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Abstract

The convergences of three L1 spline methods for scattered data interpolation and fitting using bivariate
spline spaces are studied in this paper. That is, L1 interpolatory splines, splines of least absolute deviation,
and L1 smoothing splines are shown to converge to the given data function under some conditions and hence,
the surfaces from these three methods will resemble the given data values.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Given a data set {(xi, yi, fi), i = 1, . . . , V } with fi = f (xi, yi), we wish to find a smooth
surface which interpolates or approximates the given data set so that the surface resembles the
data function f as closely as possible. We will use bivariate splines to do so. That is, let � be a
triangulation of the data sites (xi, yi), i = 1, . . . , V and

Sr
d(�) = {s ∈ Cr(�) : s|t ∈ Pd , ∀t ∈ �}

be the spline space of degree d and smoothness r �1 with r < d, where � is the union of all
triangles in � and Pd stands for the space of all polynomials of degree �d. Thus, we look for a
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spline function s in Sr
d(�) to interpolate or fit the given data set. Usually, the well-known minimal

energy method is used to construct interpolatory smooth surfaces (cf. e.g., [7] for a survey of the
minimal energy methods). However, it may not give a desired surface. See, e.g., [13, Fig. 4.3].
It sometimes produces too many oscillations. Recently, the research works in [13–15] suggest to
use L1 norm to replace the usual quadratic energy functional, i.e., the L2 norm, more precisely,

Q(s) =
∑
t∈�

∫
t

⎛
⎝
∣∣∣∣∣ �2

�x2
s

∣∣∣∣∣
2

+ 2

∣∣∣∣∣ �2

�x�y
s

∣∣∣∣∣
2

+
∣∣∣∣∣ �2

�y2
s

∣∣∣∣∣
2
⎞
⎠ dx dy. (1.1)

That is, instead of Q(s), we use the following L1 norm of the second order derivatives of spline
functions, i.e.,

E(s) =
∑
t∈�

∫
t

(∣∣∣∣∣ �2

�x2
s

∣∣∣∣∣+ 2

∣∣∣∣∣ �2

�x�y
s

∣∣∣∣∣+
∣∣∣∣∣ �2

�y2
s

∣∣∣∣∣
)

dx dy. (1.2)

The L1 spline interpolation and smoothing methods were first proposed in [14] using univariate
C1 cubic splines and in [15] using bivariate C1 cubic Sibson’s finite elements. Numerical experi-
ments in these papers show that these methods have a good property of preserving shape. Due to
the structure of Sibson’s element, the method in [15] can only deal with rectangular grid data. A
general version of L1 spline methods using bivariate splines of arbitrary degree d and smoothness
r with d > r over arbitrary triangulation � are described in [13] and can be given as follows: find
sf ∈ Sr

d(�) such that sf (xi, yi) = fi, i = 1, . . . , V and

E(sf ) = min{E(s), s ∈ Sr
d(�), s(xi, yi) = fi, i = 1, . . . , V }. (1.3)

We will call sf an L1 interpolatory spline of the given data set {(xi, yi, fi), i = 1, . . . , V }. When
the data values contain random errors, an interpolation is not suitable. We consider splines to fit
instead interpolate the given data values. Let � be an appropriate triangulation of � which may
not be a triangulation of the given data sites. We find sf ∈ Sr

d(�) such that

�(sf − f ) = min{�(s − f ), s ∈ Sr
d(�)}, (1.4)

where �(s − f ) = ∑V
i=1 |s(xi, yi) − fi |. sf is the least absolute deviation from the given data

(cf. [4]). We may call sf a spline of least absolute deviation of f. In addition, we also consider the
L1 smoothing spline method: to find sf ∈ Sr

d(�) such that

�(sf − f ) + �E(sf ) = min{�(s − f ) + �E(s), s ∈ Sr
d(�)}, (1.5)

where � > 0 is a parameter. An sf which minimizes (1.5) is called an L1 smoothing spline of the
give data.

The existence of such interpolatory and smoothing L1 spline functions for any given data is
studied in [13]. That is, if a spline space Sr

d(�) has an interpolatory spline function, then the
L1 interpolatory spline exists. However, such solutions are not unique. The two L1 spline fitting
methods always find solutions in Sr

d(�) due to the fact that the minimization functionals are
convex. However, they are not strictly convex and hence, the solution may not be unique. How to
compute approximates of such spline solutions is also studied in [13]. That is, the authors in [13]
discretized the integrals associated with the minimization functional, converted the minimization
problems into linear programming problems, and then applied the well-known Karmarkar algo-
rithm to compute a solution of these linear programming problems. Numerical examples were
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presented in [13] to illustrate the advantage of the L1 spline methods over the minimal energy
method. In this paper, we will show that the spline functions produced by these methods indeed
converge to the data function f if fi = f (xi, yi), i = 1, . . . , V for sufficiently smooth function f
as the number of data sites increases. Hence, the L1 spline methods indeed provide an alternative
methodology for surface designers.

It is worthy mentioning that the convergences of the usual minimal energy method, discrete least
squares method, and penalized least squares method using bivariate splines for data interpolation
and fitting were analyzed in [8,10,11]. However, I cannot generalize their analysis to study the
convergence of the L1 spline methods since the L1 spline methods are nonlinear methods. Instead,
I obtain the convergences in the L1 norm.

Throughout the paper, we assume that d �3r + 2. Let |�| be the maximum of the diameters
of the triangles in �. For any � = (�1, �2) with nonnegative integers �1, �2 with |�| = �1 + �2,
we denote by D� = D

�1
x D

�2
y . Then it is known (cf. [12]) that the spline space Sr

d(�) possesses
optimal approximation property:

Theorem 1.1. Fix d �3r + 2 and 0�m�d . Then there exists a linear quasi-interpolation op-
erator Qm mapping L1(�) into Sr

d(�) and a constant C such that if f is in the Sobolev space
Wm+1

p (�) with 1�p�∞,

‖D�1
x D�2

y (f − Qmf )‖p,� �C |�|m+1−�1−�2 |f |m+1,p,�, (1.6)

for all 0��1 + �2 �m. If � is convex, then the constant C depends only on d, p, m, and on
the smallest angle �� in �. If � is nonconvex, C also depends on the Lipschitz constant L��
associated with the boundary of �.

In particular, Qf may be chosen to be an interpolatory spline with optimal approximation
property (cf. [5,6]). Such quasi-interpolatory operator Q will be used in the following sections.

The rest of the paper is organized as follows. We first prove the convergence of the L1 in-
terpolatory splines in Section 2. We shall point out that the proof of the convergence may be
generalized to the setting of Lp spline interpolation. In Section 3, we establish the convergence
for splines of least absolute deviation under some suitable conditions. We shall remark on the
conditions and extend the convergence analysis. In Section 4 we give a convergence analysis for
the L1 smoothing splines. We present some numerical results on the convergence of the L1 spline
interpolations in Section 5. Finally we conclude the paper with several remarks.

2. Convergence of the L1 interpolatory splines

In this section we let � be a triangulation of the given data sites (xi, yi), i = 1, . . . , V . We
assume that fi = f (xi, yi) for a sufficiently smooth function f defined over �. As explained in the
introduction section, there always exists at least one spline s ∈ Sr

d(�) satisfying the interpolation
conditions: s(xi, yi) = fi, i = 1, . . . , V since d �3r +2. Denote by Sf an L1 interpolatory spline
satisfying (1.3).

Theorem 2.1. Let Sf be the L1 spline interplating f at the vertices of �. Suppose that f ∈ C2(�).
Then there exists a constant C dependent on d and �� as well as the Lipschitz constant associated
with the boundary �� if � is not convex such that

‖f − Sf ‖L1(�) �C|�|2|f |2,∞,�. (2.1)
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In order to prove this Theorem 2.1, we need [8, Lemma 6.1]. For convenience, we state it here
without proof.

Lemma 2.2. Suppose that g is continuously twice differentiable over a triangle T. Suppose that
g is zero at three vertices of T. Then

‖g‖L∞(T ) �C1|T |2|g|2,∞,T

for a positive constant C1 independent of g and T.

Proof of Theorem 2.1. Fix each triangle T ∈ �. Since Sf − f is zero at the vertices of T,
Lemma 2.2 can be applied to have

|Sf − f |�C1|T |2|Sf − f |2,∞,T .

Using the stability property of the B-coefficients of Sf over T (cf. [12, Lemma 4.1]), we have

|Sf |2,∞,T � C2

AT

|Sf |2,1,T ,

where AT denotes the area of triangle T and

|Sf |2,1,T :=
∫

T

(
|D2

xSf | + 2|DxDySf | + |D2
ySf |

)
dx dy.

Thus, we have∫
�

|Sf − f | dx dy =
∑
T ∈�

∫
T

|Sf − f | dx dy�C1

∑
T ∈�

|T |2AT |Sf − f |2,∞,T

�C1|�|2
∑
T ∈�

(
AT |f |2,∞,T + C2|Sf |2,1,T

)

�C1|�|2
⎛
⎝A�|f |2,∞,� + C2

∑
T ∈�

|Sf |2,1,T

⎞
⎠

= C1|�|2(A�|f |2,∞,� + C2E(Sf ))

�C1|�|2(A�|f |2,∞,� + C2E(Qf )),

where A� denotes the area of � and we have used the extremal property: E(Sf )�E(Qf ). Note
that by Theorem 1.1, i.e., using (1.6) with m = 1, p = ∞, and |�| = 2,

E(Qf ) = |Qf |2,1,� �C3A�|f |2,∞,�

for a constant C3 dependent only on d and �� and possible Lipschitz constant L�� if � is not
convex. Hence,∫

�
|Sf − f | dx dy�C1(1 + C2C3)A�|�|2|f |2,∞,�.

This completes the proof of (2.1) with C = C1(1 + C2C3)A�. �
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We observe that the proof above can be generalized to prove the convergence of the Lp min-
imal energy spline method for interpolation. That is, let Sf ∈ Sr

d(�) be the interpolatory spline
satisfying

Ep(Sf ) = min{Ep(s), s(xi, yi) = fi, i = 1, . . . , V , s ∈ Sr
d(�)},

where

Ep(s) =
∑
t∈�

∫
t

(∣∣∣∣∣ �2

�x2
s

∣∣∣∣∣
p

+ 2

∣∣∣∣∣ �2

�x�y
s

∣∣∣∣∣
p

+
∣∣∣∣∣ �2

�y2
s

∣∣∣∣∣
p)

dx dy.

Then we have

‖Sf − f ‖Lp(�) �C|�|2|f |2,∞,� (2.2)

if f ∈ W 2∞(�). The details are omitted here.

3. Convergence of splines of least absolute deviation

In this section we derive error bounds for splines of least absolute deviation. For convenience,
let V = {(xi, yi), i = 1, . . . , V }. Let � be a triangulation of �. Note that any data site in V may
not be a vertex of �. For convenience, let us assume that no data site in V lies on the edges of �.
Also, the number V of data sites in V is much larger than the number of vertices of �.

We need to introduce the following two quantities related to the data sites with respect to
triangulation � and an integer d. These two constants play an important role in the analysis of the
convergence of discrete least squares spline approximation in [10]. They are also key constants
in our analysis. Let F1 be a positive number such that

F1‖s‖L∞(T ) �
∑

v∈V∩T

|s(v)| (3.1)

for all T ∈ � and s ∈ Pd . Let F2 be the maximum of the numbers of locations in triangle T for
all T ∈ �. That is,∑

v∈V∩T

|s(v)|�F2‖s‖L∞(T ) (3.2)

for all T ∈ � and any s ∈ C(�).
In addition, we need another constant regarding �. Denote by �� the smallest of the radii of

the inscribed circles of triangles in �. Let � be the smallest positive constant such that

|�|
��

��.

The number � is called the quasi-uniformality of triangulation �. Note that the smallest angle ��
can be bounded below by the constant times 1/�.

Let Sf be a spline of least absolute deviation from the given data values fi = f (xi, yi). That is
Sf satisfies (1.4). Thus, S defines a nonlinear map from any f ∈ C(�) to Sr

d(�). Clearly, S is a
projection. It is easy to see that

�(Sf )�2�(f ). (3.3)

Indeed, �(Sf )��(Sf − f ) + �(f )�2�(f ).
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Theorem 3.1. Suppose that F1 > 0 and F2 < +∞ are two constants such that F2/F1 is
independent of �. Suppose that f ∈ Cd+1(�). Then

‖f − Sf ‖L1(�) �C1|�|d+1|f |d+1,∞,� (3.4)

for a positive constant C1 = CA�(1 + �2F2/(�F1)), where C is the same positive constant
appeared in (1.6) and A� is the area of domain �.

Proof. First of all, let Qf be the quasi-interpolatory spline as in (1.6) with p = ∞ and m = d.
Then

‖f − Sf ‖L1(�) �‖f − Qf ‖L1(�) + ‖Qf − Sf ‖L1(�).

We now estimate the second term on the right in the above inequality.

‖Qf − Sf ‖L1(�) =
∑
T ∈�

∫
T

|Qf − Sf |�
∑
T ∈�

AT ‖Qf − Sf ‖L∞(T )

� 1

2F1
|�|2

∑
T ∈�

∑
v∈V∩T

|Qf (v) − Sf (v)| = |�|2
2F1

�(Qf − Sf )

since AT � |�|2/2. Note that

�(Qf − Sf )��(Qf − f ) + �(Sf − f )��(Qf − f ) + �(Qf − f ) = 2�(Qf − f ).

Here we have used the extremal property: �(f − Sf )��(f − Qf ). Thus, ‖Qf − Sf ‖L1(�) � |�|2
F1

�

(Qf − f ). Next we have

‖Qf − Sf ‖L1(�) � |�|2
F1

∑
T ∈�

∑
v∈V∩T

|Qf (v) − f (v)|� F2|�|2
F1

∑
T ∈�

C|�|d+1|f |d+1,∞,�

� CF2

�F1
�2A�|�|d+1|f |d+1,∞,�, (3.5)

where we have used (1.6) and the following fact:∑
T ∈�

|�|2 � |�|2A�/(��2�)�A��2/�. (3.6)

Therefore,

‖f − Sf ‖L1(�) �A�C|�|d+1|f |d+1,∞,� + 2C�2A�
F2

�F1
|�|d+1|f |d+1,∞,�.

This completes the proof of (3.4) with C1 = CA�(1 + �2F2/(�F1)). �

Theorem 3.2. Under the assumptions in Theorem 3.1, there exists a positive constant C depend-
ing only on d, A�, � and the ratio F2/F1 such that for every function f in Wd+1,∞(�)

‖D�(f − Sf )‖L1(�) �C|�|d+1−|�||f |d+1,∞,�

for any � = (�1, �2) with nonnegative integers �1, �2 satisfying |�| = �1 + �2 �d.
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Proof. Let Qf be the quasi-interpolatory spline in Sr
d(�) which achieves the optimal approxima-

tion as in (1.6) with m = d and p = +∞. For convenience, we use C to denote positive constants
which may be different in different lines. Then

‖D�(f − Sf )‖L1(�)

�‖D�(f − Qf )‖L1(�) + ‖D�(Qf − Sf )‖L1(�)

�CA�|�|d+1−|�||f |d+1,∞,� +
∑
T ∈�

C|T |−|�|‖Qf − Sf ‖L1(T )

�CA�|�|d+1−|�||f |d+1,∞,� + C|�|−|�|‖Qf − Sf ‖L1(�) �C|�|d+1−|�||f |d+1,∞,�

for a positive constant C dependent on �, A�, and d. Here, we have used the Markov inequality
(cf. [12]) and the proof of Theorem 3.1, i.e., (3.5). �

Let us remark on these two constants F1 and F2. It is easy to see that F2 can be bounded by the
maximum of the numbers of the data locations in triangles. That is,

F2 � max
T ∈� #{(xi, yi) ∈ T , i = 1, . . . , V }.

To make F1 positive, we need to have a set of data sites in each triangle T which admits unique
interpolation by polynomials of degree d for T ∈ �. More precisely, fix a triangle T and write

{(xT ,i , yT ,i), i = 1, . . . , nT } := {(xi, yi) ∈ T , i = 1, . . . , V }.

For simplicity, let us assume that nT = (d + 1)(d + 2)/2. Suppose that these nT data sites admit
a unique polynomial interpolation in the following sense: for any given f ∈ C(T ), there exists a
unique polynomial pf of degree d such that

pf (xT,i , yT ,i) = f (xT,i , yT ,i), i = 1, . . . , nT . (3.7)

Then there exists a constant FT,1 such that

FT,1‖s‖L∞(T ) �
nT∑
i=1

|s(xT ,i , yT ,i)| ∀s ∈ Pd . (3.8)

Indeed, write s ∈ Pd in terms of Bernstein–Bézier polynomial form:

s =
∑

i+j+k=d

cijkBijk,

where Bijk = d!
i!j !k!�

i
1�

i
2�

k
3 and �1, �2, �3 are the barycentric coordinates of (x, y) with respect

to T. The uniqueness of the interpolation implies that the coefficient matrix of linear system:

∑
i+j+k=d

cijkBijk(xT ,m, yT ,m) = f (xT,m, yT ,m), m = 1, . . . , nT
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is invertible and hence, the vector {cijk, i + j + k = d} can be bounded in terms of the vector
{(f (xT,m, yT ,m), m = 1, . . . , nT }. That is,

max{|cijk|, i + j + k = d}�bT max{|f (xT,m, yT ,m)|, m = 1, . . . , nT }

�bT

nT∑
m=1

|f (xT,m, yT ,m)|

for a positive constant bT . Let FT,1 = 1/bT . Then (3.8) follows. Indeed,

‖s‖L∞(T ) � max
(x,y)∈T

∑
i+j+k=d

|cijk|Bijk(x, y)

� max
(x,y)∈T

max{|cijk|, i + j + k = d}
∑

i+j+k=d

Bijk(x, y)

�bT

nT∑
m=1

|s(xT ,m, yT ,m)|.

A sufficient condition for F1 to be positive follows immediately.

Lemma 3.3. Suppose that for each T, there exists a subset {(xT ,m, yT ,m), m = 1, . . . , nT } of
data sites which lie in T such that the space Pd admits a unique interpolation at these data sites,
i.e., for any f ∈ C(T ), there exists pf ∈ Pd satisfying (3.7). Then there exists a positive number
F1 satisfying (3.1).

Proof. Let F1 = min{FT,1, T ∈ �}. Then it follows that

F1‖s‖L∞(T ) �FT,1

nT∑
m=1

|s(xT ,m, yT ,m)|�FT,1

∑
(xi ,yi )∈T

|s(xi, yi)|

for any s ∈ Pd and T ∈ �. �

When F1 is zero because that some triangles are lack of enough data sites or data sites are not
located in a general position, we can still prove the convergence under some assumptions and
adding extra smoothness conditions. See Remark 6.4.

We again observe that the proof of Theorem 3.1 can be generalized to prove the convergence
of the Lp splines of least absolute deviation in the following sense: let Sf ∈ Sr

d(�) be a spline
satisfying

�p(Sf − f ) = min{�p(s − f ), s ∈ Sr
d(�)},

where

�p(s − f ) =
V∑

i=1

|s(xi, yi) − fi |p.

Similarly, let

F1,p‖s‖p

L∞(T ) �
∑

(xi ,yi )∈T

|s(xi, yi)|p
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for all s ∈ Pd and T ∈ � and∑
(xi ,yi )∈T

|s(xi, yi)|p �F2,p‖s‖p

L∞(T )

for all s ∈ C(T ). Then we have

Theorem 3.4. Suppose that F1,p > 0 and F2,p < +∞ are two constants such that F2,p/F1,p is
independent of �. Suppose that f ∈ Cd+1(�). Then

‖D�(f − Sf )‖Lp(�) �C
F2,p

F1,p

|�|d+1−|�||f |d+1,∞,�

for |�|�d + 1, where C is a positive constant independent of f, but dependent on the quasi-
uniformality � of �.

The proof is similar to that of Theorems 3.1 and 3.2. We leave the detail to the reader.

4. Convergence of L1 smoothing fitting

In this section we shall investigate the convergence of our L1 smoothing spline for data fitting.
Let S�,f be a solution of the L1 smoothing spline corresponding to the parameter �. We would
like to know ‖f − S�,f ‖L1(�). That is, we will show that S�,f converges to f as the size |�| of
triangulation � and � go to zero. We first note that S0,f is just a spline of least absolute deviation
from f as discussed in the previous section. Since we have already known that S0,f approximates
f, we mainly estimate ‖S0,f − S�,f ‖L1(�) as the study in [11].

Define a functional:

〈s, g〉P = 〈s − f, g − f 〉� + �〈s, g〉E
with � > 0 being a fixed parameter, where

〈s, g〉� :=
n∑

i=1

f (vi) sign(g(vi)),

sign(g(vi)) =
⎧⎨
⎩

1 if g(vi) > 0,

0 if g(vi) = 0,

−1 if g(vi) < 0.

Note that �(s) = 〈s, s〉� and

〈s, g〉E :=
∫
�

∑
|�|=2

D�s sign(D�g) dx dy,

with E(s) = 〈s, s〉E .
We begin with some elementary properties of S�,f .

Lemma 4.1. Let S0,f be a spline of least absolute deviation from the data values obtained from
f. Then

〈s, S0,f − f 〉� = 0 ∀s ∈ Sr
d(�). (4.1)
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Proof. Let s ∈ Sr
d(�) and consider 〈S0,f + �s − f, S0,f + �s − f 〉� which achieves the minimal

when � = 0. Note that g(�) = S0,f (xi, yi)+�s(xi, yi)−fi is a linear function of � and sign(g(�))

is a piecewise constant function. Thus,

d

d�
〈S0,f + �s − f, S0,f + �s − f 〉� =

V∑
i=1

s(xi, yi) sign(S0,f (xi, yi) + �s(xi, yi) − fi).

(4.1) follows from the fact 0 = d

d�
〈S0,f + �s − f, S0,f + �s − f 〉�|�=0. �

Similarly we have

Lemma 4.2. The L1 smoothing spline S�,f ∈ S satisfies

〈s, f − S�,f 〉� = �〈s, S�,f 〉E ∀s ∈ Sr
d(�). (4.2)

Proof. We use a similar argument as in the proof of Lemma 4.1. Since S�,f is a minimizer, for
any fixed s ∈ Sr

d(�), we have

d

d�
(〈S�,f + �s − f, S�,f + �s − f 〉� + �E(S�,f + �s)

∣∣∣
�=0

= 0.

For each triangle T, s and S�,f are polynomials and hence, sign(D2
x(S�,f + �s)) is a piecewise

constant function.
d

d�
sign(D2

x(S�,f + �s) is zero almost everywhere, except for a measure zero

set. The boundedness of D2
xs and D2

xS�,f implies that∫
T

(D2
x(S�,f + �s)

d

d�
sign (D2

x(S�,f + �s)) dx dy = 0.

Hence, we have

0 = d

d�
E(S�,f + �s)|�=0 = 〈s, S�,f 〉E .

Combining with the result in Lemma 4.1 we conclude (4.2). This completes the proof. �

We next show that 〈S0,f , S0,f 〉E is bounded from the above.

Lemma 4.3. Suppose that f ∈ Cm+1(�) with 1�m�d. Then there exists a positive constant
Cf dependent on f only such that

〈S0,f , S0,f 〉E �Cf .

Proof. By using Theorem 3.2, we have

〈S0,f , S0,f 〉E �〈S0,f − f, S0,f − f 〉E + 〈f, f 〉E
�C(|�|m−1|f |m+1,∞,� + C|f |2,∞,� =: Cf .

This completes the proof. �

We are now ready to state and prove the main result in this section.
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Theorem 4.4. Suppose that the data sites satisfy (3.1) and (3.2). Let S�,f be the spline minimizing
(1.5). Then

‖f − S�,f ‖L1(�) �C3|�|d+1|f |d+1,∞,� + �
Cf |�|2

F1
(4.3)

for every function f in Cd+1(�), where Cf is a constant dependent on f as in Lemma 4.3 and C3
is a constant dependent on � and the ratio F2/F1.

Proof. We start with

‖f − S�,f ‖L1(�) �‖f − S0,f ‖L1(�) + ‖S0,f − S�,f ‖L1(�).

The first term on the right of the above inequality can be estimated using Theorem 3.1. That is,
there exists a constant C2 depending only on d and � such that for every function f in Wd+1,∞(�)

‖S0,f − f ‖L1(�) �C2|�|d+1|f |d+1,∞,�.

Let us work on the second term. We have

‖S0,f − S�,f ‖L1(�) �
∑
T ∈�

AT ‖S0,f − S�,f ‖L∞(T ) �
1

F1
|�|2�(S0,f − S�,f )

� |�|2
F1

(�(S0,f − f ) + �(S�,f − f ))

� |�|2
F1

(�(S0,f − f ) + �(S�,f − f ) + �E(S�,f ))

� |�|2
F1

(2�(S0,f − f ) + �E(S0,f )).

Here we have used the extremal property:

�(S�,f − f ) + �E(S�,f )��(S0,f − f ) + �E(S0,f ).

Since E(S0,f ) = 〈S0,f , S0,f 〉E , we can use Lemma 4.3. Let Qf be the quasi-interpolatory spline
of f in Sr

d(�) as in (1.6). Since �(S0,f − f )��(Qf − f ), we have

�(Qf − f )�
∑
T ∈�

F2‖Qf − f ‖L∞(T ) �F2
A�

��2�
C|�|d+1|f |d+1,∞,�

by using (1.6) and (3.6). Hence it follows

‖S0,f − S�,f ‖L1(�) �
|�|2
F1

2F2A�

��2�
C|�|d+1|f |d+1,∞,� + �

|�|2
F1

Cf ,

where we have used Lemma 4.3. Hence,

‖f − S�,f ‖L1(�) �
(

C2 + F2

F1
C

A��2

�

)
|�|d+1|f |d+1,∞,� + �

Cf |�|2
F1

.

This completes the proof. �
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We observe again that the above analysis can be extended to the following Lp smoothing splines
situation. Let Sf ∈ Sr

d(�) be a spline satisfying

�p(Sf − f ) + �Ep(Sf ) = min{�p(s − f ) + �Ep(s), s ∈ Sr
d(�)},

where �p(s) and Ep(s) were defined in the previous two sections. Then we have

Theorem 4.5. Suppose that F1,p > 0 and F2,p < +∞ defined in the end of the previous section
are two constants such that F2,p/F1,p is independent of �. Suppose that f ∈ Cd+1(�). Then

‖f − Sf ‖Lp(�) �C|�|d+1−|�||f |d+1,∞,� + �Cf,p|�|2/F1,p,

where C is a positive constant independent of f, but dependent on the quasi-uniformality � of �
and the ratio of F2,p and F1,p. Here Cf,p is a positive constant dependent on f and p only.

Proof of Theorem 4.5 is similar to that of Theorem 4.4. The details are omitted here.

5. Numerical experiments

We implemented these three L1 spline methods as described in [13]. Let us present several
examples to demonstrate that the surfaces of L1 spline interpolation indeed approximate the
surface that the data set represents. We shall first give an example based on scattered data locations
as shown in Fig. 1 to show that L1 interpolatory splines resemble the surface of a given data set.
Next we present a table of the maximum errors between three testing functions and corresponding
L1 interpolatory splines to demonstrate the convergence of the L1 spline interpolation method.
For comparison, we also show the maximum errors of the standard minimal energy interpolatory
splines. Finally we demonstrate our L1 spline method for a set of real data.

Example 5.1. We consider a triangulation � with vertices being the data sites in Fig. 1 and use
spline functions in S1

5(�). We find the L1 interpolatory spline of function y = sin(�(x2+y2))+1.
In Fig. 2, we can see that the L1 interpolatory spline is very close to the given function. In fact,
the maximum error of the interpolatory spline function and test function y based on 101 × 101
equally spaced points over [0, 1] × [0, 1] is 0.08905. That is, the interpolatory spline surface
approximates the test function y.

Example 5.2. In this example we consider a standard domain [0, 1] × [0, 1] and let � be a type
I triangulation of 4 × 4 equally spaced points. We find the L1 interpolatory splines in S1

5(�) of
several test functions and compute the maximum errors instead of L1 norm just for convenience.
(The errors in L1 norm behavior similar to the maximum errors.) The maximum errors of the
spline functions against the test functions are computed based on 201×201 equally spaced points
of [0, 1] × [0, 1]. As the underlying triangulation � is refined, the maximum errors converge to
zero in the same order as indicated in Theorem 2.1. For comparison, we also use the standard
minimal energy method to find interpolatory splines in S1

5(�) of the test functions. The maximum
errors of the interpolatory splines and the test functions are listed in Table 1. In Table 1, �n denotes
the uniform refinement of �n−1 for n = 1, . . . , 3 with �0 = �. The numerical results shown that
they are in the same approximation order although the maximum errors from the minimal energy
method are slightly better than that from the L1 spline method.
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Fig. 1. A triangulation of the given data sites.

Fig. 2. L1 interpolatory spline surface.

Example 5.3. Consider a standard 2D image as shown in Fig. 3. It has 116 × 116 data values.
We use the integers between [1, 116] × [1, 116] as data locations and triangulate them using the
lines parallel to the x-axis, y-axis, and the line x = y. Let � be the triangulation. Consider the
C1 quintic spline space S1

5(�). We find the interpolatory spline Sf ∈ S1
5(�) by using the L1

spline method. The interpolatory surface Sf shown as in Fig. 4 is an excellent representation of
the penny data. It is clear to see that there are no overshoots over the edge ring of the penny.
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Fig. 3. Pixel values of 2D image.

Fig. 4. 3D L1 interpolatory spline surface.

6. Remarks

We have the following remarks in order.

Remark 6.1. We have only proved the convergence in the L1 norm for three L1 spline methods.
It is interesting to know the convergence in the maximum norm similar to the results in [8–11].
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Table 1
Convergences of L1 spline interpolation

Test functions Methods � �1 �2 �3

1
1+x2+y2 L1 0.01714 0.006953 0.001272 0.0003234

L2 0.01306 0.002954 0.0007099 0.0001748

sin(�(x2 + y2)) L1 0.11121 0.04031 0.011152 0.001965
L2 0.09357 0.01843 0.004470 0.001104

10 exp(−(x2 + y2)) L1 0.25152 0.07646 0.019381 0.003243
L2 0.12327 0.02883 0.007051 0.001745

I failed to generalize the techniques in these papers to establish the convergence in the maximum
norm due to the nonlinearity of three L1 spline methods. However, the numerical evidence from
Table 1 in Section 5 strongly suggests that the convergence of the L1 spline interpolation in the
maximum norm is the same as the convergence of the standard minimal energy interpolation.

Remark 6.2. The L1 spline methods on spherical setting were studied in [16,17] using tensor
product of univariate C1 cubic splines and some nonpolynomial functions. It is interesting and
useful to continue the investigation to see if the L1 spline methods are good for shape preservation
using other spline functions. Recently, triangulated spherical splines for scattered data interpola-
tion and fitting are studied in [3]. The convergence of the minimal energy method for spherical
spline interpolation using the usual quadratic energy functional is studied in [1]. Convergence
of discrete and penalized least squares fitting for spherical scattered data is analyzed in [2]. It is
possible to use the spherical splines to find interpolatory or fitting surfaces by using L1 spline
methods. We certainly would like to know if the surfaces resemble the shape of the given data or
not. More details may be reported elsewhere.

Remark 6.3. In Sections 2–4 we presented the convergence results on spline interpolation and
fitting using energy functionals involved Lp and �p norms with p > 0. It is interesting to
develop a computational algorithm which efficiently solve such minimization problems and to
learn numerical behaviors of spline minimizers which interpolate and fitting scattered data.

Remark 6.4. When the constant F1 in (3.1) fails to be positive, that is, some triangles do not have
enough data sites and/or data sites are not located in a general position, the spline of least absolute
deviation may not converge. For example, if a triangle on the boundary does not contain any data
sites, the spline will not converge over this triangle and hence the convergence in L1 norm over
the domain � will be ruined. Assume that such “bad” triangles happen in a few triangles which are
surrounded by “good” triangles in the sense that (3.1) holds for a positive constant F1. Then one
way to correct the problem is to impose extra smoothness conditions across edges of these “bad”
triangles. For simplicity, let us say there is only one “bad” triangle. Then we add extra smoothness
condition across one edge of the bad triangle so that the polynomial piece on the bad triangle is
the same polynomial on the neighboring triangle sharing that edge with the bad triangle. Then F1
in (3.1) will be positive for all triangles except for “bad” triangle. Also there is a positive constant
F ′

1 such that (3.1) holds over the union of two triangles (one bad and one good triangle). With
appropriate modification in the proof, Theorem 3.1 still hold with a different constant C1.
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