h2 ul o —ul —uk
k _ i+1,7 i, ,J+1 i,J
iy = 32 B [ (Mgt ) o (et
1,7=0
k 1 k
( i+ ,J 1, ) + (
k
(“m‘ Ui La) (
uk —uk u —u
i,J i—1,j i,j i,j—1
vy el IV Y bl 7
( h + h } (7)

In this paper, we extend the study in [I3], [12] to the discrete ROF model
equipped with a central-difference TV term which is much simpler than the
symmetrical discrete TV term. The ideas for the study in this paper is exactly
the same to the ones in [I3]. However, a problem of the central-difference model is
that it does not deal well with some non-smooth data, for example, a chessboard
image. Thus we have to adapt the study in [13] slightly to this situation and put
a stronger assumption on the input data g in order to establish the convergence.
We can still get a similar error bound if the input data g € W2, More precisely,
our main results are

,J+1

)
)

Theorem 1. If g € W12, vy is the minimizer of F in (@) and u* is the minimizer
of Ey in (@) equipped with the central-difference TV operator, we will give the
definition in (I0]), then

|E(u) — Ex(uf)] < C(1+ 1)(||9Hw12 +lgllFr.2)n .
and

Theorem 2. If g € W12 v is the minimizer of the functional F in @) and u*
is the minimizer of the functional E) in (I0), then

1Znu = ul®> < CO A+ 1) (llgllwez + lgllf2)h' 2.
where Ij,u” is the piecewise constant injection of u* into L? space. The definition

of Iu® will be given in ([d]) in the next secion.

2 Preliminaries

A continuous image u is defined as a L? function on £2 C R2. In practice, we
always assume 2 to be the unit square [0,1] x [0, 1].
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We assume the output of denoised image to be in the space of bounded vari-
ation. In the discrete settings, we consider the discrete set 2% to be the set of
all pairs i = (i1,42) € Z? with 0 < 41,42 < k. A discrete image uF is defined as a
function on 2*. We always use superscripts to indicate a function is a discrete
function through this paper. For discrete functions, we define the discrete ¢7(§2%)
norms

P
HukHep(Qk) = Z [uF [P s for1<p<oo
i€k
where p; is the measure of the discrete space at each index i. The simplest choice
of p; is
pi=1 forie Q.

In analogue of Sobolev norm, we define the discrete Sobolev norm as follows.

The first order forward finite differences of u* at point i = (i1, i) are

k ok k Lk
Atk — Uiy 1,0 — Uiy iy Atk — Uit in+1 — Wiy ig
p Wi = T y W =

where h = 1/k is the step size. We can also define backward finite difference as

k k k k
A;uf _ W51 ig *huilq,zg; A;uf _ W51 ig *huil,uq.
One can define the second order finite difference as
Arulf — Asuk
Azzuf — x 1 h x 1 .
Also A,yu¥ can be similarly defined.
We define ”vukHEl» ”Amuknlla HAyyuk”ll as
IVuF (g == (AT uf| + | A uf s (8)
i
HAmuk”ll = Z |Amu§|/‘ia ”Ayyuka1 = Z |Ayyu§|ﬂi~ (9)
i i

In this paper, we shall study the error bound for the central-difference discrete
ROF model of which the energy functional is defined as follows

1
Ee(u®) = Je(u") + ﬁHuk — "2 (10)

where the BV term J. is defined by

o) == 37\l Asub2 + [Acub | (11)

1€k
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and ASuf and Aful at i := (i1,iz) are defined by

k
Us in—1

k ok k .
ek Yiit1a T Wii—1 ek _ Yirdorl
Afugi = . Aju =
2h 2h

Here u* satisfies the discrete Neumann boundary condition:

k _ .k k _ .k
U_y5 = Urg Ugy1,y = Uk—1,5

ko _ .k k _ .k
Ui 3 = U1y Ui pp1 = Ujp—1-

The discrete space measure p; = |£2;] where §2; is the intersection of {2 and
the square with center ¢h and size h.

. h . h . h . h
Qi = Qﬂ[llhfg,llh‘i’ 5] X [Zghfg,lgh‘i’ 5] (12)

It is straightforward to calculate

h2/4  (i1,i2) € {(0,0),(0,k), (k,0), (k,k)}
i =< h?/2 i1 =0,k0<iy<korip=0,k0<i <k (13)
h? 0 < i1,i0 <k

The ¢2 term is defined by
k
||Uk - ngg = Z |uf] - 9§j|2ﬂi,j-
i,j=0

We often need to extend u € LP(£2) and u* € (P(£2%) to all of R? and Z2,
respectively; we denote the extensions by Extu and Exty u®. For u € LP(2), we
use the following procedure. First,

Extu(z) =u(z), =z € Q.
We then reflect horizontally across the line z; = 1,
Extu(zy, z2) = Extu(2 —21,22), 1<z <2, 0<2y <1,
and reflect again vertically across the line x5 = 1,
Extu(zy, z0) = Extu(z1,2 —22), 0<z1 <2, 1< 29 <2,

Having defined Ext u on 2(2, we then extend Ext u periodically with period (2, 2)
on all of R2.

We use a similar construction for discrete functions u*. First we extend u* to
20 .= {i = (i1,12) € Z* | 0 < i1, ip < 2k}

as follows:

Extyuf =uf, e Q¥

7
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then we reflect horizontally

Extg ufy, ;) = Exteufy, s, 4,y k+1<i1 <2k 0<ip <k,

(i1,32)

and then vertically
Exty, u](“il,iz) = Exty ufil)2k7i2), 0<iy <2k, k+1<1iy <2k

Now that Ext,u* is defined on 202*, we extend it periodically with period
(2k,2k) to all of Z2. Note that with this definition, the value of Extju* at
any point immediately “outside” £2* is the same as the value of u* at the closest
point “inside” £2*.
We sometimes need to inject or project functions into L?(§2) or discrete space
02 (£2%) respectively. We use the piecewise constant injector to inject discrete
function u* into LP(§2):
(Iyu*)(x) = uk

3

for z € £2;. (14)

We also define an injector Lj into a space of continuous, piecewise linear func-
tions. In fact, Ly, is the linear interpolation of discrete points {u¥} on a triangu-
lation of vertices hZ2.

Lyu® =) ubel. (15)
€02k

Here ¢¥ is a dilated and translated tent function,

o () == ¢}, (w1, 32) == p(a1/h — i1, 22 /h — i2), (16)

where ¢ is the tent function which is continuous on R?, supported in the hexagon
shown in Fig. 1, linear on each triangle as shown in Fig. 1, and satisfies the
following

[0 (i1,ia) € Z2\(0,0)
o(i1,12) = {1 (il,iz) = (0,0)

We also consider the piecewise constant projector of u € L(£2) onto the space
of discrete functions, defined by

1
(Pku)’t = —/ u, 1€ 'ka
142 J o,

where |£2;| = p; is the measure of (2; defined in (I2]).

We need both continuous and discrete smoothing operators, which we define
as follows. Assume that n(z) is a a fixed non-negative, rotationally symmetric,
mollifier with support in the unit disk that is C*° and has integral 1. For ¢ > 0
we define the scaled function

Ne(x) := —277(§>, r € R?%;



520 M.-J. Lai, B. Lucier, and J. Wang

(-1,1) ©0,1)

(1,0)

(=1,0) (0.0)

(0,-1) (1,-1)

Fig. 1. The Support of ¢

we smooth a function u € LP(£2), 1 < p < oo, by computing

(e * Extu)(z) = /R2 Ne(z —y) Extu(y)dy, « € 282.

The discrete smoothing operator Sy, is defined by

L
1
ky. _ k . k
(SLU )i = mj jg Lui+(jl’j2) forie 2
1,J2=—

For u € LP(§2) we define the (first-order) LP({2) modulus of smoothness by

P
w(u,t)ry = sup (/ |u(z + 1) — u(z)P dw)
T, x+TESN

TER?, |T|<t
We also define

wExtu,t)roe) = sup || Extu(-+7) — Extul pr20)-
TER?, |T|<t

We also have need of a discrete modulus of smoothness. To begin, we define
the translation operator

(Te(u®)); :==uf,, forany € = ({1,0,) € Z2. (17)

We define the norm |¢| = |¢1] + |¢2| on Z?, and then the discrete ? modulus of
smoothness is

w(f, m)p = sup < Z [uf, o — uf|P Hi)

2
LEZ?, 1I<m \; i1 pe ok

=

For Ext;, u* we define similarly

wu,m)paory = sup || Teu® — uF|pagr).
ez, [L|<m
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3 Basic Properties

We begin with the following properties.

Lemma 1. (Contraction) Let u, v be the minimizers for input data f and g in
problem ([(3) respectively,

lu—wvllz2 <|If —gll2-
See a proof in [I3] or [I2]. With the above property, one can have the following

Lemma 2. (Continuity of translation) Assume u is the minimizer of E in prob-
lem (@) for input data g. Extend u to Ext u over R? by symmetric extension as

defined before. Then
| Bzt w(z + h) — Ext u(z)|[2(0) < w(g, [h])L2(0)-
Remark 1. One can conclude from Lemma 2 that

w(u, |h|) 20y < w(g,|h])r2(0)- (18)

Remark 2. Similar techniques allow one to show that this result also holds for
the discrete case of ©* and g* where «* is the minimizer of the discrete energy
E) with the symmetric discrete TV operator .J,, and u” is extended on Z? as
before. In fact, the corresponding discrete version is.

[ Te(uk) — u|lezcay < Cw(g, 1€])e2a), (19)

where A is the index set {i := (i1,42) : 0 < i1,i2 < k}. For any discrete image
v¥, the discrete modulus of continuity is

w1<’l}k,m)g2(A) = sup HTg(vk) — vk||42(A (20)

nymg)
0<e|< v

with T, being the translation operator defined in (I7) and
Anyne = 4(07) 2 (,7) € A, (i 4+ n1, j +n2) € Af

Lemma 3. (Maximum principle)
Suppose u¥ is the minimizer of Ey. If g& € L>. Then

”uk”oo < Hngoo-

The following lemmas bound the errors introduced by injectors and projectors
defined before respectively.

Lemma 4. Let u € L*(2) and u* € (2(02%). Then there exists a constant C
such that the following properties hold:

a)

[Prullez < llull 2
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b)

w(Pru,m)pz < Cw(u,mh)p2.
[u*llez = [ Inu"| 2

w(Ipu®, mh) e < Cw(®,m)pe.

e)

lu — InPrul| 2 < Cw(u, h)pe.

The following lemma bounds the difference between the two injectors we defined
in ([d) and (I3)).

Lemma 5
| Lypu® — Lou®|| 2 < Cw(u®, 1),

The following lemmas show the properties of the smoothing operators

Lemma 6
1S2ut — u¥ e < w(ub, D)pe, (21)
JC(SLuk) < JC(Uk)v (22)
and
C
[ Az St + | AyySpu®|le < EHVu’“Hp. (23)

The first inequality in Lemma [6shows the error between u* and smoothed u* can
be bounded by its discrete modulus of continuity. The second inequality shows
smoothing does not increase the discrete total variation. The last inequality
shows the the second order difference of the smoothed function can be bounded
by its first order finite difference.

Lemma [7 is the continuous case of Lemma

Lemma 7

176 *w —u||pz < w(u,€)pe, (24)

[ne * ulpv < |ulBv, (25)

and

€ € C
[ Daaus||zr + HDyyu < :|U|BV- (26)
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4 Proof of the Main Result

4.1 Main Idea

Recall the ROF continuous and discrete energy functionals are defined by
1
E(v) = |v|v + 5xllv — gl1% (27)
2\
1
Br(v%) = Ju(o") + o5 loF = g2 (25)

with input image g* = Pyg.

To study the difference between Ej(u*) and E(u), it should first be noticed
that Ey and E are two different functionals defined on different spaces. E is
defined on the continuous BV({2) space while FJ, is a discrete operator defined on
discrete function space. Therefore, some connection between these two operators
should be built. We use two energy bounds to bridge them.

First, given a discrete minimizer u* of functional Ej, we inject u* into L2
space by function LjSru* with E(L,Spu*) less than Ej(u¥) plus some error.
The construction of Lj, Sy u* is done by first “smoothing” u* as Spu”, then linear-
interpolating Spu*. Assuming u is the minimizer of E, we have

E(u) < B(LpSpu®) < Ex(uf) + ey, (29)

where egj is the error to be bounded in the next section, which depends on
initial g and mesh size h, and tends to zero as h tends to zero.

The second energy bound is similar but taken in the opposite direction. Based
on u, we construct a “smoothed" discrete function Pj7. * u by first “smoothing"
it, then projecting it into discrete function space, with Ej(Pgne * u) less than
E(u) plus an error term e ;, similar to ey . By the definition of u®, we have

Ey(u"*) < Ex(Pene xu) < E(u) + € . (30)

From (29) we see
E(u) — E(u*) < egn;

from (30

then we conclude that
|Ex(uf) — E(u)| < max{eg n, e;,h} )

This will complete our error bound.

4.2 Sketch of the Proof

Proposition 1. If g € W2, and u*, u are the minimizers of Ex, E in (28),
(27) respectively, then

1
E(u) < Ep(u*) + C(1+ 3 lgllwrz + g1l =)',
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Proof. We shall bound the energy E(Lj,Sru”). It is straightforward to calculate
its TV term (albeit, the computation is tedious) that

|LhSLuk|BV < JC(SLUk) +Ch (HArrsLukHél + ||AnyLukHél) .
By the property of discrete smoothing operator ([22) and (23) in Lemma [G]
C
|LhSLUk|BV S Jc(uk) + ZHVuka
By Holder’s inequality and Lemma 2, ||Vu*||,: is bounded by

IVaF e =3 (AT uf| + 147 uf))

%

1/2 1/2
<c {ZlAiqu%} +{zmgum}
<9 T k_ Kk T k_ .k
=7 (Il 0w —u || +[|Toyu” —u )

c &
< Zulh e by @D
< Cllgllw.2

We have
k k c
|LhSLu |BV < JC(U )+ ZHgHWLz.
The L? term of E (LhSLuk) can be written as
HLhSL’U,k — g”Lz = ||(LhSLuk — IhSLuk) =+ (IhSLuk — Ihuk)
+ (Inu® = Ing®) + (Ing" — 9)ll.>
< lu® = g*[le + C(LR)[|gllw.»

Applying properties of injectors and projectors, Lemma [ and Lemma [B] and
noting the assumption Lh < 1 and the fact that

¥ = g"lle < lg"lle < llgll,

we obtain
[LrSpu® — gl72 < uf = "2+ C(Lh)||gll3.a-
Thus

1
E(LhSLuk) = |LhSLUk|BV+ ﬁHLhSLUk - gH%z

c 1 C
< Je(uh) + Zllglwrz + gyl = " 112+ S (L) gllis.2

c c
= Ex(u*) + Zlgllwr2 + - (Lh)llglls.e-
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Setting
L=h"'2

we obtain the result of this proposition.

Using similar method we prove the following

Proposition 2. If g € W2, and u, u* are the minimizers of E, Ey. in (Z73),
(28) respectively, then

1
Ep(u*) < E(u) + C(1 + 3 Ulgllw2 + lglf5y1.2)h /2.

Combining Propositions 1 and 2 immediately yields the following

Theorem 1. If g € W2, and u, u* are the minimizers of E, Ey in (27), (23)
respectively, then

1
|B(u) = Ex(u)] < C(L+ ) (llgllw2 + lgl[3yr.2)n"2.

Next we need the following lemma

Lemma 8. If u is the minimizer of E in (Z74), then for any v € BV,
lo = ul® < 2X(E(v) = E(u)). (31)
A proof of this Lemma can be found in [I3] or [I2]. It then follows

Theorem 2. If g € W2, and u, u* are the minimizers of E, Ey in (27), (23)
respectively, then

Hn® —ul® < CO A+ D (llgllwra + llgli2)nl2.

Remark 3. In this paper, we have proved the error bound for the discrete ROF
model equipped with a central-difference TV term using the method suggested
in [I3]. This model is simpler in form than the model studied in [I3], where a
symmetrical TV term is used. This model is also slightly easier to be computed
by Chambolle’s method (cf. [3]). However we notice that the central-difference
model fails to deal with a class of data, for example a chessboard image. Thus we
have to put some stronger assumption on the initial data(in W1?2)) to obtain the
error bound which may not be satisfied by all real images. However this result
still shows the method in [I3] can be extended to other symmetric discrete TV
operators. It is also interesting to study further if a similar error bound for this
model can be obtained without this assumption imposed.
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