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Abstract

Given a set of scattered data with derivatives values, we use a minimal energy method to find Hermite interpolation based on
bivariate spline spaces over a triangulation of the scattered data locations. We show that the minimal energy method produces a
unique Hermite spline interpolation of the given scattered data with derivative values. Also we show that the Hermite spline inter-
polation converges to a given sufficiently smooth function f if the data values are obtained from this f . That is, the surface of the
Hermite spline interpolation resembles the given set of derivative values. Some numerical examples are presented to demonstrate
our method.
© 2007 Published by Elsevier B.V. on behalf of IMACS.
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1. Introduction

Suppose V = {vi = (xi, yi)}ni=1 is a set of data locations lying in a domain Ω ⊂ R2. Let � be a triangulation of
the data locations. Let {zν,μ

i , 0 � ν + μ � r, i = 1, . . . , n} be given real values. We would like to construct a spline
function s ∈ Cr+1(Ω) over triangulation � such that

Dν
xDμ

y s(vi) = z
ν,μ
i , 0 � ν + μ � r, i = 1, . . . , n. (1.1)

Certainly we want s to resemble the given data values. More precisely, if z
ν,μ
i = Dν

xD
μ
y f (xi, yi), ν + μ � r, for

f ∈ Cm(Ω) with m � r + 2, we would like s satisfying (1.1) and

‖f − s‖L∞(Ω) � C|�|r+2, (1.2)

where C is a constant which is dependent on f and Cm(Ω) is the standard space of all continuously mth differentiable
functions. Here |�| is the size of the triangulation �, i.e., the largest of the length of edges of �. For r = 0, this is
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a typical scattered data interpolation problem (e.g., [2,8,9,12,22]). For r � 1, this is a classical Hermite scattered
data interpolate problem. It has been studied in the literature (e.g., [1,13,15,16,18,17]) by constructing Cr+1 macro-
elements. However, all the constructions require higher order derivative information than the given data values. Also,
normal derivatives at edges are needed in order to make these macro-elements smooth across common edges. Still
there are some other methods for solving Hermite scattered data interpolate problem (e.g., [20] and [21]). Since
such higher order and normal derivative information are not available in practice, we have to use other techniques
to estimate the needed information. As in the case r = 0, one can use a minimal energy method to construct an
interpolatory spline. For the Hermite interpolation problem, we can use the minimal energy technique too. This is what
we shall do in this paper. We shall first show such a minimal energy method will give a unique Hermite interpolatory
spline. In addition, we will also study their approximation property. That is, we shall establish the approximation
order in (1.2) for the minimal energy Hermite spline interpolation. This shows that the minimal energy Hermite spline
interpolation resembles the given set of derivative values.

Next let us explain the spline spaces we shall use in this paper. Recall that � is a triangulation of the given data
locations in a polygonal domain Ω in R2. That is, all the data locations (xi, yi), i = 1, . . . , n, are vertices of �. We
use the space of polynomial splines

Sr+1
d (�) := {

s ∈ Cr+1(Ω): s|T ∈ Pd ∀T ∈ �}
,

where d � 3r + 5 and r � 0 are given integers and Pd is the space of bivariate polynomials of degree d . Such spline
spaces have been studied by many researchers in the literature, e.g., in [19] and the references therein.

According to [4] and [5], there are spline functions s ∈ Sr+1
d (�) with d � 3r + 5 satisfying the interpolation

conditions (1.1). Thus, the existence of a Hermite interpolatory spline can be easily understood. The proof of the
uniqueness is a simple generalization of the counterpart when r = 0 (cf. [8]). Next we are interested in how well
the interpolatory splines resemble the given data. When r = 0, the approximation of spline interpolation was studied
in [10]. The researchers in [10] showed that minimal energy interpolatory splines converge to the given data values
when the number of data values increases and the size of triangulation decreases. We shall generalize this result to
the Hermite interpolation setting. It is not a straightforward generalization. The main difficulties are Theorem 4.3 and
Lemma 4.1 which are quite different from the setting when r = 0. In addition, our proof of Lemma 4.2 is much simpler
than the corresponding one in [10]. Our main theorem in this paper is Theorem 4.5 which gives the convergence rate
of the minimal energy spline interpolation. In addition, we shall present a computational method to find the minimal
energy spline Hermite interpolation which is a straightforward generalization of the computational algorithm for the
minimal energy Lagrange interpolation in [2]. We have implemented our computational method in MATLAB and
numerically experimented the method with various functions to verify the convergence rate.

The paper is organized as follows. In Section 2 we review some well-known Bernstein–Bézier notation. An energy
minimization method is explained in Section 3 and the existence and uniqueness of spline Hermite interpolation are
discussed there. In Section 4 we derive error bounds for spline Hermite interpolation using the energy minimization
method. A computational method is explained in Section 5 together with some numerical examples. A numerical
example for wind potential reconstruction is presented to demonstrate the usefulness of our method.

2. Preliminaries

Given a triangulation � and integers 0 � m < d , we write

Sm
d (�) := {

s ∈ Cm(Ω): s|T ∈ Pd, for all T ∈ �}
for the usual space of splines of degree d and smoothness m, where Pd is the

(
d+2

2

)
dimensional space of bivariate

polynomials of degree d . Throughout the paper we shall make extensive use of the well-known Bernstein–Bézier
representation of splines. For each triangle T = 〈v1, v2, v3〉 in � with vertices v1, v2, v3 the corresponding polynomial
piece s|T is written in the form

s|T =
∑

cT
ijkB

d
ijk,
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
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where Bd
ijk are the Bernstein–Bézier polynomials of degree d associated with T . In particular, if (λ1, λ2, λ3) are the

barycentric coordinates of any point u ∈ R2 in term of the triangle T , then

Bd
ijk(u) := d!

i!j !k!λ
i
1λ

j

2λ
k
3, i + j + k = d.

Usually, we associate the Bernstein–Bézier coefficients {cT
ijk}i+j+k=d with the domain points {ξT

ijk := (iv1 + jv2 +
kv3)/d}i+j+k=d .

Definition 2.1. Let β < ∞. A triangulation � is said to be β-quasi-uniform provided that |�| � βρ�, where |�| is
the maximum of the diameters of the triangles in �, and ρ� is the minimum of the radii of the incircles of triangles
of �.

It is easy to see that if � is β-quasi-uniform, then the smallest angle in � is bounded below by 2/β .
Given T := 〈v1, v2, v3〉 and an integer 0 � m < d , we set RT

m(v1) := {ξT
ijk: i = d − m}. We recall that the ring of

radius m around v1 is the set Rm(v1) := ⋃{RT
m(v1): T has a vertex at v1}. The rings around v2 and v3 are defined

similarly.
Recall that a determining set for a spline space S ⊆ S0

d(�) is a subset M of the set of domain points such that if
s ∈ S and cξ = 0 for all ξ ∈ M, then cξ = 0 for all domain points. The set M is called a minimal determining set
(MDS) for S if there is no smaller determining set. It is known that M is a MDS for S if and only if every spline s ∈ S

is uniquely determined by its set of B-coefficients {cξ }ξ∈M.
Suppose that T := 〈v1, v2, v3〉 and T̂ := 〈v4, v3, v2〉 are two adjoining triangles from � which share the edge

e := 〈v2, v3〉, and let

s|T =
∑

i+j+k=d

cijkB
d
ijk, s|T̂ =

∑
i+j+k=d

ĉijkB̂
d
ijk,

where Bd
ijk and B̂d

ijk are the Bernstein polynomials of degree d on the triangles T and T̂ , respectively. Given integers

0 � n � j � d , let τn
j,e be the linear functional defined on S0

d(�) by

τn
j,es := cn,d−j,j−n −

∑
ν+μ+κ=n

ĉν,μ+j−n,κ+d−j B̂
n
νμκ(v1).

It is called smoothness functional of order n. Clearly a spline s ∈ S0
d(�) belongs to Cr(Ω) for some r > 0 if and only

if

τn
m,es = 0, n � m � d, 0 � n � r.

So we shall often make use of smoothness conditions to calculate one coefficient of a spline in terms of others.
Recall from [4] and [5] that for any given sufficiently smooth function f ∈ Ω , there exists a quasi-interpolatory

operator Q mapping f to Sr
d(�) with d � 3r + 2 which achieves the optimal approximation order of Sr

d(�). That is

Theorem 2.2. (Cf. [5].) Let r � 1 and d � 3r + 2. Suppose f ∈ Cm(Ω) with m � 2r . Then there exists a spline
function Qf ∈ Sr

d(�) satisfying (1.1) and∥∥Dα
x Dβ

y (f − Qf )
∥∥

L∞(Ω)
� K|�|m−α−β |f |m,∞,Ω

for 0 � α + β � m, where |�| is the mesh size of � (i.e., the diameter of the largest triangle), and |f |m,∞ is the usual
maximum norm of the derivatives of order m of f over Ω .

When d < 3r + 2, similar approximation results are available for some special spline spaces, see [13,15–18].

3. Existence and uniqueness of minimal energy Hermite interpolatory splines

We let M = dimSr+1
d (�) for a fixed integer d � 3r + 5. Clearly, we can see that M � N = (

r+2
2

)
V , where N

denote the number of given data values. Using the locally supported basis functions {φi, i = 1, . . . ,M} in [4] or in
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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[5], any spline function s in Sr+1
d (�) can be represented by s = ∑M

i=1 ciφi, for some coefficients {ci}Mi=1 with {ci}Ni=1

being the fixed coefficients given by the function values {zν,μ
i }ni=1, 0 � ν + μ � r , in the following sense: if cj = z

ν,μ
k

for some k, ν,μ, then

Dα
x Dβ

y φj (xi, yi) =
{

1, if i = k, α = ν and β = μ,

0, otherwise

for i = 1, . . . , n, j = 1, . . . ,N , and α + β � r as well as Dα
x D

β
y φj (xi, yi) = 0 for i = 1, . . . , n, j = N + 1, . . . ,M

and α + β � r . So to determine a spline function s uniquely, we need to determine the particular set of coefficients
{ci}Mi=N+1. We shall use an energy minimization method to do so.

Recall that an energy functional E(f ) is an expression for the amount of potential energy in a thin elastic plate f

that passes through the data points V . The potential energy of the thin plate is given by

E =
∫
Ω

[
aH 2 + bK

]
dx dy, (3.1)

where H and K are mean curvature and Gaussian curvature of the surface S and a and b are constants which depend
on the material of the plate (cf. [23]). In particular,

H = κ1 + κ2

2
= (1 + f 2

x )fyy − 2fxfyfxy + (1 + f 2
y )fxx

(1 + f 2
x + f 2

y )3/2

and

K = κ1κ2 = fxxfyy − f 2
xy

(1 + f 2
x + f 2

y )2
,

where κ1 and κ2 are the principle curvatures of the surface of the plate. Assume that fx ≈ 0 and fy ≈ 0 when the plate
has small deflections. The potential energy E can be simplified in the following form:

E(f ) =
∫
Ω

[
a(fxx + fyy)

2 − 2(1 − ω)
(
fxxfyy − f 2

xy

)]
dx dy,

where the parameter ω is a constant depending on the material at hand (e.g., [9]). For simplicity, we choose a = 1 and
ω = 0. That is,

E(f ) =
∫
Ω

[
f 2

xx + 2f 2
xy + f 2

yy

]
dx dy =

∫
Ω

[
2∑

k=0

(
2

k

)[(
∂

∂x

)k(
∂

∂y

)2−k

f

]2
]

dx dy

which is commonly used in the literature, e.g., [8].
In this paper, we use a generalized version of the energy functional E(f ) which can be represented as

E(f ) =
∫
Ω

[
r+2∑
k=0

(
r + 2

k

)[(
∂

∂x

)k(
∂

∂y

)r+2−k

f

]2
]

dx dy. (3.2)

This energy functional is not brand new and it was used in [7] for Dm splines.
For s = ∑M

i=1 ciφi ∈ Sr+1
d (�), we can see

E(s) =
∫
Ω

[
r+2∑
k=0

(
r + 2

k

)[
M∑
i=1

ci

(
∂

∂x

)k(
∂

∂y

)r+2−k

φi

]2]
dx dy. (3.3)

Since the coefficients {ci}Ni=1 are already determined, E(s) is a function of the M −N coefficients {ci}Mi=N+1. That
is, we can write E(s) = E(cN+1, . . . , cM). Thus the minimal energy Hermite interpolation problem can be formulated
as follows: find a spline s∗ ∈ Sr+1

d (�) such that

Dν
xDμ

y s∗(xi, yi) = z
ν,μ

, 0 � ν + μ � r, i = 1, . . . , n,
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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and

E(s∗) = min
{
E(s): Dν

xDμ
y s(xi, yi) = z

ν,μ
i , 0 � ν + μ � r, i = 1, . . . , n, s ∈ Sr+1

d (�)
}
. (3.4)

This is a straightforward generalization of the minimal energy Lagrange interpolation using bivariate splines (cf.,
e.g., [10]). The existence and uniqueness of our problem (3.3) and (3.4) follow from the similar analysis discussed in
[10].

For the self-containedness, we include a short and explicit proof. Define

〈φi,φj 〉 =
∫
Ω

[
r+2∑
k=0

(
r + 2

k

)[(
∂

∂x

)k(
∂

∂y

)r+2−k

φi

(
∂

∂x

)k(
∂

∂y

)r+2−k

φj

]]
dx dy

to be a bi-linear form for any φi,φj ∈ Sr+1
d (�).

In order to minimize E(s), we need to have
∂

∂cj

E(s∗) = 0 for each cj ∈ {cN+1, . . . , cM}. A direct computation

yields

∂

∂cj

E(s) = 2
M∑

i=N+1

ci〈φi,φj 〉 + 2
N∑

i=1

ci〈φi,φj 〉

or
M∑

i=N+1

ci〈φi,φj 〉 = −
N∑

i=1

ci〈φi,φj 〉

for each j ∈ {N + 1, . . . ,M}. Thus we have a linear system of M − N equations in M − N unknown coefficients
{cN+1, . . . , cM}, i.e., Ac = b, where

A =
⎛⎝ 〈φN+1, φN+1〉 〈φN+2, φN+1〉 · · · 〈φM,φN+1〉

...
...

...

〈φN+1, φM 〉 〈φN+2, φM 〉 · · · 〈φM,φM 〉

⎞⎠ ,

b = −
⎛⎝

∑N
i=1 ci〈φi,φN+1〉

...∑N
i=1 ci〈φi,φM 〉

⎞⎠ , c =
⎛⎝ cN+1

...

cM

⎞⎠ .

Now the existence and uniqueness follow from the fact that A is invertible. Indeed, if there exists a nonzero vector c
such that Ac = 0, then cT Ac = 0 which is exactly E(s0) = 0, where s0 = ∑M

i=N+1 ciφi . But E(s0) = 0 implies that s0
is a polynomial of degree r + 1 over each triangle T . For each triangle T = 〈v1, v2, v3〉, we have(

∂

∂x

)j(
∂

∂y

)k

s0(vi) = 0, j + k � r,

for i = 1,2,3 since the interpolation conditions (3.3). We claim that s0 ≡ 0. First we use(
∂

∂x

)j(
∂

∂y

)k

f (v1) = 0, j + k � r,

to determine all the domain points except those on RT
r+1(v1). Next we use(

∂

∂x

)j(
∂

∂y

)k

s(v2) = 0, j + k � r,

to determine the remain points except one at v3. Finally the coefficient at v3 can be determined by(
∂

)j(
∂

)k

s(v3) = 0, j + k � r.
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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So it follows that s0 ≡ 0. But {φi}MN+1 are basis functions and linearly independent. Therefore this implies ci = 0
for all i ∈ {N + 1, . . . ,M}. That is, c = 0 which is a contradiction. These prove that A is nonsingular. We have thus
established the following

Theorem 3.1. There exists a unique solution s∗ ∈ Sr+1
d (�) which solves the minimal energy Hermite interpolation

problem (3.4). That is, s∗ minimizes the energy (3.2) and satisfies the interpolation conditions (1.1) in the bivariate
spline space Sr+1

d (�).

4. Error bounds for the minimal energy interpolatory splines

In this section we derive error bounds for bivariate Hermite interpolatory splines which are calculated by minimiz-
ing the energy functional in the previous section. The error bounds for Lagrange interpolation problem can be found
in [10]. In this paper, we generalize the error bounds from Lagrange interpolation to Hermite interpolation setting. All
the results are similar with some modifications. Some of the modifications are sufficiently different, e.g., the proof of
Lemma 4.2. It will be interesting to present a complete theory here.

First we convert the minimal energy interpolation problem (3.4) into a standard approximation problem in Hilbert
space. Let

X := {
f ∈ B(Ω): f |T ∈ Wr+2∞ (T ), all triangles T in �}

,

where B(Ω) is the set of for all bounded real-valued functions on Ω . It is clear that Sr+1
d (�) is a subspace of X. Let

us extend the inner product 〈φi,φj 〉 on Sr+1
d (�) to X. More precisely, let

〈f,g〉X :=
∑
T ∈�

∫
T

[
r+2∑
k=0

(
r + 2

k

)[(
∂

∂x

)k(
∂

∂y

)r+2−k

f

(
∂

∂x

)k(
∂

∂y

)r+2−k

g

]]
dx dy.

Then 〈f,g〉X defines a semi-definite inner-product on X. Let ‖f ‖X be the associated semi-norms.
Next let

W :=
{
s ∈ Sr+1

d (�):

(
∂

∂x

)j(
∂

∂y

)k

s(v) = 0, j + k � r, v ∈ V

}
. (4.1)

It is easy to see that 〈f,f 〉X for f ∈ W is a norm. Indeed, if 〈w,w〉X = 0 for some w ∈ W , then w is a function of
degree r + 1 over each triangle of �. For a triangle T = 〈v1, v2, v3〉, we have(

∂

∂x

)j(
∂

∂y

)k

w(vi) = 0, j + k � r,

for i = 1,2,3 by the interpolation conditions (3.3). Similar to the proof of Theorem 3.1, we can prove that w ≡ 0.
Hence W equipped with the inner-product 〈·, ·〉X is a Hilbert space. Let

Uf :=
{
s ∈ Sr+1

d (�):

(
∂

∂x

)j(
∂

∂y

)k

s(v) =
(

∂

∂x

)j(
∂

∂y

)k

f (v), j + k � r, v ∈ V

}
(4.2)

be the set of all splines in S that interpolate f at the points of V . Then our minimal energy Hermite interpolation
problem can be rewritten as follows: find a spline Sf ∈ Uf such that

E(Sf ) = min
s∈Uf

E(s). (4.3)

Given f , suppose the set Uf defined in (4.2) is not empty. There is an sf ∈ Uf . Then it is easy to see that the
solution Sf to the minimal energy problem (4.3) is equal to sf − Psf , where P is the linear projector P :X → W

defined by

E(g − Pg) = min
w∈W

E(g − w)

for all g ∈ X. By Theorem 3.1, Pg is uniquely defined, and is characterized by

〈g − Pg,w〉X = 0, for all w ∈ W.
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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Moreover, using the Cauchy–Schwarz inequality, it is easy to see that

‖Pg‖X � ‖g‖X (4.4)

for all g ∈ X.
Given a triangle T , let star0(T ) = T , and

starq(T ) :=
⋃{

T ∈ �: T ∩ starq−1(T ) �= ∅}
, q � 1.

Lemma 4.1. Let T = 〈v1, v2, v3〉 be a triangle. Suppose that f ∈ Cr+2(T ) satisfies(
∂

∂x

)j(
∂

∂y

)k

f (vi) = 0

for i = 1,2,3 and j + k � r . Then for all v ∈ T ,∣∣f (v)
∣∣ � C1|T |r+2|f |r+2,∞,T . (4.5)

Proof. Given v ∈ T , we can write v = v1 + t (v2 − v1) + u(v3 − v1) with (t, u) in a standard triangle S := {(t, u),

t, u � 0, t + u � 1}. Let g(t, u) = f (v1 + t (v2 − v1) + u(v3 − v1)) for (t, u) ∈ S. Since(
∂

∂x

)j(
∂

∂y

)k

f (vi) = 0

for i = 1,2,3 and j + k � r , we can get(
∂

∂u

)j(
∂

∂t

)k

g(0,0) = 0,

(
∂

∂u

)j(
∂

∂t

)k

g(1,0) = 0,

(
∂

∂u

)j(
∂

∂t

)k

g(0,1) = 0,

for any j + k � r . By Taylor’s expansion, we have

0 =
(

∂

∂t

)j(
∂

∂u

)k

g(1,0) =
(

∂

∂t

)j(
∂

∂u

)k

g(0,0) +
(

∂

∂t

)j+1(
∂

∂u

)k

g(0,0) + 1

2

(
∂

∂t

)j+2(
∂

∂u

)k

g(ξ,0)

for any j + k = r and ξ ∈ (0,1). So∣∣∣∣( ∂

∂t

)j+1(
∂

∂u

)k

g(0,0)

∣∣∣∣ � 1

2
|g|r+2,∞,S .

Similarly,∣∣∣∣( ∂

∂t

)j(
∂

∂u

)k+1

g(0,0)

∣∣∣∣ � 1

2
|g|r+2,∞,S .

Thus ∣∣f (v)
∣∣ = ∣∣g(t, u)

∣∣ �
∣∣g(0,0)

∣∣ + · · ·

+ 1

(r + 1)!
∑

j+k=r+1

(
r + 1

j

)∣∣∣∣( ∂

∂t

)j(
∂

∂u

)k

g(0,0)

∣∣∣∣ + K3|g|r+2,∞,S

� K4|g|r+2,∞,S .

Since |g|r+2,∞,S � K5|f |r+2,∞,S |T |r+2, we conclude that (4.5) holds. �
Lemma 4.2. There exist positive constants C2 and C3 such that for any u ∈ W ,

C2

∫
Ω

u2 � |�|2r+4‖u‖2
X � C3

∫
Ω

u2. (4.6)
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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Proof. We first show the left side of the inequality. By applying Lemma 4.1, we have∫
Ω

u2 =
∑
T ∈�

∫
T

u2 �
∑
T ∈�

AT ‖u‖2∞,T �
∑
T ∈�

AT

(
C1|�|r+2|u|r+2,∞,T

)2

� C2
1K6|�|2r+4

∑
T ∈�

|u|2r+2,2,T = C2
1K6|�|2r+4‖u‖2

X,

where we have used the fact that the restriction of u to each triangle is a polynomial. Next by applying Markov’s
inequality, we have

‖u‖2
X =

∑
T ∈�

|u|2r+2,2,T �
(

K7

|�|r+2

)2 ∑
T ∈�

|u|20,2,T =
(

K7

|�|r+2

)2 ∫
Ω

u2.

Let C2 = 1
C2

1K6
and C3 = K2

7 , we conclude the inequalities. �
Recall from [14] that when d � 3r +5, Sr+1

d (�) possesses a stable local basis {Bξ }ξ∈M corresponding to a minimal
determining set M. Thus, for any ξ ∈ M, there is a vertex vξ of � with supp(Bξ ) ⊆ starl (vξ ) and for any {cξ }ξ∈M

C4|�|2
∑
ξ∈M

c2
ξ �

∥∥∥∥ ∑
ξ∈M

cξBξ

∥∥∥∥2

2
� C5|�|2

∑
ξ∈M

c2
ξ . (4.7)

Theorem 4.3. Suppose W is defined in (4.1). Let g be a function in X with support in a triangle T in �, and let τ be
another triangle which lies outside of starq(T ) for some q � 1. Then

‖Pg‖Xτ � C6σ
q‖g‖X, (4.8)

for some constants 0 < σ < 1 and C6 dependent only on l,d and β as in Definition 2.1.

Proof. The proof uses a similar argument as in the proof of Theorem 3.1 of [11]. Letting

MT
0 := {

ξ ∈M: supp(Bξ ) ∩ T �= ∅}
,

MT
q := {

ξ ∈M: supp(Bξ ) ∩ star2qlT �= ∅}
,

N T
0 := MT

0 ,

N T
q := MT

q \MT
q−1.

Suppose Pg is given by

Pg =
∑
ξ∈M

cξBξ ,

and let

uq :=
∑

ξ∈MT
q

cξBξ , wq := Pg − uq, aq =
∑

ξ∈N T
q

c2
ξ ,

for any q � 0. We start with

‖wq‖2
2 � 1

C2
|�|2r+4‖wq‖2

X = 1

C2
|�|2r+4〈Pg − uq,wq〉X

= 1

C2
|�|2r+4〈g − uq,wq〉X = − 1

C2
|�|2r+4〈uq,wq〉X

� 1

C2
|�|2r+4

∥∥∥∥ ∑
ξ∈N T

cξBξ

∥∥∥∥
X

‖wq‖X
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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� 1

C2
|�|2r+4

(
C

1/2
3

|�|r+2

∥∥∥∥ ∑
ξ∈NT

q

cξBξ

∥∥∥∥
2

)(
C

1/2
3

|�|r+2
‖wq‖2

)

= C3

C2

∥∥∥∥ ∑
ξ∈N T

q

cξBξ

∥∥∥∥
2
‖wq‖2.

Here we have used Lemma 4.1. Thus by (4.7):

‖wq‖2
2 �

C2
3

C2
2

∥∥∥∥ ∑
ξ∈N T

q

cξBξ

∥∥∥∥2

2
�

C2
3C5

C2
2

|�|2aq

and ∑
j�q+1

aj =
∑

ξ /∈MT
q

c2
ξ �

‖wq‖2
2

C4|�|2 �
C2

3C5

C2
2C4

aq, q � 0.

Then applying Lemma 2 in [3] with γ := C2
3C5

C2
2C4

, we see that

aq � (γ + 1)σ 2qa0,

where σ := [γ /(γ + 1)]1/2. Since ‖Pg‖2
X � ‖g‖2

X and by (4.7), we have

‖Pg‖2
2 � C3

C2
‖g‖2

2

and

a0 �
∑
j�0

aj =
∑
ξ∈M

c2
ξ � 1

C4|�|2 ‖Pg‖2
2 � C3

C2C4|�|2 ‖g‖2
2.

Finally by (4.6) and (4.7), we have

‖Pg‖2
Xτ

� C3

|�|2r+4

∥∥∥∥ ∑
ξ /∈MT

q

cξBξ

∥∥∥∥2

2
� C3C5|�|2

|�|2r+4

∑
ξ /∈MT

q

c2
ξ

= C3C5|�|2
|�|2r+4

∑
j�q+1

aj �
C4

3C2
5

C3
2C2

4 |�|2r+4
(γ + 1)σ 2q‖g‖2

2

�
C4

3C2
5

C4
2C2

4

(γ + 1)σ 2q‖g‖2
X

which gives (4.8) with C6 = C2
3C5

C2
2C4

(γ + 1)1/2. �
Theorem 4.4. Suppose � is a β-quasi-uniform triangulation �. Suppose that {Bξ }ξ∈M is a stable local basis for
Sr+1

d (�) with d � 3r + 5 corresponding to a minimal determining set M containing the set V of vertices of �. Then

|Pg|r+2,∞,Ω � C7|g|r+2,∞,Ω for all g ∈ X, (4.9)

where C7 depends only on d ,l, r , and β .

Proof. The proof is the same as that of Theorem 5.5 in [10]. For simplicity, we omit the detail here. �
Theorem 4.5. Suppose � is a β-quasi-uniform triangulation. Suppose that f ∈ Cm(Ω) with m � 2r . Then there exists
a constant C depending only on d , β and f such that the minimum energy interpolant Sf defined in (4.3) satisfies

‖f − Sf ‖L∞(Ω) � C|�|r+2. (4.10)
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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Proof. Given a function f ∈ Cm(Ω), let sf ∈ Uf be the quasi-interpolant spline of f as in Theorem 2.2. We know
that

‖f − sf ‖L∞(Ω) � K|�|m|f |m,∞,Ω

and

|sf |r+2,∞,Ω � |f |r+2,∞,Ω + K|�|m−r−2|f |m,∞,Ω =: C0.

That is, C0 is a constant dependent only on d,β , and f with the conventional assumption of |�| � 1. We recall that
Psf = sf − Sf . By Theorem 4.4,

|sf − Sf |r+2,∞,Ω = |Psf |r+2,∞,Ω � C7|sf |r+2,∞,Ω � C7C0.

Since (
∂

∂x

)j(
∂

∂y

)k(
sf (v) − Sf (v)

) = 0, j + k � r,

for all vertices v of �, by Lemma 4.1,

‖sf − Sf ‖L∞(Ω) � C1|�|r+2|sf − Sf |r+2,∞,Ω

and hence,

‖sf − Sf ‖L∞(Ω) � C1C7C0|�|r+2|f |r+2,∞,Ω .

Then the error bound (4.10) follows from

‖f − Sf ‖L∞(Ω) � ‖f − sf ‖L∞(Ω) + ‖sf − Sf ‖L∞(Ω).

This completes the proof. �
5. A computational method for spline Hermite interpolation

In this section we describe a computational algorithm to solve the minimal energy Hermite interpolation problem
using a spline space Sr+1

d (�) with d > r , e.g., d � 3r + 5. It is a straightforward generalization of the computational
method given in [2]. Let � be a triangulation of the given data locations. For each spline function s ∈ Sr+1

d (�),
let c = (ct

ijk, i + j + k = d, t ∈ �) be the coefficient vector associated with s. Since s ∈ Sr+1
d (�), s satisfies the

smoothness conditions which can be expressed by a linear system Hc = 0 (cf. [2]). Also the energy functional E(s)

can be written in terms of c as

E(s) = cT Kc,

where K = diag(KT ,T ∈ �) is a block diagonal matrix with

KT =
[∫

T

r+2∑
k=0

(
r + 2

k

)[(
∂

∂x

)k(
∂

∂y

)r+2−k

Bd
ijk

(
∂

∂x

)k(
∂

∂y

)r+2−k

Bd
pqr

]
dx dy

]i+j+k=d

p+q+r=d

.

Let f = (z
ν,μ
i , ν + μ � r, i = 1, . . . , n) be the data value vector. Then the Hermite interpolation conditions can be

expressed by another linear system Ic = f.
Note that the minimal energy Hermite interpolation problem is equivalent to the following constrained minimiza-

tion problem:

min
{
cT Kc: Hc = 0, Ic = f

}
.

By Lagrange multiplier method, let

L(c, α,β) := cT Kc + αT Hc + βT Dc

be a Lagrangian function. We need to find a local minimizer of L(c, α,β): that is

∂
L(c, α,β) = 0,

∂
L(c, α,β) = 0,

∂
L(c, α,β) = 0.
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
Mathematics (2007), doi:10.1016/j.apnum.2007.02.006
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Then we have[
HT IT 2K

0 0 H

0 0 I

][
α

β

c

]
=

[0
0
f

]
. (5.1)

To solve the above (singular) linear system, we rewrite it in the following matrix form:[
BT A

0 B

][
λ

c

]
=

[
F

G

]
(5.2)

with the singular matrix A. Next we use the following algorithm to solve the system.

Algorithm. (Cf. [2].) Fix ε > 0. Given an initial guess λ(0) ∈ Im(B), e.g., λ(0) = 0, we first compute

c(1) =
(

A + 1

ε
BT B

)−1(
F + 1

ε
BT G − BT λ(0)

)
and iteratively compute

c(k+1) =
(

A + 1

ε
BT B

)−1(
Ac(k) + 1

ε
BT G

)
for k = 1,2, . . . , where Im(B) is the range of B .

The existence and uniqueness of the interpolatory spline in Sr+1
d (�) imply that the above algorithm is well-defined

and convergent (cf. [2]). Once we obtain the spline coefficients c, we can use the well-known de Casteljau Algorithm
to evaluate the Hermite interpolatory spline with coefficient vector c.

In the following we present some numerical experiments.

Example 5.1. Suppose ♦ is a uniform partition of the unit square domain Ω := [0,1] × [0,1] into N2 subsquares.
Let S2

8(�♦) be a C2 spline space, where �♦ is the triangulation obtained by inserting diagonals of each subsquares
in ♦. We use the following test functions:

f1(x, y) = −2x3 + y3,

f2(x, y) = sin
(
2(x − y)

)
,

f3(x, y) = 0.75 exp
(−0.25(9x − 2)2 − 0.25(9y − 2)2)

+ 0.75 exp
(−(9x + 1)2/49 − (9y + 1)/10

)
+ 0.5 exp

(−0.25(9x − 7)2 − 0.25(9y − 3)2)
− 0.2 exp

(−(9x − 4)2 − (9y − 7)2),
where f3 is the well-known Franke function. We use these function values and derivative values at the grid points
(i/N, j/N), i, j = 0, . . . ,N , to have a set of scattered Hermite data. We approximated these functions for choices
N = 2,4,8,16,32 which corresponds to repeatedly halving the mash size. Table 1 gives the maximum error computed
based on 100 × 100 equally-spaced points over Ω . Table 2 presents the corresponding ratios of errors for successive
values of N . From Table 2 we can see the approximation order is close to 8 which is what we expect for order 3
convergence.

Table 1
Maximum errors for various test functions

N 2 4 8 16 32

f1 0.01314 0.00188 2.38 × 10−4 2.97 × 10−5 3.83 × 10−6

f2 0.01259 0.00189 2.27 × 10−4 2.78 × 10−5 3.41 × 10−6

f3 0.15858 0.05576 6.20 × 10−3 1.05 × 10−3 1.48 × 10−4
Please cite this article in press as: T. Zhou et al., Energy minimization method for scattered data Hermite interpolation, Applied Numerical
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Table 2
Rates of convergence for various test functions

f1 6.989 7.899 8.013 7.755
f2 6.661 8.326 8.165 8.152
f3 2.844 8.994 5.905 7.095

Table 3
Rates of convergence for various test functions

f1 7.508 7.964 7.991 7.851
f2 7.778 7.928 7.974 8.036
f3 3.497 8.720 5.908 7.149

Fig. 1. A triangulation � of the data locations over China.

Example 5.2. We repeat Example 5.1 using spline space S2
9(�♦). Our numerical results show that the convergence

rates are almost the same as that in Example 5.1 (see Table 3). This confirms Theorem 4.5 that the convergence rates
are independent of the degree of spline space.

Finally we present the following example to illustrate an application of our spline Hermite interpolation.

Example 5.3. We consider the reconstruction of a wind potential function. We are given a set of wind veloc-
ity measurements over 30 major cities in China in one day and required to construct the wind potential func-
tion W . Let {(xi, yi,DxW(xi, yi),DyW(xi, yi), i = 1, . . . ,30} be the given wind velocity values. In order to
uniquely determine the wind potential, we assume that W(x1, y1) = 0. Let � be a triangulation of the data loca-
tions {(xi, yi), i = 1, . . . ,30} as shown in Fig. 1 and we use the spline space S2

8(�). We find the spline function
sW ∈ S2

8(�) satisfying

sW (x1, y1) = 0,
∂

∂x
sW (xi, yi) = DxW(xi, yi),

∂

∂y
sW (xi, yi) = DxW(xi, yi)

for i = 1, . . . ,30 and

E3(sW ) = min

{
E3(s), s(x1, y1) = 0,

∂

∂x
s(xi, yi) = DxW(xi, yi),

∂
s(xi, yi) = DxW(xi, yi), i = 1, . . . ,30

}
,
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Fig. 2. The wind potential function.

Fig. 3. The wind velocity in X direction.

where

E3(s) =
∫
Ω

[
3∑

k=0

(
3

k

)[(
∂

∂x

)k(
∂

∂y

)3−k

s

]2
]

dx dy. (5.3)

We can show that there exists a unique solution sW in any spline space Sr
d(�) of smoothness r � 2 and d � 3r + 2.

The proof is almost the same as Theorem 3.1. The detail is left to the interested reader. In Fig. 2, we show the spline
reconstruction of the wind potential function. The wind velocity in X direction and in Y direction are shown in Fig. 3
and Fig. 4. From these two figures, we can see the derivatives are matched quite well.
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Fig. 4. The wind velocity in Y direction.
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