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1 Introduction

Since the well-known construction of univariate compactly supported orthonormal

wavelets in 1988 (cf. [Daubechies’92]), great efforts have been spent on constructing

multivariate compactly supported orthonormal wavelets (cf. [J. Kovačević and M. Vet-

terli’92], [Cohen and Daubechies’93], [J. Kovačević and M. Vetterli’95], [Stanhill and

Zeevi’96], [He and Lai’97], [Maass’97], [Stanhill and Zeevi’98], [Ayache’99], [Belogay and

Wang’99]). Although many special multivariate nonseparable wavelets have been con-

structed, it is still an open problem how to construct multivariate compactly supported

orthonormal wavelets for any given compactly supported scaling function. The purpose

of this paper is to give this problem a partial answer.

Our construction of compactly supported orthonormal wavelets in the multivariate

setting is based on a standard multi-resolution analysis (MRA). For simplicity, we first

consider dilation matrix 2I2×2 in the bivariate setting. Let us assume that φ is a given

scaling function which generates an MRA. That is, φ is refinable and orthonormal. In

this paper, we assume that φ is compactly supported. Writing

φ̂(ξ, η) = m(ξ/2, η/2)φ̂(ξ/2, η/2),

m(ξ, η) is a trigonometric polynomial in eiξ and eiη. Let

Vk = spanL2
{φ(2kx− `, 2ky −m), `,m ∈ Z}

for k ∈ Z. Let Wk be the orthogonal complement of Vk in Vk+1. That is,

Vk+1 = Vk ⊕Wk.

We need to find compactly supported functions (so-called wavelets) ψ1, · · · , ψn such

that V1 = V0 ⊕W0 with

W0 = spanL2
{ψj(x− `, y −m), `, m ∈ Z, j = 1, . . . , n}

and ∫

R2
ψj(x− `, y −m)ψk(x, y)dxdy = 0

for any j 6= k, j, k = 1, . . . , n with `,m ∈ Z and for j = k, k = 1, · · · , n with `2 + m2 6=
0, `,m ∈ Z.

Usually, we expect n = 3 (cf. [Meyer’90]). This requires that we find trigonometric

polynomials m1,m2,m3 such that



m(ξ, η) m(ξ + π, η) m(ξ, η + π) m(ξ + π, η + π)
m1(ξ, η) m1(ξ + π, η) m1(ξ, η + π) m1(ξ + π, η + π)
m2(ξ, η) m2(ξ + π, η) m2(ξ, η + π) m2(ξ + π, η + π)
m3(ξ, η) m3(ξ + π, η) m3(ξ, η + π) m3(ξ + π, η + π)


 (1.1)
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is unitary. Such unitary extension problem is still open in general.

In this paper, we propose to construct wavelets ψj, j = 1, . . . , n with n > 3. In

the d-variate setting, for dilation matrix 2Id×d, one expects to find 2d − 1 wavelets (cf.

[Meyer’90]). Our approach will yield n(> 2d − 1) compactly supported orthonormal

wavelets. Although n should be as small as possible in practice, a reasonable number

n larger than 3 does not cause any serious technical and/or computational challenge

since we can use parallel processes in modern computer. Indeed, it is easy to see that a

wavelet decomposition and reconstruction procedure can be done in parallel. As we will

point out later, the number n is dependent on the size of the support of φ. If the size of

the support of φ is not very large, n will not be very large and hence we will be able to

enjoy the advantages and properties that orthonormal wavelets possess.

One of our main ideas for the construction is to use multi-wavelets. To explain the

idea, let us consider an MRA in the bivariate setting and use a standard dilation matrix

2I2×2. We further assume that

m(ξ, η) =
∑

0≤j≤5,0≤k≤5

cj,ke
i(jξ+kη) (1.2)

just for simplicity.

For the given scaling function φ associated with mask m(ξ, η), we let Φ be a multi-

scaling vector

Φ(x, y) =




2φ(2x, 2y)
2φ(2x− 1, 2y)
2φ(2x, 2y − 1)

2φ(2x− 1, 2y − 1)


 .

Since φ is orthonormal, so is Φ(x, y), i.e.,

∫

R2
Φ(x− `, y −m)Φ(x, y)T dxdy = I4×4δ0,`δ0,m. (1.3)

Writing Φ = (φ1, φ2, φ3, φ4)
T , we let

Ṽk = spanL2
{φj(2

kx− `, 2ky −m), `, m ∈ Z, j = 1, 2, 3, 4}. (1.4)

Thus, Ṽ0 = V1. It is clear that Φ(x, y) is a refinable vector (detailed explanation will be

given later). It follows that {Ṽk, k ∈ Z} forms an MRA and hence Φ generates the same

MRA of L2(R
2) as that by φ.

Since Φ(x, y) is refinable, in terms of Fourier transform, we have

Φ̂(ξ, η) =
∑

`,m

1

4
M`,mei(`ξ+mη)/2Φ̂(ξ/2, η/2)
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= M(ξ/2, η/2)Φ̂(ξ/2, η/2)

for a matrix symbol M(ξ, η) with trigonometric polynomial entries in eiξ and eiη.

It follows from (1.3) that

∑

`,m∈Z

Φ̂(ξ + 2`π, η + 2mπ)Φ̂(ξ + 2`π, η + 2mπ)∗ = I4×4

and hence,

M(ξ, η)M(ξ, η)∗ + M(ξ + π, η)M(ξ + π, η)∗ + M(ξ, η + π)M(ξ, η + π)∗ + (1.5)

M(ξ + π, η + π)M(ξ + π, η + π)∗ = I4×4.

Let W̃k be the orthogonal complement of Ṽk in Ṽk+1. We will construct three

compactly supported orthonormal multi-wavelet vectors Ψ1, Ψ2, Ψ3 ∈ W̃0 with Ψj =

(Ψj1, Ψj2, Ψj3, Ψj4)
T , j = 1, 2, 3 and

W̃0 = spanL2
{Ψj,k(x− `, y −m), `, m ∈ Z, j = 1, 2, 3, k = 1, · · · , 4}

such that
∫

R2
Ψj(x− `, y −m)Ψk(x, y)T dxdy =

{
I4×4, if j = k and ` = m = 0
0, otherwise

(1.6)

for all j, k = 1, 2, 3, `, m ∈ Z and

Ṽ1 = Ṽ0 ⊕ W̃0.

Writing

Ψ̂j(ξ, η) = Mj(ξ/2, η/2)Φ̂(ξ/2, η/2), j = 1, 2, 3, (1.7)

we need to find matrices Mj(ξ, η) with trigonometric polynomial entries in (eiξ, eiη) such

that the following matrix



M(ξ, η) M(ξ + π, η) M(ξ, η + π) M(ξ + π, η + π)
M1(ξ, η) M1(ξ + π, η) M1(ξ, η + π) M1(ξ + π, η + π)
M2(ξ, η) M2(ξ + π, η) M2(ξ, η + π) M2(ξ + π, η + π)
M3(ξ, η) M3(ξ + π, η) M3(ξ, η + π) M3(ξ + π, η + π)


 is unitary. (1.8)

By the properties (1.3), (1.4), (1.7), and (1.8) and the fact that Φ generates an MRA,

we know that {Ψjk, j = 1, 2, 3, k = 1, 2, 3, 4} are compactly supported functions and the

translates and dilates of them generate an orthonormal basis for L2(R
2). Hence, they are

compactly supported orthonormal wavelets associated with the given scaling function φ.

Therefore, we need to show how to do (1.8) which is given in §2. We then consider the

scaling function which has a larger support. The construction of the associated wavelets
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is similar and will be outlined there. Next we discuss how to construct multi-wavelets for

any given multi-scaling functions with small support in §3. We remark that our construc-

tion can be generalized to any dimensional setting in §4. The construction of wavelets

in the multivariate setting will be briefly given to indicate how to do the generaliza-

tion. Finally, we make some remarks on the regularity of the wavelets so constructed,

the vanishing moments of the wavelets, the number of the wavelets and general dilation

matrices.

2 Constructing 2D Nonseparable Compactly Sup-

ported Wavelets

In this section we shall prove the following

Theorem 2.1. Suppose that φ(x, y) ∈ L2(R
2) is a scaling function associated with

dilation matrix 2I2×2 whose mask is

m(ξ, η) =
1

4

∑

0≤j≤5
0≤k≤5

cjke
i(jξ+kη).

Then there exist 12 compactly supported orthonormal wavelets ψj,k, j = 1, 2, 3, k =

1, 2, 3, 4 associated with φ in the sense that they are linear combinations of finitely

many φ(4x−m, 4y − n)’s with m,n ∈ Z such that the integer translates and dilates of

these functions ψj,k’s form an orthonormal basis for L2(R
2). That is,

{2`ψj,k(2
`x−m, 2`y − n), `, m, n ∈ Z, j = 1, 2, 3, k = 1, 2, 3, 4}

is an orthonormal basis for L2(R
2).

In order to do so, we need the following lemma which is a generalization of the

constructive procedure of bivariate compactly supported orthonormal wavelets in [He

and Lai’97]. Note that the wavelets constructed there are associated with a scaling

function which is supported in [0, 3]× [0, 3].

Lemma 2.1. Let [A,B, C, D] be a matrix of size 16×4 whose entries are trigonometric

polynomials of coordinate degrees ≤ (1, 1). Suppose that [A,B,C,D] is unitary, that is,

[A,B, C, D]∗[A,B, C, D] = I4×4.

Then there exists a unitary matrix H of size 16 × 16 with trigonometric polynomial

entries such that

H[A,B,C,D] = [I4×4, 04×12]
T .
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Proof: We write

A = A16×4[1, x, y, xy]T ,

where A16×4 consists of scalar entries. Similar for B, C, D. Let

A = [A16×4, B16×4, C16×4, D16×4]

be a matrix of size 16×16. Then there exist a unitary matrix H1 such that H1A is lower

triangular. Note that

H1D = [0, 0, · · · , 0︸ ︷︷ ︸
12

, d1, d2, d3, d4]
T

H1C = [0, · · · , 0︸ ︷︷ ︸
8

, c1, · · · , c8]
T

H1B = [0, · · · , 0︸ ︷︷ ︸
4

, b1, · · · , b12]
T

H1A = [a1, · · · , a16]
T

with a1, b1, c1, and d1 being constants independent of x and y.

Since H1[A,B, C,D] is unitary,
4∑

i=1

|di|2 =
8∑

i=1

|ci|2 =
12∑

i=1

|bi|2 =
16∑

i=1

|ai|2 = 1. Let

h2 = H(v) be a Householder matrix of size 4× 4 with v = [d1, d2, d3, d4]
T − [1, 0, 0, 0]T .

By the definition of Householder matrix, H(v) = I4×4 − 2
v∗vvv∗ with

vTv = |d1 − 1|2 +
4∑

j=2

|dj|2 = 1− 2d1 +
4∑

j=1

|dj|2

= 2− 2d1 = 2(1− d1)

which is a nonzero real number in general. That is, H(v) is a unitary matrix with

trigonometric polynomial entries. Thus,



I4×4 0 0 0
0 I4×4 0 0
0 0 I4×4 0
0 0 0 h2


 H1D = [0, · · · , 0︸ ︷︷ ︸

12

, 1, 0, 0, 0]T .

If 2(1− d1) is zero, we have already had

H1D = [0, · · · , 0︸ ︷︷ ︸
12

, 1, 0, 0, 0]T .

Combining with an elementary row exchange, we let H2 denote the unitary matrix such

that H2H1D = [0, · · · , 0︸ ︷︷ ︸
15

, 1]T =: e16. For simplicity, we write

H2H1[A,B, C, D] = [Ã, B̃, C̃, e16].
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Note that by the orthonormality, the last component of Ã is zero and so are B̃ and C̃.

In this case,

C̃ = [0, · · · , 0︸ ︷︷ ︸
8

, c1, · · · , c4, c̃5, · · · , c̃7, 0]T

B̃ = [0, · · · , 0︸ ︷︷ ︸
4

, b1, · · · , b8, b̃9, · · · , b̃11, 0]T

Ã = [a1, · · · , a12, ã13, · · · , ã15, 0]T ,

where c1, · · · , c4 are the same components in vector H1C while c̃5, c̃6, c̃7 are updated

components. Similar for b1, · · · , b8 and b̃9, · · · , b̃11 and etc..

If c1 6= 1, let h3 = H(u) be a Householder matrix of size 7× 7 with

u = [c1, · · · , c4, c̃5, · · · , c̃7]
T − [1, 0, · · · , 0︸ ︷︷ ︸

6

]T .

Then we know 


I8×8 0 0
0 h3 0
0 0 1


 C̃ = [0, · · · , 0︸ ︷︷ ︸

8

, 1, 0, · · · , 0︸ ︷︷ ︸
6

, 0]T .

Here we note that h3 is a unitary matrix with trigonometric polynomial entries. We

again combine with a row exchange with the above unitary matrix into H3 such that

H3C̃ = [0, · · · , 0︸ ︷︷ ︸
14

, 1, 0]T := e15. If c1 = 1, then

C̃ = [0, · · · , 0︸ ︷︷ ︸
8

, 1, 0, · · · , 0︸ ︷︷ ︸
6

, 0]T .

We directly apply H3 to C̃ to have H3C̃ = e16. It follows that H3H2H1D = e1 and H3Ã

has zeros in the last two components and so does H3B̃. That is,

H3B̃ = [0, · · · , 0︸ ︷︷ ︸
4

, b1, · · · , b4, b̂5, · · · , b̂10, 0, 0]T ,

H3Ã = [a1, · · · , a8, â9, · · · , â14, 0, 0]T .

Repeating the same argument as above, we can find unitary matrices H4 and H5 with

trigonometric polynomial entries such that

H5H4H3H2H1[A,B, C, D] = [04×4, 04×4, 04×4, I4×4]
T .
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By a row exchange matrix H6, we obtain the desirable unitary matrix H = H6 · · ·H1

such that

H[A,B, C, D] = [I4×4, 04×4, 04×4, 04×4]
T .

This completes the proof.

For the given scaling function φ associated with mask m(ξ, η), we recall that Φ is a

multi-scaling vector

Φ(x, y) =




2φ(2x, 2y)
2φ(2x− 1, 2y)
2φ(2x, 2y − 1)

2φ(2x− 1, 2y − 1)


 . (2.1)

Then Φ(x, y) is refinable, i.e.,

Φ(x, y) =
∑

`,m∈Z

M`,mΦ(2x− `, 2y −m)

with

M`,m = 2




c2`,2m c2`+1,2m c2`,2m+1 c2`+1,2m+1

c2`−2,2m c2`−1,2m c2`−2,2m+1 c2`−1,2m−1

c2`,2m−2 c2`+1,2m−2 c2`,2m−1 c2`+1,2m−1

c2`−2,2m−2 c2`−1,2m−2 c2`−2,2m−1 c2`−1,2m−1


 . (2.2)

Let M(ξ, η) = 1
4

∑
`,m M`,mei(`ξ+mη) be the matrix mask associated with Φ which is of

size 4 × 4 with trigonometric polynomial entries in eiξ and eiη. Note that each entry

of M(ξ, η) is a trigonometric polynomial of coordinate degrees ≤ (3, 3). Because of the

orthonormality of Φ (see (1.3)), we know

M(ξ, η)M(ξ, η)∗ + M(ξ + π, η)M(ξ + π, η)∗ + M(ξ, η + π)M(ξ, η + π)∗ + (2.3)

M(ξ + π, η + π)M(ξ + π, η + π)∗ = I4×4.

We now show that there exist trigonometric polynomial matrices Mj, j = 1, 2, 3 such

that the matrix in (1.8) is unitary. That is, we are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. We first write M(ξ, η) in polyphase form

M(ξ, η) = N0(2ξ, 2η) + eiξN1(2ξ, 2η) + eiηN2(2ξ, 2η) + ei(ξ+η)N3(2ξ, 2η)

= [ N0(2ξ, 2η), N1(2ξ, 2η), N2(2ξ, 2η), N3(2ξ, 2η) ]




I4×4

eiξI4×4

eiηI4×4

ei(ξ+η)I4×4


 . (2.4)

Then it follows that

2 [ N0(ξ, η) N1(ξ, η) N2(ξ, η) N3(ξ, η) ]
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is unitary, that is

4[N0(ξ, η), N1(ξ, η), N2(ξ, η), N3(ξ, η)]




N0(ξ, η)∗

N1(ξ, η)∗

N2(ξ, η)∗

N3(ξ, η)∗


 = I4×4.

Note that all the entries in Nj(ξ, η) are polynomials of degree ≤ (1, 1). We write

[A,B, C, D] = 2




N0(ξ, η)∗

N1(ξ, η)∗

N2(ξ, η)∗

N3(ξ, η)∗




16×4

(2.5)

and apply Lemma 2.1 to find unitary matrix H such that

H[A,B, C, D] = [I4×4, 04×4, 04×4, 04×4]
T .

Partition H in the following form:

H = 2




N0(ξ, η) N1(ξ, η) N2(ξ, η) N3(ξ, η)
N1,0(ξ, η) N1,1(ξ, η) N1,2(ξ, η) N1,3(ξ, η)
N2,0(ξ, η) N2,1(ξ, η) N2,2(ξ, η) N2,3(ξ, η)
N3,0(ξ, η) N3,1(ξ, η) N3,2(ξ, η) N3,3(ξ, η)


 . (2.6)

We define

Mj(ξ, η) = Nj,0(2ξ, 2η) + eiξNj,1(2ξ, 2η) + eiηNj,2(2ξ, 2η) + ei(ξ+η)Nj,3(2ξ, 2η) (2.7)

for j = 1, 2, 3 which are desirable trigonometric polynomial matrices which, together

with M(ξ, η), satisfy the matrix orthonormal condition (1.8). We define multi-wavelet

vectors Ψj, in terms of Fourier transform by

Ψ̂j(ξ, η) = Mj(ξ/2, η/2)Φ̂(ξ/2, η/2), j = 1, 2, 3. (2.8)

Writing Ψj = (ψj,1, ψj,2, ψj,3, ψj,4)
T , j = 1, 2, 3, we know that ψj,k are orthonormal for

k = 1, · · · , 4, j = 1, 2, 3 by (1.6) and

V̂1 = V̂0 ⊕ Ŵ0.

Then the standard argument shows that 2`Ψj(2
`x − m, 2`y − n), `,m, n ∈ Z form an

orthonormal basis for L2(R
2). In terms of the components of Ψj, 2`ψj,k(2

`x −m, 2`y −
n), `, m, n ∈ Z, j = 1, 2, 3 and k = 1, 2, 3, 4 form an orthonormal basis for L2(R

2).

Finally, let us point out that ψj,k are associated with φ. From (2.8), we know that

ψi,k’s are linear combinations of φ(4x−m, 4y − n),m, n ∈ Z. This completes the proof.
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What happens when the support size of φ is bigger. Let

m(ξ, η) =
∑

0≤j≤9
0≤k≤9

cjke
i(jξ+kη)

be a trigonometric polynomial associated with a scaling function φ. We let

Φ(x, y) =




4φ(4x, 4y)
4φ(4x + 1, 4y)
4φ(4x, 4y + 1)

4φ(4x + 1, 4y + 1)
4φ(4x + 2, 4y)

4φ(4x + 2, 4y + 1)
4φ(4x + 2, 4y + 2)
4φ(4x + 1, 4y + 2)

4φ(4x, 4y + 2)
4φ(4x + 3, 4y)

4φ(4x + 3, 4y + 1)
4φ(4x + 3, 4y + 2)
4φ(4x + 3, 4y + 3)
4φ(4x + 2, 4y + 3)
4φ(4x + 1, 4y + 3)

4φ(4x, 4y + 3)




16×1

.

Then Φ is a scaling vector. Writing Φ = (φ1, · · · , φ16)
T , let

V̂0 = span L2
{φj(x− `, y −m), `, m ∈ Z, j = 1, · · · , 16}.

Then V̂0 = V2. Thus, Φ generates a bona fide MRA. The above construction procedure

can be simply extended for this Φ. Indeed, since Φ is a refinable function vector,

Φ̂(ξ, η) = M(ξ/2, η/2)Φ̂(ξ/2, η/2)

with a matrix symbol M(ξ, η) which is of size 16 × 16 whose entries are trigonometric

polynomials of eiξ and eiη. The coordinate degree of these trigonometric polynomials

is ≤ (3, 3). Lemma 2.1 can be generalized to handle unitary matrix of size 64 × 16.

Thus, we can construct three multi-wavelet vectors of size 16 × 1. These results 3 × 16

compactly supported wavelets. Details are omitted here. Similarly, we can do the same

thing for any compactly supported scaling function φ with any support. In general, if

φ is supported on [0, 2k + 1]2, our construction yields 3 × 22k−2 compactly supported

orthonormal wavelets. Therefore, we can conclude
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Theorem 2.2. Suppose that φ(x, y) ∈ L2(R
2) is a scaling function associated with

dilation matrix 2I2×2. Then there exist compactly supported orthonormal wavelets ψjk,

j = 1, 2, 3, k = 1, · · · , n with appropriate n = 3× 22k−2 if the support of φ in [0, 2k + 1]2

such that translates and dilates of these ψj,k’s form an orthonormal basis for L2(R
2).

3 Construction of Compactly Supported Multi-

Wavelets

The construction of bivariate compactly supported orthonormal wavelets in the previous

section can be generalized to the multi-wavelet setting. We start with the construction

of bivariate compactly supported orthonormal multi-wavelets.

We first recall from the constructive proof of Theorem 2.1 that the same construction

procedure can be used to construct multi-wavelets for any given multi-scaling vector Φ

with support in [0, 3]× [0, 3]. That is, we have

Lemma 3.1. Given a multi-scaling function vector Φ of size r × 1 with r ≥ 1, if Φ is

supported over [0, 3]2, then we can construct three compactly supported orthonormal

multi-wavelets.

Proof: For Φ of size r × 1, let

Φ̂(ξ, η) = M(ξ/2, η/2)Φ̂(ξ/2, η/2)

with trigonometric polynomial mask M(ξ, η) of size r×r. We write M(ξ, η) in polyphase

form as (2.1):

M(ξ, η) = [ N0(2ξ, 2η), N1(2ξ, 2η), N2(2ξ, 2η), N3(2ξ, 2η) ]




I4×4

eiξI4×4

eiηI4×4

ei(ξ+η)I4×4


 .

Then it follows that

2 [ N0(ξ, η) N1(ξ, η) N2(ξ, η) N3(ξ, η) ]

is unitary. Note that the above matrix is of size r×4r and each entry is of trigonometric

polynomials of coordinate degree ≤ (1, 1). Let

[A,B,C,D] = 2 [ N0(ξ, η) N1(ξ, η) N2(ξ, η) N3(ξ, η) ]∗
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be a matrix of size 4r × r. Using the similar arguments to the proof of Lemma 2.1, we

can find a unitary matrix H of size 4r × 4r with trigonometric polynomial entries such

that

H[A,B, C, D] = [Ir×r, 0r×3r]
T .

Partition H into r × r blocks similar to (2.2) and let Mj, j = 1, 2, 3 be the matrices

similar to (2.3). Define Ψj of size r×1, j = 1, 2, 3 as (2.4). Then Ψj’s are multi-wavelets.

We have thus completed the proof.

When a multi-scaling vector Φ = [φ1, · · · , φr]
T has a larger support, say, Φ is sup-

ported on [0, 5]× [0, 5], we let

Φ̃(x, y) =




2φ1(2x, 2y)
2φ1(2x− 1, 2y)
2φ1(2x, 2y − 1)

2φ1(2x− 1, 2y − 1)
...
...

2φr(2x, 2y)
2φr(2x− 1, 2y)
2φr(2x, 2y − 1)

2φr(2x− 1, 2y − 1)




.

Then it is easy to see that Φ̃ is a new multi-scaling vector. The matrix symbol M(ξ, η)

is of size 4r × 4r with trigonometric polynomial entries and the degree of all these

trigonometric polynomials is ≤ (3, 3). Then the above Theorem 2.3 can be applied so

that we can construct three compactly supported orthonormal multi-wavelets of size

4r × 1. Therefore, we conclude the following

Theorem 3.2. Let Φ be a multi-scaling function vector of size r×1 with r ≥ 2. Suppose

that Φ is of compact support. Then there exist three compactly supported orthonormal

multi-wavelets Ψj’s of size n×1 with integer n ≥ r dependent on the size of the support

of Φ such that the translates and dilates of these Ψj’s form an orthonormal basis for

L2(R
2).

4 Construction of Multidimensional Compactly Sup-

ported Multi-Wavelets

Next we generalize the above construction procedures in §2 and §3 to the general mul-

tivariate setting.
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Indeed, let φ ∈ L2(Rd) be a multivariate scaling function associated with trigonomet-

ric polynomial mask m0(ω) with ω := (ω1, · · · , ωd) and d ≥ 2. To construct compactly

supported orthonormal wavelets associated with φ, we first consider the case that φ is

supported in [0, 3]d. That is,

m0(ω) =
∑

0≤n1,···,nd≤3

cn1,···,nd
ei(n·ω)

with n · ω := n1ω1 + · · ·+ ndωd.

We need to compute mj(ω), j = 1, . . . , 2d − 1 such that the following matrix

[mj(ω + πξk)]0≤j,k≤2d−1

is unitary, where {ξk, k = 0, . . . , 2d − 1} = {0, 1}d.

To this end, we use polyphase form (f0, f1, . . . , f2d−1) of m0(ω), that is,

m0(ω) = `(ω)(f0(x
2
1, . . . , x

2
s), f1(x

2
1, . . . , x

2
d), . . . , f2d−1(x

2
1, . . . , x

2
d))

T ,

where xk = eiωk , k = 1, · · · , d and `(ω) := (1, x1, . . . , xs, x1x2, . . . , x1x2 · · · xd)
T is a vector

of size 2d × 1 consisting of all basis trigonometric polynomials of coordinate degree

≤ (1, . . . , 1︸ ︷︷ ︸
d

) as its entries. Note that all fi(x1, . . . , xd)’s are trigonometric polynomials of

degree ≤ (1, . . . , 1︸ ︷︷ ︸
d

). Thus, we can write




f0

f1
...

f2d−1




= L`(ω),

where L is a scalar matrix of size 2d × 2d. We first have

Lemma 4.1. There exists a unitary matrix U(x1, . . . , xd) with trigonometric polynomial

entries such that

U(x1, . . . , xd)




f0(x1, . . . , xd)
f1(x1, . . . , xd)

...
f2d−1(x1, . . . , xd)




=




1
2d/2

0
...
0


 .

The proof is the multivariate version of the arguments given in [He and Lai’97].

Indeed, let H be a unitary scalar matrix which converts L into a lower triangular matrix.

Note that H(f0, f1, . . . , f2d−1)
T = (g0, g1, . . . , g2d−1)

T with g0 being a constant and gj

trigonometric polynomials, j = 1, . . . , 2d − 1. Since H is orthonormal,

1

2d/2
=

2d−1∑

j=0

|fj|2 =
2d−1∑

j=0

|gj|2 = |g0|2 +
2d−1∑

j=1

|gj|2,
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we know that
∑2d−1

j=1 |gj|2 is constant. We now apply the following Householder matrix

H(v) = I2d×2d − 2vvT

vT v

with v = (g0, g1, . . . , g2d−1)
T −

(
1

2d/2 , 0 . . . 0
)T

. Then H(v) is unitary such that

H(v)H(f0, f1, . . . , f2d−1)
T =

(
1

2d/2
, 0, . . . , 0

)T

.

We note that vT v =
(
g0 − 1

2d/2

)2
+

∑2d−1
j=1 |gj|2 is a constant and hence H(v) is a matrix

with trigonometric polynomial entries. It thus follows that

U(x1, . . . , xd) = H(v)H

is a desirable matrix. This completes the proof of Lemma 4.1.

With this unitary matrix U , we have the following

Theorem 4.1. Suppose that m0 is a trigonometric polynomial of coordinate degree

≤ (3, . . . , 3︸ ︷︷ ︸
d

) satisfying m0(0, 0, . . . , 0) = 1 and

2d−1∑

k=0

|m0(ω + πξk)|2 = 1,

where {ξk, k = 0, · · · , 2d − 1} is an ordered list of multi-integer set {0, 1}d ⊂ Zd. Then

one can construct trigonometric polynomials mj(ω), j = 1, . . . , 2d − 1 such that

[mj(ω + πξk)]0≤j,k≤2d−1

is unitary.

Proof: Recall U in Lemma 4.1. Let A = U∗ be the transpose and conjugate of U .

Then A is also a unitary matrix with trigonometric polynomial entries. Define mj, j =

1, . . . , 2d − 1 by

[m0,m1, . . . , m2d−1] =
1

2d/2
`(ω)A(x2

1, x
2
2, . . . , x

2
d).

We claim that the [mj(ω + πξk)]0≤j,k≤2d−1 is unitary. Indeed, we have

[mj(ω + πξk)]0≤j,k≤2d−1 =
1

2d/2
[`(ω + πξk)]0≤k≤2d−1A(x2

1, x
2
2, . . . , x

2
d).

Note that 1
2d/2 [`(ω + πξk)]0≤k≤2d−1 is unitary. Since A is unitary, so is [mj(ω +

πξk)]0≤j,k≤2d−1. This completes the proof of Theorem 4.1.
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When the scaling function φ has a larger support, we shall use the same technique

introduced in §2. Suppose that φ is supported in [0, 5]d. Then its mask m0 is a trigono-

metric polynomial of coordinate degree≤ (5, · · · , 5︸ ︷︷ ︸
d

). We consider a multi-scaling function

vector

Φ(x) =
[
φ(2x− ξk), k = 0, . . . , 2d − 1

]T

of size 2d × 1. Then it can be easily seen that Φ is a refinable vector and

Φ̂(ω) = M(ω/2)Φ̂(ω)

with trigonometric polynomial matrix M of size 2d × 2d. Note that each entry of M
is a trigonometric polynomial of coordinate degree ≤ (3, . . . , 3︸ ︷︷ ︸

d

). We can use the same

arguments for Theorem 2.1 to find 2d − 1 multi-wavelet vectors Ψj’s of size 2d × 1

associated with Φ such that the translates and dilates of all the components ψjk, k =

1, . . . , 2d of Ψj for j = 1, . . . , 2d − 1 form an orthonormal basis for L2(R
d). That is, we

have (2d − 1)× 2d wavelet functions.

When φ has a larger support, we consider a multi-scaling function vector Φ of larger

size as in §2 and construct more wavelet functions. Therefore, we can conclude

Theorem 4.1. Let φ be a compactly supported scaling function in L2(R
d). Then one

can find n(>> 2d − 1) compactly supported orthonormal wavelets ψj, j = 1, · · · , n asso-

ciated with φ in the sense that ψj’s are linear combinations of φ(2`x−m),m ∈ Zd with

appropriate integer ` which is dependent on the support of φ such that their translates

and dilates form an orthonormal basis for L2(R
d). That is,

{2kd/2ψj(2
k · −`), ` ∈ Zd, k ∈ Z, j = 1, · · · , n}

is an orthonormal basis for L2(R
d).

Similarly we can generalize the construction in §3 to the multivariate multi-wavelet

setting. The detail is omitted here.

5 Remarks

We have the following remarks in order.

1. It is easy to see from (1.5) that the regularity of the wavelets are the same as the

scaling functions.

2. However, we do not know the property of the vanishing moments of the wavelets

so constructed in this paper.
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3. When the support of a scaling function gets larger, the number of compactly sup-

ported orthonormal wavelets gets bigger. It is desirable to have a fixed number of

wavelets independent of the size of the scaling functions. It remains open how to

construct 2d − 1 compactly supported wavelets associated with a compactly sup-

ported scaling function φ ∈ L2(R
d) for d ≥ 2.

4. It is possible to expand the construction in the paper to the case with general

dilation matrices. We leave the details to a future paper.
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