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Abstract

This work presents a method of solving a time dependent partial differential equa-

tion, which arises from classic models in ecology concerned with a species’ population

density over two dimensional domains. The species experiences population growth

and diffuses over time due to overcrowding. Population growth is modeled using lo-

gistic growth with Allee effect. This work introduces the concept of discrete weak

solution and establish theory for the existence, uniqueness and stability of the solu-

tion. Bivariate splines of arbitrary degree and smoothness across elements are used

to approximate the discrete weak solution. More recent efforts focus on modeling

the interaction of multiple species, which either compete for a common resource or

one predates on the other. Some simulations of population development over some

irregular domains are presented at the end.
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Chapter 1

Introduction

1.1 Problem Formulation

Let Ω ⊂ R2 be a polygonal domain. The first goal of this dissertation is to present

a solution to the class of time-dependent, nonlinear partial differential equations in

equation (1.1.1).



∂p(x, t)

∂t
= div (D(p,x)∇p(x, t))) + F (p(x, t)) x ∈ Ω, t ∈ [0, T ]

p(x, t) ≥ 0 x ∈ Ω, t ∈ [0, T ]

p(x, t) = 0 x ∈ ∂Ω, t ∈ [0, T ]

p(x, 0) = p0 x ∈ Ω,

(1.1.1)

Here D(p,x) > 0 is a known diffusive weight function, e.g. D(p,x) = D > 0

and F (p) is a growth function a.e. Lipschitz continuous and bounded above, e.g.

F (p) = A(x)p(1− p), which is a standard logistic growth function with A(x) being a

nonnegative, bounded weight function over Ω. Chapter 4, which focuses on numerical

examples, will use F (p) = Ap(1− p)(p− σ) where σ ∈ [0, 1). This term incorporates

an Allee effect into the growth term. The significance of the Allee effect is discussed
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in Section 1.2.

The PDE can be modified to satisfy a Neumann boundary condition. The re-

mainder of this dissertation will, however, focus on studying the Dirichlet boundary

condition.

The second goal of this dissertation is to present a solution to a model for popu-

lation density of two species on the same domain Ω. They are modeled by the class

of PDEs in equation (1.1.2), which is a natural extension of the single species system

above.

Let Ω ⊂ R2 be a polygonal domain.



dp(x, t)

dt
= div (D∇p(x, t))) + F (p(x, t),m(x, t)) x ∈ Ω, t ∈ [0, T ]

dm(x, t)

dt
= div (E∇m(x, t))) +G(p(x, t),m(x, t)) x ∈ Ω, t ∈ [0, T ]

p(x, t) ≥ 0 x ∈ Ω, t ≥ 0

m(x, t) ≥ 0 x ∈ Ω, t ≥ 0

p(x, t) = 0 x ∈ ∂Ω, t ≥ 0

m(x, t) = 0 x ∈ ∂Ω, t ≥ 0

p(x, 0) = p0 x ∈ Ω

m(x, 0) = m0 x ∈ Ω

(1.1.2)

As before, D = D(p,x) > 0 is a diffusive weight function and a corresponding

function E is introduced for the second species. Growth of the two species is modeled

by F and G, which could take a variety of forms. For example, F (p,m) = Ap(1 −

p)(p− σ)− µpm would correspond to logistic growth with Allee effect of the species

p and a loss of population due to the presence of species m. The term µpm is called

mass action or Holling type I response. The alternative is a growth term of the form

F (p,m) = Ap(1 − p)(p − σ) − µ
pm

ξ + p
which features a Holling type II functional
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response. We will assume that F and G are Lipschitz continuous and bounded above.

The boundary conditions here are similar to the ones chosen for the single species

case. Neumann boundary conditions are also possible.

This dissertation constructs a scheme to compute a numeric approximation of the

PDE solution using bivariate splines on a triangulated, polygonal domain. The time

variable is discretized using an implicit Euler finite difference scheme. We establish

existence, uniqueness and stability of the numerical solution using techniques from

convex optimization. Finally, we present a fixed-point iterative scheme for computing

the approximation in a finite-dimensional spline space and prove the scheme’s con-

vergence to the discrete weak solution. Chapter 2 develops the theory for the single

species case in equation (1.1.1). Chapter 3 develops the corresponding theory for the

two species case in equation (1.1.2).

1.2 Literature Review

The topic of population dynamics has a lengthy history dating back to Malthus in 1798

[28] who first studied population growth. The model was overly simplistic as it gives

rise to asymptotically unbounded population and so Verhulst in 1838 [34] introduced

the logistic growth model pt = r0p(1− p/k), which provided more realistic outcomes.

p0 here represents rate of growth and k represents carrying capacity. In 1910 Lotka

[27] introduced the ODE model known today as the Lotka-Volterra equations. They

were initially proposed as a model for chemical reactions between two substances with

masses u and v. The equations are

du

dt
= λu− buv, dv

dt
= −µv + cuv

where λ, µ, b and c are positive constants. The quadratic term uv is referred to as

mass action and was motivated by the tendency of chemical reactions to be faster

3



in the presence of a larger mass of chemicals. The equations were later adopted by

Volterra in 1926 [35] as a model for predator-prey interactions, letting u and v be

the number of individuals of each species. Empirical evidence for the validity of this

model was brought forward in 1935 by Gause [13] and later by Huffaker in 1958

[18]. Solomon [32] and Holling [16] deemed that mass action as applied in the case

of ecology was inadequate since a predator has a limited ability to consume its prey.

Thus, they introduced the Holling type II functional response and so the new model

became.
du

dt
= λu− b u

1 +mu
v,

dv

dt
= −µv + c

u

1 +mu
v

where m is a positive constant. With this change in place, the predator’s rate of

growth is not as strongly influenced by high predator density.

Cantrell and Cosner in [2] is a rich resource, which provides extensive qualitative

discussion of Lotka-Volterra equations, with both mass action and Holling type II

response. A central topic in the discussion is coexistence of species. In the simplest

ODE formulation
du

dt
= λu− buv, dv

dt
= −µv − cuv

there exists no equilibrium which corresponds to the coexistence of both species. One

species is guaranteed to perish in the long term. The earliest analysis of these systems

gave rise to the so-called “paradox of diversity,” named in the article of Hutchinson

[19], which rightfully asks the question of how it is possible for our ecosystem to

support so many species, which compete for a common resource. A number of mod-

ifications to the Lotka-Volterra model were proposed to address this misalignment

between theory and observation.

An example of such a modification to Lotka-Volterra is agent-based models [4],

which represent the environment as a discrete lattice with “particles” inhabiting the

nodes of the lattice. Individual reproduction and movement can be defined as deter-
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ministic or probabilistic. Such a system is well-suited to numeric simulations, which

showed that it is possible for multiple species to coexist by isolating themselves in

small, localized regions, thereby removing the burden of competing for a common

resource. At the same time, competition from species in surrounding patches forces

each patch to remain relatively stable for long periods of time. Thus, on a micro

scale the species experience little competition, yet on a macro scale the species can

coexist while making use of the same resource. The spatial heterogeneity of a species’

population is key to its survival in this model.

Due to this emergence of spatial heterogeneity in the agent-based model, it be-

comes natural to choose to extend the dependence of u and v in the Lotka-Volterra

equations to the spatial domain, giving rise to reaction-diffusion equations, as de-

scribed in Section 1.1. They were proposed as early as 1937 by Fisher [10] who first

studied the equation
∂p

∂t
= D

∂2p

∂x2
+ kp(1− p)

in the one-dimensional setting and characterized the “traveling wave” solution. Since

then there have been many other studies of reaction-diffusion equations, see Cantrell

and Cosner in [2] for extensive bibliography and [6] for an excellent survey of pub-

lications on the topic. Lopez-Gomez in [7] formulated the problem of “competition

with refuges,” which explicitly defines subsets of R2 as more beneficial to species A

than to species B and gives rise to coexistence.

A further issue with the Lotka-Volterra model is that even at very low popula-

tion density, a species shows an ability to reproduce and thrive. This leads to the

notorious “attofox” problem, which refers to the fact that even a fraction of an indi-

vidual will eventually reproduce and its progeny will reach population capacity. In

reality, low density leads to less efficient feeding, reduced effectiveness of vigilance

and antipredator defenses, inbreeding depression as well as a slew of other negative

outcomes; see, [36], [37], [21], [20], [14], [15], [11], [12], [33] and [30]. Lewis and
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Kareiva in [26] provide a qualitative analysis of an equation with Allee effect as well

as some numerical results. The addition of the Allee effect causes a marked change

in the dynamics the system can exhibit as compared to the Lotka-Volterra model.

Even if the initial population has density which is higher than the Allee threshold in

certain regions, it is possible for the entire population to perish if the growth rate

is not sufficiently large to overcome the decrease in population caused by diffusion.

Using numerical experiments, the asymptotic behavior of the system is observed to

depend on the shape and size of the region Ω ⊂ R2 on which the system is defined.

A complete qualitative description of this dependence remains elusive. Thus, there

remains a need for robust numerical tools that shed light in specific applications of

interest.

There have been a number of studies of reaction-diffusion studies in the literature

which explore numerical simulations. Lewis and Kareiva [26] used finite differences,

which is readily implementable in computer code and can provide good observations

in synthetic tests. However, the use of finite difference methods is inadequate since

realistic regions of interest could be polygonal subsets of R2, such counties, states

or countries as derived from political maps. An example application is presented

in Richter et al [31] which was solved using linear finite elements, implemented by

the general purpose software suite COMSOL Multiphysics. They do not provide a

convergence analysis since they relied on the proper operation of third-party software.

In light of the need to numerically solve reaction-diffusion equations, this disserta-

tion endeavors to provide a complete implementation of a finite element scheme based

on bivariate splines and convergence analysis proving the robustness of the code. The

reaction-diffusion system is kept general so as to be applicable to a wide class of sys-

tems instead of focusing on a particular choice of diffusion or growth regimes. The

code has proved to be powerful enough to tackle the solution for population density

of a single species and of multiple interacting species. In Chapter 4 we present a
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number of example population densities subject to logistic growth with or without

Allee effect, predator-prey interactions with mass action or Holling type II response,

and two species competing for a common resource.

1.3 Some Well-Known Theorems and Lemmas

For the sake of completeness, we list a number of lemmas used in this dissertation,

which are special cases of well-known results.

Lemma 1.3.1. Any a, b ≥ 0 and α > 0 satisfy

ab ≤ α

2
a2 +

1

2α
b2.

Lemma 1.3.2 (Ladyzhenskaya’s Inequality). Any p ∈ H1
0 (Ω) such that Ω ⊂ R2

satisfy

‖p‖L4 ≤ C‖p‖1/2

L2 ‖∇p‖1/2

L2 .

Definition 1.3.1. Let X and Y be Banach spaces, X ⊂ Y . We say X is compactly

embedded in Y , written X ⊂⊂ Y , if the following conditions are satisfied.

(a) ∀x ∈ X, ||p||L2(Ω) ≤ C ||p||H1
0 (Ω) for some constant C.

(b) Any bounded sequence in X has a subsequence which converges in Y .

Theorem 1.3.1 (Rellich-Kondrachov [8]). Suppose Ω ⊂ R2 is bounded with Lipschitz

boundary. Then we have the following compact embedding.

H1(Ω) ⊂⊂ L2(Ω)

Theorem 1.3.2 (General Sobolev Inequality [8]). If p ∈ H2(Ω), then p ∈ C0,γ, the

7



space of Höder continuous functions with any exponent 0 < γ < 1. Furthermore,

||p||C0,γ(Ω) ≤ C ||p||H2(Ω)

where C is a constant independent of p.

Some well-known theory on bivariate splines can be found in the Appendix in

Chapter 6. For a more complete discussion of spline theory see [24]. For computa-

tional schemes see [1]. As the PDE of interest (1.1.1) is nonlinear, the MATLAB code

used in [1] has to be extended to handle this nonlinear PDE.
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Chapter 2

Modeling a Single Species

The time dependence and nonlinearity of the PDE of interest presents a challenge

for a numerical scheme charged with finding an approximate solution. To tackle this

challenge, this dissertation introduces a sequence of alternate formulations, which are

successively more tractable.

1) Introduce a weak formulation of the PDE, which is standard for any finite

element scheme.

2) Discretize the time domain thereby removing the time dependence.

3) Introduce a fixed-point iteration scheme thereby removing all nonlinearity.

4) Discretize the Hilbert space H1
0 (Ω) by using the space of bivariate splines Srd(∆)

of degree d and smoothness r, which leaves us with a linear, finite-dimensional

problem.

2.1 Discrete Weak Formulation

Let us begin by presenting the weak formulation. Suppose p ∈ H1
0 (Ω) is a solution to

equation (1.1.1). Then for any q ∈ H1
0 (Ω), p satisfies the following weak formulation

9



obtained by integrating by parts.

∫
Ω

∂p(x, t)

∂t
q(x)dx = −

∫
Ω

D(x)∇p(x, t) · ∇q(x)dx +

∫
Ω

F (p(x, t))q(x)dx. (2.1.1)

Now consider t ∈ [0, T ] and partition 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T . We

approximate dp(x,t)
dt

by its divided difference, i.e.,

dp(x, ti)

dt
≈ p(x, ti)− p(x, ti−1)

h

with h = ti − ti−1. Substitute this approximation into (2.1.1) to obtain

∫
Ω

ph(x, ti)q(x)dx + h

∫
Ω

D(x)∇ph(x, ti) · ∇q(x)dx

− h
∫

Ω

F (ph(x, ti))q(x)dx =

∫
Ω

ph(x, ti−1)q(x)dx. (2.1.2)

Note that the function ph has a subscript h to indicate its dependence on the choice

of h; a solution to (2.1.2) is not the same as a solution to (2.1.1) and vice-versa. In

addition, both (2.1.1) and (2.1.2) obey the same boundary conditions as (1.1.1).

Definition 2.1.1. Any solution to equation (2.1.2) for fixed h > 0, ti−1 and ti is

called a discrete weak solution of (1.1.1).

The following theorem guarantees that the discrete weak solution is a good ap-

proximation of the exact solution.

Theorem 2.1.1. Let p(x, t) be the classical solution of (1.1.1) and ph(x, t) be the

discrete weak solution dependent on h > 0. Suppose that p(x, t) is twice differentiable

with respect to t. Then

∫
Ω

|p(x, ti)− ph(x, ti)|2dx ≤ Ch, ∀i = 0, · · · ,m+ 1, (2.1.3)

as h = T/(m+ 1)→ 0, where C > 0 is a constant independent of h.

10



Proof. By Taylor expansion, we have

dp(x, ti)

dt
=
p(x, ti)− p(x, ti−1)

h
+O(h), (2.1.4)

where O(h) is a quantity bounded by Ch for a positive constant C < ∞. Using

(2.1.1) and (2.1.2), we have

∫
Ω

dp(x, ti)

dt
q(x)dx−

∫
Ω

ph(x, ti)− ph(x, ti−1)

h
q(x)dx

=−
∫

Ω

D(x)∇(p(x, ti)− ph(x, ti)) · ∇q(x)dx

+

∫
Ω

(F (p(x, ti))− F (ph(x, ti))q(x)dx.

Substitute (2.1.4) to obtain.

∫
Ω

p(x, ti)− p(x, ti−1)

h
q(x)dx−

∫
Ω

ph(x, ti)− ph(x, ti−1)

h
q(x)dx

=−
∫

Ω

D(x)∇(p(x, ti)− ph(x, ti)) · ∇q(x)dx

+

∫
Ω

(F (p(x, ti)− F (ph(x, ti))q(x)dx +O(h).

Letting q = p(x, ti)− ph(x, ti) ∈ H1
0 (Ω) in the above equality, we obtain

∫
Ω

|p(x, ti)− ph(x, ti)|2dx

=

∫
Ω

(p(x, ti−1)− ph(x, ti−1)(p(x, ti)− ph(x, ti))

− h
∫

Ω

D(x)|∇(p(x, ti)− ph(x, ti))|2dx

+ h

∫
Ω

(F (p(x, ti))− F (ph(x, ti))(p(x, ti)− ph(x, ti))dx +O(h2)

11



Discard the positive gradient term and use Lemma 1.3.1 with α = 1.

≤1

2

∫
Ω

|p(x, ti)− ph(x, ti)|2dx +
1

2

∫
Ω

|p(x, ti−1)− ph(x, ti−1)|2dx

+ h

∫
Ω

(F (p(x, ti))− F (ph(x, ti))(p(x, ti)− ph(x, ti))dx +O(h2)

Since F is Lipschitz continuous, i.e. |F (p)− F (q)| ≤ L|p− q|, it follows that

∫
Ω

|p(x, ti)− ph(x, ti)|2dx ≤
∫

Ω

|p(x, ti−1)− ph(x, ti−1)|2dx

+ 2hLCA

∫
Ω

|p(x, ti)− ph(x, ti)|2 +O(h2),

where CA = ‖A‖L∞(Ω). That is, we have

(1− 2hLCA)

∫
Ω

|p(x, ti)− ph(x, ti)|2dx ≤
∫

Ω

|p(x, ti−1)− ph(x, ti−1)|2dx +O(h2).

Letting α = 1/(1− 2hLCA), we multiply α on both sides above and then repeatedly

apply the inequality for i = k, . . . , 1 to obtain

∫
Ω

|p(x, tk)− ph(x, tk)|2dx ≤ α

∫
Ω

|p(x, tk−1)− ph(x, tk−1)|2dx + αO(h2) ≤ · · · · · ·

≤ αk
∫

Ω

|p(x, t0)− ph(x, t0)|2dx +O(h2)
k−1∑
i=0

αi

Note that p(x, t0) = ph(x, t0) since they obey the same boundary conditions.

≤ O(h2)
m∑
i=0

αi ≤ O(h2)
αm+1

α− 1

≤ O(h2)
αT/h

α− 1
= O(h2)(1− 2hLCA)−T/h

1− 2hLCA
2hLCA

≤ O(h2)e2TL1− 2hLCA
2hLCA

= O(h)
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The last inequality concludes the proof.

The theorem guarantees a discrete weak solution is a close approximation of a

classical solution. From this point on, we will drop the subscript h from ph for sim-

plicity. We will also rewrite the weak formulation slightly by altering the growth term

from F (p) to pF1(p). The growth functions in which epidemiologists are interested

all allow such a factoring, so the model remains sufficiently general.

Let A = {p ∈ H1
0 (Ω), p(x, y) ≥ 0 for a.e. (x, y) ∈ Ω} be the set of admissible

functions. Here Ω ⊂ R2 is an open, bounded domain with Lipschitz boundary. By

letting p = p(x, ti) and p̂ = p(x, ti−1), we rewrite (2.1.2) into a simpler form. Thus, we

look for a population density in the admissible set p ∈ A which satisfies the following

equation:

∫
Ω

pq dx+h

∫
Ω

D(x)∇p·∇q dx =

∫
Ω

p̂q dx+h

∫
Ω

pF1(p)q dx ∀q ∈ H1
0 (Ω) (2.1.5)

where 0 < K ≤ D(x) ≤ K2 is a diffusive weight function and F1(p) is a growth

function, which is Lipschitz continuous and bounded above by some constant M . An

example of interest in epidemiology is

F1(p) = A(x)(1− p)(p− σ)

which models population growth with an Allee effect. Here A(x) is a given bounded,

nonnegative function and σ ∈ [0, 1). We can assume p(x, 0) ∈ A and thus p̂ ∈ A as

well by induction.

We would like to know that equation (2.1.5) has a unique solution. In order to

do that, we note that the discrete weak formulation is the Euler-Lagrange equation

13



of the following energy minimization problem.

min
p∈A

E(p) = min
H1

0 (Ω),p≥0

∫
Ω

p2 dx+h

∫
Ω

D(x)|∇p|2 dx−h
∫

Ω

G(p) dx−
∫

Ω

p̂p dx (2.1.6)

where

G(p) =

∫ p

0

ξF1(ξ) dξ

In order to show that the functional has a minimizer, we need a lower bound for its

image.

Lemma 2.1.1. Suppose we choose h <
1

M
. Then for any function p ∈ A the energy

functional given in (2.1.6) satisfies

E(p) ≥ C ||p||2H1
0 (Ω) − ||p̂||

2
2

for some constant C > 0. In particular, inf
p∈A

E(p) ≥ − ||p̂||22 > −∞.

Proof. First we will present an upper bound for one of the terms. Recall our assump-

tion that F1(p) is bounded above. Thus, F1(p) ≤M for some constant M .

G(p) =

∫ p

0

ξF1(ξ) dξ ≤M

∫ p

0

ξ dξ =
M

2
p2∫

Ω

G(p) dx ≤ M

2
||p||22

Now we prove the lower bound for the entire functional. We use the Cauchy-Schwarz

inequality, the upper bound for G(p) we just established and D(x) ≥ K.

E(p) ≥ ||p||22 + hK ||∇p||22 −
hM

2
||p||22 − ||p̂||2 ||p||2

=

(
1− hM

2

)
||p||22 + hK ||∇p||22 − ||p̂||2 ||p||2

14



Use our assumption for h in this Lemma and Lemma 1.3.1 on the last term with

α = 2.

≥ 1

2
||p||22 + hK ||∇p||22 − ||p̂||

2
2 −

1

4
||p||22

≥ min

{
1

4
, hK

}
||p||2H1

0 (Ω) − ||p̂||
2
2

Lemma 2.1.2. If h < 1/M , the energy functional in (2.1.6) is weakly lower semi-

continuous on H1(Ω). That is, if pk → p∗ weakly in H1(Ω), then

E(p∗) ≤ lim inf
k→∞

E(pk)

Proof. Set m := lim inf
k→∞

E(pk). By passing to a subsequence we can assume that

E(pk) − m < 1/k. That is, lim
k→∞

E(pk) = m. Any weakly convergent sequence is

bounded in H1(Ω) norm, so by the Rellich-Kondrachov theorem (Theorem 1.3.1), we

can pass to another subsequence which converges strongly in L2(Ω). Taking one last

subsequence, we can assume that pk → p∗ a.e. in Ω.

Fix ε > 0. By Egoroff’s theorem there exists a measurable set Uε such that pk → p∗

uniformly on Uε and |Ω− Uε| < ε. Also write

Vε =

{
x ∈ Ω

∣∣∣∣|p∗(x)|+ |∇p∗(x)| < 1

ε

}
(2.1.7)

Then |Ω− Vε| → 0 as ε→ 0. Let Oε = Uε ∩ Vε and note that

|Ω−Oε| = |(Ω− Uε) ∪ (Ω− Vε)| ≤ |Ω− Uε|+ |Ω− Vε| → 0 as ε→ 0
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Now

E(pk) +

∫
Ω

p̂pk dx =

∫
Ω

p2
k + hD(x)|∇pk|2 − hG(pk) dx

From the proof of Lemma 2.1.1 we know that the right-hand side is nonnegative.

≥
∫
Oε

p2
k + hD(x)|∇pk|2 − hG(pk) dx

Since the function η : Rn → R given by η(x) = |x|2 is convex, it follows that

≥
∫
Oε

p2
k + hD(x)

(
|∇p∗|2 + 2∇p∗ · (∇pk −∇p∗)

)
(2.1.8)

− hG(pk) dx (2.1.9)

E(pk) +

∫
Ω

p̂pk dx ≥
∫
Oε

p2
k + hD(x)|∇p∗|2 − hG(pk) dx

+

∫
Oε

2hD(x)∇p∗ · (∇pk −∇p∗) dx (2.1.10)

Recall equation (2.1.7) and note that in the first integral every term is bounded above.

In addition, pk → p∗ uniformly on Oε and G is an absolutely continuous function, so

G(pk)→ G(p∗) uniformly on Oε. Thus,

lim
k→∞

∫
Oε

p2
k + hD(x)|∇p∗|2 − hG(pk) dx =

∫
Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx

(2.1.11)

As for the second integral, note that ∇pk → ∇p∗ weakly in L2(Ω;Rn). Since

hD(x)∇p∗ ∈ L2(Ω;Rn) it follows that

lim
k→∞

∫
Oε

2hD(x)∇p∗ · (∇pk −∇p∗) dx = 0 (2.1.12)

We then take limits as k → ∞ on both sides of (2.1.10) and as a result of (2.1.11)
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and (2.1.12), we have

m+

∫
Ω

p̂p∗ dx ≥
∫
Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx

m ≥
∫
Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx−
∫

Ω

p̂p∗ dx

Now we take the limit as ε→ 0. Since the integrand is nonnegative and Oε ↑ Ω, the

monotone convergence theorem guarantees that

m ≥
∫

Ω

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗)− p̂p∗ dx

m ≥ E(p∗)

Theorem 2.1.2. There exists a function p∗ ∈ A which minimizes the energy func-

tional E(p) defined in (2.1.6).

Proof. Set m := inf
p∈A

E(p) and choose a minimizing sequence {pk}. Then E(pk)→ m.

As a result of Lemma 2.1.1 we know that

||pk||H1
0 (Ω) ≤ E(pk) + ||p̂||22

E(pk)→ m, so sup
k
E(pk) <∞. Thus, the minimizing sequence is bounded in H1

0 (Ω).

Since H1
0 (Ω) is weakly compact, there exists a subsequence pk which converges weakly

to some function p∗ ∈ H1
0 (Ω). We’d like to know that p∗ is also in the admissible setA.

By the Rellich-Kondrachov theorem (Theorem 1.3.1), we can pass to a subsequence

which converges strongly in L2(Ω). By taking another subsequence, we can assume

that pk → p∗ a.e., so we conclude that p∗ ≥ 0 a.e. That is, p∗ is in the admissible set

A.
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It remains to show that p∗ is a minimizer of E(p). Lemma 2.1.2 assures us that

E(p∗) ≤ lim inf
k→∞

E(pk) = m (2.1.13)

Since p∗ ∈ A, we have m ≤ E(p). Together with (2.1.13), this implies that E(p∗) =

m = min
p∈A

E(p).

Lemma 2.1.3. Recall that M = maxx∈Ω,p≥0 F1(p). Let M ′ = maxx∈Ω,p≥0 F
′
1(p). If h

is small enough so that

2− hM − hM ′pmax > 0

then the functional E(p) defined in (2.1.6) is µ-strongly convex. That is, ∃µ > 0 such

that

E(y) ≥ E(x) + 〈∇E(x), x− y〉+
µ

2
||x− y||22

where 〈∇E(x), x − y〉 is the Gâteaux derivative of E at the point x in the direction

x− y.

Proof. We use an equivalent formulation of µ-strong convexity. It is enough to show

that ∀q ∈ O we have

∂2E(p, q) ≥ µ ||q||22

We compute the second Gâteaux derivative. Let q ∈ H1
0 (Ω). Then the second

derivative is given by F ′′(0).

F(t) =E(p+ tq)

F ′(t) =

∫
Ω

2(p+ tq)q dx + 2h

∫
Ω

D(x)∇(p+ tq) · ∇q dx

− h
∫

Ω

(p+ tq)F1(p+ tq)q dx−
∫

Ω

p̂q

F ′′(t) =2

∫
Ω

q2 dx + 2h

∫
Ω

D(x)|∇q|2 dx− h
∫

Ω

F1(p+ qt)q2

+ (p+ tq)F ′1(p+ tq)q2 dx
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∂2E(p, q) = F ′′(0) =2 ||q||22 + 2h

∫
Ω

D(x)|∇q|2 dx−

h

∫
Ω

F1(p)q2 − h
∫

Ω

pF ′1(p)q2 dx

≥2 ||q||22 − hM ||q||
2
2 − hM ′pmax ||q||22

=(2− hM − hM ′pmax) ||q||22

as desired.

Theorem 2.1.3. The energy functional in (2.1.6) has a unique minimizer.

Proof. Suppose p and p̃ are both minimizers of E(p). Then for any q ∈ H1
0 (Ω) we

have

〈∇E(p, q)〉 = 〈∇E(p̃, q)〉 = 0

By Lemma 2.1.3 the following two inequalities hold.

E(p) ≥ E(p̃) +
µ

2
||p− p̃||22

E(p̃) ≥ E(p) +
µ

2
||p− p̃||22

Add the two inequalities.

0 ≥ µ ||p− p̃||22

Thus, p = p̃ a.e.

Definition 2.1.2 (Sobolev gradient). Fix p ∈ H1
0 and let L : H1

0 (Ω)→ R be given by

L(q) = 〈∇E(p), q〉. Since L is a bounded linear functional, by the Riesz representation

theorem, there exists a unique element v ∈ H1
0 (Ω) such that L(q) = 〈v, q〉H1(Ω). We

call v the Sobolev gradient of E at p and will denote it ∇E(p).

The Sobolev gradient is a natural extension of the concept of gradient of a dif-
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ferentiable function on Rn and similarly functions as the direction of steepest ascent

for the functional E at the point p. For a discussion of the properties of Sobolev

gradients see Neuberger [29].

Definition 2.1.3. Let P+ : R→ R.

P+(x) =


x if x ≥ 0

0 if x < 0

and P−(x) = −P+(−x).

The function P+ extends to an operator on absolutely continuous functions by

composition. That is, P+(f)(x) = P+ ◦ f(x). The result is absolutely continuous.

Ultimately, we need to extend this operator to functions in Sobolev space.

Lemma 2.1.4. The operator P+ extends to an operator P+ : H1
0 (Ω) → H1

0 (Ω) such

that for any f ∈ H1
0 (Ω), P+(f) is nonnegative a.e. and

||P+(f)||H1
0 (Ω) ≤ ||f ||H1

0 (Ω) .

Proof. Note that P+ : R→ R is a nonexpansive function. That is,

|P+(x)− P+(y)| ≤ |x− y|.

Take any sequence fn ∈ C∞c such that ||fn − f ||H1
0 (Ω) → 0. All fn are abso-

lutely continuous and so, P+(fn) is defined. Let ωn = f−1
n ((−∞, 0)). Note that

P+(fn)
∣∣
ωn
≡ 0 and ∇P+(fn)

∣∣
ωn
≡ 0. Furthermore,

||P+(fn)||2H1
0 (Ω) =

∫
Ω\ω
|fn|2 dx +

∫
Ω\ω
|∇fn|2 dx

≤
∫

Ω

|fn|2 dx +

∫
Ω

|∇fn|2 dx = ||fn||2H1
0 (Ω) .
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The inequality above shows P+ is a nonexpansive map in the Sobolev norm. In

addition, P+(fn) is also a Cauchy sequence since

||P+(fn)− P+(fm)||H1
0 (Ω) ≤ ||fn − fm||H1

0 (Ω) → 0.

Then let P+(f) := lim
n→∞

P+(fn). Since P+ is a nonexpansive map in Sobolev norm,

we are assured that ||P+(f)|| ≤ ||f ||H1
0 (Ω). Note that P+(f) is nonnegative a.e.

All that remains is to show this construction is well defined. To that end, choose

a different sequence gn ∈ C∞c (Ω) such that ||gn − f ||H1
0 (Ω) → 0. Suppose P+(gn)→ g.

||P+(f)− g||H1
0 (Ω) = ||P+(f)− g + P+(fn)− P+(fn) + P+(gn)− P+(gn)||H1

0 (Ω)

≤ ||P+(f)− P+(fn)||H1
0 (Ω) + ||g − P+(gn)||H1

0 (Ω)

+ ||P+(fn)− P+(gn)||H1
0 (Ω)

By definition, the first two norms on the right hand side can be made arbitrarily

small by choosing a large n. The last term can be bounded as well by

||P+(fn)− P+(gn)||H1
0 (Ω) ≤ ||fn − gn||H1

0 (Ω) ≤ ||fn − f ||H1
0 (Ω) + ||f − gn||H1

0 (Ω)

which can also be made arbitrarily small. Thus, g = P+(f).

The motivation for the construction of P+ is to be able to “project” any Sobolev

function into the admissible set of solutions A, but note that this is not a true

projection of a vector space onto a subspace since P+ is not linear nor is A a subspace.

Lemma 2.1.5. Suppose p∗ ∈ A is the minimizer of (2.1.6). Let v = − ∇E(p∗)

||∇E(p∗)|| be

the direction of steepest descent. Then P+(v) = 0. In addition, if h ≤ 2

M
, then

p∗ = P+(p∗ − τ∇E(p∗)).
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for small enough τ > 0.

Proof. Suppose v1 = P+(v) ∈ A is nonzero. 〈∇E(p∗), v1〉 is either positive, negative

or zero.

If 〈∇E(p∗), v1〉 < 0, that would contradict the fact that p∗ is the minimizer since

E(p∗ + τv1) < E(p∗) for small enough τ .

If 〈∇E(p∗), v1〉 > 0, let v2 = P−(v) so that v = v1 + v2. Then

〈∇E(p∗), v〉 = 〈∇E(p∗), v1〉+ 〈∇E(p∗), v2〉 > 〈∇E(p∗), v2〉.

According to Lemma 2.1.4, ||v2||H1
0 (Ω) ≤ ||v||H1

0 (Ω), making v2 a vector of unit length

or smaller, which would contradict the fact that v is the direction of steepest descent.

We conclude that 〈∇E(p∗), v1〉 = 0, making v2 the direction of steepest descent

which is positive nowhere and thus P+(v2) = 0.

To prove the second conclusion, we claim that E(P+(p)) ≤ E(p) for all p ∈ H1
0 (Ω).

Consequently, E(P+(p∗ − τ∇E(p∗))) ≤ E(p∗ − τ∇E(p∗)). But if τ is small enough,

moving in the direction of steepest descent will cause the energy to decrease. Hence,

E(P+(p∗ − τ∇E(p∗))) ≤ E(p∗ − τ∇E(p∗)) ≤ E(p∗).

If the inequality is strict, that would contradict that p∗ is the minimizer. If we have

equality, then by Theorem 2.1.3 the conclusion follows.

Now we prove the claim. Let ω = p−1(−∞, 0) = {x ∈ Ω : p(x) ≤ 0} and split

each energy functional into integrals over ω and over Ω\ω. The integrals over Ω\ω

are identical, so we focus on ω. Note that G(0) = 0 by definition. We will also need
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the following estimate.

G(p) =

∫ p

0

ξF1(ξ) dξ ≤M

∫ p

0

ξ dξ =
M

2
p2∫

ω

G(p) dx ≤ M

2

∫
ω

p2 dx

Recall that we assumed p̂ ≥ 0. Then

∫
ω

p2 dx + h

∫
ω

D(x)|∇p|2 dx− h
∫
ω

G(p) dx−
∫
ω

p̂p

≥
∫
ω

p2 dx− hM

2

∫
ω

p2 dx =

(
1− hM

2

)∫
ω

p2 dx ≥ 0

while

∫
ω

P+(p)2 dx + h

∫
ω

D(x)|∇P+(p)|2 dx− h
∫
ω

G(P+(p)) dx−
∫
ω

p̂P+(p) = 0

since P+(p) ≡ 0 on ω. Thus, E(P+(p)) ≤ E(p).

Theorem 2.1.4. A function p ∈ A is the minimizer of (2.1.6) if and only if p is a

discrete weak solution to (2.1.5).

Proof. It is clear that when p ∈ A is a discrete weak solution (2.1.5), we have

〈∇E(p), q〉 = 0. Hence, we have

〈∇E(p), q − p〉 ≥ 0, ∀q ∈ A. (2.1.14)

Thus, p is a minimizer of (2.1.6).

On the other hand, as seen from Theorem 2.1.3, there is a unique minimizer p∗ of

(2.1.6). We can use the standard projected gradient method to find p∗ which is given

as follows.
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Algorithm 2.1.1. Starting with P 1 = p̂ ∈ A, we iteratively compute P̃ k+1

P̃ k+1 = P k − τ∇E(P k) (2.1.15)

and find P k+1 = P+(P̃ k+1) for k = 1, · · · , until the consecutive error ‖P k+1 − P k‖2

is within a tolerance, where τ > 0 is a step size.

Using Lemma 2.1.5 and the inequality below

∫
Ω

|P+(p)− P+(q)|2dx ≤
∫

Ω

|p− q|2dx, ∀p, q ∈ L2(Ω). (2.1.16)

we conclude that

‖P k+1 − p∗‖2
L2(Ω) =

∫
Ω

|P+(P̃ k+1)− P+(p∗)|2dx

≤
∫

Ω

|P̃ k+1 − (p∗ − τ∇E(p∗))|2dx

=

∫
Ω

|P k − p∗ − τ(∇E(P k)−∇E(p∗))|2dx

= ‖P k − p∗‖2
L2(Ω) − 2τ

∫
Ω

(P k − p∗)(∇E(P k)−∇E(p∗))dx

+ τ 2‖∇E(P k)−∇E(p∗)‖2
L2(Ω)

≤ ‖P k − p∗‖2
L2(Ω)(1− 2τµ+ τ 2L2)

where µ is the constant in Lemma 2.1.3 and L is the Lipschitz constant of ∇E. As

long as τ < 2µ/(L2), we have ρ = 1 − 2τµ + τ 2L2 < 1. For example, τ = µ/L2 is a

good choice. Thus, it follows that P k, k ≥ 1 are a Cauchy sequence and converge to

p∗ in L2(Ω) norm.

Furthermore, we can consider ‖P̃ k+1 − P̃ `+1‖2
L2(Ω) and use the above analysis to

conclude that P̃ k, k ≥ 1 are a Cauchy sequence in L2(Ω) norm and hence, converge
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to a limit by P̃ ∗. It follows that p∗ = P+(P̃ ∗) almost every where in Ω since

‖p∗ − P+(P̃ ∗)‖2
L2(Ω) ≤ ‖p∗ − P k‖2

L2(Ω) + ‖P k − P+(P̃ ∗)‖2
L2(Ω)

= ‖p∗ − P k‖2
L2(Ω) + ‖P+(P̃ k)− P+(P̃ ∗)‖2

L2(Ω)

≤ ‖p∗ − P k‖2
L2(Ω) + ‖P̃ k − P̃ ∗‖2

L2(Ω) → 0

when k →∞.

We now claim that P̃ ∗ ∈ A. Otherwise, let ω = {(x, y) ∈ Ω, P̃ ∗ < 0}. If ω is

an open set with a positive measure, we can choose a function q ∈ H1
0 (Ω) such that

q = 1 in an interior of ω and 0 outside of ω such that

∫
Ω

p∗ − P̃ ∗
τ

qdx = 〈∇E(p∗), q〉 (2.1.17)

=

∫
Ω

p∗qx + h

∫
Ω

D(x)∇p∗ · ∇qdx− h
∫

Ω

p∗F1(p∗)qdx−
∫

Ω

p̂qdx

=

∫
ω

p∗qx + h

∫
ω

D(x)∇p∗ · ∇qdx− h
∫
ω

p∗F1(p∗)qdx−
∫
ω

p̂qdx

It follows that

0 <

∫
ω

−P̃ ∗
τ

dx = −
∫
ω

p̂qdx ≤ 0 (2.1.18)

which is a contradiction as p̂ ≥ 0. If ω is not an open set, we can choose an open set

ω̃ containing ω such that the measure of ω̃\ω is arbitrarily close to zero. We shall

have an equality similar to (2.1.17) with ω̃ replacing ω and use a q ∈ H1
0 (Ω) which is

1 on an interior of ω̃ while zero out of ω̃. As p∗ ∈ H1
0 (Ω), the terms on the right-hand

side of the modified version of (2.1.17) can be arbitrarily small except for the last

term, i.e. −
∫
ω̃
p̂qdx while the left-hand side term is

∫
ω̃
−P̃ ∗
τ
qdx > 0. These show

that ω has to be of zero measure. Hence, P̃ ∗ ≥ 0 almost everywhere in Ω. That is,

p∗ = P+(P̃ ∗) = P̃ ∗. From (2.1.15), it follows that 〈∇E(p∗), q〉 = 0, ∀q ∈ H1
0 (Ω).

Remark 2.1.1. Theorem 2.1.4 implies that there exists a unique discrete weak solu-
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tion to (2.1.5).

Lemma 2.1.6. The minimizer p∗ of the energy functional (2.1.6), hereby denoted

by Ep̂, is stable with respect to perturbations in p̂. In particular, if we let q∗ be the

minimizer associated with the energy functional

Eq̂(q) =

∫
Ω

q2 dx + h

∫
Ω

D(x)|∇q|2 dx− h
∫

Ω

G(q) dx−
∫

Ω

q̂q dx

then we are assured that

||p∗ − q∗||2 ≤
1

µ
||p̂− q̂||2

Proof. Since p∗ is the minimizer, we know ∂Ep̂(p
∗, ν) = 0 for all ν. Similarly,

∂Eq̂(q
∗, ν) = 0 for all ν. As a result of Lemma 2.1.3 we get the following two in-

equalities.

Ep̂(q
∗) ≥ Ep̂(p

∗) +
µ

2
‖p∗ − q∗‖2

2

Eq̂(p
∗) ≥ Eq̂(q

∗) +
µ

2
‖p∗ − q∗‖2

2

We add the two inequalities. After some cancellation we obtain the following inequal-

ity.

−〈p̂, q∗〉 − 〈q̂, p∗〉 ≥ −〈p̂, p∗〉 − 〈q̂, q∗〉+ µ‖p∗ − q∗‖2
2

〈p̂, p∗ − q∗〉 − 〈q̂, p∗ − q∗〉 ≥ µ‖p∗ − q∗‖2
2

〈p̂− q̂, p∗ − q∗〉 ≥ µ‖p∗ − q∗‖2
2

We use the Cauchy-Schwarz’s inequality to conclude

‖p∗ − q∗‖2 ≤
1

µ
‖p̂− q̂‖2
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which is the desired inequality.

2.2 Bivariate Spline Approximation of the Discrete

Weak Solution

2.2.1 The Discrete Weak Solution in Finite Dimensional Space

So far we have established that there exists a unique discrete weak solution to the

problem posed in (2.1.5). Our next goal is to find an approximate solution in a finite-

dimensional spline space. That is, we will approximate p and p̂ by using the spline

space Srd(4) defined as follows.

Definition 2.2.1 (Spline Space). Let 4 be a given triangulation of a domain Ω.

Then we define the spline space of smoothness r and degree d over 4 by,

Srd(4) = {s ∈ Cr(Ω) | s|T ∈ Pd, ∀ T ∈ 4},

where Pd is the space of polynomials of degree at most d.

We shall denote the basis of this space as {φj}1≤j≤n. We now set out to find

p∗ ∈ Srd(4) which satisfies the following equation.

∫
Ω

pq dx+h

∫
Ω

D(x)∇p·∇q dx =

∫
Ω

p̂q dx+h

∫
Ω

pF1(p)q dx ∀q ∈ Srd(4) (2.2.1)

Theorem 2.2.1. If h is small enough, then there exists p∗ ∈ Srd(4) which satisfies

equation (2.2.1).

Proof. The proof of this theorem is constructive and we only give an overview of

the construction here. The detail is contained in the rest of this subsection and the

next subsection. We first devise an iterative computational scheme. Each iteration
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requires solving a simple linear equation, for which we can guarantee the existence of

such iterative solution. We then show that this sequence of iterative solutions actually

forms a Cauchy sequence. Thus, the sequence converges to a spline in Srd(4) which is

a finite dimensional, and hence a complete space. Finally, by simply taking limits as

the number of iteration goes to infinity, we demonstrate that we get a discrete weak

spline solution satisfying (2.2.1).

Theorem 2.2.2. The weak solution of (2.2.1) is unique.

Proof. The proof is analogous to the one in Theorem 2.1.3. Detail is omitted here.

2.2.2 The Computational Scheme

At each time step ti, we have to solve the nonlinear problem (2.2.1). Our approach

is to linearize the equation using a fixed-point method.

Algorithm 2.2.1. Writing p̂ = p(x, i − 1) or p̂ = p0(x), the initial value, find

p(k), k ≥ 1 such that

∫
Ω

p(k)q + hD

∫
Ω

∇p(k) · ∇q = 〈p̂, q〉+ h

∫
Ω

p(k)F1

(
p(k−1)

)
q dx ∀q ∈ Srd(4) (2.2.2)

for k = 1, 2, . . . , until a given accuracy for ‖p(k) − p(k−1)‖ is met.

Remark 2.2.1. We stated in the outline of the proof for Theorem 2.2.1 that we will

show the sequence of p(k) is Cauchy and hence converges to a limit p∗ ∈ Srd(4). Note

that in (2.2.2), we can take the limit as k → ∞ of both sides and obtain precisely

(2.2.1). This requires the use of the Dominated Convergence Theorem and so we

prove boundedness of all the iterates in Theorem 2.2.3.

Lemma 2.2.1. Given splines p(k−1) and p̂, there exists a unique spline solution for

p(k) in equation (2.2.2).
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Proof. Let φj be any spline basis function. Any spline function in Srd(4) can be

written as
∑n

i=1 ciφi. Let φj be any spline basis function. Let ~c be the vector of

coefficients for p(k) and ~p be the vector of coefficients for p̂. Define the following

matrices.

M(i, j) :=

∫
Ω

φiφj dx

KD(i, j) :=

∫
Ω

D(x)∇φi · ∇φj dx

MF1(p(k−1))(i, j) :=

∫
Ω

F1(p(k−1))φiφj dx

Note that all these matrices are symmetric. In addition, M is positive-definite.

We have to solve (2.2.2) for each q ∈ Srd(4), but it’s sufficient to solve for each

basis spline φj. Thus, we have n equations and n unknowns in the coefficient vector,

which is equivalent to the following linear system.

M~c+ hKD~c = M~p+ hMF1(p(k−1))~c(
M + hKD − hMF1(p(k−1))

)
~c = M~p

Let L = M + hKD − hMF1(p(k−1)). M is positive-definite and invertible. If h is small

enough, L is also invertible. Thus, we can solve for ~c, the spline coefficients of p(k).

Theorem 2.2.3. If h < 1/M , then the successive solutions p(k) of the equation (2.2.2)

satisfy

∣∣∣∣p(k)
∣∣∣∣

2
≤ 1

1− hM ||p̂||2 (2.2.3)∣∣∣∣∇p(k)
∣∣∣∣

2
≤ 1√

hK

√
||p(k)||2 (||p̂||2 − (1− hM) ||p(k)||2) (2.2.4)
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If we substitute the estimate from (2.2.3) into (2.2.4), we obtain a bound which is

less sharp but is independent of k.

∣∣∣∣∇p(k)
∣∣∣∣

2
≤ 1√

hK

√
||p(k)||2 ||p̂||2 ≤

1√
hK(1− hM)

||p̂||2

Proof. Substitute q = p into (2.2.2). Then

∣∣∣∣p(k)
∣∣∣∣2

2
+ h

∫
Ω

D(x)|∇p(k)|2 dx︸ ︷︷ ︸
≥0

= 〈p̂, p(k)〉+ h

∫
Ω

F1(p(k−1))(p(k))2 dx

Use the Cauchy-Schwarz inequality and the fact that F1(p) ≤M for any p.

∣∣∣∣p(k)
∣∣∣∣2

2
≤ ||p̂||2

∣∣∣∣p(k)
∣∣∣∣

2
+ hM

∣∣∣∣p(k)
∣∣∣∣2

2∣∣∣∣p(k)
∣∣∣∣

2
≤ ||p̂||2 + hM

∣∣∣∣p(k)
∣∣∣∣

2∣∣∣∣p(k)
∣∣∣∣

2
≤ 1

1− hM ||p̂||2

Now we prove the bound for ∇p(k) by substituting q = p once more into (2.2.2).

∣∣∣∣p(k)
∣∣∣∣2

2
+ h

∫
Ω

D(x)|∇p(k)|2 dx = 〈p̂, p(k)〉+ h

∫
Ω

F1(p(k−1))(p(k))2 dx∣∣∣∣p(k)
∣∣∣∣2

2
+ hK

∣∣∣∣∇p(k)
∣∣∣∣2

2
≤ ||p̂||2

∣∣∣∣p(k)
∣∣∣∣

2
+ hM

∣∣∣∣p(k)
∣∣∣∣2

2

hK
∣∣∣∣∇p(k)

∣∣∣∣2
2
≤ ||p̂||2

∣∣∣∣p(k)
∣∣∣∣

2
−
∣∣∣∣p(k)

∣∣∣∣2
2

+ hM
∣∣∣∣p(k)

∣∣∣∣2
2

hK
∣∣∣∣∇p(k)

∣∣∣∣2
2
≤
∣∣∣∣p(k)

∣∣∣∣
2

(
||p̂||2 − (1− hM)

∣∣∣∣p(k)
∣∣∣∣

2

)
∣∣∣∣∇p(k)

∣∣∣∣
2
≤ 1√

hK

√
||p(k)||2 (||p̂||2 − (1− hM) ||p(k)||2)

Remark 2.2.2. The constant in the bound for ∇p(k), which can be found under the

square root, is non-negative as a result of the bound for p(k). In fact, it can be very

close to zero.
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Remark 2.2.3. Since we are now working within a finite-dimensional space, all

norms are equivalent. As a result, we have just established that p and its deriva-

tives are bounded functions. That is,

∣∣∣∣p(k)
∣∣∣∣
∞ ≤

C

1− hM ||p̂||2

Theorem 2.2.4. If h is small enough so that

hL
C

(1− hM)2
||p̂||2 < 1

where C is the constant from Remark 2.2.3, then successive iterates in Algorithm

(2.2.1) are Cauchy in L2(Ω). That is,

∣∣∣∣p(k) − p(k−1)
∣∣∣∣

2
≤ α

∣∣∣∣p(k−1) − p(k−2)
∣∣∣∣

2

where 0 < α < 1.

Proof. Take two successive solutions which satisfy the following equations.

∫
Ω

p(k)q dx + h

∫
Ω

D(x)∇p(k) · ∇q dx =

∫
Ω

p̂q dx

+ h

∫
Ω

p(k)F1(p(k−1))q dx∫
Ω

p(k−1)q dx + h

∫
Ω

D(x)∇p(k−1) · ∇q dx =

∫
Ω

p̂q dx

+ h

∫
Ω

p(k−1)F1(p(k−2))q dx
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Subtract the two equations and substitute q = p(k) − p(k−1).

∣∣∣∣p(k) − p(k−1)
∣∣∣∣2

2
+ h

∫
Ω

D(x)|∇p(k) −∇p(k−1)|2 dx︸ ︷︷ ︸
≥0

= h

∫
Ω

(
F1(p(k−1))p(k) − F1(p(k−2))p(k−1)

)
(p(k) − p(k−1)) dx

Add and subtract F1(p(k−1)) and rearrange.

∣∣∣∣p(k) − p(k−1)
∣∣∣∣2

2
≤ h

∫
Ω

F1(p(k−1))
(
p(k) − p(k−1)

)2

+ h

∫
Ω

(
F1(p(k−1))− F1(p(k−2))

)
p(k−1)(p(k) − p(k−1)) dx

Use remark 2.2.3 to bound |p(k−1)|.

∣∣∣∣p(k) − p(k−1)
∣∣∣∣2

2
≤ hM

∣∣∣∣p(k) − p(k−1)
∣∣∣∣2

2

+ h
C

1− hM ||p̂||2
∫

Ω

∣∣F1(p(k−1))− F1(p(k−2))
∣∣ ∣∣p(k) − p(k−1)

∣∣ dx
Group like terms.

(1− hM)
∣∣∣∣p(k) − p(k−1)

∣∣∣∣2
2

≤ h
C

1− hM ||p̂||2
∫

Ω

∣∣F1(p(k−1))− F1(p(k−2))
∣∣ ∣∣p(k) − p(k−1)

∣∣ dx
F1(p) is assumed to be Lipschitz continuous with constant LF .

≤ hLF
C

1− hM ||p̂||2
∫

Ω

∣∣p(k−1) − p(k−2)
∣∣ ∣∣p(k) − p(k−1)

∣∣ dx
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Apply the Cauchy-Schwartz inequality.

(1− hM)
∣∣∣∣p(k) − p(k−1)

∣∣∣∣2
2
≤ hLF

C

1− hM ||p̂||2
∣∣∣∣p(k−1) − p(k−2)

∣∣∣∣
2

∣∣∣∣p(k) − p(k−1)
∣∣∣∣

2∣∣∣∣p(k) − p(k−1)
∣∣∣∣

2
≤ hLF

C

(1− hM)2
||p̂||

∣∣∣∣p(k−1) − p(k−2)
∣∣∣∣

2

We can choose a small enough h so that α = hL
C

(1− hM)2
||p̂|| satisfies 0 < α < 1.

2.2.3 Bivariate Spline Approximation to the Discrete Weak

Solution in Sobolev Space

In this subsection, we show that the spline solutions obtained above are a good

approximation to the weak solution in (2.1.5). Let p∗ be the weak solution of (2.1.5)

and let S∗ be the spline solution which is the limit of the iterative solutions from

Algorithm 2.2.1. By using Lemma 2.1.3 and noting that ∇E(p∗, q) = 0 for any

q ∈ H1
0 (Ω), we have

E(S∗)− E(p∗) ≥ µ

2
||S∗ − p∗||22 (2.2.5)

Let Sp∗ be the quasi-interpolant of p∗ in the spline space Srd(4) as in the Appendix.

Since S∗ is the minimizer of (2.1.6) with respect to all q ∈ Srd(4), we conclude that

E(Sp∗) > E(S∗). Together with (2.2.5) we can write

µ

2
||S∗ − p∗||22 ≤ E(Sp∗)− E(p∗) (2.2.6)

Theorem 2.2.5. Suppose that h > 0 is small enough and p∗, the weak solution of

(2.1.5), is in Hm+1(Ω) with m ≥ 1. Then S∗, the limit of the iterative solutions from

Algorithm 2.2.1, approximates p∗ in the following sense:

||S∗ − p∗||2 ≤ C|4|m|p∗|m+1,2,Ω (2.2.7)

33



where C is a constant.

Proof. We rewrite equation (2.2.6)

µ

2
||S∗ − p∗||22 ≤

∫
Ω

S2
p∗ − (p∗)2 dx + h

∫
Ω

D(x)
(
|∇Sp∗|2 − |∇p∗|2

)
dx

+ h

∫
Ω

G(p∗)−G(Sp∗) dx

=

∫
Ω

(Sp∗ − p∗)(Sp∗ + p∗) dx

+ h

∫
Ω

D(x)(∇Sp∗ −∇p∗) · (∇Sp∗ +∇p∗) dx

+ h

∫
Ω

G(p∗)−G(Sp∗) dx

G is a differentiable function by construction. Since p∗ ∈ H2(Ω), by Theorem 1.3.2 we

conclude that p∗ is Hölder continuous and hence it has some maximal valueM∗ on the

compact set Ω. Analogously, we can conclude the same for Sp∗ . As a result, G′(p) has

a maximum value on the compact set [0,M∗] and so G is Lipschitz continuous with

some constant LG. Continuing where we left off above, we use the Cauchy-Schwarz

inequality and LG:

≤ ||Sp∗ − p∗||2 ||Sp∗ + p∗||2
+ hK2 ||∇Sp∗ −∇p∗||2 ||∇Sp∗ +∇p∗||2
+ hLG

∫
Ω

|p∗ − Sp∗| dx

≤C1 ||Sp∗ − p∗||2 + hK2C2 ||∇Sp∗ −∇p∗||2
+ hLG|Ω|1/2 ||p∗ − Sp∗||2

where C1 = ||Sp∗||2 + ||p∗||2, C2 = ||∇Sp∗||2 + ||∇p∗||2.

By the approximation property of nonnegative preserving interpolatory splines,

Theorem 2.3 in [22] and the standard approximation property of spline spaces, i.e.

Theorem 6.0.1 together with the Markov inequality, i.e. Theorem 6.0.2 as in Ap-
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pendix, we then write

||Sp∗ − p∗||2 ≤ C3|4|2|p∗|2,2,Ω

||∇Sp∗ −∇p∗||2 ≤ C4|4||p∗|2,2,Ω

where |4| is the length of the longest edge in the triangulation and C3 and C4 are

constants independent of p∗.

As a corollary, we have that E(Sp∗)− E(p∗)→ 0 as |4| → 0.
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Chapter 3

Multiple Interacting Species

We now shift our attention to finding solutions to the system modeling two interacting

population densities as presented in equation (1.1.2).

In order to define a weak formulation of the PDE, we define the following set of

admissible solutions

A = {(p,m) ∈ H1
0 (Ω)×H1

0 (Ω) | p(x) ≥ 0,m(x) ≥ 0 for a.e. x ∈ Ω}.

The set consists of the subset of functions in the standard Sobolev space with trace

zero which satisfy the nonnegative condition almost everywhere. Let Ω ⊂ R2 be an

open, bounded domain with Lipschitz boundary.
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3.1 Discrete Weak Formulation

Suppose p,m are classical solutions to equation (1.1.2). Then for any q ∈ H1
0 (Ω), p

and m satisfy the following weak formulation obtained by integrating by parts.

∫
Ω

∂p(x, t)

∂t
q(x)dx = −

∫
Ω

D(x)∇p(x, t) · ∇q(x)dx +

∫
Ω

F (p,m)q(x)dx (3.1.1)∫
Ω

∂m(x, t)

∂t
q(x)dx = −

∫
Ω

E(x)∇m(x, t) · ∇q(x)dx +

∫
Ω

G(p,m)q(x)dx (3.1.2)

Consider t ∈ [0, T ] and partition 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T . We

approximate dp(x,t)
dt

and dm(x,t)
dt

by its divided difference, i.e.,

dp(x, ti)

dt
≈ p(x, ti)− p(x, ti−1)

h

with h = ti − ti−1. Substitute this approximation into (3.1.1) and (3.1.2) to obtain

∫
Ω

ph(x, ti)q(x)dx + h

∫
Ω

D(x)∇ph(x, ti) · ∇q(x)dx

− h
∫

Ω

F (ph(x, ti),mh(x, ti))q(x)dx =

∫
Ω

ph(x, ti−1)q(x)dx (3.1.3)∫
Ω

mh(x, ti)q(x)dx + h

∫
Ω

E(x)∇mh(x, ti) · ∇q(x)dx

− h
∫

Ω

G(ph(x, ti),mh(x, ti))q(x)dx =

∫
Ω

m(x, ti−1)q(x)dx. (3.1.4)

Note that the functions ph and mh have the subscript h to indicate their dependence

on the choice of h; a solution to (3.1.3) is not a solution to (3.1.1) and vice-versa.

Definition 3.1.1. Any pair of functions (p(x, ti),m(x, ti)) ∈ A, which satisfy equa-

tions (3.1.3) and (3.1.4) for fixed h > 0, ti and ti−1, are called discrete weak solutions

of (1.1.2).

Similar to Theorem 2.1.1, we can guarantee that the discrete weak solutions are

good approximations to the exact solutions.
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Theorem 3.1.1. Let (p(x, t),m(x, t)) be classical solutions of (1.1.2). Suppose that

F and G are Lipschitz continuous. Let ph(x, ti) and mh(x, ti) for i = 1, . . . ,m+ 1 be

the discrete weak solutions with ph(x, t0) = p(x, t0) and mh(x, t0) = m(x, t0). Suppose

that p(x, t) and m(x, t) are twice differentiable with respect to t. Then

∫
Ω

|p(x, ti)− ph(x, ti)|2dx +

∫
Ω

|m(x, ti)−mh(x, ti)|2dx ≤ Ch, ∀i = 0, · · · ,m+ 1,

(3.1.5)

as h = T/(m+ 1)→ 0, where C > 0 is a constant independent of h.

Proof. By Taylor expansion, we have

dp(x, ti)

dt
=
p(x, ti)− p(x, ti−1)

h
+O(h), (3.1.6)

where O(h) is a quantity bounded by Ch for a positive constant C < ∞. Using

(3.1.1) and (3.1.3), we have

∫
Ω

dp(x, ti)

dt
q(x)dx−

∫
Ω

ph(x, ti)− ph(x, ti−1)

h
q(x)dx

=−
∫

Ω

D(x)∇(p(x, ti)− ph(x, ti)) · ∇q(x)dx

+

∫
Ω

(F (p(x, ti),m(x, ti))− F (ph(x, ti),mh(x, ti))q(x)dx.

Substitute (3.1.6) to obtain

∫
Ω

p(x, ti)− p(x, ti−1)

h
q(x)dx−

∫
Ω

ph(x, ti)− ph(x, ti−1)

h
q(x)dx

=O(h)−
∫

Ω

D(x)∇(p(x, ti)− ph(x, ti)) · ∇q(x)dx

+

∫
Ω

(F (p(x, ti),m(x, ti))− F (ph(x, ti),mh(x, ti))q(x)dx.
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Letting q = p(x, ti)− ph(x, ti) in the above inequality, we obtain

∫
Ω

|p(x, ti)− ph(x, ti)|2dx

=

∫
Ω

(p(x, ti−1)− ph(x, ti−1)(p(x, ti)− ph(x, ti)) +O(h2)

− h
∫

Ω

D(x)|∇(p(x, ti)− ph(x, ti))|2dx

+ h

∫
Ω

(F (p(x, ti),m(x, ti))− F (ph(x, ti),mh(x, ti))(p(x, ti)− ph(x, ti))dx

Discard the positive gradient term and use Lemma 1.3.1 with α = 1.

≤1

2

∫
Ω

|p(x, ti)− ph(x, ti)|2dx +
1

2

∫
Ω

|p(x, ti−1)− ph(x, ti−1)|2dx +O(h2)

+ h

∫
Ω

(F (p(x, ti),m(x, ti))− F (ph(x, ti),mh(x, ti))(p(x, ti)− ph(x, ti))dx

Since F is Lipschitz continuous, i.e. |F (p,m)− F (q, n)| ≤ L
√
|p− q|2 + |m− n|2, it

follows that

∫
Ω

|p(x, ti)− ph(x, ti)|2dx

≤
∫

Ω

|p(x, ti−1)− ph(x, ti−1)|2dx +O(2h2)

+ 2hL

∫
Ω

√
|p(x, ti)− ph(x, ti)|2 + |m(x, ti)−mh(x, ti)|2(p(x, ti)− ph(x, ti))dx

Use Lemma 1.3.1 with α = 1 again.

≤
∫

Ω

|p(x, ti−1)− ph(x, ti−1)|2dx +O(2h2)

+ 2hL

∫
Ω

|p(x, ti)− ph(x, ti)|2 +
1

2
|m(x, ti)−mh(x, ti)|2dx
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Rearrange the inequality to obtain

(1− 2hL)

∫
Ω

|p(x, ti)− ph(x, ti)|2dx− hL
∫

Ω

|m(x, ti)−mh(x, ti)|2dx

≤
∫

Ω

|p(x, ti−1)− ph(x, ti−1)|2dx +O(h2).

Similarly, we can derive

(1− 2hL)

∫
Ω

|m(x, ti)−mh(x, ti)|2dx− hL
∫

Ω

|p(x, ti)− ph(x, ti)|2dx

≤
∫

Ω

|m(x, ti−1)−mh(x, ti−1)|2dx +O(h2).

Adding the two inequalities together, we obtain

(1− 3hL)

[∫
Ω

|p(x, ti)− ph(x, ti)|2dx +

∫
Ω

|m(x, ti)−mh(x, ti)|2dx
]

(3.1.7)

≤
∫

Ω

|p(x, ti−1)− ph(x, ti−1)|2dx +

∫
Ω

|m(x, ti−1)−mh(x, ti−1)|2dx +O(h2).

Letting α = 1/(1− 3hL) and

ei =

∫
Ω

|p(x, ti)− ph(x, ti)|2dx +

∫
Ω

|m(x, ti)−mh(x, ti)|2dx,

we multiply α on the both sides above and then repeatedly apply the inequality for

i = k, . . . , 1 to obtain

ek ≤ αek−1 +O(h2) ≤ · · · · · ·

≤ αke0 +O(h2)
k−1∑
i=0

αi
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Note that e0 = 0 since the same boundary conditions apply to p and ph and to m and

mh.

≤ O(h2)
αm

α− 1
= O(h)

The final step in the inequality is analogous to the one proved in Theorem 2.1.1.

Now that we’ve defined the discrete weak solution and seen guarantees that it is

a good approximation to a classical solution, we seek an approach to finding such a

discrete weak solution. The approach uses many of the techniques from Chapter 2

for the case of a single species.

In order to simplify the notation, we will use the shortened notation p = ph(x, ti)

and p̂ = ph(x, ti−1). Similarly, m = mh(x, ti) and m̂ = ph(x, ti−1). We suppress

the time step size h, the spatial variable and all times ti other than the current and

previous ones, unless there is a specific need to pay attention to them. Thus, a much

more concise description of the discrete weak formulation is.

∫
Ω

pq dx + h

∫
Ω

D(x)∇p · ∇q dx− h
∫

Ω

F (p,m)q dx =

∫
Ω

p̂q dx (3.1.8)∫
Ω

mq dx + h

∫
Ω

E(x)∇m · ∇q dx− h
∫

Ω

G(p,m)q dx =

∫
Ω

m̂qdx. (3.1.9)

Since ph(x, t0) andmh(x, t0) are given initial conditions of the PDE, we can assume

that p̂ and m̂ are known and can focus on finding a solution for p, the next time step.

Recall from the introductory chapter that we assume F and G are Lipschitz con-

tinuous and bounded above. We must now impose the additional condition that we

can write

F (p,m) = pF1(p,m) and G(p,m) = mG1(p,m). (3.1.10)

and the factors F1 and G1 are also Lipschitz continuous and bounded above. Let

f(p,m) =
∫ p

0
F (ξ,m)dξ =

∫ p
0
ξF1(ξ,m)dξ. Similar for g(m, p) =

∫ m
0
ξG1(ξ, p)dξ. As
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the system of diffusive PDE (1.1.2) is nonlinear, we build a fixed point iteration

scheme which linearizes the problem of finding discrete weak solutions p and m. We

start with an initial guess (pk,mk) ∈ A and find (pk+1,mk+1) ∈ A. We shall show

that the sequences {pk, k ≥ 1} and {mk, k ≥ 1} are Cauchy. The limits will form the

discrete weak solution at ti. Let

E1(p) :=

∫
Ω

p2 dx + h

∫
Ω

D(x)|∇p|2 dx− h
∫

Ω

f(p,mk
i ) dx−

∫
Ω

p̂p dx (3.1.11)

E2(m) :=

∫
Ω

m2 dx + h

∫
Ω

E(x)|∇m|2 dx− h
∫

Ω

g(pki ,m) dx−
∫

Ω

m̂m dx (3.1.12)

Initially, we let p1 = p̂ and m1 = m̂ and define a minimization problem.

min
(p,m)∈A

E(p,m) = min
(p,m)∈A

E1(p) + E2(m). (3.1.13)

Then we have the following existence and uniqueness result.

Theorem 3.1.2. There exists a unique pair (pk+1,mk+1) ∈ A which minimizes the

energy functional E(p,m) in (3.1.13).

Proof. The proof is analogous to the one of Theorem 2.1.2.

The motivation behind this definition of the energy functionals in 3.1.11 and 3.1.12

is that their Euler-Lagrange equations, computed using Gâteaux derivatives, are given

by

∫
Ω
pk+1q dx+ h

∫
Ω
D(x)∇pk+1 · ∇q dx =

∫
Ω
p̂q dx+ h

∫
Ω
F (pk+1,mk)q dx (3.1.14)∫

Ω
mk+1q dx+ h

∫
Ω
E(x)∇mk+1 · ∇q dx =

∫
Ω
m̂q dx+ h

∫
Ω
G(pk,mk+1)q dx. (3.1.15)

where q ∈ H1
0 (Ω) is an arbitrary element, possibly different in each equation. These

are analogous to the discrete weak problem from 3.1.8 and 3.1.9 but modified into a

fixed-point iteration scheme whose limit solves the discrete weak problem. What we
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are not assured, however, is that the minimizer is necessarily a critical point of E , i.e.

that it is a solution to the Euler-Lagrange equations, since A is not an open set. We

later prove that the minimizer is indeed a critical point.

Theorem 3.1.3. Suppose that (pk+1,mk+1) ∈ A satisfy equations 3.1.14 and 3.1.15.

Then (pk+1,mk+1) is the minimizer of (3.1.13).

Proof. Consider the constrained minimization problem:

min
x∈C
E(x), (3.1.16)

where E(x) is a convex function over the convex set C ⊂ H and H is a Hilbert space.

Suppose E is differentiable. Then any minimizer w∗ of (3.1.16) satisfies

〈∇E(w∗),x−w∗〉 ≥ 0, ∀x ∈ C. (3.1.17)

On the other hand, if w∗ ∈ C satisfies (3.1.17), then w∗ is a minimizer of (3.1.16).

We know (pk+1,mk+1) ∈ A which is a convex subset of the Hilbert space H1
0 (Ω)×

H1
0 (Ω). Then E(p,m) = E1(p) + E2(m) is a convex and differentiable function, a fact

whose proof is omitted here but can be readily reproduced by consulting the proof

of Lemma 2.1.3. Equations 3.1.14 and (3.1.15) imply that 〈∇E(w∗),x〉 = 0 for all

x ∈ {(q1, q2) | q1, q1 ∈ H1
0 (Ω)}, where w∗ = (pk+1,mk+1). This in turn implies that

the inequality in 3.1.17 holds, and thus (pk+1,mk+1) is a minimizer of (3.1.13).

Theorem 3.1.4. There exists at most one pair (pk+1,mk+1) satisfying (3.1.15) if

h > 0 is small enough.

Proof. Suppose that there is another pair (p̃, m̃) satisfying

∫
Ω

p̃q dx + h

∫
Ω

D(x)∇p̃ · ∇q dx =

∫
Ω

p̂q dx + h

∫
Ω

F (p̃,mk)q dx (3.1.18)∫
Ω

m̃q dx + h

∫
Ω

E(x)∇m̃ · ∇q dx =

∫
Ω

m̂q dx + h

∫
Ω

G(pk, m̃)q dx (3.1.19)
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for all q ∈ H1
0 (Ω). Subtract equations 3.1.18 and 3.1.14 to obtain

∫
Ω

(pk+1− p̃)q dx+h

∫
Ω

D(x)∇(pk+1− p̃) ·∇q dx = h

∫
Ω

(F (pk+1,mk)−F (p̃,mk))q dx.

Letting q = pk+1 − p̃, we have

‖pk+1 − p̃‖2 + h‖
√
D∇(pk+1 − p̃)‖2 ≤ hL‖pk+1 − p̃‖2

(1− hL)‖pk+1 − p̃‖2 ≤ 0

As long as hL < 1, we conclude that pk+1 − p̃ ≡ 0.

An analogous argument for mk+1 − m̃ ≡ 0 can be made.

Finally we show

Theorem 3.1.5. Let (pk+1,mk+1) ∈ A be the minimizer of (3.1.13). Then the pair

are discrete weak solutions to (3.1.15).

Proof. As we know, there is a unique minimizer (p∗,m∗) of (3.1.13). We can use

the standard projected gradient method to find (p∗,m∗). For convenience, we only

discuss how to compute p∗ which is given as follows.

Algorithm 3.1.1. Starting with P 1 = p̂ ∈ A, we iteratively compute P̃ k+1

P̃ k+1 = P k − τ∇E(P k) (3.1.20)

and find P k+1 = P+(P̃ k+1) for k = 1, · · · , until the consecutive error ‖P k+1 − P k‖2

is within a tolerance, where τ > 0 is a step size.

Recall Lemma 2.1.5 and

∫
Ω

|P+(p)− P+(q)|2dx ≤
∫

Ω

|p− q|2dx, ∀p, q ∈ L2(Ω). (3.1.21)
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Thus, we have

‖P k+1 − p∗‖2
L2(Ω) =

∫
Ω

|P+(P̃ k+1)− P+(p∗)|2dx

≤
∫

Ω

|P̃ k+1 − (p∗ − τ∇E1(p∗))|2dx

=

∫
Ω

|P k − p∗ − τ(∇E1(P k)−∇E1(p∗))|2dx

= ‖P k − p∗‖2
L2(Ω) − 2τ

∫
Ω

(P k − p∗)(∇E1(P k)−∇E1(p∗))dx

+ τ 2‖∇E1(P k)−∇E1(p∗)‖2
L2(Ω)

≤ ‖P k − p∗‖2
L2(Ω)(1− 2τµ+ τ 2L2)

where µ is the strong convexity constant and L is the Lipschitz constant of ∇E1. As

long as τ < 2µ/(L2), we have ρ = 1 − 2τµ + τ 2L2 < 1. For example, τ = µ/L2 is a

good choice. Thus, it follows that P k, k ≥ 1 are a Cauchy sequence and converge to

p∗ in L2(Ω) norm.

Furthermore, we can consider ‖P̃ k+1 − P̃ `+1‖2
L2(Ω) and use the above analysis to

conclude that P̃ k, k ≥ 1 are a Cauchy sequence in L2(Ω) norm and hence, converge

to a limit by P̃ ∗. It follows that p∗ = P+(P̃ ∗) almost everywhere in Ω since

‖p∗ − P+(P̃ ∗)‖2
L2(Ω) ≤ ‖p∗ − P k‖2

L2(Ω) + ‖P k − P+(P̃ ∗)‖2
L2(Ω)

= ‖p∗ − P k‖2
L2(Ω) + ‖P+(P̃ k)− P+(P̃ ∗)‖2

L2(Ω)

≤ ‖p∗ − P k‖2
L2(Ω) + ‖P̃ k − P̃ ∗‖2

L2(Ω) → 0

when k →∞. Thus, p∗ = P̃ ∗ + τ∇E(p∗) for some τ .

We now claim that P̃ ∗ ∈ A. Otherwise, let ω = {(x, y) ∈ Ω, P̃ ∗ < 0}. If ω is

an open set with a positive measure, we can choose a function q ∈ H1
0 (Ω) such that
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q = 1 in an interior of ω and 0 outside of ω such that

∫
Ω

p∗ − P̃ ∗
τ

qdx = 〈∇E1(p∗), q〉 (3.1.22)

=

∫
Ω

p∗qx + h

∫
Ω

D(x)∇p∗ · ∇qdx− h
∫

Ω

p∗F1(p∗)qdx−
∫

Ω

p̂qdx

=

∫
ω

p∗qx + h

∫
ω

D(x)∇p∗ · ∇qdx− h
∫
ω

p∗F1(p∗)qdx−
∫
ω

p̂qdx

It follows that

0 <

∫
ω

−P̃ ∗
τ

dx = −
∫
ω

p̂qdx ≤ 0 (3.1.23)

which is a contradiction. If ω is not an open set, we can choose an open set ω̃

containing ω such that the measure of ω̃\ω is arbitrarily close to zero. We shall have

an equality similar to (3.1.22) with ω̃ replacing ω and use a q ∈ H1
0 (Ω) which is 1

on an interior of ω̃ while zero out of ω̃. As p∗ ∈ H1
0 (Ω), the terms on the right-hand

side of the modified version of (3.1.22) can be arbitrarily small except for the last

term, i.e. −
∫
ω̃
p̂qdx while the left-hand side term is

∫
ω̃
−P̃ ∗
τ
qdx > 0. These show

that ω has to be of zero measure. Hence, P̃ ∗ ≥ 0 almost everywhere in Ω. That is,

p∗ = P+(P̃ ∗) = P̃ ∗. From (3.1.20), it follows that 〈∇E(p∗), q〉 = 0, ∀q ∈ H1
0 (Ω).

Let us design another algorithm to compute (pk+1,mk+1) to ensure the convergence

is in H1(Ω).

Algorithm 3.1.2. Let p1 = p̂ and m1 = m̂. For each n ≥ 1 use Algorithm 3.1.1 to

find p̃n+1, m̃n+1 ∈ H1
0 (Ω) such that ∀q ∈ H1

0 (Ω) the following equations are satisfied.

∫
Ω

p̃n+1q dx + h

∫
Ω

D(x)∇p̃n+1 · ∇q dx =

∫
Ω

p̂q dx + h

∫
Ω

F (pn,mk)q dx (3.1.24)∫
Ω

m̃n+1q dx + h

∫
Ω

E(x)∇m̃n+1 · ∇q dx =

∫
Ω

m̂q dx + h

∫
Ω

G(pk,mn)q dx (3.1.25)

Now let pn+1 = P[0,1](p̃
n+1) and mn+1 = P[0,1](m̃

n+1), where P[0,1] stands for a projec-
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tion defined by

P[0,1](p)(x) =


1, if p(x) ≥ 1,x ∈ Ω

p(x) if 0 < p(x) < 1,x ∈ Ω

0 if p(x) ≤ 0,x ∈ Ω.

(3.1.26)

We now show that the new sequence {pn,mn, n ≥ 1} converges in H1(Ω) norm.

Consider the difference of of the first equation in (3.1.24) involving p̃m+1 and p̃m and

then let q = p̃m+1 − p̃m. We have

∫
Ω

|p̃m+1 − p̃m|2 dx + h

∫
Ω

D(x)|∇p̃m+1 −∇p̃m|2 dx

=h

∫
Ω

(F (pm,mk)− F (pm−1,mk)(p̃m+1 − p̃m) dx

≤hL
∫

Ω

|pm − pm−1||p̃m+1 − p̃m|dx

≤hL
2
‖pm − pm−1‖2 +

hL

2
‖p̃m+1 − p̃m‖2. (3.1.27)

It follows that

(1− hL/2)‖p̃m+1 − p̃m‖2 ≤ hL

2
‖pm − pm−1‖2.

We notice that ‖pm+1 − pm‖2 ≤ ‖p̃m+1 − p̃m‖2. Thus, we have

(1− hL/2)‖pm+1 − pm‖2 ≤ hL

2
‖pm − pm−1‖2.

Letting α = hL/(2− hL), we have

‖pm+1 − pm‖2 ≤ α‖pm − pm−1‖2 ≤ · · · ≤ αm‖p2 − p1‖2.

Thus, pm is a Cauchy sequence in L2(Ω). Furthermore, from (3.1.27, we have

(1− hL/2)‖p̃m+1 − p̃m‖2 + h

∫
Ω

D(x)|∇p̃m+1 −∇p̃m|2 ≤ hL

2
‖pm − pm−1‖2 ≤ Cαm.
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for a positive constant C = hL‖p2 − p1‖2. That is, when D(x) ≥ K > 0,

(1− hL/2)‖p̃m+1 − p̃m‖2 +K‖∇p̃m+1 −∇p̃m|2 ≤ L

2
‖pm − pm−1‖2 ≤ Cαm

for all m ≥ 1 and hence, p̃m,m ≥ 1 are a Cauchy sequence in H1(Ω) norm. Let p∗

be the limit of pm,m ≥ 1 and p̃∗ be the limit of p̃m,m ≥ 1. It is easy to see that

P[0,1](p̃
∗) = p∗. Now we let m→∞ in (3.1.24) to have

∫
Ω

p̃∗q dx + h

∫
Ω

D(x)∇p̃∗ · ∇q dx =

∫
Ω

p̂q dx + h

∫
Ω

F (p∗,mk)q dx (3.1.28)

for all q ∈ H1
0 (Ω). If p̃∗ ∈ [0, 1], then p∗ = p̃∗ and hence, (3.1.28) shows p∗ is a

minimizer, i.e, 〈∇E1(p∗), q〉 = 0 for all q ∈ H1
0 (Ω). On the other hand, if p∗ is the

minimizer, we have

〈∇E1(p∗), q − p∗〉 ≥ 0, ∀q ∈ H1
0 (Ω).

In particular, letting q = p̃∗, we have

∫
Ω

p∗(p̃∗ − p∗ dx + h

∫
Ω

D(x)∇p∗ · ∇(p̃∗ − p∗) dx

−
∫

Ω

p̂(p̃∗ − p∗) dx− h
∫

Ω

F (p∗,mk)(p̃∗ − p∗) dx ≥ 0.

Using (3.1.28), we have

∫
Ω

(p∗ − p̃∗)(p̃∗ − p∗ dx + h

∫
Ω

D(x)∇(p∗ − p̃∗) · ∇(p̃∗ − p∗) dx ≥ 0.

It follows that p̃∗ ≡ p∗.

Next we need to show that both sequences pk, k ≥ 1 and mk, k ≥ 1 converge

in H1(Ω). Indeed, if the pair (pk+1,mk+1) → (p∗,m∗) in H1(Ω), then we can show

(p∗,m∗) is the discrete weak solution of (1.1.2). To this end, we use the first equation
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in (3.1.15) for k + 1 and for k and compute the difference:

∫
Ω

(pk+1 − pk)q dx + h

∫
Ω

D(x)∇(pk+1 − pk) · ∇q dx

= h

∫
Ω

(F (pk+1,mk)− F (pk,mk−1))q dx

for all q ∈ H1
0 (Ω). In particular, we choose q = pk+1 − pk in the equation above to

have

∫
Ω

|pk+1 − pk|2dx + h

∫
Ω

D(x)|∇(pk+1 − pk)|2

≤ hL
3

2

∫
Ω

∫
Ω

|pk+1 − pk|2dx + hL
1

2

∫
Ω

|mk −mk−1|2dx. (3.1.29)

Similarly for the density function m we have

∫
Ω

|mk+1 −mk|2dx + h

∫
Ω

D(x)|∇(mk+1 −mk)|2

≤ hL
3

2

∫
Ω

∫
Ω

|mk+1 −mk|2dx + hL
1

2

∫
Ω

|pk − pk−1|2dx. (3.1.30)

Combining the above two inequalities yields

(1− 3hL/2)

(∫
Ω

|pk+1 − pk|2dx +

∫
Ω

|mk+1 −mk|2dx
)

≤ hL

2
(

∫
Ω

|mk −mk−1|2dx +

∫
Ω

|pk − pk−1|2dx). (3.1.31)

Letting α = hL/(2− 3hL) < 1 if h > 0 small enough, we see

∫
Ω

|pk+1−pk|2dx+

∫
Ω

|mk+1−mk|2dx ≤ α

(∫
Ω

|pk − pk−1|2dx +

∫
Ω

|mk −mk−1|2dx
)

for all k ≥ 1. It follows that
∫

Ω
|pk− pk−1|2dx+

∫
Ω
|mk−mk−1|2dx, k ≥ 1 is a Cauchy

sequence in R and hence, pk and mk are convergent strongly in L2(Ω). Furthermore,
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from (3.1.29) we have

h

∫
Ω

D(x)|∇(pk+1 − pk)|2 ≤ hL
1

2

∫
Ω

|mk −mk−1|2dx

if 1− 3hL/2 > 0. Thus, we conclude

∫
Ω

D(x)|∇(pk+1 − pk)|2 ≤ L

2

∫
Ω

|mk −mk−1|2dx ≤ L

2
αk−1.

Hence, if D(x) ≥ K > 0, we know ∇pk, k ≥ 1 are a Cauchy sequence and hence,

∇pk, k ≥ 1 converge in L2(Ω) strongly. In summary, pk, k ≥ 1 converge in H1(Ω).

Similar for mk. These complete the proof of the following theorem.

Theorem 3.1.6. Suppose that F and G are in the form of (2.1) and Lipschitz con-

tinuous functions over [0, 1]× [0, 1]. Suppose that D(x) ≥ K > 0 and E(x) ≥ K > 0.

For any known ph(x, ti−1) and mh(x, ti−1), we start with p1 = p̂ = ph(, ti−1) and

m1 = m̂ = mh(x, ti−1) and compute pk+1,mk+1 from (2.1.5) for k ≥ 1. Then pk,mk

converge strongly in H1(Ω) to p∗i ,m∗i ∈ A which the discrete weak solution at ti.

Proof. Based on the discussion above, we can see p∗i ,m∗i satisfy (3.1.8) and (3.1.9).

We shall denote them by ph(x, ti) = p∗i and mh(x, ti) = m∗i . This computational

procedure generates the discrete weak solutions of the PDE (1.1.2).

3.2 The Computational Scheme

We use bivariate spline functions to implement the algorithm described in Theo-

rem 3.1.6. For details on the use bivariate spline functions we direct the reader to [1]

and to the Appendix in Chapter 6.

We reuse the definition for spline space from Definition 2.2.1. We shall denote the

basis of this space as {φj}1≤j≤n. For convenience, we let S(4) = Srd(4) ∩ H1
0 (Ω).

Our computational algorithm is given as follows:
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Algorithm 3.2.1. Assuming we have ph(x, ti−1),mh(x, ti−1) ∈ S(4), we set out to

find ph(x, ti),mh(x, ti) ∈ S(4) by iteratively solving the following equations starting

with p1 = ph(x, ti−1) and m1 = mh(x, ti−1) and for k = 1, 2, · · · , do the computations

in

∫
Ω

pk+1q(x)dx + h

∫
Ω

D(x)∇pk+1 · ∇q(x)dx

− h
∫

Ω

F (pk+1,mk)q(x)dx =

∫
Ω

ph(x, ti−1)q(x)dx, ∀q ∈ S(4) (3.2.1)

and

∫
Ω

mk+1q(x)dx + h

∫
Ω

E(x)∇mk+1 · ∇q(x)dx

− h
∫

Ω

G(pk,mk+1)q(x)dx =

∫
Ω

mh(x, ti−1)q(x)dx, ∀q ∈ S(4) (3.2.2)

until pk+1 − pk and mk+1 −mk are within a tolerance in H1(Ω) norm. Note that the

computation of pk+1 and mk+1 requires an iterative algorithm, which is adapted from

the case of a single species in Chapter 2, since F and G are nonlinear.

Let Sp(x, ti) and Sm(x, ti) be the limit of the iterative solutions pk,mk, k ≥ 1

produced in Algorithm 3.2.1. That is, Sp(x, ti) and Sm(x, ti) are spline solutions

for (1.1.2). It is interesting to see if they approximate the discrete weak solution

ph(x, ti),mh(x, ti) of (1.1.2). Let S∗p(·, ti) be the best spline approximation of ph(x, ti)

in S(4). As a result of Theorem 10.4 in [24], it follows that

∣∣∣∣S∗ph − ph∣∣∣∣2 ≤ C3|4|2|ph|2,2,Ω∣∣∣∣∇S∗p −∇ph∣∣∣∣2 ≤ C4|4||ph|2,2,Ω,

where |4| is the length of the longest edge in the triangulation and C3 and C4 are

constants independent of p. Similar for S∗m(·, ti).
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Chapter 4

Numerical Simulations

In this chapter we present results from the numerical solver which implements the

algorithm presented in this report. The code is written in C++ and Octave, a free

and libre clone of Matlab. My contribution builds on a substantial codebase written

by Dr. Ming-Jun Lai and Dr. Paul Wenston who implemented the myriad algorithms

necessary for the creation and manipulation of bivariate splines.

In order to be confident in the accuracy of the solver, we present synthetic tests

in which an exact solution of the PDE is compared to the solver’s solution. Unfor-

tunately, there are no known exact solutions to the PDEs presented in this report

other than the constant steady-states p(x, t) = 0, p(x, t) = 1 and p(x, t) = σ. Thus,

it is useful to add a forcing term to the PDE which is specifically chosen such that a

desired function p(x, t) is an exact solution to the PDE.

∂p

∂t
= div (D∇p)) + Ap(1− p)(p− σ) + f(x, t), (4.0.1)

For example, let p(x, t) = txy, D(x) = 1, A(x) = 1 and σ = 0.1. Then choosing

f(x, t) = xy − txy(1− txy)

(
txy − 1

10

)
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makes p(x, t) a solution of (4.0.1). The boundary condition is set to fit the known

exact solution. Adding the forcing term to the numerical solver then allows me to

attempt to recover p(x, t) and compare the numerical solution to the exact solution.

Similarly, the predator-prey system is modified with a pair of forcing functions.

∂p

∂t
= div(D1∇p) + Ap(1− p)(1− σ)− αpm+ f(x, t) (4.0.2)

∂m

∂t
= div(D2∇m) +Bm(1−m)(1− γ) + βpm+ g(x, t)

Once the accuracy of the solver is confirmed, we present some visualizations of

solutions in the form of surfaces and plots of total population over Ω as a function of

time.

4.1 Accuracy of Single Species Numerical Solution

In all the tests below, we solve the system in (4.0.1) for t ∈ [0, 1] using spline degree

5, for various time steps h and various triangulation sizes NT . We then measure the

error ||p(x, 1)− Sp(x, 1)||∞, where Sp is the spline numerical solution, and tabulate

the results.

Example 4.1.1. This test function is a polynomial of degree 4 and decays over time.

The error decreases roughly like O(h). Even modestly small values of NT give good

errors because the test function is exactly representable as a spline. The domain is

x ∈ [0, 1]× [0, 1].

p(x, t) D(x) A(x) σ

13x(x− 1)y(y − 1)

1 + t
0.005 1 0.1

Example 4.1.2. This example builds on the previous one but complicates the model

by introducing a nonlinear diffusion term. The error decreases roughly like O(h).
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h NT 2 8 32 128 512

5× 10−2 3.94× 10−2 3.30× 10−2 3.44× 10−2 3.44× 10−2 3.44× 10−2

5× 10−3 5.40× 10−2 4.14× 10−3 3.34× 10−3 3.35× 10−3 3.35× 10−3

5× 10−4 5.57× 10−2 5.59× 10−3 3.31× 10−4 3.33× 10−4 3.34× 10−4

5× 10−5 5.59× 10−2 5.75× 10−3 3.10× 10−5 3.33× 10−5 3.33× 10−5

Table 4.1: Error measurement ||p(x, 1)− Sp(x, 1)||∞ in Example 4.1.1.

Once again we see that small NT are sufficient to achieve the optimal rate. The

domain is x ∈ [0, 1]× [0, 1].

The nonconstant diffusion term places a substantial burden on the solver, and

thus computing a solution for h = 5× 10−5 proved too slow.

p(x, t) D(x) A(x) σ

13x(x− 1)y(y − 1)

1 + t
0.005e−(x−.5)2−(y−.5)2 1 0.1

h NT 2 8 32 128

5× 10−2 1.92× 10−2 1.69× 10−2 1.66× 10−2 1.66× 10−2

5× 10−3 4.65× 10−3 1.97× 10−3 1.68× 10−3 1.68× 10−3

5× 10−4 4.35× 10−3 4.75× 10−4 1.69× 10−4 1.69× 10−4

Table 4.2: Error measurement ||p(x, 1)− Sp(x, 1)||∞ in Example 4.1.2.

Example 4.1.3. This test function is not a polynomial, so it is not exactly repre-

sentable as a spline. We see that it does not present a serious challenge for the solver

even for small NT . The domain is x ∈ [0, 1]× [0, 1].

p(x, t) D(x) A(x) σ

sin(πx) sin(πy)

1 + t
0.005e−(x−.5)2−(y−.5)2 1 0.1
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h NT 2 8 32 128

5× 10−2 1.98× 10−2 1.92× 10−2 1.84× 10−2 1.84× 10−2

5× 10−3 5.99× 10−3 2.65× 10−3 1.88× 10−3 1.87× 10−3

5× 10−4 5.61× 10−3 9.64× 10−4 1.96× 10−4 1.87× 10−4

Table 4.3: Error measurement ||p(x, 1)− Sp(x, 1)||∞ in Example 4.1.3.

4.2 Accuracy of Predator-Prey Numerical Solution

In all the tests below, we solve the system in (4.0.2) for t ∈ [0, 1] using spline degree

6, for various time steps h and various triangulation sizes NT . We then measure the

sum of the errors ||p(x, 1)− Sp(x, 1)||∞ + ||m(x, 1)− Sm(x, 1)||∞, where Sp and Sm

are the numerical solutions, and tabulate the results.

Example 4.2.1. These test functions do not depend on the spatial variable x and as

a result the PDEs are reduced to ODEs. The size of the triangulation has no effect

on accuracy. The domain is x ∈ [0, 1]× [0, 1].

p(x, t) m(x, t) D1(x) D2(x) A(x) B(x) σ γ α β

et

1 + et
et

1 + 3et
0.005 0.005 1 1 0.1 0.15 1 -1

h NT 2

1× 10−1 3.04× 10−3

1× 10−2 3.07× 10−4

1× 10−3 3.08× 10−5

1× 10−4 3.08× 10−6

Table 4.4: ||p(x, 1)− Sp(x, 1)||∞ + ||m(x, 1)− Sm(x, 1)||∞ in Example 4.2.1.
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Example 4.2.2. These test functions do not depend on the time variable t and as a

result the PDE is time-independent. The step size h has negligible effect on accuracy,

which is the result of floating-point errors. The domain is x ∈ [0, 1]× [0, 1].

p(x, t) m(x, t) D1(x) D2(x) A(x) B(x) σ γ α β

1

2
cos(2πx) cos(2πx) 0.005 0.005 1 1 0.1 0.15 1 -1

h NT 2 8 32 128 512

1× 10−1 1.15 2.37× 10−2 1.57× 10−4 8.01× 10−7 7.32× 10−8

1× 10−2 1.16 2.42× 10−2 1.59× 10−4 8.17× 10−7 7.50× 10−8

1× 10−3 1.16 2.43× 10−2 1.60× 10−4 8.18× 10−7 7.52× 10−8

Table 4.5: ||p(x, 1)− Sp(x, 1)||∞ + ||m(x, 1)− Sm(x, 1)||∞ in Example 4.2.2.

Example 4.2.3. These test functions depend on both t and x, testing the full gener-

ality of the solver. This example has a small time derivative, so the solver is expected

to work well. The domain of x is shown in Figure 4.1a.

p(x, t) m(x, t) D1(x) D2(x) A(x) B(x) σ γ α β

sin

(
πt

5
+ 2πx

)
cos

(
πt

5
+ 2πx

)
0.005 0.005 1 1 0.1 0.15 1 -1

(a) Square domain with hole. (b) City of Bandiagara, Mali.

Figure 4.1: Triangulations commonly used in numerical simulations.
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h NT 16 64 256 1024

1× 10−1 2.22 4.20× 10−2 3.49× 10−2 3.49× 10−2

1× 10−2 2.25 4.29× 10−2 3.47× 10−3 3.46× 10−3

1× 10−3 2.25 4.38× 10−2 4.79× 10−4 3.46× 10−4

1× 10−4 2.25 4.39× 10−2 3.29× 10−4 3.42× 10−5

Table 4.6: ||p(x, 1)− Sp(x, 1)||∞ + ||m(x, 1)− Sm(x, 1)||∞ in Example 4.2.3.

Example 4.2.4. In contrast to Example 4.2.3, these test functions have a substantial

time derivative, which provides the solver with a more significant challenge. The rest

of the settings are identical.

p(x, t) m(x, t) D1(x) D2(x) A(x) B(x) σ γ α β

sin (2π(t+ x)) cos (2π(t+ x)) 0.005 0.005 1 1 0.1 0.15 1 -1

h NT 16 64 256 1024

1× 10−1 6.09× 10−1 5.69× 10−1 5.86× 10−1 5.91× 10−1

1× 10−2 2.68× 10−1 7.19× 10−2 6.92× 10−2 6.97× 10−2

1× 10−3 2.62× 10−1 1.04× 10−2 7.01× 10−3 7.08× 10−3

1× 10−4 2.61× 10−1 6.71× 10−3 6.91× 10−4 7.09× 10−4

Table 4.7: ||p(x, 1)− Sp(x, 1)||∞ + ||m(x, 1)− Sm(x, 1)||∞ in Example 4.2.4.

Example 4.2.5. The examples presented thus far all make use of a numerical solver

based on the backward Euler method for differential equations. That scheme is stable

when faced with stiff systems, but it suffers from somewhat poor numerical accu-

racy unless a very small time step is chosen. The Backward Differentiation Formula

(BDF) is a well-known linear multistep method, which generalizes the backward Euler

scheme. The scheme is readily adaptable to the predator-prey system presented in

this chapter.
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To illustrate the benefit of this method, we run the solver with the same initial

conditions and parameters as Example 4.2.4, which presents the solver with the most

difficult circumstances. Thus, a direct comparison can be made. There is clear

improvement for small time steps h, and yet h = 0.001 produces identical results

to h = 0.01 with this new scheme. We can only surmise that decreasing the time

step too far causes too much floating-point truncation error and presents no further

improvement. It is also clear that a very fine triangulation is needed to achieve an

accuracy on the order of 1× 10−7.

In practice, using a modestly small time step such as h = 0.01 substantially

improves the running time of the numerical solver compared to using the backward

Euler method with h = 1× 10−4, since it achieves the same error rates at two orders

of magnitude less time.

p(x, t) m(x, t) D1(x) D2(x) A(x) B(x) σ γ α β

sin (2π(t+ x)) cos (2π(t+ x)) 0.005 0.005 1 1 0.1 0.15 1 -1

h NT 16 64 256 1024

1× 10−1 2.04× 10−1 3.43× 10−2 3.15× 10−2 3.15× 10−2

1× 10−2 2.61× 10−1 6.29× 10−3 7.52× 10−5 4.03× 10−7

1× 10−3 2.61× 10−1 6.29× 10−3 7.53× 10−5 3.85× 10−7

Table 4.8: ||p(x, 1)− Sp(x, 1)||∞ + ||m(x, 1)− Sm(x, 1)||∞ in Example 4.2.5, using
BDF of order 2.

4.3 Simulations of One Species

We run simulations to find a solution of (1.1.1) for various initial conditions and

parameters. We shall use the two triangulated domains shown in Figures 4.1a and

4.1b.
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We provide several examples to show how various growth functions affect the rate

at which the solution reaches the asymptotically stable constant solution of p(x, y) = 1

or p(x, y) = 0.

Figures 4.2 through 4.5 show several 3D renders of how solutions grow over time

over two domains indicated in Fig 4.1b. Each subfigure shows four equally-spaced time

slices, plotted on the same xy-axes, one on top of each other, allowing the reader to

observe how the solution grows over time. Initial time slice appears as the bottommost

surface and the final state is the topmost surface. In addition, each figure shows the

effect of varying the Allee threshold σ. With low σ we see a very quick spread since

any amount of infection will expand to infect all individuals. Higher σ corresponds

to a need for a critical mass before infection can permanently establish itself in a

region. A high value for σ causes the average population to grow more slowly as

seen in Figure 4.7. It can introduce sharp rises in population density between regions

where p(x) < σ and regions where p(x) > σ as seen in Figure 4.6e. In order to make

the difference in the behavior of the solution clearer, the value of t for each time slice

is indicated in the caption of each figure.

Figures 4.7 through show average population over time over the city of Bandiagara,

Mali. Each subfigure corresponds to a certain set of initial conditions for the PDE,

while separating the cases by the choice for σ, emphasizing the effect σ has on the

rate at which the population reaches an asymptotically stable solution.

We can observe some expected behavior from the solutions presented in Figure

4.2. The initial condition is uniformly p = 0.1 on a large portion of Ω with an

isolated bump function in one corner. In Figure 4.2b the second time slice shows the

population has become extinct on the area where p = 0.1. At the same time the

bump grows to population capacity and eventually spreads life into formerly dead

areas. We observe similar results in Figure 4.2c, but the rate at which the population

grows has been severely diminished. In Figure 4.2d, the threshold σ is so high that
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Figure 4.2: Donut-shape domain. Constant growth and diffusion. Various Allee effect
thresholds σ. The vertical axis shows population density p ∈ [0, 1] at 4 points in time:
t ∈ {0, 20, 45, 90}, where the bottom manifold represents t = 0, and the top manifold
represents t = 90 in each case.
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(d) σ = 0.15

Figure 4.3: City of Bandiagara, Mali. Constant growth and diffusion. Various Allee
effect thresholds σ. The vertical axis shows population density p ∈ [0, 1] at 4 points
in time: t ∈ {0, 5, 13, 20}, where the bottom manifold represents t = 0, and the top
manifold represents t = 20 in each case.
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Figure 4.4: City of Bandiagara, Mali. Constant diffusion. Various Allee effect thresh-
olds. Growth function is piecewise-constant with triple magnitude for patches near
the city’s river. The vertical axis shows population density p ∈ [0, 1] at 4 points in
time: t ∈ {0, 5, 13, 20}, where the bottom manifold represents t = 0, and the top
manifold represents t = 20 in each case.
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Figure 4.5: City of Bandiagara, Mali. Same as Figure 4.4 but the initial condition has
a much higher total population. The vertical axis shows population density p ∈ [0, 1]
at 4 points in time: t ∈ {0, 5, 13, 20}, where the bottom manifold represents t = 0,
and the top manifold represents t = 20 in each case.
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(a) Initial population density
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0

0.5

1 σ = 0.05
σ = 0.1
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σ = 0.2

(b) Average population over time for various
σ.

(c) σ = 0.05 (d) σ = 0.1

(e) σ = 0.15 (f) σ = 0.2

Figure 4.6: City of Bandiagara, Mali. We used spline data fitting on data of in-
fected population density as presented in [3] and applied our model to examine future
development. Figures 4.6c through 4.6f correspond to the same time t = 27.
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(a) Average population plot for simulations
in Figure 4.2.
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(b) Average population plot for simulations
in Figure 4.3.
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(d) Average population plot for simulations
in Figure 4.5.

Figure 4.7: Average population density in Ω plotted over time for each of the four
preceding figures.
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Figure 4.8: A contour plot of∇p which corresponds to Figure 4.3a at T=15, indicating
the direction in which infection spreads.

the population becomes extinct everywhere and very quickly.

4.3.1 Simulations of Malaria Study

It is well-known that malaria is one of the leading causes of mortality in the world

and an estimated 3.3 billion people are at risk of malaria (cf. [40]). The World

Health Organization is interested in spatial models which can identify high-risk zones

of infection on a fine geographical scale as indicated in the 18th and 20th WHO

reports (cf. [38] and [39]). An example of such a study can be found in [5] and in [3]

where Coulibaly et al. provide data samples of individuals infected with malaria in
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Bandiagara, Mali [3]. We mimic the data values presented in Figure 2 of Coulibaly et

al. [3] to form an initial value for our PDE model using a bivariate spline data fitting

technique (cf. [1]). Then we use our MATLAB program to simulate the development

of malarial infection over a period of time using various Allee parameters. Our results

are presented in Figure 4.6. σ plays a vital role in the growth rate of the infected

region. When σ is small, the initial population of infected individuals is sufficiently

large to cover a majority of the region by the end of the simulation. When σ is a bit

larger we see that some regions become free from infection for a while since the local

population density is less than σ. In Figure 4.6b we see that with a high enough σ

it is possible for average infected population to decrease at first yet ultimately return

to growth. This kind of phenomenon would be difficult to capture with a traditional

SIR model with no spatial considerations.

An appropriate calibration of this constant based on real data would be an impor-

tant achievement, as high-risk zones can be identified using our model by examining

a time-horizon of one year and analyzing regions where infection has taken hold.

An additional benefit to our method is that the use of splines allows us to pro-

duce smooth population density surfaces. Fisher’s [10] traveling waves travel in the

direction of steepest-descent on the surface and thus can visualized quite well by a

contour graph of ∇p, which is helpful in identifying the direction of the spread of

infection. Figure 4.8 illustrates the pattern of disease transmission.

4.4 Simulations of Two Species

We showcase some examples of numerical simulations of multiple interacting species

including predator-prey and competition mode. Unless noted otherwise, all examples

feature Neumann boundary conditions and restrict population density to nonnegative

numbers. Simulation is run with step size h over the time span [0, T ].
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Figure 4.9: Initial conditions for Example 4.4.1.

4.4.1 Predator-Prey Interaction

In this section we focus on examples involving predator-prey interactions.

Example 4.4.1. We examine the following system, which models classical predator-

prey interaction with an added diffusive term.

∂p

∂t
= ∇(D∇p) + αp− βpm

∂m

∂t
= ∇(D∇m) + δpm− γm

The parameters used are as follows.

D α β γ δ h T

0.005 8 10 6 20 0.001 20

For the PDE case, the initial condition can be seen in Figure 4.9. For the ODE

case, the initial condition is predator = 0.165 and prey = 0.165, which is the total

population of each species in the PDE case. We compare the behavior of the PDE

to the corresponding ODE with no diffusive term by examining their phase diagrams
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Figure 4.10: Phase portraits comparing the behavior of the PDE solution and the
ODE solution. The emphasized point on the curve is the initial condition.

in Figure 4.10. We can see the PDE model exhibits quite different dynamics. A

notable difference is that the PDE phase diagram exhibits a self-intersecting curve,

which is impossible for a homogeneous ODE according to existence and uniqueness

theory. We also see that the PDE phase diagram is asymptotically a limit cycle, which

looks much like the ODE phase diagram, albeit with much lower populations of each

species. The convergence to a limit cycle is the expected result of adding diffusion to

the system, making populations density identical everywhere given infinite time.

Example 4.4.2. Looking back to Figure 4.9, note that the initial conditions of preda-

tor and prey are essentially bump functions, but they also have a baseline density

of 0.1 outside of the bump. This guarantees that interaction between the species

will occur immediately. If each population density is uniformly reduced by 0.07, this

baseline would be reduced to 0.03. We can repeat the experiment with identical

parameters and observe the effect on the phase diagram in Figure 4.11. The PDE

system now has more unpredictable dynamics since the populations of predator and

prey are more independent until diffusion acts to bring them together.
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Figure 4.11: Similar to Figure 4.10 but with much smaller baseline density for each
population.

Example 4.4.3. In this example we present a different predator-prey system, which

features an Allee effect and a Holling type II response.

∂p

∂t
= ∇(D∇p) + νp(1− p)(p− σ)− µpm

∂m

∂t
= ∇(E∇m) +

pm

ξ + p
− ηm

The parameters used are as follows.

D E ν σ µ ξ η h T

5× 10−3 5× 10−7 4 0.15 1 0.3 0.4 0.001 60

The phase diagrams in Figure 4.12 display rather different outcomes. While the

ODE system led to the immediate extinction of both species, the populations in the

PDE system survive much longer. In fact, the PDE system shows that initially both

populations thrive with no sign of future extinction. Figure 4.13 illustrates the spatial

distribution of both species at four different t ∈ [0, 12] in order to show the coexistence

of predator and prey. We see that the predator chases the prey along the edges of

the domain. Ultimately, the density of prey falls under the Allee threshold and the
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Figure 4.12: Phase diagrams for the PDE and ODE models in Example 4.4.3. The
emphasized point on the curve is the initial condition.

species goes extinct.

4.4.2 Resource Competition

In this section we focus on species which are in competition for a common resource.

The system is modeled by the following equation.

∂p

∂t
= ∇(D∇p) + Ap(1− p)(p− σ)− αpm

∂m

∂t
= ∇(E∇m) +Bp(1− p)(p− γ)− βpm

Both populations are subject to an Allee effect and a high concentration of one species

in a certain area causes the other species to decline. A great number of tests done

during this study, even ones not presented in this dissertation, show that asymptot-

ically the solutions for p and m tend to constant surfaces with at least one species’

extinction. The precise circumstances leading to one species’ domination over the

other are elusive since a change in any of the parameters can lead to a change in the
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Figure 4.13: Population density over time of predator and prey in Example 4.4.3.
The vertical axis shows population density as a percentage of population capacity at
four points in time: t ∈ {3, 6, 8, 12}, where the bottom surface represents t = 3, and
the top surface represents t = 12. The initial population distributions are p = 0.1
almost everywhere but with a localized bump.

long-term survivor. If a certain patch of Ω1 ⊂ Ω is more favorable to the growth rate

of one species and the complement Ω2 = Ω\Ω1 is more favorable to the other species,

then the two will coexist.

We present a few examples showing the effect of different diffusion rates, different

choice of Allee threshold, and mildly different initial conditions. Our tests show that

changes to any of these variables, while keeping all others the same, can cause one

species to outlive the other. We also present an example of heterogeneous growth
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Figure 4.14: Some initial population densities for species p and m used for the com-
petition model. Apart from the bumps in each density function, both populations are
constant with density 0.1.

rates which led to coexistence.

Example 4.4.4. In this example all parameters are kept equal except for a difference

in rate of diffusion for the two species.

D E A B α β σ γ h T

3× 10−4 1× 10−4 1 1 1 1 0.1 0.1 0.01 600

The initial conditions are shown in Figure 4.14. The results of this example are

presented in Figure 4.15a as average populations over the domain Ω since the precise

evolution of the surface is not very interesting in this example. We can see that the

slower diffuser prevails while the faster diffuser becomes extinct. Slower diffusion

seems to provides an advantage, but as we shall see in subsequent examples, it is not

a guarantee for the survival of a species.

Example 4.4.5. We now make a modification to the parameters from Example 4.4.4

to show that the difference in diffusion is not sufficient to guarantee the survival of
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(a) Results of Example 4.4.4.
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(b) Results of Example 4.4.5.

Figure 4.15: Average population over time for a pair of species competing for a
common resource. Only one species survives in the long run.

one species over the other. In this example we decrease the Allee threshold for both

species to 0.05 and observe a reversal of the long-term survivor.

D E A B α β σ γ h T

3× 10−4 1× 10−4 1 1 1 1 0.05 0.05 0.01 600

The initial conditions are the same as in Example 4.4.4, see Figure 4.14. The results

of this example are presented in Figure 4.15b as average populations over the domain

Ω. We can see that the faster diffuser prevails while the slower diffuser becomes

extinct.

Example 4.4.6. We now show an example in which make full use of the spatial

heterogeneity of the model by splitting Ω into two patches, each of which offers a

more favorable growth rate to one species compared to the other. See Figure 4.16b

for a description of the patches. The favorable growth rate is 20% higher than the

baseline.

D E A B α β σ γ h T

3× 10−4 1× 10−4 1 or 1.2 1 or 1.2 1 1 0.05 0.05 0.01 600
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(a) Results of Example 4.4.6.
(b) Triangulation with two designated re-
gions for Example 4.4.6.

Figure 4.16: Average population over time for a pair of species competing for a com-
mon resource, showing coexistence is possible. The blue, shaded region is favorable
to species p and the red, unshaded region is favorable to species m.

The results can be seen in Figure 4.16a, which show that the two species coexist.

It is interesting to examine the exact evolution of the population density functions

in Figure 4.17. We see that a front forms along one of the edges where the terrain

becomes more favorable to one species compared to the other. The majority of Ω

is more favorable for the growth of species m, yet species p manages to maintain a

presence in most of the western region.
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Figure 4.17: Population density over time of two species competing for a common
resource in Example 4.4.6. The vertical axis shows population density as a percentage
of population capacity at four points in time: t ∈ {0, 100, 200, 600}, where the bottom
surface represents t = 0, and the top surface represents t = 600.
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Chapter 5

Remarks and Future Research

Problems

5.1 Higher Order Approximation of Time Derivative

In Chapter 4, Example 4.2.5 I presented evidence that an O(h2) approximation of the

time derivative yields a substantial improvement in accuracy and thus it is strongly

recommended. The scheme I used is based on the backward differentiation formula

(BDF) of order two. I adapted BDF of order two to come up with the following

modified discrete weak formulation.

∫
Ω

pq dx =

∫
Ω

[
4

3
p̂− 1

3
p̃

]
q dx− 2

3
h

∫
Ω

D(x)∇p · ∇q dx +
2

3
h

∫
Ω

pF1(p)q dx

where p̂ = p(x, ti−1) as before and p̃ = p(x, ti−2). Note that the equation fits the

old framework by interpreting
[

4
3
p̂− 1

3
p̃
]
as p̂ in the old scheme and choosing a step

size 2
3
h. A smaller step size can only help with the convergence results. In addition,[

4
3
p̂− 1

3
p̃
]
is also an element of H1

0 (Ω).

In order to invoke the theory, which we have already established for the existence,

uniqueness and stability of the discrete weak solution, we need to guarantee that
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[
4
3
p̂− 1

3
p̃
]
is in the admissible set A. Since A is not a vector space, how can we

guarantee that such a linear combination is an element in A? Intuitively, the values

of p̂ and p̃ are comparable when h is small and so the resulting difference should be

positive. However, it is unlikely that estimates obtained with H1 norms will allow us

to make such a conclusion. This question is interesting and warrants further investi-

gation. In practice, it does not cause problems for the numerical implementation.

The algorithm can be initialized with p̃ = p(x, t0), which is the known initial

data. In order to compute p̂, one could naively take a single step using the tried and

true O(h) backward Euler scheme and then proceed using the second order. For my

numerical experiments I elected to compute p̂ using backward Euler, but in order not

to lose crucial accuracy in that first step, I instead take several smaller time steps. For

example, say h = 0.1. I would like to know p(x, 0.1) with error order O(h2), so that

I can proceed to compute p(x, 0.2) with the same error order. I can accomplish that

by taking ten steps using h = 0.01, thus taking me to p(x, 0.1) with O(h2) accuracy.

Theorem 2.1.1 can be modified to mimic the proof of the O(h2) convergence of

BFD of order two used in ordinary differential equations. Such a proof need only

make use of the various bounds already established on the growth term F (p) and

would further require that the classical solution p(x, t) is thrice differentiable.

5.2 Three or More Species

Theoretically, a general model for three or more species does not seem to present a

serious roadblock. The optimization approach used to provide the justification for

existence, uniqueness and stability of the discrete weak solution can be naturally

extended to include a longer sum of energy terms, one for each species. Admittedly, I

have not yet attempted to trace the details to confirm the viability of this approach,

so this provides a direction for further research.
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The numerical implementation of a system of reaction-diffusion equations incor-

porating three or more species would present a challenge. The algorithm might not

scale as well as one might hope because of the nature of the implicit algorithm used

to discretize the time variable, namely the need to run an iterative algorithm to solve

for each time discrete time slice p(x, ti). It would be worth exploring exactly how

serious the computational complexity really is. There should be ample opportunities

for parallelization.

5.3 Finding Appropriate Parameters

A much more daunting prospect is to solve the inverse problem of finding parameters

for the reaction-diffusion equation, which would produce the best model to fit a

particular set of empirical measurements. That is, given samples of population density

{pij}i∈[1...N ],j∈[1...M ] at some discrete times ti and discrete locations xj, find a diffusive

factor D(x), a growth function A(x), and an Allee threshold σ which minimize the l2

error
N∑
i=1

M∑
j=1

|p(xj, ti)− pij|2

This is a nontrivial problem, as any inverse problem tends to be. I have attempted

to solve it using sequential quadratic programming, which is a standard numerical

minimization scheme, but the problem proved too large for the algorithm to produce

a solution in reasonable time. Some exploitation of the particular structure of this

problem will be necessary if it is to be solved with a practical running time.
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Chapter 6

Appendix A: Preliminary on

Bivariate Splines

In this section, we explain bivariate spline functions of any degree d and smoothness

r ≥ 1 over arbitrary triangulation 4. Most of the following discussion can be found

in [24]. We outline these functions here just for convenience. Let Ω be a polygonal

domain in R2 and 4 a triangulation of Ω. That is, 4 is a finite collection of triangles

T ⊂ Ω such that ∪T∈4T = Ω and the intersection of any two triangles is either the

empty set, a common edge, or a common vertex. For each T ∈ 4, let |T | denote the

length of the longest edge of T , and let ρT be the radius of the inscribed circle of T .

The longest edge length in the triangulation 4 is denoted by |4| and is referred to as

the size of the triangulation. For any triangulation 4 we define its shape parameter

by

κ4 :=
|4|
ρ4

, (6.0.1)

where ρ4 is the minimum of the radii of the in-circles of the triangles of 4. The

shape parameter for a single triangle, κT , satisfies

κT :=
|T |
ρT
≤ 2

tan(θT/2)
≤ 2

sin(θT/2)
, (6.0.2)
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where θT is the smallest angle in the triangle T . The shape of a given triangulation

affects how well we can approximate a function over the triangulation. Hence we have

the following definition of a β-quasi-uniform triangulation.

Definition 6.0.1 (β-Quasi-Uniform Triangulation). Let 0 < β <∞. A triangulation

4 is a β-quasi-uniform triangulation provided that

|4|
ρ4
≤ β.

Once we have a triangulation, we define the spline space of degree d and smooth-

ness r over that triangulation as follows:

Definition 6.0.2 (Spline Space). Let 4 be a given triangulation of a domain Ω.

Then we define the spline space of smoothness r and degree d over 4 by,

Srd(4) = {s ∈ Cr(Ω) | s|T ∈ Pd, ∀ T ∈ 4},

where Pd is the space of polynomials of degree at most d.

We next explain how to represent a spline function in Srd(4). Let

T = 〈(x1, y1), (x2, y2), (x3, y3)〉.

For any point (x, y), let b1, b2, b3 be the solution of

x = b1x1 + b2x2 + b3x3

y = b1y1 + b2y2 + b3y3

1 = b1 + b2 + b3.

(b1, b2, b3) are the so-called barycentric coordinates of (x, y) with respect to T . Note

that bi is a linear polynomial of (x, y) for i = 1, 2, 3. Fix a degree d > 0. For
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i+ j + k = d, let

BT
ijk(x, y) =

d!

i!j!k!
bi1b

j
2b
k
3

which is called Bernstein-Bézier polynomial. Let

S|T =
∑

i+j+k=d

cTijkB
T
ijk(x, y).

We use s = (cTijk, i + j + k = d, T ∈ 4) to represent the coefficient vector for spline

function S ∈ S−1
d (4). In order to make S ∈ S0

d(4), we have to construct a smoothness

matrixH such thatHs = 0 ensure that S is a continuous function. Such a smoothness

matrix is known and in fact it is known for any smoothness r ≥ 0 (cf. [9]).

Note that Bernstein-Bézier representation of spline functions is very convenient

for basic evaluation, derivatives and integration. We use the de Casteljau algo-

rithm to evaluate a Bernstein-Bézier polynomial at any point inside the triangle.

It is a simple and stable computation. See [24]. Let T = 〈v1,v2,v3〉 and S|T =∑
i+j+k=d cijkBijk(x, y). Then the directional derivative Dv2−v1S|T is

Dv2−v1S|T = d
∑

i+j+k=d−1

(ci,j+1,k − ci+1,j,k)Bijk(x, y).

Similar for Dv3−v1S|T . Dx and Dy are linear combinations of these two directional

derivatives. Let s be a spline with s|T =
∑

i+j+k=d c
T
ijkBijk(x, y), T ∈ 4 in Srd(4).

Then ∫
Ω

s(x, y)dxdy =
∑
T∈4

AT(
d+2

2

) ∑
i+j+k=d

cTijk.

If p =
∑

i+j+k=d aijkBijk(x, y) and q =
∑

i+j+k=d bijkBijk(x, y) over a triangle T , then

∫
T

p(x, y)q(x, y)dxdy = a>Mdb,

where a = (aijk, i + j + k = d)>, b = (bijk, i + j + k = d)>, Md is a symmetric
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matrix with known entries (a formula for these entries is known (cf. [24]). These

elementary operations have been implemented in MATLAB. See [1]. Many different

linear and nonlinear partial differential equations have been solved by using these

bivariate spline functions. See [25], [1], [17].

When d ≥ 3r+2 the spline space Srd(4) possesses an optimal approximation order

which is achieved by the use of a quasi-interpolation operator. Let ‖f‖Lp(Ω) denote

the usual Lp norm of f over Ω, |f |m,p,Ω denotes the Lp norm of the mth derivatives of

f over Ω, and Wm+1
p (Ω) stands for the usual Sobolev space over Ω.

To define the quasi-interpolation operator, we need a set of linear functionals

{λijk,T |i+ j + k = d, T ∈ 4},

which are based on values of f at the set of domain points over triangles in 4, that

is

λijk,T (f) =
∑
|ν|=d

aijkν f(ξTν ), (6.0.3)

where ξTν = (ivT1 + jvT2 + kvT3 )/d for ν = (i, j, k) with i+ j + k = d and vi, i = 1, 2, 3

are vertexes of triangle T .

A quasi-interpolation operator of f is defined by

Qf :=
∑
T∈4

∑
i+j+k=d

λijk,T (f)BT
ijk. (6.0.4)

Now, we are ready to state a theorem on optimal approximation order (cf. [23] and

[24]).

Theorem 6.0.1 (Optimal Approximation Order). Assume d ≥ 3r + 2 and let 4 be

a triangulation of Ω. Then there exists a quasi-interpolatory operator Qf ∈ Srd(4)

mapping f ∈ L1(Ω) into Srd(4) such that Qf achieves the optimal approximation
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order: if f ∈ Wm+1
p (Ω),

‖Dα
xD

β
y (Qf − f)‖Lp(Ω) ≤ C|4|m+1−α−β|f |m+1,p,Ω (6.0.5)

for all α + β ≤ m + 1 with 0 ≤ m ≤ d, where Dx and Dy denote the derivatives

with respect to the first and second variables and the constant C depends only on the

degree d and the smallest angle θ4 and may be dependent on the Lipschitz condition

on the boundary of Ω.

We sometimes need to use the so-called Markov inequality to compare the size of

the derivative of a polynomial with the size of the polynomial itself on a given triangle

t. As a spline function is a piecewise polynomial function, this inequality can be also

applied to any spline function. See [24] for a proof.

Theorem 6.0.2. Let t := 〈v1, v2, v3〉 be a triangle, and fix 1 ≤ q ≤ ∞. Then there

exists a constant K depending only on d such that for every polynomial p ∈ Pd, and

any nonnegative integers α and β with 0 ≤ α + β ≤ d,

‖Dα
1D

β
2p‖q,t ≤

K

ρα+β
t

‖p‖q,t, 0 ≤ α + β ≤ d, (6.0.6)

where ρt denotes the radius of the largest circle inscribed in t.

More detail on the theory of bivariate splines can be found in [24] and their

computational schemes in [1].
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