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Abstract

We numerically simulate the following two nonlinear evolution equations with a fourth
order (biharmonic) leading term:

−∆2u− 1
ε2

(|u|2 − 1)u = ut in Ω ⊂ R2 or R3

and
−∆2u +

1
ε2
∇ · ((|∇u|2 − 1)∇u) = ut in Ω ⊂ R2 or R3

with an initial value and a Dirichlet boundary conditions. We use a bivariate spline space
like finite element method to solve these equations. We discuss the convergence of our
numerical scheme and present several numerical experiments under different boundary
conditions and different domains in the bivariate setting.
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type equations, Bivariate Spline Method

§1. Introduction

In this paper, we are interested in the numerical behavior of the following two bihar-
monic equations

(1.1)





−∆2u− 1
ε2

(|u|2 − 1)u = ut, in Ω ⊂ R2 or R3

u(x, 0) = u0(x), x ∈ Ω
u(x, t) = u1(x) x ∈ ∂Ω
∂u
∂n (x, t) = u2(x) x ∈ ∂Ω
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and

(1.2)





−∆2u +
1
ε2
∇ · ((|∇u|2 − 1)∇u) = ut, in Ω ⊂ R2 or R3

u(x, 0) = u0(x), xΩ
u(x, t) = u1(x) x ∈ ∂Ω
∂u
∂n (x, t) = u2(x) x ∈ ∂Ω,

where Ω is a bounded domain in R2 or R3 and n is the outward normal of the boundary
∂Ω.

Equation (1.1) may be regarded as the gradient flow of the following energy functional:

(1.3) E(u) :=
1
2

∫

Ω

(
|∆u|2 +

1
2ε2

(|u|2 − 1)2
)

dx

in the class

(1.4) C = {u ∈ H2(Ω), u
∣∣
∂Ω

= u1,
∂

∂n
u
∣∣
∂Ω

= u2}.

Similarly, equation (1.2) is the gradient flow of the energy functional

(1.5) E(u) :=
1
2

∫

Ω

(
|∆u|2 +

1
2ε2

(|∇u|2 − 1)2
)

dx

in the class (1.4).
The understanding of the above two equations were originally motivated by our earlier

study in the smectic liquid crystals (cf. [LLW03]). In that paper, the existence, uniqueness
and stability of the solutions of both equations were established. In particular, for both
equations, one of the important issues is to study the asymptotic behavior as ε → 0.
However, little is known about the variational problem involving the second order derivative
term as those in (1.3) and (1.5). From the analysis point of view, one main difficulty is
the lack of the maximum principle.

In [LLW03], we used a special bivariate spline space in our proofs of the global existence
of the weak solutions. We recall the weak formulation for (1.1): find u ∈ L2(0, T, H2

0 (Ω))
such that

(1.6)

∫

Ω

utvdx+
∫

Ω

∆u∆vdx +
1
ε2

∫

Ω

(u2 − 1)uvdx

=
∫

Ω

f(u)vdx

for all v ∈ H2
0 (Ω). The weak formulation for (1.2) is as follows: Find u ∈ L2(0, T, H2

0 (Ω))
such that

(1.7)

∫

Ω

utvdx+
∫

Ω

[
∆u∆v +

1
ε2

(|∇u|2 − 1)∇u∇v

]
dx

=
∫

Ω

f(u)vdx

2



for all v ∈ H2
0 (Ω). Here, we have already substracted a biharmonic function with the

original boundary conditions in (1.1) and (1.2). See [LLW03] for a detailed treatment and
the compatiblity of the boundary conditions.

We used the bivariate spline space Sr
3r(♦+) as finite dimensional approximation space

in our Galerkin’s procedure. The spline space mentioned above is defined as

Sr
3r(♦+) = {S ∈ Cr(Ω) : s|t ∈ P3r,∀t ∈ ♦+},

where P3r is the space of all polynomials of degree ≤ 3r and ♦+ is a triangulated quadran-
gulation of the domain Ω ⊂ R2 which is obtained from a nondegenerate quadrangulation
♦ of Ω by adding two diagonals of each quadrilateral in ♦ (cf. [Lai and Schumaker99]).
Such a special triangulation is general enough to partition any polygonal domains.

We will show the convergence of the spline solution to the weak solution of the equa-
tions (1.1) and (1.2) in §2 and §3, respectively. We explore the asymptotic behavior of
the numerical solutions as time t −→ ∞ and ε −→ 0. We encountered many interesting
phenomena indicating the possibility of the nonuniqueness of the solutions to the steady
state equations (1.1) and (1.2) as ε very small. That is, there could be many critical points
for (1.3) and (1.5) or there are many paths leading to the minimizer.

§2. Numerical Analysis of Equation (1.1)
In this section, we will present numerical analysis and simulation of the spline solutions

to both the steady state equation (2.1) below and the time dependent equation (1.1). We
will Newton’s method to solve the nonlinear equations (2.1) and Crank-Nicolson’s method
in time steps for (1.1). Find u ∈ V ⊂ H2

0 (Ω) such that

(2.1) a2(u, v) + b(u, u, v)− 〈f(u), v〉 − 〈g, v〉 = 0

for all v ⊂ V ⊂ H2
0 (Ω), where

a2(φ, ψ) =
∫

Ω

∆φ∆ψdx

and
b(θ, φ, ψ) =

1
ε2

∫

Ω

(|θ|2 − 1)φψdx.

The stationary problem of equation (1.1) can be converted into (2.1) for a certain f(u) (cf.
[LLW03]).

Let V = Sr
3r(♦+)

⋂
H2

0 (Ω) be a spline subspace in H2
0 (Ω). We may absorb 〈g, v〉 into

〈f(u), v〉 and follow the same arguments of Theorem 2.3 in [LLW03] to have

Theorem 2.1. For any ε > 0, there exists a weak solution Su ∈ V satisfying (2.1).

Alternatively we may use the Brouwer fixed point theorem to prove Theorem 2.1.
(cf. [Lai and Wenston’98] for such kind of proof for the nonlinear biharmonic equation
associated with the Navier-Stokes equations.)

Note that the proof of Lemma 2.5 in [LLW03] can be used to prove the boundedness
of Su. That is,
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Lemma 2.1. Let Su be a weak solution satisfying (2.1) with V = Sr
3r(♦+)

⋂
H2

0 (Ω). Then

∫

Ω

|∆Su|2dx ≤ C(ε)|Ω|.

Also, the proof of Theorem 2.4 in [LLW03] yields the following

Theorem 2.2. If ε is not very small, then the weak solution Su ∈ V is unique.

We now see how close Su is to the weak solution u. Consider

ε2a2(u− Su, u− Su) = ε2a2(u− Su, u− S) + ε2a2(u− Su, S − Su)

where S is a spline function in Sr
3r(♦+)

⋂
H2

0 (Ω).
Note that we have

a2(u− Su, S − Su)
=b(Su, Su, S − Su)− b(u, u, S − Su) + 〈f(Su)− f(u), S − Su〉
=b(Su, Su, u− Su) + b(Su, Su, S − u)− b(u, u, u− Su)

+ b(u, u, u− S)− 3
ε2
〈φ(Su + u)(Su − u), S − Su〉

− 3
ε2
〈φ(Su − u), S − Su〉

For b(Su, Su, S − u) + b(u, u, u− S), we have, by using a well-known inequality
∫

Ω

f4dx ≤ 2
∫

Ω

f2dx

∫

Ω

|∇f |2dx

and by Poincaré’s inequality,

|b(Su, Su, u− S)− b(u, u, u− S)|
≤ |b(Su, u− Su, u− s)|+ |b(u, u, u− S)− b(Su, u, u− S)|
≤ 1

ε2
C1(|Su|21,Ω + 1)|Su − u|1,Ω|u− S|1,|Ω

+
1
ε2

C2|Su − u|1,Ω(|Su|1,Ω + |u|1,Ω)|u|1,Ω|u− S|1,Ω

≤ C(ε,K, |Ω|)|Su − u|2,Ω|u− S|1,Ω,

where | · |k,Ω is the usual semi norm of Hk(Ω) and C(ε,K, |Ω|) is a constant. Here, we have
used Lemma 2.1 and Theorem 2.5 in [LLW03].

For b(Su, Su, u− Su)− b(u, u, u− Su), we have

ε2(b(Su, Su, u− Su)− b(u, u, u− Su))

= −1
4

∫

Ω

|Su − u|4dx− 3
4

∫

Ω

|u2 − S2
u|2dx +

∫

Ω

|Su − u|2dx.
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For
1
ε2
〈φ(Su + u)(Su − u), S − Su〉+

1
ε2
〈φ(Su − u), S − Su〉, we have,

|〈φ(Su + u)(Su − u), S − Su〉+ 〈φ(Su − u), S − Su〉|
≤ |〈φ(Su + u)(Su − u), u− Su〉+ 〈φ(Su − u), u− Su〉|

+ |〈φ(Su + u)(Su − u), S − u〉+ 〈φ(Su − u), S − u〉|
≤
√

2Km(|Su|0,Ω + |u|0Ω)|u− Su|21,Ω +
√

2mK2|u− Su|21,Ω

+
√

2K2m(|Su|0,Ω + |u|0,Ω)|u− Su|1,Ω|u− S|1,Ω

+
√

2K2m|u− Su|1,Ω|u− S|1,Ω

≤ C3(m,K, ε, |Ω|)|u− Su|22,Ω

+ C3(m,K, ε, |Ω|)|u− Su|2,Ω|u− S|2,Ω

for a constant C3 which is dependent on m,K, ε and |Ω|, where K is the Poincaré constant.
We now summarize the above discussion to have

ε2a2(u− Su, u− Su) +
1
4

∫

Ω

|Su − u|4dx +
3
4

∫

Ω

|u2 − S2
u|2dx

= ε2a2(u− Su, u− S) +
∫

Ω

|Su − u|2dx

+ ε2b(Su, Su, S − u) + ε2b(u, u, u− S)

− 3〈φ(S2
u − u2), S − Su〉 − 3〈φ(Su − u), S − Su〉

≤ ε2|u− Su|2,Ω|u− S|2,Ω + K4|u− Su|22,Ω

+ C(ε, K, |Ω|)|u− Su|2,Ω|u− S|2,Ω

+ C3(m,K, ε|Ω|)|u− Su|2,Ω

+ C3(m,K, ε|Ω|)|u− Su|2,Ω|u− S|2,Ω.

Thus, we have

(ε2 −K4 − C3(m, ε, K, |Ω|))|u− Su|2,Ω

≤(ε2 + C(ε,K, |Ω|) + C3(m,K, ε, |Ω|))|u− S|2,Ω.

That is, |u− Su|2,Ω ≤ α|u− S|2,Ω for any S ∈ S1
3(♦) ∩H2

0 (Ω), where constant α = (ε2 +
C(ε, K, |Ω|)+C3(m,K, ε|Ω|))/(ε2−K4−C(m, ε, K, |Ω|)). By using the spline approximation
property (c.f. Theorem 1.1 in [Lai and Schumaker’99]), we complete the proof of the
following

Theorem 2.3. Suppose that ε is not very small. Suppose that φ ∈ Hk(Ω) with k ≥ 3.
Then the bivariate spline solution Su approximates the weak solution u and satisfies

|Su − u|2,Ω ≤ C|♦+|k−2|φ|k,Ω.

Next we discuss the implementation of bivariate spline spaces to numerically solve
both the equation (1.1) and its steady state equation (2.1). We apply bivariate spline space
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S1
3(♦+) to discretize the space variables of the equations (1.1) using Galerkins’s method and

use Crank-Nicolson’s method to discretize the time variable of the equations (1.1). For
each step we employ the Newton method to iterate the nonlinear term in (1.1). We set
the error between iterations to be 10−8 for a stopping criterion. For the time dependent
problem (1.1), we use the solution at t = ti to be an initial guess for the solution for
t = ti+1 and then apply the Newton method. More precisely, our numerical scheme for
(2.1) is
1) Start with Su,0 ∈ S1

3(♦+) which is the numerical solution of a biharmonic equation:





∫
Ω

∆Su,0∆vdx =
∫
Ω

gvdx, for all v ∈ S1
3(♦+) ∩H2

0 (Ω)
u
∣∣
∂Ω

= u1(x),
∂

∂nu
∣∣
∂Ω

= u2(x)

2) For k = 1, 2, 3, · · · , use Newton’s method to solve Su,k ∈ S1
3(♦+) satisfying





∫
Ω

∆Su,k∆vdx +
∫
Ω

f(Su,k)vdx =
∫
Ω

gvdx

u
∣∣
∂Ω

= u1(x),
∂

∂nu
∣∣
∂Ω

= u2(x).

3) Letting Su,k =
N∑

i=1

ci,kφi, if ‖{ci,k}−{ci,k−1}‖`∞ < 10−8, we stop the Newton iteration

in 2) and use Su,k as the spline approximation of the weak solution of (2.1).
Finally, we present some numerical experiments with the equations (1.1) and (2.1).

We did the following two sets of numerical experiments. First, we test if our programs work
correctly by inputing the programs the right-hand side and boundary conditions computed
from a known test function u, computing a numerical approximation Su, and comparing the
maximum errors between u and Su for several refinements of a underlying quadrangulation
of a given domain. We did such a test for several functions over different domains. We
tabulate some experimental results below in Tables 4.1–4.6. In the following Tables 4.1–
4.2, we numerically solve equation (2.1) with known exact solutions u(x, y) = x4 + y4

and u(x, y) = sin(xy). We list the maximum errors of the numerical solutions against
the exact solutions evaluated over 101 × 101 points equally-spaced over [0, 1] × [0, 1] for
different values ε.

Table 2.1. The maximum errors of numerical solutions of (2.1)
against the exact solution u(x, y) = x4 + y4.

matrix size ε = 1 ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0005
155× 155 7.316× 10−4 8.392× 10−4 1.998× 10−3 3.137× 10−2 7.936× 10−1

547× 547 6.983× 10−5 7.640× 10−5 1.465× 10−4 2.086× 10−3 9.888× 10−1

2051× 2051 6.082× 10−6 6.490× 10−6 1.083× 10−5 1.313× 10−4 9.965× 10−1

7939× 7939 4.811× 10−7 5.065× 10−7 7.785× 10−7 8.314× 10−6 9.970× 10−1
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Table 2.2. The maximum errors of numerical solutions of (2.1)
against the exact solution u(x, y) = sin(xy).

matrix size ε = 1 ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0005
155× 155 9.796× 10−5 9.768× 10−5 9.843× 10−5 3.014× 10−3 1.035× 100

547× 547 1.053× 10−5 1.059× 10−5 1.112× 10−5 2.876× 10−5 1.161× 100

2051× 2051 8.287× 10−7 8.313× 10−7 8.749× 10−7 2.090× 10−6 1.165× 100

7939× 7939 5.688× 10−8 5.709× 10−8 5.925× 10−8 1.304× 10−7 1.165× 100

When ε =
√

0.0005, our numerical experiments confirm the nonuniqueness of the
solution of (2.1). That is, starting from the spline solution of the biharmonic equation, the
iterations converge. However, they converge to a different solution than the exact solution.
That is why the errors in Tables 4.1–2 do not decrease as the refinement level increases.
In Figures 4.1–4.2, we show graphs of two numerical solutions of (2.1) associated with the
same boundary conditions.
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Fig. 2.1 Two numerical solutions of the equation (2.1)
with the same boundary conditions and ε =

√
0.0005.
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Fig. 4.2 Another two numerical solutions of the equation (2.1)
with the same boundary conditions. Here, ε =

√
0.0005.
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Secondly, we test if the numerical solutions of (1.1) converge to the solution of the
steady state equation (2.1). We input the programs the right-hand sides and boundary
conditions computed from a known test function u, input the programs with various initial
values, compute the numerical solutions Su at t = 1, 2, 5 and 10, and then compare the
maximum errors between u and Su. We list the maximum errors for various initial values,
different times t = 1, 2, 5 and 10 and various values ε.

Table 2.3. The maximum errors of numerical solutions of (1.1)
with boundary conditions obtained from u(x, y) = x4 + y4 and

initial value u(x, y) = (x4 + y4)(1− sin(πx) sin(πy))
against the exact solution u(x, y) = x4 + y4.

time ε = 1 ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0005
t = 1 8.812× 10−2 8.852× 10−2 9.235× 10−2 1.022× 10−1 7.364× 10−1

t = 2 3.407× 10−2 3.417× 10−2 3.507× 10−2 5.197× 10−2 7.831× 10−1

t = 5 8.882× 10−3 9.009× 10−3 1.034× 10−2 3.973× 10−2 7.930× 10−1

t = 10 6.941× 10−3 6.898× 10−3 6.455× 10−3 3.393× 10−2 7.941× 10−1

Table 2.4. The maximum errors of numerical solutions of (1.1)
with boundary conditions obtained from u(x, y) = x4 + y4 and

initial value u(x, y) = 1 against the exact solution u(x, y) = x4 + y4.

time ε = 1 ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0005
t = 1 2.735× 10−2 2.679× 10−2 2.206× 10−2 5.887× 10−2 7.815× 10−1

t = 2 8.326× 10−3 8.321× 10−3 8.352× 10−3 4.160× 10−2 8.130× 10−1

t = 5 3.280× 10−3 3.313× 10−3 3.807× 10−3 2.936× 10−3 8.121× 10−1

t = 10 2.443× 10−3 2.495× 10−3 3.092× 10−3 2.687× 10−2 8.045× 10−1

Table 2.5. The maximum errors of numerical solutions of (1.1)
with boundary conditions obtained from u(x, y) = sin(xy) and

initial value u(x, y) = sin(xy)(1− sin(πx) sin(πy))
against the exact solution u(x, y) = sin(xy).

time ε = 1 ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0005
t = 1 5.052× 10−2 5.009× 10−2 4.580× 10−2 2.133× 10−2 9.818× 10−1

t = 2 3.157× 10−2 3.140× 10−2 2.975× 10−2 2.026× 10−2 1.017× 100

t = 5 1.322× 10−2 1.319× 10−2 1.288× 10−2 9.750× 10−3 1.034× 100

t = 10 4.258× 10−3 4.249× 10−3 4.163× 10−3 4.048× 10−3 1.035× 100
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Table 2.6. The maximum errors of numerical solutions of (1.1)
with boundary conditions obtained from u(x, y) = sin(xy) and

initial value u(x, y) = 1 against the exact solution u(x, y) = sin(xy).

time ε = 1 ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0005
t = 1 9.943× 10−3 9.381× 10−3 5.409× 10−3 4.890× 10−2 9.619× 10−1

t = 2 3.327× 10−3 3.323× 10−3 3.406× 10−3 2.836× 10−2 1.025× 100

t = 5 1.294× 10−3 1.305× 10−3 1.440× 10−3 1.412× 10−2 1.048× 100

t = 10 7.292× 10−4 7.197× 10−4 6.233× 10−4 6.721× 10−3 1.044× 100

From Tables 2.3–2.6, we see that for ε >
√

0.0005, the numerical solutions of (1.1)
converges to the exact solution of the steady state equation (2.1) as t increases. This
verifies Theorem 2.4. However, when ε =

√
0.0005, the numerical solution of (1.1) in

Table 2.3–2.6 does not converge to x4 + y4 and sin(xy). Instead, it converges to the other
numerical solution of (2.1) as shown in the right graph of Fig. 2.1 and Fig. 2.2. We have
evaluated their energy functional at the solutions. The energy of the solutions in the right
graph of Figs 2.1 and 2.2 is smaller than the energy of the exact solutions.
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§3. Numerical Simulation of the Equation (1.2)
In this section, we study the numerical solution to both the steady state equation

(3.1) below and time dependent equation corresponding to (3.1).

(3.1)





∆2u + 1
ε2∇ · (|∇u|2 − 1)∇u) = g, in Ω

u
∣∣
∂Ω

= u1(x),
∂

∂nu
∣∣
∂Ω

= u2(x).

The study is similar to §2 although it is more complicated. Let us outline the main steps
and ingredients.

We first express the equation (3.1) in a weak formulation. Find u ∈ V ⊂ H2
0 (Ω) such

that

(3.1) a2(u, v) + b(u, u, v)− 〈f(u), v〉 − 〈g, v〉 = 0

for all v ⊂ V ⊂ H2
0 (Ω), where

b(θ, φ, ψ) =
1
ε2

∫

Ω

(|∇θ|2 − 1)∇φ · ∇ψdx

and

−ε2〈f(u), v〉 =
∫

Ω

|∇u|2∇φ · ∇vdx+

2
∫

Ω

∇u · ∇φ∇u · ∇vdx + 2
∫

Ω

∇u · ∇φ∇φ · ∇vdx

+
∫

Ω

|∇φ|2∇u · ∇vdx−
∫

Ω

∇φ · ∇vdx +
∫

Ω

|∇φ|2∇φ · ∇vdx

with φ being the biharmonic function with the original boundary conditions.
Let V = Sr

3r(♦+)
⋂

H2
0 (Ω) be a spline subspace in H2

0 (Ω) as before. We may use the
Brouwer fixed point theorem to prove Theorem 3.1 (cf. [Lai and Wenston’00] for such kind
of proof for the nonlinear biharmonic equation associated with Navier-Stokes equations).

Theorem 3.1. For any ε > 0, there exists a weak solution Su ∈ V satisfying (5.1).

Note that the proof of Lemma 3.4 in [LLW03] can be used to prove the boundedness
of Su. That is,

Lemma 3.1. Let Su be a weak solution satisfying (3.1) with V = Sr
3r(♦+)

⋂
H2

0 (Ω). Then

∫

Ω

|∆Su|2dx ≤ C(ε)|Ω|.

Similar to Theorem 3.4 in [LLW03], we have
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Theorem 3.2. If ε is not very small, then the weak solution Su is unique.

We next study the approximation of Su to u. Consider

ε2a2(u− Su, u− Su) = ε2a2(u− Su, u− S) + ε2a2(u− Su, S − Su)

for any spline function S ∈ V . Note that we have

a2(u− Su, S − Su)
=b(Su, Su, S − Su)− b(u, u, S − Su) + 〈f(Su)− f(u), S − Su〉
=b(Su, Su, u− Su) + b(Su, Su, S − u)− b(u, u, u− Su) + b(u, u, u− S)

+
1
ε2
〈(|∇Su|2 − |∇u|2),∇φ · ∇(S − Su)〉+

1
ε2
〈|∇φ|2,∇(Su − u) · ∇(S − Su)〉

+
2
ε2
〈∇(Su − u) · ∇φ,∇φ · ∇(S − Su)〉+

2
ε2
〈∇(Su − u) · ∇φ,∇Su · ∇(S − Su)〉

+
2
ε2
〈∇(Su − u) · ∇(S − Su),∇φ · ∇u〉.

The last four terms in the above can be bounded by C(m, ε, K, |Ω|)|S−Su|2,Ω|Su−u|2,Ω as
in §4, where C(m, ε, K, |Ω|) is a positive constant. Also, the first four terms on the right-
hand side in the above can be treated exactly as in §4 with ∇φ in place of φ. Therefore
we should get the same result. That is,

Theorem 3.3. Suppose that ε is not very small. Suppose that u ∈ Hk(Ω) with k ≥ 3.
Then the bivariate spline solution Su satisfying (3.1) approximates the weak solution u
such that

|Su − u|2,Ω ≤ C|♦+|k−2|u|k,Ω.

Finally we discuss the implementation of S1
3(♦+) to numerically solve both the equation

(1.2) and its steady state equation (3.1). We use S1
3(♦+) to discretize the space variables of

the equations (1.2) and (3.1) by Galerkins’s method and use Crank-Nicolson’s method to
discretize the time variable of the equations (1.2). For each step we employ the Newton
method to iterate the nonlinear term in (1.2) and (3.1). We set the error between iterations
to be 10−8 for a stopping criterion. For the time dependent problem (1.2), we use the
solution at t = ti to be an initial guess for the solution for t = ti+1.

Our numerical scheme for (1.2) is
1) Start with Su,0 ∈ S1

3(♦+) which is the numerical solution of a biharmonic equation:




∫
Ω

∆Su,0∆vdx =
∫
Ω

gvdx, for all v ∈ S1
3(♦+) ∩H2

0 (Ω)
u
∣∣
∂Ω

= u1(x),
∂

∂nu
∣∣
∂Ω

= u2(x)

2) For k = 1, · · · ,, solve Su,k ∈ S1
3(♦+) satisfying





∫
Ω

∆Su,k∆vdx =
∫
Ω

gvdx− ∫
Ω

f(Su,k−1) · ∇vdx,

u
∣∣
∂Ω

= u1(x),
∂

∂nu
∣∣
∂Ω

= u2(x)
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3) Letting Su,k =
N∑

i=1

ci,kφi, if ‖{ci,k} − {ci,k−1}‖ < 10−8 we stop the above iteration.

Let us explain the computation of the nonlinear terms in (3.1) in detail. Let Su be

an approximation of u in the spline space S1
3(♦+). Note that f(u, ε) is a function of

∂

∂x
u

and
∂

∂y
u. Thus, we write f(u, ε) = [f1(

∂

∂x
u,

∂

∂x
u)), f2(

∂

∂x
u,

∂

∂y
u)] and we approximate f1

and f2 by quadratic finite elements associated with the underlying triangulation ♦+. That
is, letting W = {wi, i = 1, · · · , M} be the collection of all vertices of ♦+ and the midpoints
of all edges of ♦+,

f1(
∂

∂x
u,

∂

∂y
u) =

M∑

i=1

f1(
∂

∂x
u(wi),

∂

∂y
u(wi))hi(x, y)

and similar for f2, where hi is the continuous quadratic finite element basis function
satisfying hi(wj) = δij for all i, j = 1, · · · ,M .

We numerically solve equation (3.1) with known exact solutions u(x, y) = x4 + y4

and u(x, y) = sin(xy). In the following Tables 3.1–3.2, we list the maximum errors of the
numerical solutions against the exact solutions evaluated over 101 × 101 points equally-
spaced over [0, 1]× [0, 1] for different values ε.

Table 3.1. The maximum errors of numerical solutions of (3.1)
against the exact solution u(x, y) = x4 + y4.

matrix size ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0001
155× 155 6.7765× 10−3 1.7776× 10−2 2.2802× 10−1 2.4646× 10−1

547× 547 3.0644× 10−4 5.6518× 10−4 3.1132× 10−1 3.4315× 10−1

2051× 2051 1.6614× 10−5 4.0444× 10−5 3.1602× 10−1 3.6134× 10−1

7939× 7939 1.0178× 10−6 2.5822× 10−6 3.1752× 10−1 3.6581× 10−1

Table 3.2. The maximum errors of numerical solutions of (1.9)′

against the exact solution u(x, y) = sin(xy).

matrix size ε =
√

0.1 ε =
√

0.01 ε =
√

0.001 ε =
√

0.0001
155× 155 7.8411× 10−4 5.9811× 10−3 1.5842× 10−1 3.6648× 10−1

547× 547 1.9821× 10−4 1.8209× 10−3 2.1533× 10−1 3.1509× 10−1

2051× 2051 5.0229× 10−5 4.6871× 10−4 3.0612× 10−1 2.8182× 10−1

7939× 7939 1.2432× 10−5 1.1810× 10−4 3.1199× 10−1 2.6908× 10−1

From Tables 3.1 and 3.2, we see that for ε >
√

0.001, the numerical solutions of
(3.1) converges to the exact solution as the refinement level increases. However, when
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Fig. 3.1. Numerical solution of equation (1.9)′ with ε =
√

0.001 and ε =
√
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Fig. 3.2. Numerical solution of equation (1.9)′ with ε =
√

0.001 and ε =
√

0.0001

ε ≤ √
0.001, the numerical solution of (3.1) in Tables 3.1 and 3.2 does not converge to

x4 +y4 and sin(xy). Instead, it converges to the other numerical solution of (3.1) as shown
in Fig. 3.1 and Fig. 3.2. We have computed their energy functional. The energy of the
solutions in the Figs 3.1–3.2 are almost the same as the energy of the exact solutions x4+y4

and sin(xy), respectively.
We have also applied the continuation or homotopy technique to solve the equation.

That is, we started with the numerical solution associated with ε = 1 as an initial value
to compute the solution associated with ε =

√
0.1. Then using the solution with ε =

√
0.1

as an initial value, we compute the numerical solution associated with ε =
√

0.01. And so
on. We were able to find a very good approximation of the exact solution for ε =

√
0.001

and ε =
√

0.0001 for all refinements of underlying quadrangulations.
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