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Abstract

A new approach for image enhancement is developed in this paper. It is based on bivariate spline
functions. By choosing a local region from an image to be enhanced, one can use bivariate splines
with minimal surface area to enhance the image by reducing noises, smoothing the contrast, e.g.
wrinkles and removing stains or damages from images. To establish this approach, we first discuss its
mathematical aspects: the existence, uniqueness and stability of the splines of minimal surface area and
propose an iterative algorithm to compute the fitting splines of minimal surface area. The convergence
of the iterative solutions will be established. In addition, the fitting splines of minimal surface area
are convergent as the size of triangulation goes to zero for image functions in W 1,1. Finally, several
numerical examples are shown to demonstrate the effectiveness of this new approach.

1 Introduction

In this paper we propose to use bivariate splines to approximate the minimizer of the well-known ROF
model for image denoising:

min
u∈BV (Ω)

|u|BV +
1

2λ

∫
Ω

|u− f |2, (1)

where BV (Ω) stands for the space of all functions of bounded variation over Ω, |u|BV denotes the semi-
norm in BV (Ω), and f is a given noised image. As a by-product, we propose a new spline method for
scattered data fitting by approximating the minimizer above based on discrete noised image values.

The minimization in (1) has been studied for about twenty years. See [ROF’92], [Acar and Vogel’94],
[Chambolle and Lions’97], [Aubert and Kornprobst’06], [Chambolle’04], [Duval, Aujol and Vesse’09], and
many references in [Tai’09]. Many numerical methods have been proposed to approximate the minimizer.
Typically, one first regularizes the minimization by considering the following ε-version of the ROF model:

min
u∈BV (Ω)

∫
Ω

√
ε+ |∇u|2 +

1

2λ

∫
Ω

|u− f |2, (2)

where ∇u is the standard gradient of u. Here the first integral is well defined for u ∈ W 1,1(Ω) which is
dense in BV (Ω). But for u ∈ BV (Ω)\W 1,1(Ω), we use Acar and Vogel’s equivalent formula (cf. [Acar
and Vogel’94]). In addition to the prime and dual algorithm (cf. [Chambolle’04]) and projected gradient
algorithm (cf. [Duval, Aujol and Vesse’09]) to numerically solve the minimizer of (1) directly, finite
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difference and finite element methods have been used for numerical solution of (2) by solving its Euler-
Lagrange equation

div

(
∇u√

ε+ |∇u|2

)
− 1

λ
(u− f) = 0 (3)

or its time dependent version

ut = div

(
∇u√

ε+ |∇u|2

)
− 1

λ
(u− f) (4)

starting with u(x, y, 0) = u0 together with Dirichlet or Neumann boundary condition. We refer to [Vogel
and Oman’96], [Dobson and Vogel’97], [Feng and Prohl’03], and [Feng, Oehsen, and Prohl’05] for theoretical
studies of finite difference and finite element methods.

Let 4 be a triangulation of Ω. Fix r ≥ 0 and d > r. Let Cr(Ω) be the class of all rth continuously
differentiable functions over Ω and

Srd(4) = {s ∈ Cr(Ω), s|t ∈ Pd,∀t ∈ 4}

be the spline space of degree d and smoothness r over triangulation 4, where Pd is the space of all
polynomials of degree ≤ d and t is a triangle in 4. For properties of bivariate splines, see [Lai and
Schumaker’07]. As an image may not be very smooth over Ω, we mainly use r = 0 and d = 1 or
r = 1, d ≥ 3. For convenience, let S be one of these spline spaces Srd(4) for a fixed r and fixed d with
d > r. We shall explain how to use these functions to approximate the minimizer of (2) in this paper.

To authors’ knowledge, bivariate splines have not been used to solve the nonlinear PDE (3) nor time
dependent PDE (4) in the literature so far. Let us describe our spline approach more precisely. We
first select a polygonal region Ω of interest from a standard image domain [1, 512] × [1, 512], partition
Ω into a triangulation 4, use bivariate splines in S to find a fitting spline with surface area minimized,
and finally replace the image values over Ω by the spline values so that the image over Ω is smooth and
less vibrations/oscillations. Heuristically, the noises and stains cause the bumpiness of the fitting spline
surfaces. Minimizing the surface area of the fitting spline function will reduce the bumpiness and hence,
reduce the noises, remove the stains so that the image is enhanced. As the domain is a polygon with
arbitrarily geometric shape, bivariate splines are much more convenient than tensor products of B-splines
in this situation. Thus, we restrict our discussion to bivariate splines in this paper.

Clearly, bivariate splines extend continuous linear finite elements. Thus our approach generalizes the
numerical methods in [Dobson and Vogel’96] and [Feng and Prohl’03]. Let us describe our results in this
paper. For convenience, let ε = 1. It is known that the following minimization

min{E(u), u ∈ BV (Ω)}, (5)

where the energy functional E(u) is defined by

E(u) =

∫
Ω

√
1 + |∇u|2dx+

1

2λ

1

AΩ

∫
Ω

|u− f |2dx (6)

has a unique solution, where AΩ is the area of polygonal domain Ω. We use uf to denote the minimizer.
The discussion of the existence and uniqueness of the minimizer of (5) can be found in [Acar and Vogel’94]
and [Chambolle and Lions’97]. Similarly, we know that

min{E(u), u ∈ S(4)}, (7)

has a unique solution. We shall denote by Sf the minimizer of (7). One of our main results is to show
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Theorem 1.1 Suppose Ω is a bounded domain with Lipschitz boundary. Suppose that 4 is a β-quasi-
uniform triangulation of Ω. If uf ∈ W 1,1(Ω), then Sf converges to uf in L2(Ω) norm as the size |4| of
triangulation 4 goes to zero. More precisely,

‖Sf − uf‖L2(Ω) → 0, when |4| → 0,

where |4| denotes the size of triangulation 4 to be defined in the next section. When uf ∈W 1,2(Ω),

‖Sf − uf‖L2(Ω) ≤ C
√
|4|

for a positive constant C independent of 4.

Next we shall discuss how to compute the minimizer Sf of (7). First the minimizer Sf satisfies the
following nonlinear equations: letting {φ1, · · · , φN} be a basis for S,

∂

∂t
E(Sf + tφj , f)

∣∣
t=0

=

∫
Ω

∇Sf · ∇φj√
1 + |∇Sf |2

dx+
1

λ

1

AΩ

∫
Ω

(Sf − f)φjdx = 0 (8)

for all basis functions φj , j = 1, · · · , N . As these are nonlinear equations, we will use a fixed point iterative
algorithm as in [Dobson and Vogel’96]. Our next result is to show the convergence of the iterative algorithm.
Our analysis is completely different from the one given in [Dobson and Vogel’96].

Finally, in practice, we are given discrete noised image values over Ω. That is, we have {(xi, fi), i =
1, · · · , n} with xi ∈ Ω and noised function values fi for i = 1, · · · , n. Let

Ed(u) =

∫
Ω

√
1 + |∇u(x)|2dx+

1

2λ

1

n

n∑
i=1

|u(xi)− fi|2 (9)

be an energy functional based on the discrete noised image values. We use bivariate splines to solve the
following minimization problem:

min{Ed(u), u ∈ S}. (10)

It is easy to see that Ed is a convex functional. However, it is not strictly convex. As S is a finite
dimensional space, the above problem (10) will have a solution. However, it may not be unique unless the
data locations satisfy some conditions. Thus, we shall explain such conditions to ensure the uniqueness.
It is known that there are discrete least squares splines and penalized least squares splines available in
the literature which can be used to reduce the noises from the data values. See a survey paper [Lai08] on
multivariate splines for data fitting. Similar to (8), the Euler-Lagrange equations for (10) are nonlinear
and we use the fixed point iterative algorithm to find the minimizers. We shall use the penalized least
squares spline of the noised data as an initial guess for the iterative algorithm and do several iterations to
further reduce the bumpiness and/or oscillations of the fitting surface. Hence this leads to a new spline
method for data fitting and it will have a better performance than standard discrete and penalized least
squares splines for reducing noises, removing wrinkles and hence enhancing images.

Let us summarize our discussion above. Essentially, our bivariate spline approach is a local method. If
we want to remove stains, we select a local domain containing a stain and then compute a fitting spline to
remove it. As demonstrated in numerical examples in Section 5, if we want to de-noise an image, we reduce
noises from many local domains separately instead of denoising the entire image at once. In particular,
we propose a two-stage method for image denoising. That is, we first use a favorable algorithm, e.g.
Chambolle algorithm (cf. [Chambolle’04]) or a finite difference solution of the Perona-Malik diffusive PDE
(cf. [Perona-Malik’90] or [Aubert and Kornprobst’06]) to remove noises. We then choose some regions of
interest from the de-noised image and apply our bivariate spline approach to further reduce noises over
these interested regions.

The paper is organized as follows. We begin with a preliminary section on bivariate splines §2. Then
we discuss the properties of spline minimizer Sf in detail in §3. Similarly, the properties of the discrete
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minimal surface area splines will be contained in §4. Finally in §5 we report our numerical experiments.
In particular, we shall explain our image segmentation technique, triangulation technique, and numerical
implementation issues on bivariate splines in this section.

2 Preliminary

We simply outline some properties of bivariate splines which will be used in later sections. First of all, we
need

Definition 2.1 Let β < ∞. A triangulation 4 is said to be β-quasi-uniform provided that |4| ≤ βρ4,
where |4| is the maximum of the diameters of the triangles in 4, and ρ4 is the minimum of the radii of
the in-circles of triangles of 4.

Let W k,p(Ω) denotes the Sobolev space of local summable functions u : Ω → R such that for each
multi-index α with |α| ≤ k, Dαu exists in weak sense and belongs to Lp(Ω). Let |f |Ω,m,p denotes the Lp
norm of the mth derivatives of f over Ω that is,

|u|Ω,k,p :=

 ∑
ν+µ=k

‖Dν
1D

µ
2u‖

p
Ω,p

1/p

, for 1 ≤ p <∞, (11)

and ‖f‖Ω,p =

(
1

AΩ

∫
Ω

|f(x)|qdx
)1/p

be the standard Lp(Ω) norm.

We first use the so-called Markov inequality to compare the size of the derivative of a polynomial with
the size of the polynomial itself on a given triangle t. (See [22] for a proof. )

Theorem 2.1 Let t := 〈v1, v2, v3〉 be a triangle, and fix 1 ≤ q ≤ ∞. Then there exists a constant K
depending only on d such that for every polynomial p ∈ Pd, and any nonnegative integers α and β with
0 ≤ α+ β ≤ d,

‖Dα
1D

β
2 p‖q,t ≤

K

ρα+β
t

‖p‖q,t, 0 ≤ α+ β ≤ d, (12)

where ρt denotes the radius of the largest circle inscribed in t.

Next we have the following approximation property (cf. [21] and [22]):

Theorem 2.2 Assume d ≥ 3r+2 and let4 be a triangulation of Ω. Then there exists a quasi-interpolatory
operator Qf ∈ Srd(4) mapping f ∈ L1(Ω) into Srd(4) such that Qf achieves the optimal approximation
order: if f ∈Wm+1,p(Ω),

‖Dα
1D

β
2 (Qf − f)‖Ω,p ≤ C|4|m+1−α−β |f |Ω,m+1,p (13)

for all α+ β ≤ m+ 1 with 0 ≤ m ≤ d. Here the constant C depends only on the degree d and the smallest
angle θ4 and may be dependent on the Lipschitz condition on the boundary of Ω.

Bivariate splines have been used for data fitting for a long time. Theoretical results on the existence,
uniqueness and approximation as well as numerical computational algorithms and experiments are well
known (cf. [2], [17], [18], [19], and [20]). Let us present a brief summary. Let s0,f ∈ S be the spline
satisfying

L(s0,f − f) = min{L(s− f), s ∈ S}. (14)
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where L(s − f) =
1

n

n∑
i=1

|s(xi) − fi|2. s0,f is called the least squares spline of f . Another data fitting

method is called penalized least squares spline method. Letting

Em(f) =
1

AΩ

∫
Ω

∑
i+j=m

((
m

i

)
(Di

1D
j
2f)2

)
dx1dx2

be the energy functional, and λ > 0 be a fixed real number, we let sλ,f ∈ S be the spline solving the
following minimization problem:

min
s∈S
L(s− f) + λEm(s) (15)

for a fixed integer m = 2.
Suppose that the data locations V = {xi, i = 1, · · · , n} have the property that for every s ∈ S and

every triangle τ ∈ 4, there exist a positive constant F1, independent of s and τ , such that

F1‖s‖∞,τ ≤ (
∑

v∈V∩τ
s(v)2)1/2. (16)

Let F2 be the largest number of data sites in a triangle τ ∈ 4. That is, we have{ ∑
v∈V∩τ

s(v)2

}1/2

≤ F2‖s‖∞,τ , (17)

where ‖s‖∞,τ denotes the maximum norm of s over domain τ .
The approximation properties of the discrete and penalized least squares splines are known (cf. [18],

[19], and [20]).

Theorem 2.3 Suppose that d ≥ 3r+2 and 4 is a β quasi-uniform triangulation. Suppose that there exist
two positive constants F1 and F2 such that (16) and (17) are satisfied. Then there exists a constant C
depending on d and β such that for every function f in Sobolev space Wm+1,∞(Ω) with 1 ≤ m ≤ d such
that

‖f − sλ,f‖∞,Ω ≤ C
F2

F1
|4|m+1|f |m+1,∞,Ω +

λ

(F 2
1 |4|)

C|f |2,∞,Ω

for 0 < λ ≤ F1|4|2/β2. In particular, when λ = 0, we have

‖f − s0,f‖∞,Ω ≤ C
F2

F1
|4|m+1|f |m+1,∞,Ω. (18)

Here m is an integer between 0 and d.

3 Spline Minimizer Sf and Its Properties

Recall that Sf is the solution to the minimization problem (7) and uf is the solution to (5). The existence
of these solutions were explained in the Introduction. We shall show that the minimization (7) is stable
and the spline minimizer Sf converges to uf as the size of triangulation goes to zero.

3.1 Stability of the Minimization (7)

In this subsection we shall show that the minimization is stable
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Lemma 3.1 Suppose we have another function g ∈ L2(Ω). Let Sg ∈ S be the minimizer of (7) associated
with g. Then the norm of the difference of Sf and Sg is bounded by the norm of the difference of f and g,
i.e.

‖Sf − Sg‖2 ≤ ‖f − g‖2. (19)

Proof. For more precise, we let

E(u, f) :=

∫
Ω

√
1 + |∇u|2dx+

1

2λAΩ

∫
Ω

|u− f |2dx

and similar for E(u, g). It is clear that E(u, f) is Frechet differentiable with respect to u. The uniqueness
of Sf and Sg implies that all directional derivatives of E(u, f) and E(u, g) in (8) vanish in the space of
finite dimensional space S spanned by φj , j = 1, ..., n. That is,

∂

∂t
E(Sf + tφj , f)|t=0 =

∫
Ω

∇Sf · ∇φj√
1 + |∇Sf |2

dx+
1

λ

1

AΩ

∫
Ω

(Sf − f)φjdx = 0 (20)

∂

∂t
E(Sg + tφj , g)|t=0 =

∫
Ω

∇Sg · ∇φj√
1 + |∇Sg|2

dx+
1

λ

1

AΩ

∫
Ω

(Sg − g)φjdx = 0 (21)

Subtracting (21) from (20), we have,∫
Ω

∇Sf · ∇φj√
1 + |∇Sf |2

− ∇Sg · ∇φj√
1 + |∇Sg|2

dx+
1

λ

1

AΩ

∫
Ω

(Sf − Sg)φjdx =
1

λ

1

AΩ

∫
Ω

(f − g)φjdx. (22)

Since Sf and Sg are in the finite dimensional space S, we can write Sf−Sg =

n∑
j=1

cjφj for some coefficients

cj . Thus

n∑
j=1

cj∇φj = ∇(Sf −Sg). Multiply cj to (22) for each j and sum them up from j = 1, · · · , n. We

get

λ

∫
Ω

(
∇Sf√

1 + |∇Sf |2
− ∇Sg√

1 + |∇Sg|2

)
· ∇(Sf − Sg)dx+

1

AΩ

∫
Ω

|Sf − Sg|2dx

=
1

AΩ

∫
Ω

(f − g)(Sf − Sg)dx. (23)

Notes that ρ(t) =
√

1 + |t|2 is a convex differentiable multivariate function for t ∈ R2, where |t| stands
for the norm of vector t. Its Hessian matrix Hρ(t) is not negative. By Taylor expansion, for some ξ1 and
ξ2, we have(

t1√
1 + |t1|2

− t2√
1 + |t2|2

)
· (t1 − t2) = (t1 − t2)T (Hρ(ξ1) +Hρ(ξ2))(t1 − t2) ≥ 0 (24)

for any t1, t2 ∈ R2. In particular, let t1 = ∇Sf and t2 = ∇Sg in (24). We integrate (24) over Ω to have∫
Ω

(
∇Sf√

1 + |∇Sf |2
− ∇Sg√

1 + |∇Sg|2

)
· ∇(Sf − Sg)dx ≥ 0. (25)

Using the above inequality, the term in (23) becomes∫
Ω

|Sf − Sg)|2dx ≤
∫

Ω

(f − g)(Sf − Sg)dx
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Apply Cauchy-Schwarz inequality to the right-hand side of above equation, we have∫
Ω

|Sf − Sg|2dx ≤
(∫

Ω

|f − g|2dx
)1/2 (∫

Ω

|Sf − Sg|2dx
)1/2

.

The desired inequality (19) follows. These complete the proof.

3.2 Convergence of Sf to uf

Next we shall show that Sf converges to uf , the minimizer of (5) for the same λ. Although we can use the
arguments in [5] to show the convergence of Sf to uf , the analysis will require uf ∈W 2,∞(Ω). As an image
function may not have such high regularity, we use the following approach to establish the convergence.

Lemma 3.2 Let uf be the solution to (5). For any u ∈ BV(Ω),

‖u− uf‖22 ≤ 2λAΩ(E(u)− E(uf )). (26)

In particular, we have
‖Sf − uf‖22 ≤ 2λAΩ(E(Sf )− E(uf )). (27)

Proof. Using the concept of sub-differentiation and its basic property (see, e.g. [13]), we have

0 = ∂E(uf ) = ∂J(uf )− 1

λAΩ
(f − uf ) and 〈∂J(uf ), u− uf 〉 ≤ J(u)− J(uf ),

where J(u) =

∫
Ω

√
1 + |∇u|2dx. From the above equations, it follows

1

λAΩ

∫
Ω

(f − uf )(u− uf )dx ≤
∫

Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx. (28)

We can write

E(u)− E(uf )

=

∫
Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx+

1

2λ|AΩ|

(∫
Ω

|u− f |2dx−
∫

Ω

|uf − f |2dx
)

=

∫
Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx+

1

2λ|AΩ|

(∫
Ω

(u− uf + uf − f)2dx−
∫

Ω

|uf − f |2dx
)

=

∫
Ω

√
1 + |∇u|2 −

√
1 + |∇uf |2dx+

1

λ|AΩ|

∫
Ω

(u− uf )(uf − f)dx+
1

2λ|AΩ|

∫
Ω

|u− uf |2dx

≥ 1

2λ|AΩ|

∫
Ω

|u− uf |2dx

by (28). Therefore the inequality (26) holds. Hence, we have (27).
Next we need to show that E(Sf ) − E(uf ) → 0. To this end, we recall two standard concepts. Since

Ω ⊂ R2 is an region with piecewise smooth boundary ∂Ω and uf is assumed to be in W 1,1(Ω), using the
extension theorem in [26], there exists a linear operator E : W 1,1(Ω)→W 1,1(R2) such that,
(i)E(uf )|Ω = uf
(ii)E maps W 1,1(Ω) continuously into W 1,1(R2):

‖E(uf )‖W 1,1(R2) ≤ C‖uf‖W 1,1(Ω). (29)
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Note that E(uf ) is a compactly supported function in W 1,1(R2). Thus, without loss of generality we may
assume uf ∈W 1,1(R2).

Recall that the standard mollifier η : R2 → R is defined by

η(x) :=

{
C exp

(
1

|x|2−1

)
, if |x| < 1

0, if |x| ≥ 1

with the constant C > 0 selected so that
∫
R2 η(x)dx = 1. And set

ηε(x) :=
1

ε2
η
(x
ε

)
.

It is easy to see
∫
R2 ηε(x)dx = 1, and support(ηε) ⊂ B(0, ε). Define the mollification uεf of uf by convolution

uεf (x) =

∫
Ωε

ηε(x− y)uf (y)dy =

∫
B(x,ε)

ηε(x− y)uf (y)dy,

where Ωε := {x ∈ R2 | dist(x,Ω) < ε}. It is known that ‖uεf − uf‖2 → 0 as ε→ 0 and uεf ∈ C∞0 (Ωε). See,

e.g. [14]. In particular, when uf ∈W 1,2(Ω), we have

‖uεf − uf‖2 ≤ C|uf |W 1,2(Ω)ε (30)

for a positive constant C independent of ε and f .
Our general plan to show E(Sf )− E(uf )→ 0 is to establish the following sequence of inequalities:

E(uf ) ≤ E(Sf ) ≤ E(Quεf ) ≤ E(uεf ) + err(|4|, ε) ≤ E(uf ) + errε + err(|4|, ε),

where Quεf is a spline approximation of uεf as in Theorem 2.2 and err(|4|, ε) and errε are error terms which
will go to zero when ε and |4| go to zero.

We first show E(uεf ) approximates E(uf ).

Lemma 3.3 Let uεf be the mollification of uf defined above. Then E(uεf ) approximates E(uf ), when

ε→ 0. In particular, when uf ∈W 1,2(Ω), E(uεf )− E(uf ) ≤ Cε for a positive constant dependent on uf .

Proof. First we claim that
E(uεf ) ≤ E(uf ) + errε

for an error term errε

errε =

∫
Ωε\Ω

√
1 + |∇uf (y)|2dy +

1

2λ

(
‖uεf − uf‖22 + 2‖uεf − uf‖2 ‖uf − f‖2

)
(31)

which will be shown to go to zero when ε→ 0 below.
By the convexity of

√
1 + |t|2 and the property of the mollifier, we have

√
1 + |∇uεf (x)|2 =

√√√√1 +

∣∣∣∣∣
∫
B(0,ε)

ηε(x− y)∇uf (y)dy

∣∣∣∣∣
2

≤
∫
B(x,ε)

ηε(x− y)
√

1 + |∇uf (y)|2dy.

It follows that ∫
Ω

√
1 + |uεf (x)|2dx ≤

∫
Ω

∫
B(x,ε)

ηε(x− y)
√

1 + |∇uf (y)|2dydx.

≤
∫

Ωε

√
1 + |∇uf (y)|2

∫
B(y,ε)

ηε(x− y)dxdy

=

∫
Ωε

√
1 + |∇uf (y)|2dy.

=

∫
Ω

√
1 + |∇uf (y)|2dy +

∫
Ωε\Ω

√
1 + |∇uf (y)|2dy.
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By uf ∈W 1,1(R2) and (29), it follows that∫
Ωε\Ω

√
1 + |∇uf (y)|2dy ≤

∫
Ωε\Ω

(1 + |∇uf (y)|) dy → 0, as ε→ 0.

Next we have

1

2λ
‖uεf − f‖22 ≤

1

2λ

(
‖uεf − uf‖22 + 2‖uεf − uf‖2‖uf − f‖2 + ‖uf − f‖22

)
.

Since ‖uεf − uf‖2 → 0 as explained above and ‖uf − f‖2 is bounded because
1

2λ
‖uf − f‖2 ≤ E(0),

1

2λ

(
‖uεf − uf‖22 + 2‖uεf − uf‖2‖uf − f‖2

)
→ 0, as ε→ 0.

This finishes the proof of our claim.
Clearly, uεf ∈W 1,1(Ω) ⊂ BV (Ω). As uf is the minimizer in BV (Ω), it follows that

E(uf ) ≤ E(uεf ) ≤ E(uf ) + errε,

which implies E(uεf ) approximates E(uf ) when ε→ 0.

When uf ∈W 1,2(Ω), the above analysis applies. Together with (30), we use (31) to conclude

errε ≤ C|uf |W 1,2(Ω)ε.

We next estimate E(Quεf )− E(uεf ). To do so, we need semi-norm |uεf |W 2,1(Ωε).

Lemma 3.4 For any fixed ε > 0, uεf ∈W 2,1(Ωε) and

|uεf |W 2,1(Ωε) ≤
C

ε
|uf |W 1,1(Ω) (32)

for a constant C > 0.

Proof. Due to the mollification, uεf ∈W 2,1(Ωε). Letting D1 denote the partial derivative with respect to

the first variable, we consider ‖D1D1u
ε
f‖L1(Ωε). Recall that uεf (x) =

∫
B(x,ε)

ηε(x− y)uf (y)dx. We have

D1D1u
ε
f = −

∫
B(x,ε)

D1uf (y)D1ηε(x− y)dy.

It follows that

|D1D1u
ε
f |L1(Ωε) =

∫
Ωε

∣∣∣∣∣
∫
B(x,ε)

D1uf (y)D1ηε(x− y)dy

∣∣∣∣∣ dx
≤

∫
Ω

∫
B(x,ε)

|D1uf (y)||D1ηε(x− y)|dydx

≤
∫

Ωε

|D1uf (y)|
∫
B(y,ε)

|D1ηε(x− y)|dxdy

=

∫
Ωε

|D1uf (y)|dy
∫
B(0,ε)

|D1ηε(x)|dx.

9



Since

|D1ηε(x)| ≤ 8C exp(−2)

ε3
,

we have

|D1D1u
ε
f |L1(Ωε) ≤ ‖D1uf‖L1(Ω)

C exp(−2)

ε3

∫
B(0,ε)

dx ≤ |uf |W 1,1(Ω)
C ′

ε
(33)

for a positive constant C ′. Using the similar arguments, we can show that ‖D1D2u
ε
f‖L1(Ωε) and ‖D2D2u

ε
f‖L1(Ωε)

have the same upper bound as in (33). And thus, we prove that

|uεf |W 2,1(Ωε) ≤
C

ε
|uf |W 1,1(Ω)

for another positive constant C > 0.
Recall 4 is a triangulation of Ω. Let 4′ = {ti} be a new triangulation of Ωε with 4 ⊂ 4′ and

|4′| = |4|. Using Theorem 2.2, we can choose Quεf ∈ S(4′) such that

‖Dα
1D

β
2 (Q(uεf )− uεf )‖L1(Ωε) ≤ C|4|

2−α−β |uεf |W 2,1(Ωε) (34)

for all α+ β = 1.

Lemma 3.5 Let s̃ := Quεf |Ω be the restriction of Quεf on Ω which is a spline in S. Then E(s̃) approximates

E(uεf ), when |4|ε → 0.

Proof. We first estimate the difference between |E(s̃)− E(uεf )| by

|E(s̃)− E(uεf )|

≤
∣∣∣∣∫

Ω

√
1 + |∇s̃|2 −

√
1 + |∇uεf |2dx

∣∣∣∣+
1

2λ

∣∣‖s̃− f‖22 − ‖uεf − f‖22∣∣
≤

∣∣∣∣∫
Ω

√
1 + |∇s̃|2 −

√
1 + |∇uεf |2dx

∣∣∣∣+
1

2λ

(
‖s̃− uεf‖22 + 2‖s̃− uεf‖2 ‖uεf − f‖2

)
.

Let err(|4|, ε) be the term on the right-hand side of the inequality above. Let us show that err(|4|, ε)→ 0,
as |4|/ε → 0. Note that Q(uεf ) is supported over Ωε by the construction of quasi-interpolatory operator
Q.

‖∇(s̃− uεf )‖L1(Ω) ≤ ‖∇(Q(uεf )− uεf )‖L1(Ωε) ≤ C|4
′||uεf |W 2,1(Ωε) ≤

C|4|
ε
|uf |W 1,1(Ω) (35)

by using the inequality in (34) with α+ β = 1. Hence, we have∣∣∣∣∫
Ω

√
1 + |∇s̃|2 −

√
1 + |∇uεf |2dx

∣∣∣∣ =

∣∣∣∣∣
∫

Ω

|∇s̃|2 − |∇uεf |2√
1 + |∇s̃|2

√
1 + |∇uεf |2

dx

∣∣∣∣∣
≤

∫
Ω

|∇s̃−∇uεf ||∇s̃+∇uεf |√
1 + |∇s̃|2

√
1 + |∇uεf |2

dx

≤ ‖∇(s̃− uεf )‖L1(Ω)

≤ C ′
|4|
ε
|uf |W 1,1(Ω).

Here both C and C ′ are positive constants independent of ε,4, uf .
It is not hard to see the quantity ‖uεf − f‖2 is bounded because

‖uεf − f‖2 ≤ ‖uεf − uf‖2 + ‖uf − f‖2 ≤ 1 +
√

2λAΩ‖f‖2

10



as ‖uεf−uf‖2 ≤ 1 if ε small enough and by using the property of the minimizer uf . By using the well-known

Sobolev inequality: for any function g ∈W 1,1(Ωε),

‖g‖L2(Ωε) ≤ C|∇g|L1(Ωε)

for Ωε with C1 boundary (cf. [14]), we have,

‖s̃− uεf‖L2(Ω) ≤ ‖s̃− uεf‖L2(Ωε) ≤ C‖∇(s̃− uεf )‖L1(Ωε) ≤
C|4|
ε
|uf |W 1,1(Ω)

by (35). Therefore, we conclude that err(|4|, ε) → 0, as |4|/ε → 0, and thus E(s̃) approximates E(uεf ).

Summarizing the discussion above, we have

Theorem 3.1 Suppose that uf ∈ W 1,1(Ω). Then Sf approximates uf in L2(Ω) when |4| → 0. In
particular, when uf ∈W 1,2(Ω),

‖Sf − uf‖2 ≤ C|uf |W 1,2(Ω)

√
|4|

for a positive constant C independent of |4|.

Proof. Since S ⊂ W 1,1(Ω), we have E(uf ) ≤ E(Sf ). Also s̃ ∈ S implies E(Sf ) ≤ E(s̃). By Lemmas 3.3
and 3.5, we have

E(uf ) ≤ E(Sf ) ≤ E(s̃) ≤ E(uεf ) + err(|4|, ε) ≤ E(uf ) + errε + err(|4|, ε).

For each triangulation 4, we choose ε =
√
|4| which ensures |4|/ε→ 0. Thus, the above error terms go

to zero as |4| → 0. By Lemma 3.2, Sf converges to uf in L2 norm.

When uf ∈W 1,2(Ω), we have errε ≤ εC|uf |W 1,2(Ω) and err(|4|, ε) ≤ C
√
|4||uf |W 1,2(Ω) as we trivially

have |uf |W 1,1(Ω) ≤ C|uf |W 1,2(Ω) with positive constant C dependent only on AΩ. These complete the
proof.

Remark 3.1 It is interesting to know if Sf approximates uf when uf ∈ BV(Ω)\W 1,1(Ω).

3.3 A Fixed Point Algorithm and Its Convergence

The following iterations will be used to approximate Sf .

Algorithm 3.1 Given u(k), we find u(k+1) ∈ S such that∫
Ω

∇u(k+1) · ∇φj√
1 + |∇u(k)|2

dx+
1

λAΩ

∫
Ω

u(k+1)φjdx =
1

λAΩ

∫
Ω

fφjdx, for all j = 1, ..., n. (36)

We first show that the above iteration is well defined. Since u(k+1) ∈ S, it can be written as u(k+1) =∑n
i c

(k+1)
i φi. Plugging it in (36), we have

n∑
i

c
(k+1)
i

(∫
Ω

∇φi · ∇φj√
1 + |∇u(k)|2

dx+
1

λAΩ

∫
Ω

φiφjdx

)
=

1

λAΩ

∫
Ω

fφjdx, j = 1, ..., n. (37)

Denote by

D(k) := (d
(k)
i,j )N×N with d

(k)
i,j = λ

∫
Ω

∇φi · ∇φj√
1 + |∇u(k)|2

dx,

11



M := (mi,j)N×N with mi,j =
1

AΩ

∫
Ω

φiφjdx,

v := (vj , j = 1, · · · , N) with vj =
1

AΩ

∫
Ω

fφjdx.

Then to solve equation of (37) is equivalent to solving the equation

(D(k) +M)c(k+1) = v, (38)

where c(k+1) = [c
(k+1)
1 , c

(k+1)
2 , ..., c

(k+1)
n ]T .

Lemma 3.6 (38) has a unique solution c(k+1).

Proof. It is easy to prove D(k) is semi-positive definite and M is positive definite because, for any nonzero
c = (ci)n,

cTD(k)c = λ

∫
Ω

|
∑n
i ci∇φi|2√

1 + |∇u(k)|2
dx ≥ 0,

and

cT M c =
1

AΩ

∫
Ω

|
n∑
i

ciφi|2dx > 0.

Moreover (D(k) +M) is also positive definite, and hence invertible. So (38) has a unique solution.

Lemma 3.7 {u(k), k = 1, 2, · · · } are bounded in L2 norm by ‖f‖2 for all k > 0. That is,

‖u(k+1)‖2 ≤ ‖f‖2. (39)

Also, there exists a positive constant C dependent on β and |4| such that

‖∇u(k+1)‖2 ≤ C‖f‖2.

Proof. Multiply (c(k+1))T to both hand-side of (38), we have

λ

∫
Ω

|∇u(k+1)|2√
1 + |∇u(k)|2

dx+
1

AΩ

∫
Ω

|u(k+1)|2dx =
1

AΩ

∫
Ω

fu(k+1)dx. (40)

Since the first term of (40) are nonnegative, we have

‖u(k+1)‖22 ≤
1

AΩ

∫
Ω

fu(k+1) ≤ ‖f‖2‖u(k+1)‖2 (41)

which yields
‖u(k+1)‖2 ≤ ‖f‖2,

and hence ‖u(k+1)‖2 is bounded if f ∈ L2(Ω). The second part of the results of Lemma 3.7 follows
straightforwardly by using Markov’s inequality in Theorem 2.1.

Next we need to show that the iterative algorithm above converges. We need the following inequality.
Note that the proof of the inequality is different from the one in Lemma 3.2. The reason is that u(k+1) is
not a minimizer of E(u) in S. Thus the technique of the sub-differentiation can not be applied here. We
have to give a different proof.

Lemma 3.8 If u(k+1) is the solution of our Algorithm 3.1, then the following inequality holds

‖u(k) − u(k+1)‖2 ≤ 2λAΩ(E(u(k))− E(u(k+1))). (42)
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Proof. First of all we use (36) to have

1

λAΩ

∫
Ω

(f − u(k+1))(u(k) − u(k+1))dx =

∫
Ω

∇u(k) · ∇u(k+1)√
1 + |∇u(k)|2

dx−
∫

Ω

|∇u(k+1)|2√
1 + |∇u(k)|2

dx

since u(k) − u(k+1) is a linear combination of φj , j = 1, · · · , n. Then the following inequality follows.

1

λAΩ

∫
Ω

(f − u(k+1))(u(k) − u(k+1))dx ≤
∫

Ω

|∇u(k)|2

2
√

1 + |∇u(k)|2
dx−

∫
Ω

|∇u(k+1)|2

2
√

1 + |∇u(k)|2
dx. (43)

Now we are ready to prove (42). The difference between E(u(k)) and E(u(k+1)) is

E(u(k))− E(u(k+1))

=

∫
Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

1

2λAΩ

∫
Ω

|u(k) − f |2 − |u(k+1) − f |2dx

=

∫
Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

1

2λAΩ

∫
Ω

(u(k) − u(k+1))(u(k) + u(k+1) − 2f)dx

=

∫
Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

∫
Ω

1

λAΩ
(u(k+1) − f)(u(k) − u(k+1))

+
1

2λAΩ

∫
Ω

|u(k) − u(k+1)|2dx

which yields the result of this lemma since the first two terms in the last equation above is not negative.
Indeed, by applying (43), we have∫

Ω

√
1 + |∇u(k)| −

√
1 + |∇u(k+1)|2dx+

1

λAΩ

∫
Ω

(u(k+1) − f)(u(k) − u(k+1))

≥
∫

Ω

√
1 + |∇u(k)|2 −

√
1 + |∇u(k+1)|2dx−

∫
Ω

|∇u(k)|2

2
√

1 + |∇u(k)|2
dx+

∫
Ω

|∇u(k+1)|2

2
√

1 + |∇u(k)|2
dx

=

∫
Ω

2 + |∇u(k)|2 + |∇u(k+1)|2

2
√

1 + |∇u(k)|2
−
√

1 + |∇u(k+1)|2dx

≥
∫

Ω

√
1 + |∇u(k)|2

√
1 + |∇u(k+1)|2√

1 + |∇u(k)|2
−
√

1 + |∇u(k+1)|2dx = 0.

We have thus established the proof.
We are ready to show the convergence of u(k) to the minimizer Sf .

Theorem 3.2 The sequence {u(k), k = 1, 2, · · · , } obtained from Algorithm 3.1 converges to the true
minimizer Sf .

Proof. By Lemma 3.7, the sequence {u(k), k = 1, · · · , } is bounded. Actually, we know ‖u(k)‖2 ≤ ‖f‖2.
So there must be a convergent subsequence {u(nj), n1 < n2 < · · · <}. Suppose u(nj) → ū. By Lemma 3.8,
we see {E(u(k)), k = 1, 2, · · · , } is a decreasing sequence and bounded below, so {E(u(k))} is convergent
as well as any subsequence of it. We use Lemma 3.8 to have

‖u(nj+1) − ū‖22 ≤ 2‖u(nj+1) − u(nj)‖22 + 2‖u(nj) − ū‖22
≤ 4λAΩ(E(u(nj))− E(u(nj+1))) + 2‖u(nj) − ū‖22 → 0,

which implies u(nj+1) → ū.
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According to Markov’s inequality, i.e. Theorem 2.1, we have∫
Ω

|∇u(nj) −∇ū|2dx ≤ β2

|4|2

∫
Ω

|u(nj) − ū|2dx. (44)

It follows from the convergence of u(nj) → ū that ∇u(nj) → ∇ū in L2 norm as well. Replacing u(nj) by
u(nj+1) above, we have ∇u(nj+1) → ∇ū too by the convergence of u(nj+1) → ū. As u(nj), u(nj+1) and ū
are spline functions in S. The convergence of u(nj) and u(nj+1) to ū, respectively implies the coefficients
of u(nj) and u(nj+1) in terms of the basis functions φj , j = 1, · · · , N are convergent to the coefficients of
ū, respectively.

Since u(nj+1) solves the equations (36), we have∫
Ω

∇u(nj+1) · ∇φj√
1 + |∇u(nj)|2

dx =

∫
Ω

f − u(nj+1)

λAΩ
φidx (45)

for all φi, i = 1, · · · , N . Letting j →∞, we obtain∫
Ω

∇ū · ∇φi√
1 + |∇ū|2

dx =

∫
Ω

f − ū
λAΩ

φidx (46)

for all i = 1, · · · , N . That is, ū is a local minimizer. Since the functional is convex, a local minimizer is
the global minimizer and hence, ū = Sf . Thus all convergent subsequences of {u(k)} converge to Sf .

4 Discrete Spline Minimizer sf and Its Properties

In this section we mainly discuss the properties of discrete spline minimizer sf of (10).

4.1 Existence, Uniqueness and Stability

Let us first discuss basic properties of the minimizer of (10). We begin with the following

Lemma 4.1 Suppose that the data sites xi, i = 1, · · · , n satisfy the condition (16). Then the minimization
problem (10) has one and only one solution.

Proof. Mainly, we need to show that Ed(u) is strictly convex under the condition in (16). Suppose
that there are two minimizers s1 and s2 of (10). Then any convex combination αs1 + (1 − α)s2 is also a
minimizer since Ed is convex. We claim that if s1(xi, yi) 6= s2(xi, y+ i) for some i between 1 ≤ i ≤ n, then

Ed(αs1 + (1− α)s2) < αEd(s1) + (1− α)Ed(s2).

Indeed, letting us say s1(xn, yn) 6= s2(xn, yn),

(αs1(xn, yn) + (1− α)s2(xn, yn))2 < α(s1(xn, yn))2 + (1− α)(s2(xn, yn))2.

Thus, Ed(αs1+(1−α)s2) < Ed(s1). It is a contradiction. Therefore, we s1(xi, yi) = s2(xi, yi), i = 1, · · · , n.
Now we use the condition (16) to see s1−s2 is a zero spline function. That is, s1 ≡ s2. This shows that Ed is
strictly convex over finite dimensional space S. Thus, there exists a unique minimizer of the minimization
(10).

Next we show that the discrete spline minimizer sf is stable. Let

‖f‖2d =
1

n

n∑
i=1

|f(xi)|2

be the norm for vector f = (f(x1), · · · , f(xn))T . Let sf ∈ S be the solution of (10) associated with the
given function f . Similarly, let sg ∈ S be the minimizer of (10) associated with g. By using the same
method in the proof of Lemma 3.1, we can prove
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Lemma 4.2 The norm of the difference of spline functions sf and sg over discrete points x1, · · · , xn is
bounded by the norm of the difference of f and g over the discrete points, i.e.

‖sf − sg‖d ≤ ‖f − g‖d. (47)

4.2 Numerical Algorithms and Their Convergence

We now study how to compute numerically the minimizer sf of (10). First of all, we shall definite a
computational algorithm for sf . Then we shall prove some properties of the iterative sequence. With these
preparation, we shall prove that our numerical algorithm is convergent and iterative solutions converge to
sf .

Algorithm 4.1 Given u(k) ∈ S, we find u(k+1) ∈ S such that

λ

∫
Ω

∇u(k+1) · ∇φj√
1 + |∇u(k)|2

dx+
1

n

n∑
i=1

u(k+1)(xi)φj(xi) =
1

n

n∑
i=1

f(xi)φj(xi), for all j = 1, ..., n. (48)

We can prove that the iterative algorithm is well defined if we assume the condition (16). Indeed, as

above, we write u(k+1) =
∑n
i c

(k+1)
i φi. Plugging it in (48), we have

n∑
i

c
(k+1)
i

(
λ

∫
Ω

∇φi · ∇φj√
1 + |∇u(k)|2

dx+
1

n

n∑
`=1

φi(x`)φj(x`)

)
=

1

n

n∑
`=1

f(x`)φj(x`), j = 1, ...n. (49)

These lead to the following system of equations

(D(k) + M̃)c(k+1) = ṽ, (50)

where the matrix M̃ and vector ṽ are slightly different from the matrix M and the vector v above.

Lemma 4.3 Suppose that the data locations satisfy the condition (16). Then (50) has a unique solution
c(k+1).

Proof. We have seen that D(k) is semi-positive definite. We now show that M̃ is positive defined. For
any nonzero c = (ci)n,

cT M̃ c =
1

n

n∑
`=1

|
n∑
i

ciφi(x`)|2 > 0.

Indeed, if the above term is zero, then for each triangle t, we have

F1‖
n∑
i

ciφi‖∞,t ≤
n∑
`=1

|
n∑
i

ciφi(x`)|2 = 0,

which implies that the spline function
∑n
i ciφi ≡ 0 and hence, the coefficients ci are all zero. This is a

contradiction. Thus, M̃ is positive.
That is, (D(k) + M̃) is also positive definite, and hence invertible. So (38) has a unique solution.
Similarly, we can show that u(k) is bounded in the following sense:

Lemma 4.4 Suppose that the data locations satisfy the condition (16). Then {u(k)} are bounded for all
k > 0. That is,

n∑
i=1

|u(k+1)(xi)|2 ≤
n∑
i=1

|fi|2. (51)
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In addition,

‖∇u(k+1)‖22 ≤ C
n∑
i=1

|fi|2,

where C is dependent on β and |4|.

Proof. Multiply (c(k+1))T to both hand-side of (38), we have

λ

∫
Ω

|∇u(k+1)|2√
1 + |∇u(k)|2

dx+
1

n

n∑
`=1

|u(k+1)(x`)|2 =
1

n

n∑
`=1

f`u
(k+1)(x`). (52)

By Cauchy-Schwarz’s inequality, we have

n∑
`=1

f`u
(k+1)(x`) ≤

1

2

n∑
`=1

|f`|2 +
1

2

n∑
`=1

|u(k+1)(x`)|2.

It follows

λ

∫
Ω

|∇u(k+1)|2√
1 + |∇u(k)|2

dx+
1

2n

n∑
`=1

|u(k+1)(x`)|2 ≤
1

2n

n∑
`=1

|f`|2. (53)

Thus we have the first part of Lemma 4.4. To see the second part, we prove the maximum norm
‖∇u(k+1)‖∞,Ω is bounded by the right-hand side of (51). Indeed, by Theorem 2.1, we have

‖∇u(k+1)‖∞,Ω ≤
C

|4|
‖u(k+1)‖∞,Ω.

As the maximum norm of u(k+1) is achieved at a triangle t ∈ 4, we use the condition (16) to see

‖u(k+1)‖∞,Ω ≤
1

F1

(
n∑
`=1

|u(k+1)(x`)|2
)1/2

≤ 1

F1

(
n∑
`=1

|f`|2
)1/2

.

It follows that the second part of Lemma 4.4 is true.
Similarly, letting u(k) be the sequence from Algorithm 4.1, we can show the convergence of u(k) to the

minimizer sf . The proof of the following theorem is similar to Theorem 3.2 and is left to the interested
reader.

Theorem 4.1 Suppose that the data sites xi, i = 1, · · · , n satisfy the condition in (16). Then the sequence
{u(k)} obtained from Algorithm 4.1 converges to the true minimizer sf .

5 Numerical Results

We have implemented our bivariate spline approach in MATLAB and performed several image enhance-
ment experiments: image denoising, image inpainting, image rescaling and wrinkle removal. We shall
briefly explain how to choose a polygonal domain, how to triangulate a polygonal domain, how to use a
bivariate spline space in following subsections. After these, we report our numerical results.
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5.1 Image Segmentation

First of all, let us briefly explain how to choose a polygonal domain. For image inpainting and wrinkle
reduction, we simply choose a polygonal domain of interest by hand. For image rescaling, the polygonal
domain is the image domain. For image denoising, we use the active contour method proposed in [9] to
choose polygonal domains. The basic idea is to evolve a closed curve to detect objects in an image, subject
to the minimization of an energy defined in (54) below. For simplicity, let us assume that the image u
is formed by two regions of approximatively piecewise-constant intensities of two distinct values u1 and
u2 and they are separated by a contour C0 := {x : φ(x) = 0, x ∈ Ω}. The goal is to find the ”fittest”
boundary C which best approximates C0. One numerically computes an approximation C of C0. Then
the image is segmented into two distinguished regions: one is inside C and the other is outside C. In [9]
the research considered the following minimization functional on C:

F (C) = µLength(C) + νArea(inside C) +

∫
inside(C)

|u(x)− u1|2dxdy +

∫
outside(C)

|u(x)− u2|2dx, (54)

where C is a variable curve represented by level set {x : φ(x) = 0, x ∈ Ω}. In our computation, µ = ν = 1/2
and φ is approximated by a piecewise constant function over Ω. Here u1 := u1(C) and u2 := u2(C) are
the average values of the image inside and outside C, respectively, which are defined as

u1 =

∫
inside(C)

u(x, y)dxdy and u2 =

∫
outside(C)

u(x, y)dxdy.

Then C0 is the minimizer of the fitting term

inf
C
F (C).

To deal with complicated images with more than two distinguished regions, we have to apply the active
contour segmentation method iteratively. We implement this method based on numerical integration with
equally-spaced grids. Figure 1 gives an example which shows the process of the iterations. Figure (a) is
the original image to be segmented; (b) is the resulting image after the first iteration of the active contour
method, the original images is divided into two regions(black and white); (c) the black region in (b) is
divided into another two regions(gray and white) by one more iteration of the active contour method; (d)
shows combining the results of two iterations by assigning different colors to separate regions; (e) is the
triangulation based on the segmentations result from (d).

To help the performance of the above segmentation, we use the standard discrete Perona-Malik (PM)
model with diffusivity function c(s) = 1/

√
1 + s to reduce the noises first. With this relatively clean image,

we apply for the iterative active contour method to separate an image into many regions. Then we obtain
the triangulations as shown in Fig. 5.1.

5.2 Triangulation

We mainly use the standard Delaunay triangulation algorithm to find a triangulation of a polygon. A
key ingredient is to choose boundary points as equally-spaced as possible and points inside the polygon
as evenly-distributed as possible. If some points are clustered near the boundary of the polygon, we have
to thin a few point off. In addition, we check the triangles from the Delaunay triangulation method to
see which one is outside of the domain and delete such triangles. Triangles in triangulations from our
MATLAB code have almost uniform in size and in area.

5.3 How to Use Bivariate Splines

Let us explain how to implement the bivariate splines as locally supported basis functions are hard to
construct. We mainly use the ideas in [2]. That is, fixed r ≥ 0 and d > 0, we express the polynomial piece
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of each spline function s over a triangle T ∈ 4 in B-form. That is, s =
∑
T∈4

∑
i+j+k=d cT,ijkBT,ijk is

expressed in a discontinuous function over 4. Then we add smoothness conditions including continuous
conditions as side constrains. I.e., let H be the smoothness matrix such that Hc = 0 for c = (cT,ijk, T ∈
4, i+j+k = d)T if and only if s ∈ Srd(4). See [Lai and Schumaker’07] and [2] for B-form and constructing
H. We iteratively solve Sf in the following system of nonlinear equations:∫

Ω

∇Sf · ∇φm√
1 + |∇Sf |2

dx+
1

λ

1

AΩ

∫
Ω

(Sf − f)φmdx = 0 (55)

subject to the smoothness constrains Sf ∈ Srd(4), where φm is one of discontinuous functions BT,ijk which
is defined only on T and i+ j + k = d. This system can be solved by using the iterative algorithm in [4].
Similar for the discrete spline minimizer sf . We always use the penalized least squares splines defined in
§2 as an initial Sf to start the iteration. Each iteration will reduce the area of fitting spline surface. When
the fitting spline surface areas become stable, we stop the iterations. The computational method works
for any r and d with d > r. In our experiments, we use r = 1 and d ≥ 3. In Fig. 2, we demonstrate that
our discrete minimal surface area spline fit is better than the penalized least square spline fit. However,
in terms of peak signal to noise ratio, a penalized least squares spline fit can give better denoised image
values sometimes.

5.4 Numerical Results

Example 5.1 (Image Denoising) Image denoising is a standard procedure for image enhancement. We
shall use the minimal surface area approach discussed in this paper to reduce the noises from a noised image.
Let us consider a standard image Peppers and add a Gaussian noise 20N(0, 1) to get a noised image L.
We first use the standard discrete Perona-Malik (PM) model with diffusivity function c(s) = 1/

√
1 + s to

reduce the noises of L. Of course, one can use other favorable denoising method. Then we run our image
segmentation method discussed above to decompose the image into several regions of interest for further
reduction of noises. In Fig. 2, several triangulations of the image L are shown. It takes about 1 minute
to get all triangulations done. There are 8 regions and 8 triangulations as shown. We apply our minimal
surface area spline (MSA) approach to further remove the noises from these regions with penalized least
squares spline (PLS) fits as initial fitting splines. We use bivariate splines of smoothness is 1 and the
degree d = 6. In the following table we show the peak signal to noises ratio over each region.

Table 1. PSNR over each region by PM, PLS, MSA methods

PM PLS MSA
Region 1 30.7756 30.7852 30.7654
Region 2 29.9161 29.9158 29.9109
Region 3 28.8445 28.8470 28.9952
Region 4 30.9243 30.9200 30.8882
Region 5 31.6307 31.6296 31.6989
Region 6 33.0744 33.0961 33.1167
Region 7 33.3464 33.3430 33.5832
Region 8 32.4490 32.4959 32.5882

final PSNR 31.9459 31.9727 32.0163

In Fig. 3, we show a noised image (using Gaussian noises 20N(0, 1)), a denoised image by using our
approach, an exact image and a denoised image by using the discrete PM model. We put all four images
in one page so that they can be compared to demonstrate that our approach works very well, where the
standard peak signal to noise ratio is used. The computational time is about 2 minutes.
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From Fig. 3 we can see that the denoised image by our approach is smooth in the regions where our
approach is applied and they are even smoother than the original exact image. The denoised image by the
Perona-Malik approach looks bumpy in a few local regions. For the whole image, our result is demonstrated
as in Fig. 4.

Example 5.2 (Image Inpainting) In Fig. 5, we show a damaged image and the recovered image by
using the minimal surface area fitting splines to recover the loss image data values from the damaged
image. In the computation, we used the triangulations in Fig. 6.

Example 5.3 (Image Scaling) We apply the minimum surface area fitting splines to image rescaling
and compared our method to the bicubic and bilinear interpolation methods provided by MATLAB function
”imresize”. In Fig. 7, the two images showed in the first column(not in actual size) are scaled by 10. The
first original image is of dimension 18 × 28, and the second one is of 24 × 15. One can notice that both
the bicubic and bilinear interpolation methods lead to the gibbs discontinuity effect at the edges of the two
images, while our approach barely show any such effect.

Example 5.4 (Wrinkle Removal) Finally we present a wrinkle removal experiment. We are interested
in reducing some wrinkles from a human face. We identify a couple of regions of interest near eyes and
cheeks and apply our bivariate spline approach over each region. In Fig. 8, two images are shown. The
human face on the right is clearly enhanced in the areas near eyes and cheeks. Fig. 9 shows the enlarged
pictures of the 4 positions where wrinkles are removed.
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(a) (b)

(c) (d)

(e)

Figure 1: Iterative Active Contours (a)–(d) and Triangulations of 8 regions (e).
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Figure 2: A noised data values, a penalized least squares spline fit and a minimal surface area spline fit.
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Figure 3: A noised peppers image and the denoised image by our approach(top row) and the exact image
and denoised images by the Perona-Malik method(bottom row).
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Figure 4: The denoised image by our approach (left) and the denoised image by the Perona-Malik
method(right) from a noised image with additive Gaussian noise of σ = 20. d = 7 and r = 1 are
used in our computation.

Figure 5: Inpainting domain are marked by two blacked words. d = 3 and r = 1 are used in our
computation.
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Figure 6: These two triangulations are used in our computation.

Original Image MSA Spline Bicubic Bilinear

Figure 7: Images are scaled by 10 by using our spline method(d = 7, r = 1), Bicubic and Bilinear
interpolation respectively.
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Figure 8: A face with wrinkles on the left and the face with reduced wrinkles on the right. We use d = 3
and r = 1 in our computation.

Position 1 Position 2

Position 2 Position 4

Figure 9: Enlarged pictures of 4 positions where wrinkles are removed.
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