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Abstract. Methods for scattered data fitting using multivariate
splines will be surveyed in this paper. Existence, uniqueness, and
computational algorithms for these methods, as well as their approx-
imation properties will be discussed. Some applications of multi-
variate splines for data fitting will be briefly explained. Some new
research initiatives of scattered data fitting will be outlined.

§1. Introduction

Given a set of scattered data, e.g., {(xi, yi, zi), i = 1, · · · , N}, we need to
find a smooth function or surface S such that

S(xi, yi) = zi, i = 1, · · · , N,

if zi are very accurate measurements or

S(xi, yi) ≈ zi, i = 1, · · · , N,

if zi are subject to some random noises. Note that nowadays, N is usually
very large. Three key requirements are 1) S must be a smooth surface; 2)
S resembles the shape of the data; and 3) S can be efficiently computed.
In this paper we explain how to use multivariate splines for solving scat-
tered data fitting problems, and survey some recent results how well spline
surfaces approximate the given data. Finally, we shall point out some new
directions of research on multivariate splines for data fitting in statistics.

§2. Multivariate Splines

Let ∆ be a triangulation of a domain containing {(xi, yi), i = 1, · · · , N}.
Define by

Sr
d(∆) = {s ∈ Cr(Ω), s|t ∈ Pd, t ∈ ∆}
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the spline space of smoothness r and degree d over ∆. Let |∆| be the
longest edge length of ∆, and ρ∆ be the smallest inradius of triangle
t ∈ ∆. Let

|∆|
ρ∆

≤ β < ∞.

Larry Schumaker and I recently wrote a monograph on multivariate
splines (cf. [Lai and Schumaker’07]). The book contains all of the basics
and necessary background material for this paper. Thus, I refer to the
book for notation, definitions, and approximation properties of multivari-
ate splines. In the rest of the paper, I shall discuss multivariate splines for
scattered data fitting along with methods and approximation results not
contained in the book.

§3. Methods for Scattered Data Fitting and Interpolation

The following methods for fitting a given set of data are available in the
literature.

• Minimal Energy Method;

• Discrete Least Squares Method;

• Penalized Least Squares Spline Method;

• L1 Spline Method;

• Least Absolute Deviation Method;

• L1 Smoothing Spline Method;

• local or ad hoc methods, etc..

We shall give a review of these methods. We need to explain several
fundamental questions concerning each method: if a method has a solution
or not (i.e., the existence and uniqueness), how to compute that solution
(i.e., numerical algorithms), whether the solution surface resembles the
given data (i.e., approximation properties), and what to do when the
amount of data is very large.

3.1. Minimal Energy Method

Let E(f) be the thin-plate energy functional

E(f) =

∫

Ω

(

(

∂2

∂x2
f

)2

+ 2

(

∂2

∂x∂y
f

)2

+

(

∂2

∂y2
f

)2
)

dxdy.

Let Λ(f) = {s ∈ Sr
d(∆), s(xi, yi) = fi, i = 1, · · · , N}. Find Sf ∈ Λ(f)

such that
E(Sf ) = min{E(s), s ∈ Λ(f)}.

The following result was proved in [von Golitschek, Lai, and Schumaker’02]
and in [Awanou, Lai, Wenston’06] by different methods.
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Theorem 1. If Λ(f) is not empty, there exists a unique interpolatory
spline in Sr

d(∆).

Once we have an interpolatory surface, we would like to know how
the surface resembles the given data. Let W 2

∞(Ω) be the Sobolev space
of all functions whose second derivatives are essentially bounded over Ω.
|f |2,∞,Ω is the maximal norm of all second order derivatives of f over
Ω. The following results can be found in [von Golitschek, Lai, and Schu-
maker’02].

Theorem 2. Suppose zi = f(xi, yi), i = 1, · · · , N , for f ∈ W 2
∞(Ω). Let

d ≥ 3r + 2, and let ∆ be a triangulation of the data sites {(xi, yi), i =
1, · · · , N}. Then

‖sf − f‖L∞(Ω) ≤ C|∆|2|f |2,∞,Ω.

Our next concern is how to compute interpolatory minimal energy
splines using a spline space of arbitrary degree d and arbitrary smoothness
r with d ≥ 3r + 2. The following computational scheme was described in
[Awanou, Lai and Wenston’06].

(1) Express each s ∈ S−1
d (∆) in B-form (cf. [de Boor’87]), i.e.,

s(x, y)|t =
∑

i+j+k=d

ct
ijkBd,t

ijk(x, y),

where Bd,t
ijk are Bernstein-Bézier basis functions defined only on t. Let

c = (ct
ijk, i + j + k = d, t ∈ ∆) be a coefficient vector for s.

(2) When s ∈ Sr
d(∆), there are smoothness conditions over interior edges

of ∆ (cf. [Farin’86]). The smoothness conditions are linear. Put all
smoothness conditions together to write

Hc = 0,

for a matrix H, i.e., s ∈ Sr
d(∆) iff Hc = 0.

(3) Compute the energy functional E(s) = cTEc for an energy matrix E
which is a diagonally block matrix.

(4) The interpolatory conditions can be written Ic = f for a matrix I
and a vector f containing all data values zi.

(5) The minimal energy method for interpolatory splines is equivalent to
finding c such that

min{cTEc, subject to Hc = 0, Ic = f}.
(6) By the Lagrange multiplier method, we solve





E HT IT

H 0 0
I 0 0









c

α
β



 =





0
0
f



 .
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(7) To solve this system, we use the following iterative method introduced
in [Awanou, Lai, Wenston’06]:

(

E +
1

ǫ

[

HT IT
]

[

H
I

])

c(1) =
1

ǫ
IT f ,

(

E +
1

ǫ

[

HT IT
]

[

H
I

])

c(k+1) = Ec(k) +
1

ǫ
IT f ,

for k = 1, 2, · · · and ǫ > 0, e.g., ǫ = 10−6.

We need to show that the iterative method above is convergent. To
this end, recall that a matrix A is positive definite with respect to B if
cT Ac ≥ 0 and if Ac = 0 and Bc = 0 for some c, then c = 0. In [Awanou
and Lai’05], we proved the following (cf. [Awanou, Lai, and Wenston’06]
for a similar result).

Theorem 3. Suppose that E is positive definite with respect to [H, I]T .
Then the above iteration converges, and

‖c(k+1) − c‖ ≤ Cǫk, ∀k ≥ 1.

When the number of data sites is large, e.g., N > 1000, a computer
may not be powerful enough to solve the linear system. A domain decom-
position technique for computing an approximation of the minimal energy
spline interpolation was proposed in [Lai and Schumaker’03]. The ideas
of domain decomposition for scattered data fitting can be explained as
follows.

Let D1(t) be the union of all triangles in ∆ which share a vertex or
edge with t, and Dk+1(t) the union of all triangles sharing a vertex or
edge with triangles in Dk(t). For k ≥ 1, we compute a minimal energy
interpolatory spline Sf,t,k ∈ Λ(f) such that

EDk(t)(Sf,t,k) = min{EDk(t)(s), s ∈ Λ(f |t)},

EDk(t)(s) =

∫

Dk(t)

(

(

∂2

∂x2
f

)2

+ 2

(

∂2

∂x∂y
f

)2

+

(

∂2

∂y2
f

)2
)

.

The following result was established in [Lai and Schumaker’03].

Theorem 4. Suppose that f ∈ C2(Ω). For d ≥ 3r+2, there is a 0 < ρ < 1
such that

‖Sf − Sf,t,k‖L∞(t) ≤ Cρk|f |2,∞,Ω

for k ≥ 1, where C is a constant dependent on d, β.
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Fig. 1. A set of scattered data (courtesy Tom Grandine).

This result shows that a (global) minimal energy spline interpolation
Sf can be approximated by local minimal energy spline interpolations
Sf,t,k for all t ∈ △. That is, for each triangle t, one can use a local
minimal energy spline interpolation Sf,t,k to replace the global one Sf |t
within some tolerance. In the following we give a numerical example.

Example 1. We are given a set of data shaped like a cone in Fig. 1. There
are about 900 points in 3D Euclidean space. A Delaunay triangulation of
the given data locations is shown in Fig. 2. A piecewise linear interpolation
is given in Fig. 3. We use C1 quintic spline functions and find the minimal
energy interpolatory spline surface as shown in Fig. 4. It is clear that the
surface is smooth although there are a few bumpy spots which indicate
imperfect data values.

We now outline some extensions to incomplete data interpolation, Her-
mite data interpolation, hole filling, and spherical scattered data interpo-
lation.

When a given data set is incomplete, i.e., values at some grid locations
are not given as shown in Fig. 5, we can still use the minimal energy
method with the assumption that the spline coefficients at those vertices
which have no given data values are free. The computation is exactly as
above. Indeed, the interpolation conditions Ic = f have fewer entries than
the standard one.

We use C1 quintic spline to find an interpolatory surface using the
minimal energy method. It is clear from Fig. 6 that the surface is smooth.
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Fig. 2. A triangulation of the given data locations.

Fig. 3. A piecewise linear interpolation.
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Fig. 4. A C
1 quintic spline interpolation.
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Fig. 5. A set of data points (courtesy Gerald Farin).
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Fig. 6. A C
1 quintic spline surface with the given data locations.

When a given data set contains Hermite data values

{(xi, yi, D
αf(xi, yi), |α| ≤ r, i = 1, · · · , N},

we can use the minimal energy method to find a spline function Hf in
Sr

d(∆) to interpolate all the given data values including derivatives, i.e..

DαHf (xi, yi) = Dαf(xi, yi), |α| ≤ r, i = 1, · · · , N.

The existence, uniqueness, and approximation properties of Hf have been
discussed in [Zhou, Han and Lai’07].

When the given data values as well as normal derivative values are all
on the boundary of a surface hole, we can use the minimal energy method
to find a C1 spline surface patch to mend the hole (cf. [Chui and Lai’00]).
See the example in Fig. 7.

When the given data values are over the spherical domain, we can
use the spherical splines [Alfeld, Neamtu, Schumaker’96] and the minimal
energy method to find a Cr interpolatory spline surface. The framework
of minimal energy interpolatory splines in the bivariate setting has been
generalized to the spherical setting (cf. [Baramidze, Lai and Shum’06]).
The computational algorithm is similar to the one for bivariate polynomial
splines. In Fig. 8, we present a set of normalized scattered data values
over the surface of the earth. They are simulated measurements from a
German satellite CHAMP launched on 2000. We use C1 quintic spherical
splines to find an interpolant.
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Fig. 7. Hole filling using C
1 quintic splines.
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Fig. 8. Normalized simulated geopotential measurements (top) and C
1 quintic

spherical spline interpolation (bottom)
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3.2. Discrete Least Squares Fitting

The discrete least squares method is one of the classical methods for data
fitting. Instead of polynomial fitting, we use multivariate splines. Let
ℓ(f) =

∑N
i=1 |f(xi, yi)|2. We look for Sf ∈ Sr

d(∆) such that

ℓ(Sf − f) = min{ℓ(s− f), s ∈ Sr
d(∆)}.

Sf is called the discrete least squares fit of the given data {(xi, yi, fi), i =
1, · · · , N} with fi = f(xi, yi).

To show the existence and uniqueness of the solution Sf , we need to
assume

A1‖s‖L∞(T ) ≤
√

∑

(xi,yi)∈T

|s(xi, yi)|2

for all s ∈ Sr
d(∆) and all triangle T ∈ ∆ (cf. [von Golitschek and Schu-

maker’02a]).

Theorem 5. Suppose that the above constant A1 is strictly positive.
Then there exists a unique spline fit Sf ∈ Sr

d(∆).

Let
√

∑

(xi,yi)∈T

|s(xi, yi)|2 ≤ A2‖s‖L∞(T )

for all T ∈ ∆ and s ∈ Sr
d(∆). It is easy to see that A2 must be less than or

equal to the maximal number of points per triangle. The following result
was established in [von Golitschek and Schumaker’02a].

Theorem 6. Assume that f ∈ Wm+1
∞ (Ω). Then

‖Sf − f‖L∞(Ω) ≤ C
A2

A1
|∆|m+1|f |m+1,∞,Ω

for a constant C dependent on β, d.

Furthermore, we can show the following

Corollary of Theorem 6. Under the same assumptions above, for |α| ≤
m + 1,

‖Dα(Sf − f)‖L∞(Ω) ≤ C
A2

A1
|∆|m+1−|α||f |m+1,∞,Ω

for a constant C dependent only on β and d.

This can be proved by using a polynomial approximation property and
Markov’s inequality. Details are omitted here.
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Our next question is how to compute discrete least squares fits. Recall
that we write each s ∈ S−1

d (∆) in the B-form

s(x, y)|t =
∑

i+j+k=d

ct
ijkBd,t

ijk(x, y)

with coefficient vector c = (ct
ijk , i + j + k = d, t ∈ ∆).

We put all smoothness conditions of Sr
d(∆) together as

Hc = 0.

Let L be an observation matrix. It is easy to see

ℓ(s − f) = cTLLT c − 2cTLf + fT f .

The discrete least squares spline is the solution of

min{cTLLT c − 2cTLf , subject to Hc = 0}.

By the Lagrange multipliers method, we solve
[

LLT HT

H 0

] [

c

α

]

=

[

Lf

0

]

.

The ALW iteration introduced in the previous subsection can be ap-
plied to solve the above linear system. As before the iterative solutions
converge the exact solution.

When the number of data sites is large, especially when the number
of triangles is large, a computer may not be powerful enough to solve
the associated linear system. We again propose a domain decomposition
technique for computing an approximation of the discrete least squares
spline (cf. [Lai and Schumaker’03]). That is, for k ≥ 1, we compute Sf,t,k

such that

ℓDk(t)(Sf,t,k − f) = min{ℓDk(t)(s − f), s ∈ Sr
d(∆)},

ℓDk(t)(s − f) =
∑

(xi,yi)∈Dk(t)

|s(xi, yi) − f(xi, yi))
2.

We have the following (cf. [Lai and Schumaker’03])

Theorem 7. Suppose that Sr
d(∆) with d ≥ 3r+2 over a β quasi-uniform

triangulation ∆. Suppose that data values are obtained from a contin-
uously differentiable function f ∈ Cm+1(Ω). Suppose that A1 > 0 and
A2 < ∞ are constants such that A2/A1 is independent of ∆. Then there
is a positive ρ < 1 such that

‖sf − Sf,k‖L∞(t) ≤ Cρk(k + 2)|∆|m+1|f |m+1,∞,Ω

for k ≥ 1, where C is a constant dependent only on d, β and A2/A1.
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3.3. Penalized Least Squares Spline Method

Recall that E(f) denotes a thin-plate energy functional of f and ℓ(s) =
∑N

i=1(s(xi, yi) − fi)
2 as before. Fix λ > 0. Define P (s) = ℓ(s) + λE(s).

The PLS spline is the minimization solution Sf,λ ∈ Sr
d(∆) such that

P (Sf,λ) = min{P (s), s ∈ Sr
d(∆)}.

We refer to [Awanou, Lai, and Wenston’06] for a proof of the following.

Theorem 8. Suppose that N ≥ 3, and there exist three data sites, say
(xi, yi), i = 1, 2, 3, which are not colinear. Then there exists a unique Sf,λ

in Sr
d(∆) solving the above minimization problem.

We certainly want to know if the penalized least squares fitting surface
resembles the given data or not. Since f − Sf,λ = f − Sf,0 + Sf,0 − Sf,λ,
we need to estimate Sf,0 − Sf,λ. To do so, we introduce the following two
quantities: (cf. [von Golitschek and Schumaker’02b])

K1 = sup{E(s)1/2

ℓ(s)1/2
, s ∈ Sr

d(∆), s 6= 0}

and

K2 = sup{‖s‖L∞(Ω)

ℓ(s)1/2
, s ∈ Sr

d(∆), s 6= 0}.

Then in [von Golitschek and Schumaker’02b], von Golitschek and Schu-
maker proved the following

Theorem 9. Let Sf,λ be the Penalized Least Squares spline in Sr
d(∆)

with d ≥ 3r + 2. Assume that K1 and K2 are finite. Then

‖Sf,λ − Sf,0‖L∞(Ω) ≤ K2

√
λE(Sf,0)min{1, K1

√
λ}.

We now work on estimating K1 and K2. It is easy to get

E(s) ≤
∑

T∈∆

AT ‖s‖2
2,∞,T ≤

∑

T∈∆

AT

ρ4
T

‖s‖2
L∞(T ) ≤

β2

(ρ∆)2
ℓ(s)

A2
1

.

It follows that K1 ≤ β
A1ρ∆

.

Since ‖s‖L∞(Ω) = ‖s‖L∞(T ) for a triangle T ,

‖s‖L∞(Ω) ≤
1

A1

√

∑

(xi,yi)∈T

|s(xi, yi)|2 ≤ 1

A1
ℓ(s)1/2.

It follows that

K2 ≤ 1

A1
.
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Theorem 10. Let Sf,λ be the PLS spline in Sr
d(∆) with d ≥ 3r + 2.

Suppose that f ∈ Wm+1
∞ (Ω) with 1 ≤ m ≤ d. Then

‖Sf,λ − f‖L∞(Ω) ≤ C1|∆|m+1|f |m+1,∞,Ω + λ
C|f |2,∞,Ω

A2
1(ρ∆)2

,

where C1 > 0, C2 > 0 are constants dependent on A2/A1, β and d.

To see that the convergence is linear in λ, we present some numerical
experiments: For λi = 1/210+i, the maximum errors of Sf,λi

to f are

λ2 λ3 λ4 λ5

S1
5(∆) 5.466e− 4 2.800e− 4 1.421e− 4 7.819e− 5

S1
6(∆) 5.451e− 4 2.762e− 4 1.408e− 4 7.318e− 5

As we see the condition for the existence of penalized least squares
spline fits is much weaker than that for the existence of the discrete least
squares spline fits. However, the approximation result on penalized least
squares spline fits is dependent on a very strong condition on the data
sites, i.e., A1 > 0. It is interesting to see if one can remove this condition
while proving that the penalized least squares fits resemble the shape of
the data.

Recall c is the coefficient vector of a spline s ∈ S−1
d (∆), H is the

smoothness matrix such that Hc = 0 if and only if s ∈ Srd(∆), E is the
energy matrix, and L is the observation matrix. Then the PLS spline is
the minimization solution

min{cTLLT c − 2cTLf + λcT Ec, subject to Hc = 0}.

By the Lagrange multipliers method, we solve
[

LLT + λE HT

H 0

] [

c

α

]

=

[

Lf

0

]

.

We apply the ALW iteration introduced before.
When the number of triangles is large, a computer may not be pow-

erful enough to find the PLS splines. We use a domain decomposition
technique for computing an approximation of the PLS spline (cf. [Lai and
Schumaker’03]). For k ≥ 1, we compute a PLS spline Sf,t,k such that

PDk(t)(Sf,t,k) = min{PDk(t)(s), s ∈ Sr
d(∆)},

where

PDk(t)(s) =
∑

(xi,yi)∈Dk(t)

|s(xi, yi) − f(xi, yi)|2 + λE(s|Dk(t)).

Here Dk(t) = stark(t) for each triangle t ∈ △. We have the following
result (cf. [Lai and Schumaker’03]).
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Theorem 11. Suppose that Sr
d(∆) with d ≥ 3r+2 over a β quasi-uniform

triangulation ∆. Suppose that data values are obtained from a continu-
ously differentiable function f ∈ Cm+1(Ω). Suppose that A1 > 0 and
A2 < ∞ are constants such that A2/A1 is independent of ∆. Then there
is a positive ρ < 1 such that

‖sf − Sf,k‖L∞(t) ≤ Cρk((k + 2)3/2|∆|m+1|f |m+1,∞,Ω + λ|f |2,∞,Ω)

for k ≥ 1, where C is a constant dependent only on d, β and A2/A1.

3.4. L1 Spline Methods

L1 spline methods for data fitting were proposed in [Lavery’2000]. He
used C1 cubic spline curves and bivariate C1 cubic Sibson’s elements for
scattered data in 1D and grid data in 2D, respectively. Lai and Wenston
in 2004 generalized the study to the scattered data in the bivariate setting.
Recall that

Λ(f) = {s ∈ Sr
d(∆), s(xi, yi) = f(xi, yi), i = 1, · · · , N}.

Let E1(s) be the L1 energy functional, i.e.,

E1(f) =

∫

Ω

(∣

∣

∣

∣

∂2

∂x2
f

∣

∣

∣

∣

+ 2

∣

∣

∣

∣

∂2

∂x∂y
f

∣

∣

∣

∣

+

∣

∣

∣

∣

∂2

∂y2
f

∣

∣

∣

∣

)

dxdy.

Find Sf ∈ Λ(f) such that

E1(Sf ) = min{E1(s), s ∈ Λ(f)}.
Sf is called the L1 interpolatory spline of the given data {(xi, yi, f(xi, yi)),
i = 1, · · · , N}. A proof of the following theorem can be found in [Lai
and Wenston’04]. This can be seen from the fact that the minimization
functional is convex. However, the functional is not strictly convex and
hence, the solution may not be unique.

Theorem 12. Suppose that Λ(f) is not empty. Then there exists at least
one Sf solving the above minimization problem.

The interpolatory surfaces which minimize the L1 energy functional
are indeed different from the usual L2 minimal energy splines. Figures 9
and 10 show their differences. (These figures are borrowed from [Lai and
Wenston’04].)

It is necessary to show that L1 interpolatory splines resembles the
shape of the given data. Lai in [Lai’07] proved the following

Theorem 13. Suppose that f ∈ C2(Ω). Let Sf be the L1 interpolatory
spline of the data (xi, yi, f(xi, yi)), i = 1, · · · , N . Then

‖Sf − f‖L1(Ω) ≤ C|∆|2|f |2,∞,Ω,

for a constant C dependent only on β and d.
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Fig. 9. L1 interpolatory spline (the top row) and minimal energy interpolatory
spline (the bottom row)
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Fig. 10. L1 interpolatory spline (the top row) and minimal energy interpolatory
spline (the bottom row)
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3.5. Least Absolute Deviation

For a given data set {(xi, yi, f(xi, yi)), i = 1, · · · , N}, let

ℓ1(s) =

N
∑

i=1

|s(xi, yi)|.

We find Sf ∈ Sr
d(∆) such that

ℓ1(Sf − f) = min{ℓ1(s − f), s ∈ Sr
d(∆)}.

Sf is the least absolute deviation(LAD) from the given data (cf. [Bloom-
field and Steiger’83]).

Since the minimization functional is convex, there always exist a min-
imizer Sf (cf. [Lai and Wenston’04]). Next we would like to know how
well the LAD surface resembles the given data. Let F1 and F2 be positive
numbers such that

F1‖s‖L∞(T ) ≤
∑

(xi,yi)∈T

|s(xi, yi)| ≤ F2‖s‖L∞(T )

for all s ∈ Sr
d(∆) and for all T ∈ ∆. We have the following (cf. [Lai’07]).

Theorem 14. Suppose that two constants F1 > 0 and F2 < ∞ such that
F2/F1 independent of ∆. Suppose that f ∈ Wm+1

∞ (Ω) for 0 ≤ m ≤ d.
Then

‖Sf − f‖L1(Ω) ≤ C|∆|m+1|f |m+1,∞,Ω

for a positive constant C dependent on F2/F1, β and d.

3.6. L1 Smoothing Splines

L1 smoothing splines are Sf ∈ Sr
d(∆) which minimizes

ℓ1(Sf − f) + λE1(Sf ) = min{ℓ1(s − f) + λE1(s), s ∈ Sr
d(∆)}.

Since the minimization functional is convex, there exists at least one
Sf solving the above minimization problem. We next need to show that Sf

approximates f as the size of the triangulations goes to zero (cf. [Lai’07]).

Theorem 15. Under the same assumptions as Theorem 14,

‖Sf − f‖L1(Ω) ≤ C|∆|m+1|f |m+1,∞,Ω + λ
Cf

F1
|∆|2

for a positive constant C dependent on F2/F1, β and d.
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Algorithms computing these three L1 spline methods were discussed
in [Lai and Wenston’04]. The main ideas are

1) use discontinuous piecewise polynomial functions and set the smooth-
ness conditions as side constraints;

2) convert L1 norm minimization to a linear programming problem;

3) use Karmarkar’s algorithm to solve the linear programming problem.

§4. New Research Initiatives

We now explain some new directions of research on scattered data fitting
using multivariate splines.

4.1. Approximation of Convolution Functions

Suppose we know a convolution operator with known kernel K(x, y, x′, y′),

f(x, y) =

∫

Ω

K(x, y, x′, y′)g(x′, y′)dx′dy′.

Suppose that a set of data {(xi, yi, f(xi, yi)), i = 1, · · · , N} is given and
we are required to find an approximation of g. One typical application
is to compute the geopotential G near the surface of the earth from the
measurement of the geopotential of a satellite at an orbital surface. We
know that G is the solution of the Laplace equation:

G(x, y) =

∫

Ω

K(x, y, x′, y′)g(x′, y′)dx′dy′,

where K is a Poisson kernal and g is the geopotential near the earth
surface. G(x, y) is known at measurement locations at the orbital level
taken by a satellite, CHAMP. We look for Sg ∈ Sr

d(∆) minimizing

min
s∈Sr

d
(∆)

(

N
∑

i=1

(G(xi, yi) −
∫

Ω

K(xi, yi, x
′, y′)s(x′, y′)dx′dy′

)2

.

We say {(xi, yi), i = 1, · · · , N} are evenly distributed over Ω with respect
to Sr

d(∆): if s ∈ Sr
d(∆) such that

∫

Ω

K(xi, yi, x
′, y′)s(x′, y′)dx′dy′ = 0,

for i = 1, · · · , N , then s ≡ 0.

Theorem 16. Suppose that the data set are evenly distributed with re-
spect to Sr

d(∆) for some positive integers r and d > r. Then there exists
a unique spline Sg ∈ Sr

d(∆) solving the above minimization problem.



20 M. J. Lai

We say K is coercive if there exists α > 0 such that

α‖f‖L2(Ω) ≤ ‖
∫

Ω

K(x, y, x′, y′)f(x′, y′)dx′dy′‖L2(Ω).

Theorem 17. Suppose that K is bounded and coercive. Suppose that
the data sites are evenly distributed. If g ∈ Wm+1

∞ (Ω) with 0 ≤ m ≤ d,
then

‖Sg − g‖L2(Ω) ≤ C|∆|m+1‖g‖m+1,2,Ω +
C

N
‖g‖L2(Ω).

The above discussion can be found in [Lai’07b].

4.2. Rank Restricted Splines

Suppose {(xi, yi, fk(xi, yi), i = 1, · · · , N, k = 1, · · · , n}, i.e., the targeted
function f has been sampled n times over designed points (xi, yi), i =
1, · · · , N , f has several patterns during the time period k = 1, · · · , n. We
look for spline functions

min{ 1

n

n
∑

k=1

(

N
∑

i=1

(fk(xi, yi) − sk(xi, yi))
2 + λ‖sk‖2

2,2

)

,

sk ∈ Sr
d(△), dim(span(sk, k = 1, · · · , n)) ≤ q}.

This problem can be solved based on singular value decomposition (cf.
[Guillas and Lai’07a]).

4.3. Linear Functional Approximation

In addition to the given data set

{(xi, yi, fk(xi, yi), i = 1, · · · , N, k = 1, · · · , n},

we are also given values vk, k = 1, · · · , n. Assume that vk is an observa-
tion of a continuous functional v at function fk whose values fk(xi, yi) at
designed points (xi, yi), i = 1, · · · , N are known. If v is linear on L2(Ω),
then there exists α ∈ L2(Ω) such that

v(f) = 〈α, f〉, ∀f ∈ L2(Ω).

by the Riesz representation theorem. Our aim is to approximate the linear
functional v, i.e., α. One way is to find Sα,n ∈ Sr

d(∆) such that

Sα,n = arg min
s∈Sr

d
(∆)

1

n

n
∑

k=1

(vk − 〈s, fk〉)2. (1)

It is easy to see that the above problem is a discretization of the fol-
lowing problem: find Sα ∈ Sr

d(△) of v(f) = 〈α, f〉 such that

Sα = arg min
β∈Sr

d
(△)

E
[

(v(f) − 〈β, f〉)2
]

. (2)
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where E is the expectation of the random variable f : X = {f(ω, s), ω ∈
Ω, s ∈ D}, where D ⊂ R2 is a bounded domain, Ω is a collection of events,
and f(ω, ·) ∈ L2(D) for each event ω. In [Guillas and Lai’07], we showed
the following result.

Theorem 18. Suppose that only the spline in Sr
d(△) which is orthogonal

to the collection X ⊂ L2(D) is zero. Then the minimization problem (2)
has a unique solution in Sr

d(△).

Furthermore we can show

Theorem 19. Suppose that E(‖f‖2) ≤ M < ∞ for all f ∈ X , and sup-
pose that α ∈ Cr(D) for r ≥ 0. Then the solution Sα of the minimization
problem (2) approximates α in the following theorem. sense:

E((〈α − Sα, f〉)2) ≤ CM |△|2r,

where |△| is the maximal length of the edges of △.

Similarly we have the following

Theorem 20. Suppose that only the spline function in the spline space
Sr

d(△) perpendicular to the subspace span{f1, · · · , fn} is zero except on
an event whose probability goes to zero as n → ∞. Then there exists a
unique Sα,n ∈ Sr

d(△) minimizing (1).

We now show that Sα,n approximates Sα in probability using the law
of large number.

Theorem 21. Suppose that fℓ, ℓ = 1, · · · , n are i.i.d. and ‖fℓ‖ is uni-
formly bounded a.s. Then Sα,n converges to Sα in probability with con-
vergence rate as in (3). That is, the probability

P

(‖Sα − Sα,n‖
‖Sα‖

≥ ǫ

)

≤ 4m2 exp

(

− nγ2ǫ2

32κ(A)2m2M2

)

+ 2m exp

(

− nγ2ǫ2

32κ(A)2M2
b

)

, (3)

where m is the dimension of spline space Sr
d(△), A is the coefficient matrix

associated with Sα, κ(A) denotes the condition number of matrix A, and
γ is a positive constant dependent on the stability of the basis functions
of Sr

d(△).

We refer the interested reader to [Guillas and Lai’07] for details. See
[Ettinger, Guillas, and Lai’07] for further results.
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