Numerical Algorithms 23 (2000) 285-313 285

Algorithms for G connection of multiple parametric
bicubic NURBS surfaces*

Charles K. Chui 2**, Ming-Jun Lai ® and Jian-ao Lian®

& University of Missouri, &. Louis, MO 63121, USA
® University of Georgia, Athens, GA 30602, USA
¢Prairie View A&M University, Prairie View, TX 77446, USA

Received 10 September 1999; revised 27 April 2000
Communicated by PJ. Laurent

The objective of this paper is to introduce an innovative approach for constructing ef-
fective algorithms for removing gaps between parametric NURBS surfaces in three-space,
while maintaining geometrical smoothness for the combined (or compound) surface. Similar
to the degenerate case of tensor-product B-spline surfaces, if the underlying knot sequences
along the connecting boundaries of two NURBS surfaces are proportional, then the para-
metric surfaces can be connected in a G* fashion. This approach can be easily extended
to connecting three or four parametric NURBS surfaces. We will demonstrate the feasi-
bility of our approach by focusing on the C bicubic setting with knot sequences being
equally-spaced and having double interior knots.

1. Introduction

A NURBS (or Non-Uniform Rational B-Spline) surface in the 3-dimensional
space R? is a biparametric surface, represented by a rational function of B-spline
series. One of the major advantages in using rational functions over polynomial rep-
resentations is that certain important curves and surfaces such as conic sections can
be expressed by rational functions but not by polynomias. Moreover, NURBS can be
used to represent a wide variety of geometric objects including not only conic-sections
and free-form curves and surfaces, but also more conventional shapes such as polygo-
nal surfaces. Hence, NURBS curves and surfaces are gaining more popularity for use
in 3-dimensional computer aided design (CAD) and computer aided geometric design
(CAGD), and are included in various industry standards such as IGES, STEP, and
PHIGS.
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To demonstrate the main idea of our approach and to develop concrete effective
algorithms, we will only focus on bicubic NURBS surfaces with knot sequences having
double interior knots, i.e., the NURBS surfaces are in C1. The objective is to connect
such independently designed NURBS surfaces without gaps and in a smooth fashion.
The main algorithm for connecting two NURBS surfaces without gaps in a G* fashion
is given in section 3, after some preliminary preparations to be discussed in section 2.
In section 4, we demonstrate the application of this algorithm to connecting multiple
(three and four) NURBS surfaces in a G* fashion. Our approach depends on Bézier
representations. For this reason, algorithms for converting bicubic NURBS to Bézier
representations and vice versa will be given in the appendix.

2.  Preliminaries

This section is fairly extensive. Therefore, it is divided into three subsections,
devoted to the consideration of uniqueness, and of joining two curves and two surfaces,
al in rational Bézier forms. Some of the results discussed in this section are known
to the experts in this subject. The best references for the other readers are [5,7,10].
See dso [1,2,11] for the spline literature.

2.1. Uniqueness of local control points and weights

To motivate the need of NURBS representation, we start with an elementary
example. It is well known that the unit circle 2%+ y? = 1 in 2-space cannot be
represented by using parametric polynomials with one parameter. However, it can
be expressed by a rational function of quartic polynomials, for instance, of the form
c(u) = (x(u), y(u)), u € [0,1], where

Al — u)(1 - 2u)

x(u) = ,
(1= 2u + 2u%)? (2.1.1)
C(2u? = 1)(1— du+ 2u?) 0.1
W= ut2ip  “c0I
It is also easy to see that ¢(z) = (Z(@), y(w)), where
#(3) 2v/3u(1 — @)(1 — 2a)
~ ~2 ~ ~2 )
1 —a+ a?)(1— 3u+ 3u°) (2.12)
oy —ltdu-u-ent 43t
W= arda_zaran "cOY

is another rational Bézier representation of the same unit circle. However, there is no
clear relation between (2.1.1) and (2.1.2). Thisraises aninteresting question: When the
problem of uniqueness is considered, in what sense is the representation of a rational
Bézier curve unique?
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To answer this question, let us first examine the structure of rational Bézier
curves. Let c(t), t € [0,1], be an nth degree rational Bézier curve in its Bernstein
form

2 =0 W;CjBn,;(?)
Yo WeBn(t)
where, as usud, for £k =0,...,n,

c(t) = te[0,1], (2.1.3)

Buato) = () (= ay et

and for j = 0,...,n, ¢; and w; are Bézier coefficients (or local control points) and
local weights, respectively. The unit circle has a “5th degree” rational Bézier repre-
sentation with the following planar Bézier coefficients:

¢ =(0,-1),

Co= (% \/2w0(5w§ + wow$), 5—5;% (5w5 + 2w0w§)> ’
Ca= (—Sw—é\/Zwo(&vg + wowj), 51%% (5uz + 2w0w§)) ’
cs=(0,-1),

which are chosen, for simplicity, symmetrically around the y-axis, and local weights
given by

(wo, ..., ws) = (UJO,—

where wg can be simply chosen as 1, but w, and w3 are free parameters. It is
interesting to note that the choice of w, = w3 = 1/5 yields (2.1.1), while the choice of
wy = w3 = 1/10 gives (2.1.2). That is, (2.1.1) is obtained when the Bézier coefficients
are

c=(0-1), c=(4-1), c2 =(2,3),

Gs=(-23), c&=(-4-1), c=(0-1,

111
- ZZ-1):
’5’515’ >’

and the local weights are

gl =

(wo, ..., ws) = (1,
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while (2.1.2) is obtained by using the Bézier coefficients

¢ = (0,-1), & = (2v3,-1), & = (2v3,5),
&= (-2v35), &=(-2v3-1), &=(0-1),

and local weights

~ ~ 11 11
(w01 ;U)S) - <1131E1E!§11>‘
Note that both (2.1.1) and (2.1.2) are rationa functions of quartic polynomials. These
two rational Bézier representations give the same curve, namely, the unit circle.
Returning to (2.1.3), we observe that when ¢ is replaced by
au
t= S
f(u) @ Duil
both the numerator and the denominator of c(f(u)) are still nth degree polynomials.
Wewill call (2.1.4) arational linear transformation (RLT) [10]. To avoid discontinuity,
werequire 0 < a < 1. (Whena =1, then ¢t = u.) )
In general, an nth degree rational Bézier curve with parameter ¢ € [dy;, Ui2;42]
can be converted to a“new” representation by another nth degree rational Bézier curve
with parameter ¢ € [up;, uzj42], viathe RLT

u € [0,1], (2.1.4)

a(t — uzj)/(ugjr2 — uzj) — U2i(tizir2 — a)/(U2ig2 — U2;)

= (t —uzj)/(ujy2 — uz;) — (U2i12 — a)/(U2i2 — Uz;)

ot € [ugy, ujy2l,

(2.1.5)
where the constant a ¢ (ty;, U2;+2) Without changing the trace of the curve. However,
it can be shown that (2.1.1) and (2.1.2) cannot be converted to each other by using
RLTs. On the other hand, (2.1.2) can be converted to (2.1.1) via a function f, which
is not a rational function, namely,

V34u(u — 1) + \/(4u? — 2u + 1)(4u? — 6u + 3)

1
ﬁ:f(u)::E—i— 5 20— 1 u € [0,1],
while (2.1.1) can be converted into (2.1.2) via f—:
we fY(a) = 1. 1V3a(i — 1) + \/(aZ—a+1)(3a2—3a+1)’ aeol.

2 2 20 -1
Notice that, with

AN P |
1(3) =l g5 = Jim ) =)

both f and f~1 are continuous and strictly increasing on [0, 1].

The above discussions imply that there are many rational Bézier expressions for
a given curve using different local control points and local weights. However, in the
following, we show that if some 3-vectors of the differences of local control points are
linearly independent (typically in 3-D curves), then the Bézier coefficients are uniquely
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determined and the local weights are determined up to certain affine transformations
or RLTs.

Lemma 2.1. Let c(t),t € [0,1], be a rational cubic Bézier curve as in (2.1.3) with
n = 3. If the three vectors ¢; — ¢y, €2 — Cp, and ¢z — ¢p are linearly independent, then
the representation of the rational cubic Bézier curve c(t), t € [0, 1], with fixed loca
control points ¢y, ...,c3 and local weights wy, ..., ws, iS unique up to certain affine
transformations or rational linear transformations.

Proof. We wish to find the necessary relationship between ¢ and ¢ such that two cubic
rational Bézier curves c(t), t € [0,1], asin (2.1.3) with n = 3, and &({), t € [0, 1],
represent exactly the same curve, where, similar to c(t), t € [0, 1], the curve &(t), t €
[O,1], is given by

o) - ol

S oo WeBs(f)
To this end, let &(¢), ¢ € [0,1], in (2.1.6) be fixed. Observe first that c(t), ¢ € [0, 1],
and &(t), t € [0,1], can aso be rewritten as

wﬁjﬁﬂ%%%ﬂﬂ:%+21wﬂ%—%Ww@
> 5o weBa(t) >0 weBa(t)
&(f) = > 50 W;€;Ba, () 351 @;(€) — Bo)Ba,;(f)
S o WeBs (D) S0 WeBa(D)
For c(t), t € [0,1], and &(f), t € [0,1], in (2.1.7) and (2.1.8) to represent exactly
the same curve, it is necessary, by using the interpolating and tangent properties of
rational Bézier curves at the endpoints, that

f€[0,1]. (2.1.6)

, te€[0,1], (21.7)

, 1€[0,1]. (21.8)

=Cop+

Co = Co, Cc3 = Cg, (219)
c1=Co + (€ — o), (2.1.10)
Cr=C3z+ ﬂ(éz — 63), (2.1.11)

where o and  are positive real numbers. Next, let f be any differentiable function
that satisfies

t= f(t), f(0) =0, f) =1 (21.12)
Then it follows from
CO-220 ) W) = 2 )
C0=D(-a), Y= 226 q)

¢ (0)=c(0)f(0), c(®) =@/,
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that

wowl

= f 0, B=
Very importantly, this function f can be computed from the implicit formulation
c(t) =¢(f) = ¢(f(1), telo1],
which, by (2.1.7)«2.1.9), is equivaent to
>3 wi(e; — Co)Ba(t) Y5y (€ — Co)Ba,(f)
>0 weBa(t) 0o WeBa(D)
By introducing

w”f:* (). 2.1.13)

. 4,i€[0,1]. (21.14)

3
D(t) = Z wy Bz (1), 5 Z WeBay f (2.1.15)
(=0 (=0

bj::éjféo, ]:1,2,3
and applying (2.1.10)—«2.1.11), we see that the identity (2.1.14) leads to

[wiab1Bs(t) + w2 (802 + (1 — B)bs) Baa(t) + w3bsBsa(t)] D(t)
= [w1b1B31(T) + wob2Bs2(t) + wsbzBas(t)] D(1),

e,
g1(t,t)bs+ ga(t,T)bo+ g3(t,t)bs =0, ¢,¢€[0,1], (2.1.16)
where
91(t,7) := aw1 B31()D (7 ) — @1 Ba1 () D(?), (2.1.17)
g2(t,7) 1= BwaBaa(t)D(F) — W2Bsp(T) D(t), (2.1.18)

g3(t,7) = [(1 — B)w2Bsa(t) + wsBaa(t)] D(f) — wsBaa(f) D). (2.1.19)

Suppose that the three vectors by, by, bz are linearly independent. Then it follows
from (2.1.16)—(2.1.18) that
ow1W2B31(t)Ba2(t) = BunwzBaa(t)Baa(t),
which leads to
- at ._ Buwiwp
b= (e —Dt+1 where - a = owywy’

and (2.1.19) isthen automatically satisfied. Hence, substituting (2.1.20) into g1(¢,%) = 0,
t,t € [0,1], we have

(2.1.20)

wo w1
a:/lei a=——=,
wo W1
, oot (2.1.21)
wow ~ Wy Wy
_ 1 —0 15
w2 = — ~2w21 w3 = 2 ~3 w3,

wo Wy wh Wy
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where w; is a free parameter. Therefore, from (2.1.9)«(2.1.11), we have c; = C;, j =
0,...,3. For a = 1, the local weight w1 can be chosen as wy := (w1/wp)wp, SO that
from (2.1.21), it follows that w, = (wy/wo)wo and wz = (w3 /we)wp. In other words,
the linear independence of by, by, b3z uniquely determines the weights, and hence, the
rational cubic Bézier curves. This completes the proof of the lemma. O

Remark 1. To consider the rare situation when the matrix with column vectors
by, by, bz has rank 2, we assume, without loss of generality, that b; and b, are
linearly independent, and

b3 = &by + by, (2.1.22)

for some constants ¢ and 7. Then, from (2.1.16)—«2.1.19), we have g1 = —&g3 and
g2 = —ngs, which implies both

[aw1 B3a(t) + £ ((1 — B)wzBaa(t) + waBaa(t)) | [nwiBaa(t) — EwaBaa(t)]

= [naw1Bsa(t) — {Pw2Bsa(t)] [wiBsi(t) + EwsBas(t)], (2.1.23)
and
D(t) _ nawiBau(t) — EPwaBsa(t) Fel0,1] (2.1.24)
D(0) nu1Bsa(t) — Ewz2Bza(t) T h
It follows from (2.1.23) that
ho(8)t2 4+ ha(t)t + ho(t) =0, ¢,7 €[0,1], (2.1.25)

where ho(t), hi(t), and ho(t) are quadratic polynomias in ¢. Similarly, the iden-
tity (2.1.24) leads to

ka(@)E2 + ka(0)E2 + k1(t) + ko(t) = 0, ¢,7 €[0,1], (2.1.26)

where ko(t), . . ., ka(t) are cubic polynomias in ¢. Solving (2.1.25) for ¢ and choosing
the solution £ = f(¢t) that satisfies (2.1.12), we see that n must satisfy

_ B - (wl/@l)z(@o/wo)({ﬁz/wz)az‘

6—-1

Under certain conditions, (2.1.26) is automatically satisfied by f(t). We omit further
non-essential details here. In summary, similar to (2.1.1)—«2.1.2), the rational cubic
functions representing the curve c(t), ¢ € [0, 1], asin (2.1.7), are not unique, even up
to RLTs. Finaly, when the matrix with column vectors b1, by, bz has rank 1, the
rational curve reduces to a straight line segment, but we omit the discussion of this
rare situation.
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2.2. (! smoothness conditions for rational cubic Bézier curves

Consider two rational cubic Bézier curves
Z?:o w;Cj B3 j,q,5(u)
S8 o WeBs (1)
Z?:o w;C; B3 jp,e(u)
S oweBape(u)

where a < b < ¢, and where B3 .5, £ = 0,...,3, denote the cubic Bernstein
polynomials relative to the interva [a, b], i.€.,

B 3—k T —a k
B3,k:,a,b($) = (Z) (Za) (ba) s /{::0,...,3. (2.2.3)

We have the following.

&(u) =

, u € [a,b], (2.2.1)

C(u) = u € [b, ], (2.2.2)

Lemma 2.2. Thetwo rational cubic Bézier curves ¢(u), u € [a, b], and c(u), u € [b, ],
in (2.2.1), (2.2.2) are joined continuously (or in C°) at u = b if and only if

Cop = Cs; (2.2.49)
and they are joined in a C* fashion a « = b if and only if both (2.2.4) and

- —bwowy . .
C1 =C3+ ¢ %3(03 — Cz) (2.2.5)
b—awws

are satisfied.

Proof. Consider first a rational cubic Bézier curve with parameter ¢ € [0,1] as
in (2.1.7). Then introduce

3
A(t) = Z w;C; B3 j(t),
=0

3 (2.2.6)
W(t): = weBat),
=0
so that c(t) in (2.1.7) can be written as
_ AQ®)
c(t) = W) t €[0,1]. (2.2.7)

From (2.2.6), we have

2
At)= 3Z(wj+1cj+l —w;C;)Ba;(t),
i=o (2.2.8)

W/(t) =3 (i1 — we)Ba(t),
/=0
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so that
A'(0) = 3(w1C1 — woCo),  A'(1) = 3(wsCz — w2Cp), (229)
W'(0) = 3(wy — wo), W'(1) = 3(ws — wy).
It follows from (2.2.7)—<2.2.9) that
cd(t) = A’(t)Wi(t) - A(t)W’(t)W, (2.2.10)
and
¢'(0) = 3(w1c1 — woCo)wi — woCo - 3wy — wo)% = %(Cl — Co),
10 X 3; (2.2.11)
(1) = 3(wsCs — wala) -~ — wacs  3(uws — w2)-5 = —32(C3 — o).
’lU3 w:

Clearly, &(u), u € [a,b], and c(u), u € [b,c], are joined continuously (or in C°) at
u = b if and only if (2.2.4) holds. We now show (2.2.5). First, C'? conditions are
equivalent to both (2.2.4) and

c () = (). (2212
This, in turn, is equivalent to
3ws 1 3w, .
c—bw—o(clfc()) = s (€3 —C2),
which, together with (2.2.4), leads to (2.2.5). (]

2.3. G* connection of rational bicubic Bézier surface patches

Since any NURBS surface can be rewritten in its rational Bernstein Bézier form,
let us first focus on two generic bicubic Bézier surface patches:

3 3
D k=02 1=0 Wk tCht B3 kugs uzi 2 (W B3 0,090,542 (V)

S(u,v) = =3 3 )

Zk:o ZZ:O wk,fB?hkyuzi,quz (u)B&é:ij 02542 (U)

(u,v) € [uz;, uziy2] X [v25,v2512], (2.3.1)
84.7) = S 000 Wit B3k i a2 (1) B3,0,53, 7y 12 (D)

3 3 ~ - -
D k=0 2 t—0 Wk e B3k iigy iz 2 (W) B3,6,554 5212 (D)
(@,0) € [tgp, Uopt2| X [D2g, D2g12], (232
where, similar to rational Bézier curves (2.1.3), the 3-vectors ¢, and Cyy, k,¢ =
0,...,3, are Bézer coefficients, while the scalars wy, and wy ¢, k,¢ = 0,...,3,

are called local weights. The two rational Bézier surface patches s(u, v) and (1, ¥)
in (2.3.1) and (2.3.2) are said to be joined continuously (or in C?), if there exists a
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reparameterization u = g;(u), which is necessarily a strictly increasing function, such
that
gl(u) S [ﬁzp,ﬁ2p+2], when u € [UQZ‘, UQH_Q], (2.3.3)
S(u, v2;) = 3(gi (1), T2q),  for u € [ug;, uzit2]. (234
Furthermore, S(u, v) and &, ¥) are said to be joined G continuously (or in G, see[9)]),

if s(u,v) and §(, v) are joined continuously, and if there exist three polynomias ©, @,
and W such that, with the same function g;,

O) s, v27) = ©) o 5{gi (1), o) + () -S(9iC0), P2), € D 2],
(2.3.5)

We are now in a position to establish a sufficient condition for connecting two rational
Bézier surface patches in a G* fashion along the boundaries, say u = uy; and @ = Ugp.

Lemma 2.3. Two rationa bicubic Bézier surface patches s(u, v) and §(, 0) in (2.3.1)—
(2.3.2) are joined G* continuoudly, if

(N'Jkyo = Ck,0, 125]4;,0 = W0, k=0,...,3 (2.3.6)
and
- V2q4+2 — V2g W1
Cr,1=Cro — —(Cx,1 — Ck,0), (23.7)
V2j42 — V2j Wk,1
_ U2g+2 — U2g
wk,1 = ?,Uk’o — 7(“%,1 — wk,o), k‘ = O, Ce ,3, (238)
V242 — V2j

where, without loss of generality, the normalization wop = wo IS assumed.

Proof. By lemma 2.1, since the three 3-vectors €10 — Co0, C20 — Co,0, @nd Czp — Co,0
are, in generd, linearly independent, the C° condition (2.3.6) between ¥4, 7) and
S(u,v) is clear. To study the other G* condition in (2.3.7)«2.3.8), let us first take the
partial derivatives of s. To this end, again we may focus on Bézier surface patches
with parameters (u,v) € [0, 1]2, namely,

S oS Wk CheBa (1) Ba(v)

2
So(u, v) 2220 Z?:o ¢ Bar(u) Barl®) . (u,v) €]0,1]7, (2.3.9)
and introduce

3 3

A, v)=> Y wkiChrBax(u)Bs(v), (2:3.10)
k=0 ¢=0
3 3

W(u, ’U) = Z Z wk,gB?,’k(’u,)Bg,’g(’U), (2.3.11)

k=0 ¢=0
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so that

A(u,v)
W(u,v)’
It then follows from (2.3.11)—«2.3.12) that

So(u, v) = (u,v) € [0,1]%. (2.3.12)

Oso(u,v) 1 O0A(u,v)  Alu,v) OW(u,v)
ou W(u ) 6u C W(u,0)?2  du

Z Z(wk—i—l (Ck+1,6 — Wh,¢Cr,0) B3,e(v) Ba i (1)
k=0 (=0

3 o) Z Z(wk+1e — Wi 0) B3 (V) B2 (u),  (23.13)

2
W(u v) k=0 (=0

Oso(u,v) 1 0A(u,v) B A(u,v) oW (u,v)
o W(u,v) v W(u,v)2 v

W(u v)

2 3
W(i ) Z Z(wk 041Ck 441 — Wk ¢Ck ¢) Ba 1.(1) B2 o(v)
/=0 k=0
MA/ﬁf 32 Z Z(wk +1 — wk,)Bap(u)Bz(v).  (23.14)

=0 k=0

Hence, for u € [0, 1], we have

2

3
Z(wk-i-l 0Ck+1,0 — Wk,0Ck,0) B2k (1)

v=0 Zk 0 Wk, 0B3 1 (1) =

0s0(u, v)
ou

3 Zk 0 Wk,0Ck, 0831 (1)
(ChowroBs, KW)? f
3 3
= (wg,1Ck,1 — Wi,0Ck,0) B3, (1)
=0 Yor—oWkoBak(u) kz;

72220101:,0%033,1@(“)3 > o — wr Bl 9316
5o wroBar())? kzo( k1 — Weo)Bai(u).  (2.3.16)

Z( k+10 — Wi,0) Ba(u), (2.3.15)

0%0(u, v)
ov

By applying the identity

mp(x)Bn q( ) ((m)+(,g)) Bm+n,p+q(x)1 (2317)
p+q
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we see that both (2.3.15) and (2.3.16) can be written as 6th degree rational Bézier

formulation as follows:

1 0s9(u, v) _ 22:0 wjC} Bg (1)
3 du | Yp_owiBerw)
10so(w,v) | _ Sp_owiCi Bo(u)
3 v | YhoowiBew)

where the local weights wy, 0 < k < 6, are given by

u_,,,2
Wp = Wo 0
u__
w1 = W,0W1,0s

u 2 35
ZWo,0wW2,0 + ZW1 0,

Wa =
275 5
1
Wy = ——Wp W30 + T~W1,0W2,0,
10 10
wY = gw w3 + §w2
4= gW1owsp + Wop,
wg = w2,0w3,
wg = w3y,

(2.3.18)

(2.3.19)

(2.3.20)

while the local control points ¢ and ¢y, k£ =0,...,6, are defined in terms of the local

weights, namely,

wpCo = w1,0wo,0(C10 — Co0);

1 1
wic] = éwl,owo,o(cl,o — Co0) + éwz,owo,o(cz,o — C0,0),

U 1 4
Wyt = 1—5w1,owo,o(01,o — Co0) + 1—5w2,owo,o(02,o — Co,0)

1 1
+ E’lUZ,Owl,O(CZ,O —C10) + 1—5w3,owo,o(03,o — Co,0)s

Ul 1 3
w3C3 = Ews,owo,o(cao — Co0) + EWZ,Owl,O(CZ,O —C1,0)

+ 1 (c C10) + 1 (c )
1Owa,owl,o 30 — C1,0 1sz,owo,o 20 — C0,0),

U 1 4
waCq = 1—5w3,0w2,0(03,o — C0) + 1—5w3,ow1,o(03,0 — C10)

1 1
+ sz,owl,o(Cz,o —C10) + 1—5w3,0w0,0(03,0 — Co,0),

U 1 1
wgCg = §w3,ow2,o(03,o — C20) + §w3,ow1,o(C3,o — C1,0),

ua-u
weCs = w3, 0w2,0(C30 — C2,0),

(2.3.21)
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and
wpCh = wo,1wo,0(Co.1 — Co,0),

1 1
wicy = éwl,lwo,o(cl,l — Co0) + Ewo,lwl,o(co,l — C10),

1 3 1
wyCy = §w2,1w0,0(02,1 — Co0) + gwl,lwl,o(cl,l — C1,0) + gwo,lWZ,O(CO,l — C20),

u.v 1 9
whes = Ew3,1w0,0(03,1 — Co0) + X)wzrlwlp(cz’l ~ C10) (2.3.22)

+ 9 (c Co0) + 1 ( C30)
2Owl,lwz,o 1,1 2,0 20w0,1w3,o Co1 3,0)

1 3 1
w4Cy = §w3,1w1,o(03,1 —C10) + §w2,lw2,0(02,1 — Co0) + §w1,1w3,o(01,1 — C30),

wy 1 1
wsCy = §w3,1w2,0(03,1 — C20) + §w2,1w3,0(02,1 — C30),

wgCs = w31w3,0(C3,1 — C3,0)-

To connect s and §in (2.3.1) and (2.3.2) in a G* fashion, we simply choose O(u) = 1,
®(u) = —1, and W(u) = 0in (2.3.5), and g;(u) as alinear transformation, i.e.,

U242 — U ~ U — U

0 = gi(u) := lgp————— + Ugpr2o——, U € [ug,uzi2]. (2.3.23)
U2i+2 — U2 U2i+2 — U2

With g; in (2.3.23), we see that Sin (2.3.2) can be rewritten as

3 3 ~ = ~
§(g(u) ’(7) _ Zk:O Z[:O wk,éck,ZB&k,uZi,U2i+2(u)B3,€,figq,62q+2(v)
? ! - 3 3 -~ ~ !
Zk:o Z[:O wk,€B3,k,u2i,u2i+2(u)B3,€,ﬁgq,62q+2(v)

(u,0) € [ugi, uzit2] X [D2q, V2g+2]- (2.3.24)

Then, by applying (2.3.19), the first order derivative of s with respect to v, aong
v = vyj, iS given by

6
1 Zk:O wz C\IQ Bﬁ,k,uZi ,U2i+2(u)

, o u € [ugi, ugiyal,
. . 6
V2j+2 — V2j Zk:O szBnywiysz(u)

10
:—B%S(u, v25) =
(2.3.25)

where wj! and wj'c] are given by using (2.3.20) and (2.3.22). Analogously, we also
have

6 ~ 1~
(9 ~ ~ 1 Zk:OquvBG,k, 3, W24 (U)
?S(gi(u),’UZq) = — . g Ry € [ugi, ugial,
v UZ(]+2 - UZq Zkzo wk Be,k,ugi,u2i+2(u)

Wl

(2.3.26)
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where w;' are defined exactly the same as wj, in (2.3.20), with w replaced by w, while
w,'c], are determined by

wg'ey = wo,owo (Co1 — Cop).

uy 1o _ 1. -
wy'C) = Ewo,owl,l(cl,l - Co,o) + Ewl,owo,l(co,l - C1,0),

uwy 1o - 3. _ ~ 1. -
wyCy = gwo,owz,l(cz,l - Co,o) + gwl,owl,l(cl,l - C1,0) + ng,owo,l(co,l - Cz,o),

e 1 o _

w3 Cy = —w0,0w3,1(03,1 - Co,o) + —wl,owz,l(Cz,l - Cl,O)
20 . 20 ) (2.3.27)

- E)@Z,O@l,l(él,l —C20) + Eﬁs,o@o,l(éo,l —C30),

—uwy Lo - 3. . - 1. -
wyCy = §w1,0w3,1(03,1 - C1,0) + sz,owz,l(CZ,l - C2,0) + gw:%,owl,l(cl,l - 03,0),

—uwy Lo - 1. .
wsu C\é = Ew2,0w3,1(03,1 - Cz,o) + §w3,0w2,1(C2,1 — c3,0),
wg'ts = w30w31 (831 — C30)-

Hence, a sufficient condition for

0 o0 .
%S(Ua?&j) = —a—S(gz‘(u),Uzq), u € [ug;, ugit2],

v
which is (2.3.5) with ©(u) = 1, ®(u) = —1, and W(u) = 0, is given by
wy = wy, (2.3.28)
and
%é‘é = —éc‘g, k=0,...,6. (2.3.29)
V2g+2 — V2q V242 — U2j

Note that for wpp = wo, the conditions in (2.3.6) already imply that (2.3.28) holds.
Finaly, from (2.3.21) and (2.3.27), it only takes some straightforward calculation to
see that the equalities in (2.3.29) are satisfied by the choice of wy, 1 and €1 in (2.3.7)—
(2.3.8), k =0,...,6. This completes the proof of lemma 2.3. O

3. Algorithm for G* connection of two NURBS surfaces

We are now ready to study parametric NURBS surfaces in R3. From the practi-
cal point of view, it is important to be able to join multiple individually predesigned
NURBS surfaces without gaps and to satisfy certain requirements, such as interpo-
lating a given common set of points on the boundaries and smoothness across the
boundaries (see [4] for joining spline surfaces). A classical method for joining multi-
ple predesigned NURBS surfaces is to carve away portions of the surfaces along the
boundaries and fill the gaps by introducing additional surface patches.
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The main objective of this paper is to study the feasibility of removing gaps
simply by manipulating the control points and weights, but without disturbing the
interpolation data, while minimizing the modification of the NURBS surfaces patches.
The important constraints are that no additiona surfaces could be used to fill the gaps,
that the modification (if needed) is supposed to be very minimal, and that the combined
surface, without gaps, should be smooth.

Let us first discuss the notion of NURBS surfaces studied in [5,6,8,10]. For the
parametric domain [0, 1]2, let

U={0=wug="--=uz < ug=us < ug = uy
<o < U2 = U2mgl < Umy2 = - = Uzmys = 1}, (31)
and
Vv={0=wvg=" =wv3<v4=15<vg=07
<o <2 = U2pg1 < V2pg2 = 00 = U245 = 1} (32)

be parametric knot sequences; Myy,; and My, ; be the corresponding 4th order nor-
malized B-splines [1,2,10] with knots w;,...,u;r4 and vj,...,vj44, respectively,
1=0,...,2mn+1, j=0,...,2n+ 1. Let

wi={w:i=0,...,2m+1, j=0,...,2n+ 1} (3.3)

be a (global) weight sequence, where w; ; > 0 is the (global) weight corresponding to
the knot position (u;,v;), i =0,...,2m+1, j=0,...,2n + 1, and set

w;,j Ma i(u)May, ;(v)
Nuywij(u,v) = o=y Jn — — ;
’ em it SISt wi e My g (w) May, o (v)
1=0,....,2m+1, 7=0,...,2n + 1. (3.4)
We will study bicubic NURBS surfaces with two parameters « and v of the form
2m—+12n+1
S1: f(u,v)= Z Z di,jNu,v,w,i,j(U,U)
i=0 j=0
2m+12n+1
e w; j Mayi(u)May,;(v) 2
SPIPDILEI s o . ) €017,
i—0 j—=0 k=0 120 WeeMayp(u)May,e(v)

(35)

where d; ; is the (global) control point relative to the parametric position (u;,v;), © =
0....2m+1, 57=0,...,2n+ 1.

We begin with connecting only two NURBS surfaces. To this end, we need
another NURBS surface S> with knot sequences

GZZ{OZQNLO:--~=ﬂ3<ﬁ4=ﬁ5<ﬁ6=ﬂ7
< < g = Uggl < Ugmg2 = -+ = Ugmts = 1}, (3.6)
Vi={0=tg=" =03 <04=10s5< 0= 07

<o < gy = Uong1 < V22 = -+ = Uzaqs = 1}, (3.7)
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weight sequence W = {wj;;}i=o0.. 2m+1; j=0..2a+1, and (global) control points
dij, i=0,...,2m+1,j=0,...,2n+ 1 Thatis,
i 212041
S2: f(u,0) = d; ;i Novw,i,j (1, 0)
i=0 j=0
) 2m+1 2ﬁ+1a- | s Magi(@) Mag;(7)
=0 j=0 I S By Ma g () Mag o(3)
(a,v) € [0, 1% (3.8)

Asillustrated in figure 1, we assume that the first Bézier surface patch of S7 along the
u-direction corresponds to the rth Bézier surface patch of S> along the w-direction,
and that m +r — 1< m.

In order to keep the NURBS representations after appropriate adjustments of the
Bézier coefficients and local weights of one or both NURBS surfaces, the underlying
knot sequences of S; and S, along the “common” boundaries are required to be
proportional [3]. For this reason, we only consider equally-spaced knot sequences
aong the common boundaries, i.e.,

g A2 T2 = i1 m—1, and
V2i42 —V2i—2 2
oo — Do 1 ~
Q= 2272 _ = i1 L
Ugip2 — U2i—2 2
In other words, for u and v in (3.1)—3.2),
1
Uiy —ug; =constant .= L, = —, i=1,...,m,
T (3.9)
vgj42 —vzj=condtant ;== L, = —, j=1,...,m;
n

Si

Sa

Figure 1. Schematic diagram of parametric domains of two parametric NURBS surfaces Sy and S>.
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and for 0 and vV in (3.6)—«3.7),

1 -
Uiy — Uy =constant '= Lz = —, ¢=1,...,m,
T (3.10)

Upjyp — Ugj =cCoOnstant .= L; = —, j=1,...,n.

S

Due to (3.9)«3.10), the two NURBS surfaces S; and S» in (3.5) and (3.8) can be
rewritten as
2m—+12n+1
St f(u,v)= Z Z d; j Nuyw,i,j(u,v)
i=0 j=0
2m+12n+1

_ Z Z Ay w; ; Ma,y,i (1) May,;(v)

T—2n71 1
RS et wg o My g (w) Mgy 0 (v)

i—0 =0 k
(u,v) € [0,m] x [0,n], (311)
and
~ 2m+12n+1 ~
Sz: f(’ll,’f)) = Z di,jN~,\7,\l~v,i,j (ﬁ,@)
i—0 =0
2m+12n+1 ~ ~ ~
= nZ: 3 W; ;i Maa,i(4)Mag,;(0)
- 1, 7 5 ~ ~ JUNE
=0 =0 LS S L g Ma g o (@) Mag o (9)
(a,0) € [0,m] x [0,7], (3.12)
where the knots are
ug = ug = 0, Uy =uzy1=1t—1, i=1,...,m+1,
vg = v1 = 0, U2j=’l)2j+1=j—l, 7=1...,n+1;
g = w1 = 0, Ug; = Ugiv+1 =1 — 1, i=1,...,m+1,
09 = v1 = 0, Upj =U2j41=J—1, j=1,...,n+1

A NURBS surface Sy is said to be connectible along, say, the lower boundary strip,
if the global weights along this boundary strip satisfy

2wio—w;1 >0, i=0,...,2m+1, and

3.13
2woo — w10 > 0, 2w2m41,0 — womo > 0. 313
Similarly, it is connectible along the upper, left, and right boundary strips if
2wi2n+1 — Wi 2n > 0, 1=0,...,2m + 1, - (3.14)
2wo 2n+1 — W12n+1 > 0, 2Wom412n+1 — W2m2n4+1 > 0;
2woj — wyj > 0, 7=0,...,2n+1, - (3.15)
2wo,0 — wo1 > 0, 2wo2n+1 — Wo2n > 0; and
2w2m+1,j — W2m,j > 0, ] = 0,...,2n+1, (3.16)

2w 41,0 — Wam+11 > 0, 2W2n41,2n+1 — W2m+1,2n > 0,
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respectively. Now assume that S7 is connectible along its lower boundary, i.e., (3.13)
has been satisfied. By applying algorithm A.1 in the appendix and lemma 2.3, we can
connect S7 and .S, by adjusting the (global) control points and globa weights of S5
aong its upper boundary strip by applying the following.

Algorithm 1 (G connection of two NURBS surfaces S; and S, see figure 1).
Keep 57 intact and modify the first and second lines of control points along the
upper boundary strip of S as follows, while keeping the other control points of S»
unchanged. Then S; and S, are connected in a G* fashion.
1°. At the lower-left corner position of the parametric domain of Sy, set
~ 2wo,0doo — wi,0d10

dor—20= ,
2wo,0 — W10

War—2,0 = 2W00 — W1,0;
(3.17)
2(2wo,0do,0 — wo,1do1) — (2w1,0d1,0 — wy1d11)

2(2wo,0 — wo,1) — (Qw10 — w11)
War—21 = 2(2wo0 — wo1) — (2w1,0 — w11).

dop_21=

2°. Along the corresponding (interior) m pairs of boundary patches of the parametric
domains of S; and S5, set

do,—241,0=dg0,
Wor—24%,0 = Wk,0;

3.18
R _ 2wp0dr0 — wrade g (3.18)
2r—2+k1 P T—
Wor 24 k1= 2WEo — W1, k=1,...,2m.

3°. At the lower-right corner position of the parametric domain of 57, set

2w21141,002m 41,0 — W2mm,002im,0
2w 1,0 — W2m,0
W2+ m—1)41,0 = 2W2m+1,0 — W20
2(2w2m41,002m+1,0 — W2rm+1,102m41,1) (3.19)
2(2w2m41,0 — W2m+1,1) — (2W21n,0 — Wom,1) '
B 2w2m,002m,0 — Wam,102m,1
2(2w2m 110 — Wam+11) — (2w2m,0 — W2m,1)’
W2(r+m—1)41,1 = 22W2m 11,0 — Wam+1,1) — (2W2m,0 — W2 1)-

aZ(rerfl)Jrl,O =

aZ(rerfl)Jrl,l =

4.  Algorithms for G connection of multiple NURBS surfaces

The techniques in the previous section can be extended to treat the connection
of multiple NURBS surfaces. We only consider connecting three and four NURBS
surfaces in this section.
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In addition to S7 and 5> in (3.17)—«3.18), let S3 be a NURBS surface with knot
sequences (0 and v, i.e.,

UZZ{OZ’&OZ-“:ﬁ3<ﬁ4=ﬁ5<ﬁ6:ﬁ7

< < gy = Uy < Qo2 = -+ = Ugjys = M}, (4.1)
\7::{0:@0:”':@3<@4:@5<@6:f)7

< ee < g = Dopg1 < Doig2 = -+ = D5 = N}, (4.2)

0....,2m+1 j=0,...,24+1, 0 that

weight sequence W = {W;;}i=0,..2m+1;j=0,..23+1, and control points di,j, —

21241
Sa f(@,0)= > > diNagwy (@ 0)
i=0 j=0
_ Zﬁfl Zfil 4 W;,; My, (1) My, ;(0)
=0 j—0 S LS 2 Y Gy Mag (@) Mag (0)
(a,9) € [0,m] x [0,7]. (4.3)
Again, the knots are
g =11 = 0, Upy =lgip1=1—1, i=1,...,m+1,
to="101 =0, Upj =1j41=7—1, j=1,...,n+ 1

In addition to the assumption that S; is connectible aong its lower boundary
strip, we also require both S; and S»> to be connectible along their right boundary
strips. The second algorithm is to connect S1,.S2 and S3, where one of the boundary
knot of S; must correspond to a boundary knot of S, namely, m +r — 1 = m in
algorithm 1. In other words, after applying algorithm 1 to .S; and S, the third NURBS
surface S3 is connected to the compound surface of S1 and S» by algorithm 1 again,
as illustrated in figure 2.

S1

52

Figure 2. Schematic diagram of parametric domains of three parametric NURBS surfaces S1, Sz, and Ss.
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Algorithm 2 (G connection of three NURBS surfaces S1, S», and Ss, see figure 2).
1°. Apply algorithm 1 to S1 and S,. Denote the compound surface by S1o.

2°. Keep Si» intact, and connect the third NURBS surface S3 to S1o by applying
another variation of algorithm 1 aong the right boundary strip of S1, and/or the
left boundary strip of Ss.

Next, let us consider connecting four NURBS surfaces in a G* fashion. In
addition to S1, S and S3in (3.17), (3.18) and (4.3), let S4 be a NURBS surface with
knot sequences U and v, i.e.,

U:={0=1p=" =3 < g =ls < ig = iy

<o < ligm = U1 < Uitz = -+ = Ugmys = M}, (4.9
\7::{0:’602---:’f)3<7}4=?75<’f)6=@7

< eor < p = Toag1 < U2pp2 = - = D2ays = N, (4.5

weight sequence W = {w;;}i—o0, .. 2m+1=0..2:n+1, and control points dm, ——

0,....2m+1 j=0,...,21+1 o that

2412741
Sa: f(a,0)= Z Z d; i Naww,i.;(ii, ©)
i—0 j=0
) 2%1 2nz+:1 g wi’lel_YU’i(fL)Mvaj({))
e S o S i g e Mg o () My, o(5)
(a,v) € [0,7] x [0,7]. (4.6)
Again, the knots are
io=11 =0, Gy =tps1=i—1 i=1,...,m+1
0o = 01 = 0, Upj =V41=7—1 j=1...,n+1

The third agorithm is to connect the four NURBS surface S1,...,S4 in a G*
fashion. To do so, by algorithm 1, we see that S; and S», as well as S3 and Sy, can
be connected in a G* fashion. If we denote the two compound NURBS surfaces by
S12 and S34, then, by applying agorithm 1 again, the two new NURBS surfaces S1»
and Ss4 can be connected in a G fashion, asillustrated in figure 3.

Algorithm 3 (G* connection of four NURBS surfaces Ss, . . ., Ss, see figure 3).
1°. Apply algorithm 1 to S1 and S,. Denote the compound surface by S1o.
2°. Apply agorithm 1 to S3 and S4. Denote the compound surface by S3y.

3°. Keep Sz intact, and connect S34 to Sy2 by applying the same variation of al-
gorithm 1, along the right boundary stripe of S3> and/or the left boundary strip
of S34.
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S
S, ’

s, S

Figure 3. Schematic diagram of parametric domains of four parametric NURBS surfaces Si, Sz, Ss
and S4.

Appendix. Algorithms for converting NURBS to Bézier representations and vice
versa

Various continuous joining conditions between two NURBS surfaces can be es-
tablished through smoothing conditions between rational Bézier surface patches. To
this end, we will give, in this section, algorithms for converting a bicubic NURBS to
Bézier representations, and vice versa.

Firgt, the representation (3.5) can be rewritten as

3 3
D1 22521 D k0 20 Wi o i e, B ks i1 2 (W) B30 0945 (V)

3 3
>t Z?:l > k=0 2-0=0 wiyjJMB?)Jf,uyYU2i+2(u)B3,&vzj,vzj+2(v)

’

S f(u,v) =

A.l
where A

m n
(u,v) € [0,2]% = | J (luai, uziy2] x [uzj, ug;s2l,
i=1j=1
dijre kot =0,...,3 ae Bezer coefficients (or local control points) and w; ; s,
k,£=0,...,3, arelocal weights, corresponding to the parametric domains [uz;, u2;1 2]
X [ugj,uzjt2], i =1,...,m, j =1,...,n; axd Bz, denotes the truncated cubic
Bernstein polynomials relative to the interva [a, ], i.e.,

) A\ /b—a\>F 2z —a\”
B3 ap(x) = <k:> <m> <b — a) Xap](®), k=0,...,3

To find the Bézier coefficients and local weights in (A.1) from (3.1), define
i=1...,m, j=1,...,n. (A.2)

S j(u,v) == f(u,v)‘[u%
Then by the compact supportedness property of B-splines, we have

upi42] X [uzz,u25 2]’

3 3
Y b0 D tm0 W2i— 24k 2j— 2400224 k.25 — 240 May i () May,;(v)
3 3
Y b0 20 W2i—24k 2j— 244 M4y i (W) My, (v)
(u,v) € [uzgi, uziq2] X [uzj,u2;12]. (A.3)

Si,j(u! U) =
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Observe that

M4,u,2i (u) = B3,2,u2¢,u2i+2(u) + aiB3,3,u2i,uz¢+2(u) + aiB3,0,u2¢+2,u2¢+4; and
M4,u,2i+l(u) = ﬁiB3,3,u2¢,uz¢+2(u) + /BiB3,0,u2¢+2,u2¢+4(u) + B3,l,u2¢+2,uz¢+4(u)! (A4)

0<i<m,
where
Uo; — Uo; Uo; — Uo; ]
U244 — U4 U244 — U4
and

May,2(V) = B32,y;09;42(V) + §5B33105; 004 2(V) + §5 B30, 4 200,440 AN

May,2j+1(0) = 1B3305;,0242(V) + 1583005 2027+4(V) + B3 105 00544(V), (A.6)

0<j<n,
where
. V2544 — V2542 . V242 — V24 .
V2j+4 — V25 V2j+4 — V2j

We next introduce the following pairs of arrays.

(i) aong the horizontal parametric grid lines, {w] ,} and {df } of size (2m + 2) x
(n+ 1);

(i) aI%ng the vertical parametric grid lines, {wy, ,} and {d} ,} of size (m+1)x(2n+2);
an

(iii) at the corner positions of the parametric domain, {wj, ,} and {df ,} of size (m +
1) x (n + 1), defined by

ho.
wy; ;1= &j—1W2i2j—2 + Nj-1W2i 2§ 1,

wgi-‘,—l,j =& 1W2i41,2j—2 + Mj—1W2i41,2j—1,
wgi,jdgi,j = &j1w2; 2522 252 + Nnj_1w2; 25 —102; 251, (A.8)
w'ﬁi“,jd?m,j = §jo1w2iq1,2j—202i41,2j—2 + Nj—1w2i41,2j—102i41,2j -1,
i=0,...m j=1,.. ..n+1
Wy 9; 1= Q- 1W2i-22; + Bi-1W2i-1.2j,
WY 9; 11 = Qi 1W2i—22j+1 + Bi-1W2i—12j+1,
wy ;0] o; = ai_1w2i—22j02i-22j + Bi-1w2i—1,2;02i 1.2, (A.9)
wy 91105 911 = Qio1w2i—22j+102i-22j+1 + Bi—1w2i-12j+102i-1.2j 11,

1=1...,m+1 57=0,...,n;
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and
C . (. v ) v
Wy 5 = gjflwi,ijZ +1j-1Wi 251
h h
= Qi1Wp;_p; + Bi—1wp_q
C c _ . v \ . v v
wi;dij = &-1wig; oz 2 + Mj-1wig; 1diz; 1 (A-10)
- h h h h
= Qi_1Wyp;_p ;U5 ; + Bi—1wp_1 ;421
i:l,...,m+1, ]:1’1n+1

Then we have the following.

Algorithm A.1 (Conversion from NURBS to Bézier representations).

1°. The mn 4 x 4 coefficient matrices of the 16 local weights are given by, for
i1=1,...,m, j=1,...,n,

c h h c
Wiy Wzi—1j541  W2ii41 Wit1j+1
\Y . . . \
W; 25 W2i—1,2j W2i,2j Wiy12;

[wi je3—klo<ke<a = ti , (A.11)

\Y . . s v
Wij—1 W2i-12j—1 W22j—-1 Wiy125 1

c h h c
Wij W2i-1,5 W2i,j Wit

where t; ; are arbitrary positive constants.

2°. The corresponding mn 4 x 4 coefficient matrices of the 16 Bézier coefficients,
with 3-vector entries, are given by, fori =1,...,m, j=1,...,n,

c h h c
dijer d3ia541 dp1 g
dio;  daim1j  daigj  dig,;

[dsje3—klo<ke<3 = (A.12)

dipi1 O2im12j-1 daigj—1 df155 4
dg,j dgifl,j dgi,j ngrl,j
For connecting multiple NURBS surfaces, we need the Bézier coefficients and
local weights along the “common” or connecting boundary strips of al NURBS sur-
faces. So let us write down (A.11)—(A.12) more explicitly, say, along the “lower”
boundary strip. It follows, from (A.5) and (A.7)«A.10), that when i = j = 1,

[w1,1,03—k]o<k,e<3

E1wo2 + mwoz &1wi2 +mwiz 1wz + Mmw23 ws
— b1 wo,2 wy,2 wp2 ajwz2 + Prws2
' wo,1 w1 w21 a1wz1 + Prws
wo,0 w10 w2,0 a1wz0 + Prwsp

(A.13)
with ¢1, an arbitrary positive constant and

w5 o = E1(awa2 + frws) + ni(cawzs + frwsp)
= a1(§awz2 + Mwz3) + B1(§1ws 2 + Mmws3a); (A.14)
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and

[d1,1,£,3—k] 0<k, <3

with

e &1wo2do,2 + Mwo3do 3

&1wo2 + Mwo3

qh. — &1wy 2012 + nwy3dis

1wy 2 + mwi3

qh. — E1wp 2022 + Nwo3d23

1w 2 + mw23

¢ _ &(aawapdar + Brwsadsp) + mi(aawadas + frwsadss)

rds,
do,2
do1

L doo

df,
dip
dis

dio

doo
da1

dzp

C -
d2,2

v
2,2

v
21

c
2,1-

(A.15)

v _ 0awz2022 + Brwspds?

aqwz2 + frwsp

v _ oawpadz1 + Brwsidss

21=
aqwz 1 + frws

4. — gy w0020 + B1wspdso
1= .

20 —

Wheni=2,....m—1, j=1,

[wi1e3—klock,e<3 = ti

aqwzp + Frwsp

with ¢; 1 arbitrary positive constants and

h
Wa; 1.2
W2;—1,2
w2i—1,1

W2;—1,0

h
Wy; 2

wW2;,2
wW2i,1

wW2;,0

&1(crwap + frws2) + m(arwa s + Brwss)

C -
Wit12

Vv
Wit12

Vv
Wit11

C
Wit 1,1

. (A.16)

, (A.17)

wy o = &1(vi—1w2i—22 + Prwzi—1,2) + Nilei—1w2i—23 + f1w2i—1.3),

h
Wo; 12 =E1W2 12 + MW2-13,

h
Wy; o = E1wW2i 2 + MW2; 3,

w15 =E1(0woi2 + Brwzir12) + nuliwaz 3 + Prwait1,3),
Wi = o_1woi_22 + f1wzi—12,

(A.18)
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wy 1 2= w22 + Fiwziy12,
Wy =o_1wi—21 + Prwzi—11,
wy 11 = 0woi1 + Fiwzig1,
Wiy =wy g = ai—1w2i—20 + frw2i—10,
wf+1,1 = w%’+1,o = ow2;,0 + Biw2i4+1,0;
and
rdS, db g, dbi, dfg,T
io O2ic12 dgiz diyg,
[di1,03—klock <3 = (A.19)
Y1 Ozic1a dzia diyqg
Ldf; dpi10 d2io df g
with
c _ E1(0i—1w2i—2202 22 + Bi—1w2i—1202i—1,2)
P2 (w22 + Bi—1wzi—12) + mi-1wzi—23 + Bi—1w2i-13)
m(ei—1wzi—23d2i—23 + Bi—1w2i—13d2i—13)
§1ai—qwai 22 4 Bi—1w2i—12) + nu(ei—1w2 23 + Bi—1wai—13)’
dy = §uwapi—1,202;_12 + 771w2i—1,3d2i—l,3’
’ §1wzi—12 + Mmw2i-13
= E1wai 2025 2 + M1w2; 3d2; 3
' §1w2; 2 + Mmwzi3
c §1(0gw2i2d2;2 + Biwoiy1,202i11,2)
L2 G (w2 + Biwair12) + mliwais + Biwais1)
m(oiw2;3d2; 3 + Biwzi+1,302i413)
§1(aiwzi 2 + Biwaiy1,2) + mlaiwai 3 + Biwziy1,3)’ (A20)

v _ Qi1wzi—2202i 22 + f1wzi—1,202i-1,2
we Qi_1w2i—22 + fLwzi—12
v _ w2022 4 Biwzir1,202i41,2
e Qw2 + Biwzit1,2
v _ ®i1wzi—2102i-21 + frwzi—1102i-11
we Qi _1w2i—21 + Prwzi-11
v _ iwzi10zi1 4 Biwair11d2i411
b aw2i1 + Fiwir11

’

c v Q_1wzi—2002; 20+ w2i—100102-10
di,l -

4,0 —
ai—1w2i—20 + P1w2i—10

d¢ 11= av 10 =
e o ;w20 + Biwziy1,0

ajw2; 002;.0 + Biwai+1,0d2i41,0
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[wWim,1,03—k]o<k,e<3

m,2

= tm,l

- %m,1

Finaly, when i = m, j = 1, we have

h
W —1,2

W2m—1,2
W2m—1,1

W2m—1,0

h
Wom,2
W2m,2
W2m,1

W2m,0

W2m+1,2

W2m+1,1

W2m+1,0

E1W2m+1,2 + NMW2m 41,3 ]

. (A.21)

with ¢,, 1 being an arbitrary positive constant,

Wi, 2 = &1 (m—1W2m—22 + Bm—1W2m—12)
+ M (m—1wW2m—23 + Bm—1W2m—-13),
h
W12 = E1W2m—1,2 + N1W2m—13,

wgm,Z = {1w2m,2 + MW2m,3s (A.22)

\
Wy 2 = Qy—1W2m—22 + Brn—1W2m—1,2,

\"
Wy 1 = Uy 1W2m—21 + B 1W2m-—1,1,

C

A\ .
Wiy 1 = Wy 0 = Qn—1W2m—2,0 + Bm—1W2m—10;

and

- AC h h c E
dm,2 d2m71,2 d2m,2 dm+l,2

m2 Gom—12 dom2 domia2
[din,1,03—klogk e<3 = ,

\"
m1 Oom-11 d2ma1 domyaa

(A.23)

C
—dm,l dmel,o d2m,0 d2m+1,0_

with
A2 = [§1(@m—1w2m—2202m—22 + Brm—1W2m—1,202m-1,2)
+ N1(Qm—1W2m—2302m—23 + Brm—1W2m—1302m—13)]
/ [é1(am—1w2m—22 + Br—1W2m—1,2)
+ N1(Cm—1Wom—23 + Bm—1W2m-13)],

E1W2m 41,202,412 + NMW2m 41302413
E1W2m 41,2 + MW2m+13

c h
dm+l,2 - d2m+l,2 -
(A.24)
qn ~ Srwam—1202m 12 + MW —1302m 1,3
2m—12=
" §1w2m—12 + MW2m-13
_ §1wom 202 2 + Mw2m,302m,3

dh =
2m.2 ,
m E1W2pm,2 + NW2m,3
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v 1w 2202022 + B 1wam—1202m 12
m,2 ’
QU —1W2m—1,2 + Nm—1W2m—1,2
v Omo1w2m—2102m-21 + Bm—1wam—1102m-1,1
m,1 — )
QU —1W2m—1,1 + Nm—1W2m—1,1
¢ w Qo 1w2m2002m-20 + Brm—1W2m 100210
m,l — ¥m,0 — .

Ay —1W21—1,0 + Nm—1W2m—1,0

We remark that equations (A.13)—(A.24) have been used for the G* joining of multiple
NURBS surfaces in sections 3 and 4.

On the other hand, to convert a C* surface from its piecewise Bézier form (A.1)
back to its NURBS representation (3.5); i.e., to convert Bézier coefficients and local
weights in (A.1) back to control points and global weights in (3.5), the piecewise
bicubic Bézier surface patches must satisfy certain conditions. More precisely, the
Bézier coefficients and local weights need to be adjusted as follows.

A. Uniformly adjustment of the local weights.
1°. Along the lower boundary patches,

W;130
Wit 11k, & —— Wit 11k,
_ W;i+1,1,00
ie,

%
Wq,1,3,0 L.
Wit11ke — Wi1lkye H qi, k,é = O, . ,3, 1= 1, N (e 1
1 Wa+1,100

= (A.25)
2°. From bottom up and along the v-direction,
W;,j,03
Wi 41kl — W41k
Wi,j4+1,0,0
i.e.,
— 03
Wi j+1ke = Wilke H — =2k 4=0,...,3

=1 Wia+100

j=1,...,n—1,4i=1,...,m. (A.26)

B. Along the m — 1 interior vertical grid lines of the parametric domain, the Bézier
coefficients and local weights must satisfy

Qi awi—1j2,00i—1520 + Bi—1w; j 1,005 5.1

d;ior=0d;_1,3,= (A.27)
7,04 i—1,7,3/¢ y .
i 1w;i—1520 + Bi—1w; j1.0
Wij00 _ Wij01 W02 W03 (A 28)
Wi—1;30 Wi-1;31 Wi-1j32 Wi—1;33
Wi5,00 Wi—1,53¢ — Qj—1W;—1,427¢
’wi’j’]_,g = (A29)

Wi—1,5,30 Bi—1 ’
(=0,...,8,i=2,....m, j=1,...,n.
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C. Along the n — 1 interior horizontal grid lines of the parametric domain, the Bézier

coefficients and local weights must satisfy

diino=0d;; _
gk0=0di i 113
§j—1W; j—1k2 T Mj—1Ws j k1

wij00  Wijl0 _ Wij20 _ Wij30
Wij-103 Wij-113 Wij-123  Wij-133
Wij k0 Wij—1k3— §j—1Wij—1k2

Wi,j,k1= )
Wy j—1,k,3 -1

Under these assumptions, the conversion algorithm is given below.

Algorithm A.2 (Conversion from Bézier to NURBS representations).

1°. At the 4 corners of the parametric domain [0, 1]2,

w0,0 = W1,1,0,0, W2m 1,0 = Wm,1,30,
WO2n+1=W1n,03  W2mil2ntl = Winn,33;
and
doo = d1,1,00, d2m41,0 = dm,130,
do2nt1=01003  dami12n1 = Ainn3s.

2°. Along the lower and top boundaries of [0, 1],

W2i—1,0 = W;,1,1,0, W2i,0 = W;120,
W2i—12n41 = Win 13  W2i2n+l = Win23, ©=1,...,m,
and
d2;i—10=4d; 1,10, d2i0 = di ;1,20
d2i—12n41=0in13  O2i2ny1 =din23, i=1,...,m.

3°. Along the left and right boundaries of [0, 1],

Wo,2j—1 = W1,,0,1, Wo2j = W1,5,0.2s

W2m+1,2j—1 = Wm,5,3,1, Wom412j = Wmj32 J=1...,n,
and

do2j—1=d1;01, doz2; = d1,j,02,

dom+12j-1=0m;31,  domi12j =dmjs2, 7i=1,...,n.
4°, In the interior of [0, 1]?,
[ W2i—1,25 W2;,2j ] [wi,j,l,Z wi,j,Z,Z]
W2i—12j-1 W2i2j-1 Wij11l Wij21

§j—1Wij—1k20 j—1k,2 + nj—lwi,j,k,ldi,j,k,l’ (A.30)

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)
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and
[ doi—1,25 do; 2; ] [dz‘,j,l,Z di,j,Z,Z]
doi—12j—1 d2i2j-1 diji1 dijo1
i1=1...,m, j=1...,n. (A.40)
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