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On Bivariate Super Vertex Splines

Charles K. Chui and Mingjun Lai

Abstract. A vertex spline basis of the super-spline subspace
§2 = S;.rﬂ(d—zr—n/zl(A)

of S;(A), where d =3r+2 and A is an arbitrary triangulation in R?, is construc-
ted, so that the full approximation order of d+1 can be achieved via an
approximation formula using this basis.

1. Introduction

Although the order of approximation of univariate (polynomial) spline functions
of degree d is always d +1, it is well known that the approximation order of
piecewise polynomial functions of total degree d in C'(R’) where s>1and r=1
may depend on both the degree d and the order of smoothness r. We denote the
space of such functions by S := S3(A) where A is the grid partition that separates
the polynomial pieces. For instance, while S always has approximation order
d +1, the approximation order of S}, even for a three-direction mesh A in R?,
is only 3 instead of 4 (see [dBH1]). In general, it is at least intuitively clear that
if the degree d is sufficiently larger than the smoothness order r, then the
approximation order should be d+1. Indeed, on a simplicial partition, a
parallelepiped partition, or some mixed partitions A in R’, this conclusion is true
provided d =2°r+1 (see [Z2], [M], and [CL2]). In particular, if A is an arbitrary
(regular) triangulation in R?, the full order of approximation of d + 1 is achieved
by S, for d =4r+1 (see [Z1]). Here, a triangulation is said to be regular if there
exists a unique interpolant from S} to any given data on the vertices of A, or,
equivalently, if none of the edges of A contains a vertex of A in its interior.
Throughout this paper, A will always denote a regular, but otherwise arbitrary,
triangulation in R%,

Recently, de Boor and Hollig [dBH2] proved that S already has approximation
order d + 1 provided that d = 3r+2. This important discovery not only improves
the old result of d =4r+ 1 but is also sharp in the sense that on the three-direction
mesh A the approximation order of Sj3,., is no longer 3r+2 as shown in [dBH2]
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for r=1,2,3 and in [J] in general. Our paper may be considered as a follow-up
of the important work of [dBH2] in the sense that the technique of *“‘disentangling
the rings” in [dBH2] will be one of the basic tools in constructing the “‘vertex
spline” basis of the “super-spline” subspace §7,:= §7+l(d-2-11/2] ¢ S, so that
the full order of approximation d +1 can be achieved via an approximation
formula using this vertex spline basis for d = 3r+2.

The notion of super splines in S’ was introduced in [CL2] and generalized
by Schumaker in [S2] as follows. Let r=1 and set

Si'={fe S5: D*f(v) exists for || =1 at every vertex v of A}.

If r> 1 then each fe S5 is called a super spline. For d 23r+2 and I=p(r, d),
where

p(r,dy=r+|(d-2r-1)/2],

we construct a basis of 5", consisting of functions with the smallest possible
supports. More precisely, the support of each basis function will contain at most
one vertex of A in its interior. Such a piecewise polynomial function is called a
vertex spline, a notion introduced in [CL1].

This paper is organized as follows: a collection\/preliminary lemmas is
provided in Section 2, vertex splines in the super-spline subspaces S, of S,
d=3r+2, are constructed in Section 3, and the main results of this paper are
proved in Section 4. We refer the reader to [CL4] for explicit formulations of
vertex splines in §§= S&” in terms of their Bézier nets and their representative
pictures.,

2. Preliminary Lemmas

In this section we list all the lemmas which are necessary for constructing our
super vertex splines and deriving the main results in the next two sections. Some
of these lemmas are known and will not be proved here. Throughout, Bézier
representation of the polynomial pieces of the vertex splines are used.

Let v, v,, v; be the vertices of a triangle 8. For any x € R?, we write

x=)\I(X)V1+A2(X)V2+A3(X)V3
with A,(x)+ A,(x)+A5(x) =1 for all x, where Ay, Az, Aj are linear polynomials

in x. The triple (A,, A,, A;) is called the barycentric coordinate of x with respect
to the triangle 8. Hence, for any multi-integer 8 € Z2 with [Bl:=B,+B,+B;,
(PB(AI ’ AZ’ AS) = ‘PB(/\l(x)’ /\Z(x)’ A3(x))
!
= B AP (BP0

is a polynomial of total degree |8] where B!:= B8,18,! 8, !. It is well known that
{¢s:|B|=n} forms a basis of =,, the space of polynomials of total degree at
most n in R%. That is, any polynomial P, in m, can be written uniquely as

Pn(x)=| IZ aB‘PB(’\],AlaAJ)
Bl=n
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which is called its Bézier representation with Bézier coefficients ag’s. The three-
dimensional set {((8,/n)x,+(B./n)x,+(Bs/n)x;, ag): |B| = n}, or brevity {agz},
. is called the Bézier net of P,. (See [F], [dB], and [C] for the properties of Bézier
representations and Bézier nets.)
Now let P, and Q, be two polynomials in 7, defined on two adjacent triangles
8, =(x,, X5, X3) and 8§, = (X,, X5, X4), and consider their Bézier representations

P.(x)= WZ_ agpg(Ay, Az, As3)

and

Q..(X)=m|§ bB‘PB(Vl, Vs, Vs),

where (A, A,, A3) and (»,, v,, ;) are the barycentric coordinates of x with respect
to 8, and §,, respectively (see Fig. 1 for n=15). Instead of showing the Bézier
nets in R’, it is sometimes more convenient to display their Bézier coefficients
on triangular arrays in R’ as in Fig. 1.

Let A%:= (A9, A9, A9) be the barycentric coordinates of x, with respect to 8, ;
that is, xs= A%, + A%, + A%, with A+A5+1%=1, and define f on 8,U 8, by
fls,= P, and f|5,= Q.. The following result on smoothness matching conditions
is well known. (See [F], [dB], or [C].)

Lemma 1. The polynomials P, and Q, are joined smoothly across the edge [x,, X;]
up to order r in the sense that fe C'(8,0 8,) if and only if the Bézier nets {ag}
and {bg} satisfy

(2.1) b(ﬁl.ﬂz.33)=| IZB Batipy.p2.09a(A°)
a|=p3

Jorall B=(B,, B,, B;) with 0=B;=<rand |B|=n.

X2
apso boso
a bou
041 bOJ:
2032 a4 brao b2s
by T~ bors X4
Q013 an
/ ay b2z boos
Qors - @230 bazo by1s
/ b::l b\ 4

X3 Qoos ans amn

baya /
az )
\ Ty04 a320 b320 b ba65
3
\azo: w3 b/ 0
302 5
P, ~ @302 a0 baro
s b
161
\n.nol L/
\ﬂsoo 00

X

Fig. 1




402 C. K. Chui and Mingjun Lai

A set M < Z? is said to be a lower set if a c M whenever e M and 0<a <§8.

Define the mappings A, i=1,2,3, of Z2 into Z3 by
A;’(BI7B2)=("—BI—ﬂ2r BlaBZ):
A;(B1,52)=(Bn n—pB,—B,,B,),

and .
A3(B,, B2) =(Bi, Bz, n =B1—B>).

Lemma 2. LetM,,={acZ}: a,<r, la|=n} and let M, M,= Z2 be lower sets
satisfying ATM, n AIM, = & and ATM,UAIM, = M, .. Then P, and Q, are joined
smoothly across the edge [x,, x,] up to order r in the sense that f ¢ C'(8,08,) if
and only if they satisfy the JSollowing interpolatory matching conditions:

(22)1 (Dys) (D, YQulx) = (A2Dy,, +A3D, . )(D,,_, VP, (x,)
Sor (i,j)e M, and ’
(22);  (Dyy ) (D1, Y Qu(x,) = (A2Dy _,+ A3Dy, ) (D, Y Py (x,)
Jor (i,j)e M,.

The proof of this lemma follows immediately from the fact that two univariate
polynomials of total degree (n ~ i) (i.e., the ith transversal derivatives of P, and
Q. along [x,, x,]) agree if they agree j,-fold at x, and j,-fold at x,, where
Jitja=n—i+1. (See [CL3].)

The following two lemmas are essentially the same as Lemmas 4.1 and 4.2 in
[dBH2]. They are presented a little differently here for our later applications.

Lemma 3. Assume x, ¢ [x,, X4]. Let {az} and {bs}, B=(B, Bz, B), be the Bézier
nets of P, and Q,, respectively. Assume that the values {ag, bs: B,=1} and
{ag, bg: B, =0 and 0=B;=n-21-2)} are given, for some 1< (n-2)/2, and that
the Bézier nets {ay, bg: |Bl=n} satisfy the smoothness conditions (2.1) of order
n=21-21If {ag: B,=1} and {bg: B,=1} also satisfy the smoothness conditions
(2.1) of order n -1, then, for any given {ag, bg: By=0and 0< By =1}, there exists
a unique set of coefficients {ag, bg: B,=0 and I+1=<B,=<21+1} such that {ag}
and {bg} satisfy the smoothness conditions (2.1) of order n.

Proof. By the assumption, we only need to prove that there exists a unique
solution {ag, bg: B, =0 and I=1 = B,=2I+1} such that the smoothness condi-
tions that only involve any of the values {ag, bs: B,=0,0=<8,=<1I+1} hold. By
Lemma 1, the smoothness conditions are

(2'3) b(i.O.n—i)=| |Z -a(,'_o_o)+alp,,(A0), i=0,...,21+1.

Thus, we have 2/+2 conditions and 21+ 2 unknowns {ag, bg: B,=0, 1+1 =B, =<
21+1}. The linear system (2.3) may be decomposed into two smaller linear
subsystems:

(2.4) b(i_O,n—i) = 3 aa+(i_o,0)¢a(/\o)a i=l+1,...,21+ 1,

lal=n-i
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and )
(2.5) bion-1)= > aa+(k,o.0)¢a(/\o), k=0,...,1

laj=n-

which may be rewritten as
(g n—k\ ovick;,oyn-i

(2.6) Z’ Agio,n—i) ik AN A =, k=0,...,1
i=l+1

where co, . . ., ¢; are certain constants involving the given a,’s and bg’s. The latter
linear system (2.6) has a unique solution {ag: B,=0,/+1=p, =21+1} because
the determinant of its coefficient matrix can be simplified to be

IR SR W
1! 2! (1+1)!
1 . 1
2! 3! 1+2)! . ,
Q@7 (+2) =n£=',(1+1—,)s
: _ : M @i+2-i)!
1 1 1
(D (1+2)! (21+1)!

Then substituting the values {ag: B,=0,/+1=<B,=2[+1} into the subsystem
(2.4), we have also uniquely determined {bs: B,=0,l+1=<g,=2/+ 1}. This
completes the proof of the lemma. n

Lemma 4. Assume X,€[Xs, Xs] and that the Bézier coefficients {az: B, =1} and
{bs: B, =1} are given and satisfy the smoothness conditions (2.1) up to order n —1.
Furthermore, assumethat {ag: B,=0and 0= By=<I}and {bg: B,=0and 0= B;= I}
are given and satisfy the smoothness conditions (2.1) of order I, where [ <n. Then,
for any {ag: B,=0 and 0= B,=<n~—1-1}, there exists a unique set of coefficients
{bg: B,=0 and 0= B, =n—1—1} such that {ag: |B| = n} and {bg: |B| = n} satisfy
the smoothness conditions (2.1) of order n.

Proof. This result is a simple consequence of Lemma 1. |

Remark. The solution set {ag, bg} in Lemma 3 actually depends on the geometry
of the triangles {x,, X2, X3} and (X, X,, X,). More precisely, each az or b, depends
on certain powers of (A%)™" and (A9)™" (cf. (2.6)). Thus, if the area [(x,, X3, Xa)|
of the triangle {(x,, X, X,) is very small so that AS is very close to zero, then the
magnitude of ag or bs would be very large. For this reason we need the notion
of “near-singularity.” An edge [x,,X,] is called a near-singular edge at x, if
(X2, X3, Xs)| >0 is near zero; e.g, 0<Aj«a, where a =max{A}, (A9} If
x5, X3, X4)] =0, then the edge [x;, x,] is called a singular edge at x,. An interior
vertex v is called a near-singular vertex if it is the point of intersection of four
near-singular or singular edges with at least three distinct slopes (see Fig. 3).
Also, an interior vertex v is said to be a singular vertex if it is the point of
intersection of four edges with only two distinct slopes (see Fig. 2).
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Fig. 2

Lemma5. Letvbea singular vertex. Assume that the Bézier coefficients {a,: B,=
1}, {bg: B> =1}, {ca: B:=1), and {ds: B2=1} on the four triangles that share the
common vertex v are given and satisfy the smoothness conditions of order n — 1 (see
Fig. 2); i.e., they are considered as the Bézier coefficients of a polynomial of degree
<n. Then, for any 0<Il=<n and any given a,, .., there exists a unique set of
coefficients b, _,,,,, Cio.n-n,andd,, 4, so that the nth order smoothness conditions
(2.1) involving these coefficients are satisfied,

Proof. By Lemma 1, for any given Q. 0.n-1y, the values bintony, Clo.n-1, and
din_io, are consecutively determined by (2.1). To show that din_10.) and Qo1
satisfy the smoothness condition, we may assume without loss of generality that
g, bg, cg, and dj, with 8, = 1, are zero and obtain

n—l|
b _ X3 -
(n—10) = | | A10.n-1y,

v—x,|
xe— v\’
Cu,o,n—l)=('v%x—, bin-10.),
2
'x ___v, n—1
“n—l,o./):('vl_xﬂ C1,0,n—1)
Hence, ’
d :<lx1—VI>""<IX4—VI>’<|x3—VI)""a
T vl vl )] G-
xi = v\’
z(lVI—T A(1,0,n-1)
completing the proof of the lemma. ]

Lemmas 1, 3, 4, and 5 are used for constructing our vertex splines. In the
following we establish three lemmas for studying “‘stability™ in the presence of
near-singular vertices.
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Lemma 6. Assume x> & [X3, X4] and that the values in
{aB, bB: BZ:O and 05335—""21"2}

are given, where 1=(n-2)/2, and ag=bg = 0 for B, =1. Furthermore, assume that
these Bézier coefficients satisfy the smoothness conditions (2.1) of order n—21-2.
Then if ag = bg =0 for B>= 0 and 0<p, <1, the Bézier coefficients ag and bg with
B,=0,1+t1=5= 2141, and |Bl=n, which are uniquely determined by the smooth-
ness conditions (2.1) up to order n, are bounded by a constant which depends only
on certain linear combinations of the powers of the ratios |(x,, X2, X))/ X1, X2, xa)|
and (X, X2, x )/ [(xy 5 X2, x3)|-

Proof. From the proof of Lemma 3, we know that
{ag, bg: B,=0 and J+1=B,=21+1}
satisfy the linear systems:

(2-8) b(i,o,n—i)':‘ IZ aB+(i.0‘0)‘p(l)39 .=l+1,---,21+1,
B =n—i

and

- 0 _
bion-i)= L Ap+ko0®p> k=0,....L
Bl =n—k

the latter of which, in view of the assumption on by, may be rewritten as
(n—k)!
0=buon-0= Y dprkom . ()\(:)B‘(Ag)ﬁz, k=0,...,1
1Bl=n—k B!
B2=0
or, equivalently,

! n—k I
(29) B§:=0 a(1+1+B3.0.n—I—I—B3)(n_1__1__B}> (A?)BS(A?&) 1-1-8,

n-20-2 n—k
=— X a(n—B;.O,ﬁ;)( )(A?)"-k_ﬂ’()‘g)ﬁﬂ k=0,...,1
B3=0 BJ

By using (2.7), we may now solve these linear equations for

0 oyn—l-1- _
au+1+3,,o_n-l-1—ﬁ,)()‘ )Ps(A3)" 178, B;=0,..., I,

n—-21— n— k n—l—1—i i
each of which is a linear combination of Z,.__cg' : a(,,_i‘o',»)( ] )(A?) =1=ix9)
!

where k=0, ..., 1. Note that the quantities (A" i=0,..., 1 —21—2, have
a common factor (A9)'*". Therefore, by canceling these factors, we conclude that
(1414850~ 1-1-B3) B;=0,..., 1, are bounded by a constant which only depends
on some powers of AS. Thus, from (2.8), we may also conclude that bion-i»
i=1+1,...,21+1,are bounded by a constant depending only on certain powers
of A% and (A3)™". This establishes the lemma.

We first consider the space §2 = §2°. Hence, in the presence of near-singular
vertices, we need to study n=4.
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Fig. 3

Lemma 7. Let v be a near-singular vertex and assume that I(Xy.15 ¥, X, 3 <
KXy.2, ¥, X, 4)|. Let {ag}, {bg}, {cs}, and {dg} be the Bézier nets of the four polynomial
pieces as shown in Fig. 3. Assume that {ag, bg, cz, dg: B, =1} are given and satisfy
the smoothness conditions of order 3. Furthermore, assume that bao.0 = Cop4 is
also given. Then, for any given choice of di ¢ 4,, d, 103), and 041, 0< k=<4, the
Bézier coefficients b 4_y,, Ckoa-k), and di;o 4, where 0<k=4 and 2=j=4,
are uniquely determined by the smoothness conditions up to order 2, and are bounded
by a constant which depends only on certain powers of

xviavsxvi+ xvi s Vs My i
(2.10) A= max { I( . , l), , ,( Lit1s Y5 Xy +2>I} )
1=i=4 va,H'l ) V, xv.i+2>| ,(xv,i s V, xv,i+l>|

Proof. Without loss of generality we may assume that ag =0forall |8/ =4. Then
we also have bg = ¢; = dg =0, B;=1. By using Lemma 1, ¢400)5 €301), and C2.0.2)
may be computed in terms of doo.4) and d;; 4, and

Ci2,0,2) = O(Adn,o,amn/,(xv,n Vs X))+ O(d(o,o,4)(’fll/|<xv_| » Y, xv,4>l)2)’

where

m= I(xv,l s Vs xv,])l'

Set

72= (X3, ¥, X4)].

Then we apply Lemma 3 to solve for bi04)and ¢ o3). By using the same method
as in the proof of Lemma 6, we conclude that b0y = €103 = O(n,/n,A%) =
O(A?). Thus, the lemma is established. -

We next consider the space $3, = S%’. In this situation we need to study the
case n=6.

Lemma 8. Let v be a near-singular vertex and assume that [(x,,,v, x,;)|<
KXv.2, v, X, 4)|. Let {ag}, {bs}, {cs}, and {d,} be the Bézier nets of the four polynomial
pieces on the four triangles sharing v (see Fig. 3). Assume that {as, bs, ¢z, dg: B, =1}

Or
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are given and satisfy the smoothness conditions of order 5. Furthermore, assume
that b 0.0) = C0.06)» Ds01)» and ¢, 5) are given and satisfy the smoothness conditions
of order 1. Then for any given dio )5 401055 di20.4), and auoe—r)> 0=k=6, the
Bézier coefficients d(;06-j)» bios—r)» and cyo6-k), Where 3=j=6 and 0=k=6,
which are uniquely determined by the smoothness conditions of order 3, are bounded
by a constant which depends only on certain powers of A as defined in (2.10).

The proof of this lemma follows the same lines of argument as that of
Lemma 7 and is omitted here.

The above eight lemmas provide the necessary machinery for constructing our
super vertex splines and studying “stability” in the presence of near-singular
vertices. To verify that the approximation order of the super-spline subspace
spanned by these vertex splines is indeed full for d =3r+2,weneedtwo additional
lemmas.

For N,cZ},i=1,2,3, we say that {N;: i=1,2, 3} induces a partition of

A,={BeZ%:|B|=n}
if the following conditions are satisfied:

(1) U, A'N,=A,, and
(2) AIN, AN, =D, i #].

Lemma 9. Assume that {N,cZ%:i=1,2,3} is a collection of lower sets that
induces a partition of A,. Then to any given data {fig: BEN}, i=1, 2,3, there
exists a unique polynomial P,€m, that satisfies the following interpolation
conditions:

(D":"‘l)Bl(D"}"‘|)BZP’I(X|) =.fl-(l31 B> (ﬁl ) ﬂZ) € Nl s
(Dx,~xz)Bl(DX3—xz)BZPn(x2) =f‘2,(ﬁ|.ﬂﬁ’ (Bl ’ BZ) € NZ,
and

(Dx,—x;)B‘(sz—-’q)BZPn(x}) =f£"_([3|.[3:) s (ﬁl E] ﬁl) € NS*

Since N, i =1,2,3, are lower sets, the interpolation data {f;: B € N} determine
the Bézier net of a polynomial P, € m, with indices in A7 N; uniquely. Hence,
since {N,: i=1,2,3} induces a partition of A,, it can be seen that P, satisfying
the above interpolation conditions exists and is unique. We refer the reader to
[CL3] for the more general results along this line. The following result is usually
attributed to Bramble and Hilbert [BH].

Lemma 10. Let F be a linear functional on C**'(G) that satisfies the following
two properties:

() |[F(NH=C }:7;0 h'|f|, where C is a constant independent of f and h and
Ifli=sup ¥ IDY(x),

xc G lal=1

and
(ii) F(p)=0 forall pe m.
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Then there exists a positive constant K independent of f and h such that
IF(O)= Kb\ flie.

3. Construction of Vertex Splines

In this section we outline a procedure for constructing a basis of $ consisting
of vertex splines. Each vertex spline will be specified by interpolatory parameters
at the corresponding vertex. In the following we introduce the notion of derivatives
relative to an edge and a triangle. In the construction of each polynomial piece
of a vertex spline, we subdivide the indices of the Bézier coefficients of this
polynomial into four parts as indicated by I, I1, III, and IV in Fig. 4. The Bézier
coefficients with indices in I are either zero or will be determined by the interpola-
tion parameters, those with indices in I will be determined by derivatives relative
to the triangle, those with indices in I1I by derivatives relative to the edges, and
those with indices in IV by using Lemmas 3 or 4. We first introduce the necessary
definitions and notations and then specify the interpolation parameters of these
vertex splines. We only discuss the special case where d = 3r+2, since it will be
clear that our construction procedure is also valid for 3r+2<d <4r+1. of
course, the construction of a vertex spline basis of S for d =4r+1 is much
easier and can even be carried out in the multivariate setting as already discussed
in [CL3].

Let us first divide the underlying index set {8 € Z3: || =3r+2} of the Bézier
net on a triangle 8 =(x,, x,,X;) into four parts (see Fig. 4 for r=5). In the
following we use the notation

I(ry=p(r,3r+2)=r+|r+i.
Xy ((-('\3/2
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Part 1 is the union of the collections A¥*IC,, i=1,2,3, where C\=
{(,myezi: 1+m=I(r}.

Part II is the union of the collections AYTC,, i=1,2,3, where C;=
{(Lm)eZ2: 1+m=I(r)+1and L m=r}.

Part 1II is the union of the collections AYC,, i=1,2,3, where C3=
{(r=2m,r+1+m)eZi:m=0,..., Lr/2]}

Part IV consists of the remaining Bézier coefficients on 8; i.e., the union of
the collection A 2C,u AY*?C,, i=1, 2, 3, where

c,=y"wd ((r+1,r=1),...,(r+1+i=1,r=i=(i=1))}

i=1
and C,={(I, m): (m,1)e C4}.
We then introduce the notion of derivatives relative to an edge or relative to
a triangle. For an edge e = [Xe1,Xe2] and @ triangle (X.1, Xe2, Xe,3) with e as one
of its edges, the derivatives relative to the edge e (corresponding to the triangle
(Xe,ts Xe2, Xe3)) ar€ defined by

D: = (D"e.)"‘c,l)al(D"e,:‘xe‘l)az’ a = (al 1 (12) € Zi,

where the derivatives are taken within the triangle. For a triangle 1= (Xiy Xjs Xic)s
the derivatives relative to the triangle t at x; are defined by

(lx(x,)::(ij—x,)a|(ka—x,)aza az(al,az)ézi,

where x; and x, are labeled according to the counterclockwise orientation of
{x;, x;, X} and the derivatives are taken within the triangle.

For a given arbitrary triangulation A, denote the collections of all vertices and
edges of A by ¥ and &, respectively. The vertices of A are denoted by V'=
{v,,...,vn}. For each e€ # with vertices v; and v;, we assign the direction of e
according to the order of increasing indices of v, and v;; i.e., e =[X.\, X.], where

xe,l = Vmin(i‘j) and Xe.z = vmax{i,j} .

If e ={x.,,X.] is an interior edge of A, let (X.1, X2, X.3) and (Xq1, Xe2; Xea)
be the two triangles of A with e as the common edge and label the vertices so
that X, Xe2, Xe3 and Xe 1, Xea, Xe2 ar€ both in the counterclockwise direction.
If e is a boundary edge, we denote by (Xe1s Xe2s Xed) the triangle of A with e as
one of its edges. The interpolation parameters will be specified at the vertex x.,
(for the corresponding vertex spline).

Let v be a vertex in ¥. We denote the triangles of A that share v as their
common vertex by T,;, i=1,..., I(v), where T,;=(v, Xyis Xyiv1)s i= 1,000, I(v),
and the vertices X, y. .- Xy yw+1 aI€ labeled in the counterclockwise direction
around v. Here, if v is an interior vertex, we set Xy i+t =Xy, 1. We call T,; a
one-sided singular triangle relative to the vertex v if either [v,x,;] or [v, Xyi+1)
(but not both of them) is a singular or near-singular edge at v, and a two-sided
singular triangle relative to v if both [v, x,,] and [v, X, i+1] are singular or near-
singular edges at v. If v is a near-singular vertex, we choose T,, such that
X1y Vs XM = X025 ¥, x,.4)| is satisfied. We relabel T, ;, i=1,...,1(v) to be 1:(v),
i=1,..., m(v), as follows:

(1) If v is a singular vertex, t,(v)=T,, and t,(v)=T,5. So m(v) = 2.

(2) If v is a near-singular vertex, 1, (v)=T,, and (v} = T, .. That is, m(v) =2.
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(3) If v is not a singular nor a near-singular vertex and one of the T..
I1=i=|(v),say T, ;, is a two-sided singular triangle relative to v, we denote
{T.,..., T ;- T, ,, T ji2,..., L} by {(v):i= 1,...,m(v)} where
m(v)=1I(v)-2. Note that if v is a boundary vertex, T,,,..,., T, ;- or
Lin,.... T, may not exist.

(4) Assume that none of the T..,i=1,...,1(v),is a two-sided singular triangle
relative to v and v is not a near-singular vertex. If T,; is a one-sided
singular triangle relative to v,s0is T,; ., or T,,_,. If T..and T,,,, share
a common singular edge, we denote {T,..., T, Tiz,..., T, i} by
{t(v):i=1,..., m(v)} where m(v) = I(v)—-1.

(5) If none of the T.;, i=1,...,1(v), is a one-sided or two-sided singular
triangle relative to v, we let =T, i=1,... ,m(v), where m(v) = I(v).

Let T={t(v):veV, i=1,...,m(v)}. Note that some of triangles in A are

accounted more than once in . Furthermore, set
{C3 if e is an interior edge,
Lt ifeisa boundary edge,

where
Ci={(Lm+n)ez?: m=I(r)+l—1,r+lslsr+l+[r/2j,05ns Lr/2]}.

Also, set

[ C, if t,(v) is neither a one-sided nor two-sided
singular triangle relative to v;
C,uC, if ,(v) is a one-sided singular triangle

relative to v;
C,uC,uC, ifvisa singular or near-singular vertex and
I, =4 ti(v) = T, or
if v is not a singular nor near-singular vertex-
but #,(v) is a two-sided singular triangle
relative to v;
C,u_C, if v is a singular vertex and f,(v) = T.,;
{ C, ifvisa near-singular vertex and L(v)=T,,.

In the following we outline the procedure for constructing the vertex splines
in §3,.,. In general, we consider three types of vertex splines of interest. They
are required to satisfy the following specifications of interpolation parameters:

(I) For any ve ¥ and Y€ Cy, let V] be a piecewise polynomial function

satisfying:

(L1) D"V,’(u)=8a',6v_u, aeC,, ue?;
(1.2) D Vil w(u) =0, acl,;, t(u)ed;
(1.3) D; V:'x’(x,_,_x,'z_x,.j)(xe.l) =0, acl, ecg,

(1.4) VIe C'(R?).
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Here and throughout, as usual, the symbol 8, , or 8,4 denotes the Kronecker delta.
(II) For t;(v)e J and for yel,;, let V], be a piecewise polynomial of total
degree 3r+2 satisfying the following interpolation and smoothness conditions:

(11.1) D*V7?,(w)=0, aeC,, ue?,

(11.2) D%y Vil (@) = 86 48, 0.1 ael,;, tued;
(113) DVl marmanXa) =0, a€ly, de;
(1L4) Ve C'(R).

(I11) Foree € and ye I, let V] be a piecewise polynomial function satisfying
the following interpolation and smoothness conditions:

(II1.1) D°VY(u)=0, aeC,, ue?;

(111.2) D V,ww=0, acl, twed;
(111.3) D5V masanXt) = Seddays  @€ly, de;
(111.4) Vie C'(R?Y).

The construction procedure of these vertex splines can be described as follows.
Let V be one of the above vertex splines corresponding to a vertex v and let
8 =(X,, X5, X;) be an arbitrary triangle in A.

(1) Determination of Bézier Nets with Indices in Part I

The Bézier coefficients of V|; indexed in A}"*>C, are simply zero when V is
required to satisfy D°V(x;)=0. When V is required to satisfy the inter-
polation conditions D*V(x,) = 8., we first convert the partial derivatives D* at
x, into derivatives relative to the triangle & at x;, and then use the values
Dg(xls)VzI,s(x,) to determine the Bézier coefficients of V|; with underlying indices
in A}"°C,.

(2) Determination of Bézier Nets with Indices in Part I1

Case 1. Assume that & is not one-sided singular nor two-sided singular at x;.
- Then we directly apply (1.2), (11.2), or (I11.2) to obtain the portion of the Bézier
net of V|, indexed in A}">C,.

Case 2. Assume that [x;, X, ] is singular or near-singular at x; but [x,, x;] is not,
where {x;, X;, X,} is a rearrangement of X,, X, X; in the counterclockwise orienta-
tion, or assume that x; is a singular or near-singular vertex such that 6 # T, .
We obtain the portion of the Bézier net of V|, with indices in A}*2C, by using
the smoothness conditions, Lemma 1, or Lemma 5 from the corresponding part
of the Bézier coefficients of V];, where &' is the neighboring triangle of & with
[x;, x,] as the common edge.

+ m—————— v e s <4
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Case 3. Assume that § is two-sided singular at x;, or x; is a singular vertex and
6=T, ,, or assume that x, is a near-singular vertex and & = T, ,. In this case,
we directly apply (1.2), (I1.2), or (I11.2) to obtain the portion of the Bézier net
of V[s with indices in A}*2C,.

(3) Determination of Bézier Nets with Indices in Part 11T and IV

Case 1. Assume that [xi,x;] is a boundary edge. Then the Bézier coefficients
of V|, with indices in the one-third portion of parts 111 and IV closest to [x;, x;]
(as shown in Fig. S for the case r=5 and d = 17 and edge [x,, x;] on the triangle
(X1, X2, X;3)) are obtained by applying the specifications in (1.3) or (I1.3) or (I11.3).

Case 2. Assume that the edge [x;, x,] is singular or near-singular at x; but
[xi, x;] is not, where {x,, X;, X} is a rearrangement of {x;, x5, x;} in the counter-
clockwise orientation, or assume that X; is a singular or near-singular vertex such
that 8 # T, ,. Then we determine the one-half portion of the Bézier coefficients
of V|; with indices in A]""*C,u A"*2C, closest to [xi, x:)(e.g., 536, As27),
Q746 forthe case n=5and d =17 in Fig. 5) by using the smoothness conditions,
Lemma 1, or Lemma 4 from the corresponding portion of the Bézier coefficients
of V|s, where &' is the neighboring triangle of § with [x., x«] as the common
edge. The other half-portion is determined in Case 5.

Case 3. Assume that [x;, x;] is singular or near-singular at x; but [x;, x, ] is not,
where {x;, x;, x,} is a rearrangement of {x;, X,, X,} in the counterclockwise orienta-
tion, or assume that x; is a singular or near-singular vertex such that § = T,
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Then we may directly apply the specifications (1.2), (I1.2), or (I11.2) to
obtain the one-half portion of the Bézier coefficients of V|s; with indices in
AY*2C,U AY?C, closest to [x;,x;]. The other one-half portion is again
determined in Case 5.

Case 4. Assume that 8 is two-sided singular at x;, or x; is a singular vertex and
8 =T,,,, or assume that x; is a near-singular vertex and 8 =T, ,. In this case,
we may directly apply (1.2), (11.2), or (II1.2} to obtain the portion of the Bézier
coefficients of V|, with indices in A7"*2C,u A} C,.

Case 5. This is the remaining case. To determine the remaining Bézier
coefficients of V| with indices in parts III and IV, we need to use all of (1.3)
and (1.4), or (IL.3) and (IL.4), or (IIL.3) and (111.4), and apply Lemma 3 or
Lemma 4. Let us illustrate with the following example. Consider r = 5, d=17,
and consider the edge e =[x,, X;] and the requirements in (1.3). We only discuss
the case where e is not a singular or near-singular edge at either x, or Xs. Let &'
be the triangle of A with e as the common edge of & and &' (see Fig. 5). Then
the Bézier coefficients agz of V/|; and bg of V|5, where

Be{(8,1,8),(8,2,7),(7,2,8),(8,3,6), (7,3,7),
(6,3,8), (7,4,6), (6,4,7), (6,5,6)},

are to be determined. Since the Bézier coefficients of V|; and V| in part I have
already been determined, we may first apply one of the requirements in (1.3) to
obtain a5 Or b, s depending on whether 8 or 8’ is (X.1, X¢2, Xe3). Without
loss of generality, let us assume that § = (Xe1, Xe2, Xe3)- Hence, a1 5) is determined
by applying one of the requirements in (1.3) and b, 4, is obtained by applying
Lemma 1 and using the corresponding Bézier coefficients aps. Then we may
apply Lemma 3 with a5 0.4)+4, bs04+5, 18/ =5and =1 (cf. the Bézier coefficients
inside the dotted quadrilateral indicated in Fig. 5), to obtain @27, Gs3.6 and
b2, bisse - AlsO, @325, Gess and b123) bess are obtained in a similar
manner. Next we again use the requirements in (1.3) to obtain a7, and then
b7, by applying Lemma 1 and using the corresponding Bézier coefficients of
V|s. By applying Lemma 3 again with 0548, boosie> |B|=5 and =0, we
may now determine a4 and b ae)- Similarly, a647, and b7, are obtained
by using Lemma 3. Finally, a.se is obtained by using (I.3) once more, and
hence, b se is determined by applying Lemma 1 and using the corresponding
Bézier net of V},. Of course, when [x,, x;] is a singular or near-singular edge at
X, or x;, we have to modify the above procedure accordingly by using Lemma
4 instead of Lemma 3. This method is valid for any r =1 in general.

From their specifications and the above construction steps, we know that the
support of the vertex spline V/ is the union of all triangles of A with v as
the common vertex, and the support of V! is the union of all triangles with
the common edge e. However, the support of V7, is a little bit more compli-
cated. It can be described as follows. Let £;(v) = T, ;. Then the support of Vi, is
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given by
[ Ui, Tux if v is a singular or near-singular vertex
and 1,(v)=T,,,
U:=2 T, if v is a singular vertex and ,(v) = T.s
or if v is a near-singular vertex and
L(v)= Tv.4,

S.. ¥J T, oT;UT,;, if t(v) is neither a one-sided nor a
two-sided singular triangle relative to v,

’,fj_z T, . if £,(v) is a two-sided singular triangle
relative to v,
U’,:j_, T« if £:(v) is a one-sided singular triangle with

singular edge (v, x, ;, ).

\

From the construction procedure, we may see that with the exception of the
one supported on the union of triangles with a near-singular vertex as the comron
vertex, all vertex splines are bounded by the constant

(3.1) b= maximum of the ratios of the areas of any two adjacent
triangles A sharing a common edge.

For r=1, 2, 3, we may use Lemmas 6-8 to ensure that those vertex splines which
are supported on the union of the triangles sharing a near-singular vertex are
also bounded by b. By applying Lemma 6, we may also see that any vertex spline
whose support is the union of the triangles sharing a near-singular vertex attached
to the edges with exactly three distinct slopes is bounded by b. But those vertex
splines which are supported on the union of all triangles sharing a near-singular
vertex attached to four edges with distinct slopes have to be dependent on the

constant

— . ,(xv_l s, ¥y xv,3>| ,(xv,Za v, xv.4)l}
(3.2) n= mm{ T , T

which measures the near-singularity of A. Here the minimum is taken over all
near-singular vertices v associated with four edges with distinct slopes.

As an example, vertex splines in S2° are constructed in [CL4] where their
graphs are also shown. Examples of vertex splines in Si* were already given in
[C] and [CL2] and their graphs on various supports were also shown in [CL3].

4. Main Results

The main objective of this paper is to construct an approximation formula from
the super-spline subspaces S’ of S4, where d =3r+2. In the following we only
consider the special and most important case where d =3r+2. The discussion
for d >3r+2is similar. For d = 3r+2, we consider the linear operator L defined
by

(41) Lf=3% T DfWMVI+ T ¥ DIf(x.)VIi+ ¥ L Dlnfmvy,

ve ¥ ye C, ec# yel, Lve 7 yel,,

[ B R S T = N
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for all sufficiently smooth functions f. We are now in a position to establish the
main results in this paper. The following propositions are of independent interest.

Proposition 1. Lp = p for any polynomial p of total degree <d =3r+2.

Proof. This result is proved by induction on the number of triangles in A. If A
consists of a single triangle §, then L is an interpolation operator based on 8.
Since the interpolation conditions associated with each vertex of & induce a
partition of A,,.,, we see that Lp = p for all p € m;,,, by Lemma 9. Assume that
the proposition holds for m = #{8: §€ A}. Let #{6: 8c A}=m+1 and set A =
{8i:i=1,..., m+1}. By relabeling, if necessary, assume that §,,,,=(y',y% y®)
has at least one boundary edge, and for the time being, assume that it has only
one interior edge {y',y’), say. Let A'={§;:i=1,..., m}=A\$,,,,. Observing the
uniqueness in Lemma 3 and applying Lemma 2, we see that the smocthness
conditions of Lp across the edge (y', y°) can be rewritten as appropriate inter-
polatory matching conditions (directional derivatives interpolating p at y' and
y’) such that L, p|, = L,.p, where L, L, denote the linear operators based on
A, A’ respectively. By the induction hypothesis, we have L, p|,.= L, p=p on
A'. Again from Lemmas 2 and 3 and the fact that Lp=p on A’, we see that
Lp|;, ., interpolates p, since the smoothness conditions across (y',y> can be
rewritten as interpolatory matching conditions and the totality of these resulting
interpolatic. conditions induces a partition of A;,.,. Hence, Lp =p on A. The
proof is similar if 8,,,, contains two interior edges. This completes the proof of
the proposition. [

The above result can in fact be improved. To do so, the directional derivatives
in the definition of L must be interpreted properly. We interpret Lf as

Lf=% ¥ DYfWVI+¥ ¥ DIf

ve ¥V ye G, ec¥ yel,

¢ ,x,_z,x,_J)(xe.l) VZ

+ Z Z DZ(V)fIIAV)(v) VZ(V)

ted yel,;

Then we have the following result.
Propesition 2. Lf=f for any function f e S Sreae

Proof. Let fi=Lf—f Then f, e 5;,+2 and f satisfies
Defi(v)=0, aeC,, ve¥,
D? filxyermen(x51) =0,  acl,, ec€;
D! film(¥) =0, ael;, tv)ed.
By using the argument in the proof of Proposition 1, we conclude that f,=0

on A. n

As a consequence, we have the following result.
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Theorem 1. The collection
B={VIveV,ye C}u{VIec 8 ye L}u{Vlu: (Ve T, yel,,}
is a basis of§§,+2.

Proof. It is clear that B < $§,+2 and that & is a linearly independent set. By
Proposition 2, it also spans S3,., and is therefore a basis. [ |

Corollary. Let r=1. Then

r+|(r+1)/2] +2> Av+3< Lr/2] + 1)Al

dim S5, =( " ;5

+<W22]+ 1) As+(Lr/2] +1D)D+ (1r/2) + 1),

where A, A, A, A.,, and A., denote the numbers of vertices, triangles, singular
vertices, interior edges, and boundary edges of A\, respectively.

Proof. This result is a simple consequence of Theorem 4.1 by determining the
cardinality of the basis 3. |

Consider a domain G in |J{8: € A}. For fe C*(G), denote
”Dkf“ = Img),f”D“f” L*(G)

al
and

dist(f, &¥) = in§|[f—s||.

For the given A, let |A| denote the maximum of the diameters of the triangles
in A. We consider two situations in terms of the order of smoothness r and the
partition A. In the first situation, we consider r =4 and an arbitrary triangulation
A, or r=4 and A which does not contain any near-singular vertex associated
with four distinct slopes. The remaining situation is considered next. Let b and
1 be as defined in (3.1) and (3.2), respectively. One of the main results in this
paper is the following.

Theorem 2. Let d =3r+2. There exists a linear operator L with range SA", such that

(4.2) ILf=fll=C|D*" 1A}

for all sufficiently smooth functions f, where C is a constant independent of f and
|Al. Consequently,

(4.3) dist(f, S5y = C || D' f||A]4*!

Jor r=1=<p(r,d). In particular, for d =3r+2, L can be chosen to be the operator
defined in (4.1).
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Remark. 1t should be emphasized that the constant C must depend on the
geometry of the triangulation A. In [dBH2], the constant C in (4.3) depends on
the smallest angle of triangles in A. Here, as a consequence of the construction
process, it only depends on b which is the largest ratio of the areas of any two
neighboring triangles A in the first situation, and, in addition, also depends on
the measurement 7 of the near-singularity of A in the remaining situation. The
estimate (4.3) can be established by using the argument in [dBH2]. However,
our result given in (4.2) is more constructive.

Proof. For d =4r+1, this theorem is well known. In the following, we only
consider d =3r+2, since a similar argument yields the desired result for
3r+2<d<4r+1. Fix a point xe G and consider the linear functional

F(f)= Lf(x) - f(x),

where L is given in (4.1). It is easy to see that F satisfies the following:

3r+2

0) [FINI=K ;5 IDflllAl and
(ii) F(p)=0forall pe m;,,,.

Indeed, (ii) follows from Proposition 1. As for (i), if [A|=1, it is easy to see
that |[F(f)| =< K, Z;;;z | D’f || from the construction of the vertex splines in Section
3, where the constant K, is dependent only on b in the first situation by Lemmas
6-8, and, in addition, is dependent on (%) " in the remaining situation as discussed
in the previous section. If [A] <1, by letting f(y) = f(|Aly), we see that

|F(NOI=1F(f)

3 ~
=K, ¥ [ID°fls
j=0
3r+2 .
=K, ¥ DAl
j=0
By Lemma 10, there exists a constant C independent of x and f such that
|Lf(x) = f(x)| = C| D¥ || |AP"*.
This completes the proof of (4.2) for d =3r+2. Consequently, for r=1I1=<p(r,d)
dist(f, S5;.2) = dist(f, S525) = C||D>*f [||a]"
which yields (4.3) for d =3r+2. [ |
We conclude our discussion on super splines by comparing the dimensions of
the spline space with its super-spline subspace. In general the super-spline

subspace S7' is a proper subspace of the spline space S;, r<I=p(r,d). In fact,
the following example gives an exact comparison for I =p(r, d).

Example. Comparing the above dimension formula with that of S%,., in
[H] which coincides with the lower bound given in [S1], we note that their
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difference is

where

[(rﬂ)/sz)Aei

dim S3,,,~dim §},,,=2 ( )

(ol

A\, denotes the number of interior vertices of A and we have assumed

for simplicity that A does not contain a singular vertex. Since A =3A,, and

[(r+1

A,

which

)/2} =r/2, we have

. , . Ar 1] r+1 r+1i
dim S§3, ., —dim S;,+225[—2—J(3+[ 2 J)AV*

is positive when A contains at least one interior vertex.

Remark.  For further information on the dimensions of other super-spline spaces,
see [CH] and [S2].
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