
This article was originally published in a journal published by
Elsevier, and the attached copy is provided by Elsevier for the

author’s benefit and for the benefit of the author’s institution, for
non-commercial research and educational use including without

limitation use in instruction at your institution, sending it to specific
colleagues that you know, and providing a copy to your institution’s

administrator.

All other uses, reproduction and distribution, including without
limitation commercial reprints, selling or licensing copies or access,

or posting on open internet sites, your personal or institution’s
website or repository, are prohibited. For exceptions, permission

may be sought for such use through Elsevier’s permissions site at:

http://www.elsevier.com/locate/permissionusematerial

http://www.elsevier.com/locate/permissionusematerial


Aut
ho

r's
   

pe
rs

on
al

   
co

py

Appl. Comput. Harmon. Anal. 22 (2007) 304–318

www.elsevier.com/locate/acha

Method of virtual components for constructing redundant
filter banks and wavelet frames

Ming-Jun Lai, Alexander Petukhov ∗

Department of Mathematics, University of Georgia, Athens, GA 30602, USA

Received 9 December 2004; revised 20 June 2006; accepted 9 August 2006

Available online 11 October 2006

Communicated by Amos Ron

Abstract

For a wavelet frame with polynomial symbols generated by an MRA with a given approximation order, we present the method
for parametric description and construction of all dual analysis operators (filter banks) with the maximum number of vanishing
moments whose symbols are polynomials. The similar problems related to the maximum frame approximation order and some
other wavelet frame properties are considered.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The main goal of our paper is to present a filter bank tool which can be used for a decomposition in wavelet frames
(in particular, tight wavelet frames) allowing to provide maximum approximation order, staying within a framework
of mixed extension principle.

In the 80’s, the interconnection between the rate of approximation and properties of scaling functions and wavelets
was investigated in detail. In particular, it was known that approximation order of linear combinations of shifts of a
scaling function is tightly connected with its ability to recover algebraic polynomials of a given degree. For orthogonal
and bi-orthogonal wavelets the approximation order of a scaling function is equivalent to the existence of dual wavelets
with the given number of vanishing moments.

This is not the case for wavelet frames. Neither approximation order of a multiresolution used for the expansions
nor this for dual multiresolution have a direct impact on a number of vanishing moments of framelets even for the
case of tight wavelet frames. This phenomenon was analyzed in [3] and [5].

The general theory of wavelet frames in L2(Rk) was developed by A. Ron and Z. Shen [14,15]. In particular, they
found very handy tools for construction wavelet tight frames and bi-frames (for shortness, framelets) associated with
a given scaling function. These tools were called the unitary extension principle (UEP) and mixed extension principle
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(MEP) correspondingly. Those principles give the opportunity to reduce the problem of finding framelets to solving
a matrix equation (generally speaking, with non-square matrices), where the first columns of the matrices are defined
by the known scaling functions. The level of the interest to framelet systems increased after the papers by C. Chui
and W. He [2] and A. Petukhov [10] (see also [11] for the full version), where two different algorithms for solving the
mentioned equation were found. However, it became clear very soon (actually, it has been clear since papers [14,15])
that, for many cases (e.g., for B-splines), a number of vanishing moments for UEP-wavelet frames is much less than
multiresolution analysis (MRA) approximation order.

The MRA approximation order n means that smooth data can be well represented by linear combinations of shifts
(integer translations) of a scaling function. In particular, polynomials of the degree � n − 1 can be represented
precisely. Unfortunately, a linear analysis operator obtained within UEP framework for computing the expansion
coefficients does not have to provide the maximal approximation order.

For wavelet frames, there are two degrees of the violation of the maximum order approximation property. “The
weak” form of violation consists in a phenomenon when framelet coefficients of polynomials of degree n− 1 may not
be equal to zero (not enough analysis operator vanishing moments), whereas coefficients for shifts of a scaling function
allow to recover polynomials up to degree n − 1, providing the maximum order of smooth functions approximation.
This case was thoroughly studied in [5]. The property to recover polynomials up to the order k − 1 with scaling
function coefficients was called the frame approximation order k [5]. “The strong” violation leads to the impossibility
to recover polynomials with low-pass coefficients.

Small wavelet (framelet) coefficients for smooth functions guaranteed by a high order of vanishing moments are
very desirable. Thus, we need to satisfy some extra conditions to provide actual approximation order equal to the
approximation order of the MRA. Otherwise, the low order of framelet vanishing moments necessarily leads to either
the leak of the information from the low frequency components (a scaling function) to the high frequency (framelets)
or just to unjustified increasing the magnitude of framelet coefficients. Since wavelet frames promise to be a very
flexible tool for data representation, the development of linear methods of efficient data expansions in wavelet frames
is an actual problem.

It should be mentioned that constructing wavelet frames satisfying too many nice properties may become very
difficult. For example, if it is required to design UEP-based (anti)symmetric compactly supported tight wavelet frames
with the minimal number of frame generators and an arbitrary number of vanishing moments. If to apply an additional
requirement of implementation of the decomposition–reconstruction procedures with finite impulse response (FIR)
filters (i.e., with polynomial filter banks), a general solution of the problem is unknown. While a few particular
solutions were given by I. Selesnick [16], A. Petukhov [12] (2 vanishing moments), and Q. Jiang [8], I. Selesnick and
A. Abdelnour [17] (3 vanishing moments). Those results rather emphasized the lack of the flexibility. Moreover, in all
mentioned constructions a number of vanishing moments is behind the corresponding MRA approximation order.

For fairness sake, we have to mention that the compactness of the representation is not a universal requirement. For
some of applied problems like de-noising, where wavelet frames deserved a good reputation, the compactness does
not play any role. At the same time, usually, it does not contradict directly to other requirements. For this reason, this
problem is among the most attractive problems of the wavelet frame theory.

Release from any of the mentioned conditions results in some problem simplification. The original beautiful so-
lution of this problem allowing to overcome the disbalance between MRA approximation order and a number of
vanishing moments was independently found by C. Chui et al. [3] and I. Daubechies et al. [5]. Shortly, it was
proved that if an MRA is generated by a compactly supported scaling function ϕ and provides approximation or-
der N , then there exists another compactly supported generator ϕ̃ of the same MRA such that the UEP-framelets
associated with ϕ̃ have N vanishing moments. This method for constructing the framelets was called the oblique
extension principle (OEP). OEP is easily realizable and effective tool. At the same time, the OEP trick results in the
increase of the support of a scaling function and framelets. In addition, in spite of the compactness of the support the
decomposition–reconstruction algorithms cannot be implemented any more with FIR filters. The involving of recur-
sive infinite impulse response (IIR) filters or truncated filters becomes necessary. It may be restrictive for real time
applications. In addition, application of filters with rational impulse response characteristic is even more problematic
in multivariate case.

Another nice approaches to constructing compactly supported wavelet frames with more than two (anti)symmetric
framelets were found in recent papers [6] and [7].
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In this paper, we are going to present a new scheme of data representation with MEP-based technique (we sacrifice
the tightness of the dual frame). The main idea of this scheme lies in the non-uniqueness of the decomposition in a
given frame. We are going to parameterize and to use this uncertainty in the choice of the decomposition coefficients
for fitting the analysis operator to given properties. Among these properties, the maximum number of vanishing
moments and the approximation order provided by an analysis operator play a crucial role. While one of this paper
objectives is to present the possible ways for constructing dual wavelet frames with the maximum approximation
order and the maximum number of vanishing moments defined by the MRA approximation order, the framework of
this paper does not assume the discussion of either L2-theory of wavelet frames or any other function space settings.
Instead of that, we stay on a position of filter bank (FB) theory which deals rather with number sequences than
with function spaces. This approach allows to avoid discussion about particular problems of function spaces and to
concentrate attention on algebraic issues related to polynomial matrices. At the same time, not giving any recipe for
solution of traditional problems of wavelet frames, we believe that the presented results may serve as constructive
bricks for wide range of (not only L2) wavelet frames.

The structure of the paper is as follows. In Sections 2 and 3, we introduce main notions and formulate fundamental
results motivating this research as well as the research goals. In Section 4, we describe all possible redundant FB
expansions and linear analysis operators by means of a parametrization. Section 5 is the main part of this paper. All
possible dual filter banks annihilating polynomials of the maximum degree will be described. In Section 6, we show
how to solve a few problems of description of FBs providing some natural representation properties. In particular,
constructing dual frames providing the maximum of the frame approximation order is considered. Section 7 is devoted
to constructing examples of univariate bi-frames with polynomial symbols with the maximum number of vanishing
moments.

2. Notations

We start with description of redundant filter bank transform on the sequence space S := {{xi}i∈Z} of all possible
real sequences. Since we are going to work only with operators based on finite convolutions which are well defined
on any sequences, we do not need any restrictions on the growth or any other properties of sequence. In wavelet
theory, those sequences correspond to expansion coefficients of a function in a system of shifts of a scaling function
generating MRA. For this reason, considering applications of FBs to wavelet frames, the sequences of interest obey
some conditions implied by function spaces. A detail discussion about FBs and their interconnection with wavelet
theory can be found in [4] and [18].

The operation of convolution with a finite sequence {hj } (only a finite number of non-zero entries) can be
represented either in the form

∑
j xjhk−j or in z-domain as X(z)H(z), where X(z) is a formal Laurent series

X(z) := ∑
j xj z

j and H(z) := ∑
j hj z

j is a Laurent polynomial.
A polynomial filter bank operator is defined by its modulation matrix as

M(z) =

⎛
⎜⎜⎝

H0(z) H1(z) . . . Hr(z)

H0(zed) H1(zed) . . . Hr(zed)

. . . . . . . . . . . .

H0(ze
d−1
d ) H1(ze

d−1
d ) . . . Hr(ze

d−1
d )

⎞
⎟⎟⎠ ,

where Hk(z), k = 0,1,2, . . . , r are Laurent polynomials, ed := ei2π/d . A modulation matrix M̃(z) generated by poly-
nomials H̃k(z), k = 0,1,2, . . . , r is called dual (or inverse) if it satisfies the identity

M(z)M̃∗(z) ≡ Id, |z| = 1, (1)

where ∗ means the Hermite conjugation, Id is the d × d identity matrix. When r � d , the choice of a dual matrix is
not unique. This fact gives an opportunity for optimization of that choice, according to the needs of applied problems.

The operation

�Y(z) = M̃∗(z)�X(z), (2)

where �X(z) := (X(z),X(ze1
d), . . . ,X(zed−1

d ))T is called decomposition and the operator M̃(z) is called analysis op-
erator. The inverse operation

�X(z) = M(z)�Y(z) (3)
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is called reconstruction and the operator M(z) is called synthesis operator.
We note that �Y(z) depends only on zd , whereas the matrix M(z) and the vector �X(z) contain a lot of repeating

information. To avoid this redundancy the polyphase representation of the transform is used. Let us introduce the
d × d matrix of discrete Fourier transform F = (Fk,j )0�k,j<d , Fk,j = e

−jk
d , j, k = 0, . . . , d − 1, and the diagonal

matrix D(z) with elements z−k , k = 0, . . . , d − 1, on the diagonal. It is well known that the matrix D(z)FM(z)

consists of polynomials depending on zd . So this matrix can be represented in another form M(zd) = D(z)FM(z),
where components of the matrix M(z) are Laurent polynomials. The matrix M(z) is called a polyphase matrix of
FB-transform. The polyphase matrix M̃(z) is defined in the same way from the modulation matrix M̃(z). Polyphase
forms of �X(z) and �Y(z) are defined by formulas �X(zd) := D(z)F �X(z) and �Y(zd) := �Y(z). Because of the unitarity of
the matrixes F and D(ω), the equalities (1), (2), and (3) may be rewritten in the polyphase form

M(z)M̃T
(
z−1) = Ik, (4)

�Y(z) = M̃T
(
z−1) �X(z), (5)

�X(z) = M(z)�Y(z). (6)

We note that the last relations are valid for any complex z �= 0.
We denote the entries of M(z) and �X(z) by Hj,k(z) and Xk(z), j = 0,1, . . . , r , k = 0,1, . . . , d − 1, respectively.

Then Hj(z) = ∑
k zkHj,k(z

d), X(z) = ∑
k zkXk(z

d).
Interconnection between redundant FB and wavelet frame transform can be briefly described as follows. Suppose

we have an MRA · · · ⊂ V 0 ⊂ V 1 · · ·V k ⊂ · · · generated by dilations and translates of a scaling function ϕ associated
with a symbol H0(e

iω). The symbols Hl(e
iω) generate framelets ψl and framelet spaces Wk

l with Wk := Wk
1 + · · · +

Wk
r and V k+1 = V k + Wk , where sums of the spaces are not necessarily direct and elements of the spaces are not

necessarily from L2(R). If {xk} is a sequence of expansion coefficients in the space V k+1. The first entry of Y(z)

contains expansion coefficients in V k , whereas remaining entries give decomposition in framelets.
In the follow-up discussion, we mainly deal either with algebraic polynomials or with basic scaling functions ϕ. In

(2) and (3), in z-domain, any polynomial p(t) ∈ V k has a representation

X(z) =
∑
j

q(j)zj , (7)

where q(j) is some polynomial of the same degree as p. It follows from (3), that a scaling function ϕ ∈ V 0 obviously
has z-representation X(z) = H0(z) in V 1.

In what follows, we keep using boldface and “blackboard bold” fonts to distinct modulation matrices and vectors
and their polyphase forms correspondingly.

3. Objectives

Transformations (5) and (6) are main constructive blocks of data representation in wavelet frames. The perfect
reconstruction property (4) is a component of the mixed extension principle. Its special case when M̃(z) = M(z)

corresponds to the unitary extension principle.
We start with reformulating main MRA principles in FB language. It is a well-known fact that any Laurent poly-

nomial H0(z), H0(1) = 1 generates a multiresolution consisting of compactly supported tempered distributions. For
this reason H0(z) is called a symbol of MRA. A given MRA approximation order, i.e., belonging all polynomials of
the degree up to n − 1 to MRA, can be guaranteed by a multiplicity n of the factor S(z) := 1 + z−1 + · · · + zd−1 in
the symbol H0(z). In spite the fact that necessary and sufficient condition in terms of zeros of the polynomial H0(z) is
formulated in more sophisticated form, for scaling functions of interest in applications, the assumption that Sn(z) is a
factor of H0(z) for MRAs reproducing polynomials of the order n − 1 is quite usual. In particular, it can be justified
by the known fact that for an MRA with the polynomial reproduction property, the generating scaling function with
the mentioned factorization property exists. Moreover, such a function has the minimum size of the support.

For wavelet frames the fact that the space of polynomials Pn−1 (or any other subspace of distributions D) belongs
to the spaces V i forming MRA does not mean that the analysis operator is really a projector. Moreover, even the
analysis operator is a projector from V1 toD ⊂ V0 it does not mean that it annihilates framelet coefficients of elements
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of D ⊂ V0. In [5], for the case when polynomials from Pn−1 can be recovered with synthesis operator, using only
coefficients of the decomposition in scaling function shifts, the notion frame approximation order n was introduced.

In what follows, we consider the methods for constructing an analysis operators dual to a fixed redundant FB,
providing a perfect recovery for D ⊂ V 0 ⊂ V 1 when either D = V 0 or D = Pn−1. For each of those two cases we
consider two options when an analysis operator annihilates framelet coefficients and when it does not. Thus, assuming
that MRA reproduced polynomials from Pn−1, we are going to describe analysis operators satisfying the following
properties:

Property 1 (Frame approximation order n). If �X(z) corresponds to p ∈Pn−1, then �X(z)= (H0,0(z), . . . ,H0,d−1(z))
T ×

Y0(z), where Y0(z) is the first component of �Y(z) defined by (5).

Property 2 (n frame vanishing moments). If �X(z) corresponds to p ∈ Pn−1, then Yk(z) = 0, k = 1, . . . , r , where
Yk(z) are components of �Y(z) defined by (5).

Property 3. If �X(z) corresponds to f ∈ V 0, then �X(z) = (H0,0(z), . . . ,H0,d−1(z))
T Y0(z), where Y0(z) is defined

by (5).

Property 4. If �X(z) corresponds to f ∈ V 0, then Yk(z) = 0, k = 1, . . . , r , where Yk(z) are defined by (5).

4. Method of virtual components for parametrization of expansions in frames and analysis operators

We consider an arbitrary MRA generated by a compactly supported refinable distribution ϕ with a dilation factor
d � 2 and a polynomial symbol H0(e

iω). We assume that we have a set of framelets {ψk}rk=1, r � d , with polynomial
symbols {Hk}rk=1 and the dual MRA generated by ϕ̃, {ψ̃k}rk=1, r � d , with polynomial symbols {H̃k}rk=0. Their
modulation and polyphase matrices satisfy identities (1) and (4).

Taking into account that matrices in (4) are rectangular, the choice of M̃ which defines expansion coefficients in
the fixed frame is not unique. For a fixed M(z), we are going to describe a simple convenient method to obtain all
possible linear analysis operators M̃(z) satisfying (4). Moreover, this method allows to find operators M̃(z) providing
the maximum number of vanishing moments corresponding to the approximation order of the MRA generated by ϕ

and some variations of that property formulated in Section 3.
Let us assume that we are given arbitrary modulation rectangular polynomial matrices M(z) and M̃(z) with the

square extensions Me(z) and M̃e(z) satisfying the relation

Me(z)M̃∗
e (z) = I, |z| = 1. (8)

Probably, the simplest constructive way to get those matrices is as follows. Introduce the polyphase matrix M(z)

associated with M(z). Using the algorithm from [9], find the extension matrix Me(z) with the determinant zk , where
k is an arbitrary integer number (for instance, k = 0). Assign M̃e(z) := (M−1

e (z−1))T . Define the matrix M̃(z) as the
first d rows of the matrix M̃e(z). Define the matrices

G(z) :=

⎛
⎜⎜⎝

G0,1(z) G1,1(z) . . . Gr,1(z)

G0,2(z) G1,2(z) . . . Gr,2(z)

. . . . . . . . . . . .

G0,r+1−d(z) G1,r+1−d(z) . . . Gr,r+1−d(z)

⎞
⎟⎟⎠

and G̃(z) as the last r + 1 − d rows of the matrices Me(z) and M̃e(z), respectively. Thus, we have

Me(z) =
[

M(z)

G(zd)

]
, M̃e(z) =

[
M̃(z)

G̃(zd)

]
, Me(z) =

[
M(z)

G(z)

]
, M̃e(z) =

[
M̃(z)

G̃(z)

]
.

We note that the existence of the extension Me(z) follows from the fact that M(z) is a polyphase matrix of a wavelet
frame, hence, its minors of the size d × d do not vanish simultaneously. The algorithm from [9] can be applied for
constructing the extension. Here and in what follows, we use the subscript e for the extensions of a given matrix or a
vector.
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As mentioned above, due to the redundancy, �Y(z) is not a unique vector satisfying (6). It is clear that a vector �Y(zd)

satisfies (6) if and only if the difference ��Y(z−d) := �Y(z−d) − �Y(z−d) is orthogonal to rows of the matrix M(z) (or
� �Y(z−1) is orthogonal to rows of the matrix M(z)). Thus, it is easy to see that the vector ��Y(z) can be represented
as a linear combination of the extension rows of the matrix M̃(z−1) introduced above. The coefficients of the linear
combinations either can be considered as given at the beginning or can be found as an inner products of ��Y(z) with
the extension rows of the matrix M(z). We note that since the components of M(z) are Laurent polynomials, then the
components of � �Y(z) can be any formal Laurent series with an arbitrary (even not necessarily bounded) sequence of
coefficients. If we denote those coefficients by Xd(z), . . . ,Xr (z) and extend the vector �X(z) with these coefficients up
to the vector �Xe(z), we have a vector �Y(z) = MT

e (z)�Xe(z) satisfying (6). Moreover, all sequences Xd(z), . . . ,Xr (z)

generate vectors �Y(z) satisfying (6).
We will call this approach the virtual components (VC) method.
Thus, we found the description all possible vectors �Y(z) in a parametric form through all possible extensions of

the vector �X(z) up to the vector �Xe(z) of the dimension r + 1. As it will be shown below, this parametrization is
extremely convenient for optimization of decompositions in wavelet frames.

While that parametrization can be used for (non-linear) optimization of decompositions of individual functions,
we put aside this problems for the future research and concentrate our attention on linear optimization which can be
useful for function classes.

In what follows, we are interested in the choice of VCs linearly depended on the input. Because of the natural
requirement that those components depend only on zd , an arbitrary linear operator can be represented in the form(

Xd

(
zd

)
, . . . ,Xr

(
zd

))T = F(z)�X(z) = F
(
zd

) �X(
zd

)
,

where F(z) is a matrix of the size (r − d + 1)× (r + 1) whose elements are defined by the formula Fk,j (z) = Fk(ze
j
d),

Fk are arbitrary Laurent polynomials. The more general case when Fk may belong to some subclass of Laurent
series deserves the consideration as well. However, within the framework of our paper we restrict ourselves with the
polynomial case providing an opportunity to work with convolutions of the data with finite sequences.

5. Analysis operators with maximum number of vanishing moments

We give a method for “the correction” of a dual FB allowing to construct a dual filter bank with the maximum
number of vanishing moments defined by the MRA approximation order.

Theorem 1. Let M(z) be a modulation matrix of the size (r + 1) × d and of the rank d , d < r + 1, generated by
Laurent polynomials Hi(z), i = 0,1, . . . r , where H0(z) = (1 + z + · · · + zd−1)nR(z), R(1) = d−n. Then there exists
a dual polynomial matrix M̃(ω) defining an analysis operator with n vanishing moments.

The statement of Theorem 1 is quite elementary and probably may be proved with different methods. However, the
VC method gives a convenient constructive method for computationally efficient implementation of analysis operators
for the fixed M(ω) in a parametric form.

Proof. Since minors of the size d × d of the matrix M(z) cannot turn into 0 simultaneously for any z �= 0, there exist
(cf. Section 4) polynomial matrices Me(z), M̃e(z) satisfying (8).

We now find an algorithm for the correction of the matrix M̃(z) increasing the number of the vanishing moments
up to the optimal value n.

Suppose the polynomials {H0(ze
k
d)}d−1

k=0 do not have common roots. Then the equations

d−1∑
k=0

Fj

(
zek

d

)
H0

(
zek

d

) = G0,j

(
zd

) + (
1 − zd

)n
Aj

(
zd

)
, j = 0,1, . . . , r − d + 1, (9)

have (not unique) solutions Fj (z) for any G0,j (z)and Aj(z). Of course, solutions to (9) can be more easily found in
the polyphase form

d−1∑
k=0

Fj,k(z)H0,k(z) = G0,j (z) + (1 − z)nAj (z), j = 0,1, . . . , r − d + 1, (10)
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where Fj,k and H0,k are polyphase components of Fj and H0. In the case of the common roots, Aj cannot be chosen
absolutely free. However, if the polynomials G0,j (z) + (1 − z)nAj (z) has the same roots with the same multiplicity,
then Eqs. (10) still have solutions.

We assign the formal Laurent series

Xj

(
zd

) :=
d−1∑
k=0

Fj

(
zek

d

)
X

(
zek

d

)
(11)

or

Xj (z) :=
d−1∑
k=0

Fj,k(z)Xk(z), j = d, . . . , r, (12)

to be the “signal” extension components.
Let p(x) be an algebraic polynomial of the degree n − 1. Then in z-domain, it can be represented as (7). In this

section, we suppose that X(z) is a polynomial input for an analysis operator.
We note that L(z)X(z) = 0 for a Laurent polynomial L(z) if and only if L(z) has a root z = 1 of the multiplicity n.

The polynomial H0(z) has a factor 1 + z + · · · + zd−1 = (1 − zd)/(1 − z) of the multiplicity n. So H0(z) has roots of
the multiplicity n at the points z = ek

d , k = 1, . . . , d − 1. In particular, it means that

H0
(
zek

d

)
X

(
zel

d

) = 0, k �= l mod d. (13)

We need to prove that only the first component of the vector M̃e(1/z)�Xe(z) is not equal to 0. Instead of verifying
this property for the remaining components, we choose a different strategy. First we compose a vector �Y(z) whose
first component coincides with the first component of the vector M̃∗

e (z)
�Xe(z) and remaining components are equal

to 0. Then we show that Me(z)�Y(z) = �Xe(z). Since Me(z) is a non-degenerate matrix, this implies the equality
�Y(z) = M̃e(1/z)�Xe(z).

The first component of the vector Y(z) can be represented in the form

Y1
(
zd

) = Y1(z) =
d−1∑
k=0

H̃0
(
z−1e−k

d

)
X

(
zek

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)
Xd+j−1

(
zd

)

=
d−1∑
k=0

H̃0
(
z−1e−k

d

)
X

(
zek

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

) d−1∑
k=0

Fj

(
zek

d

)
X

(
zek

d

)

=
d−1∑
k=0

(
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)
Fj

(
zek

d

))
X

(
zek

d

)
. (14)

We need to check the validity of the equalities

X
(
zel

d

) = H0
(
zel

d

) d−1∑
k=0

(
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)
Fj

(
zek

d

))
X

(
zek

d

)
, l = 0, . . . , d − 1, (15)

Xd+q−1
(
zd

) = G0,q

(
zd

) d−1∑
k=0

(
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)
Fj

(
zek

d

))
X

(
zek

d

)
, q = 1, . . . , r + 1 − d. (16)

Note that since the factor with H0(ze
l
d ) in (15) depends only on zd , we need to prove (15) only for l = 0.

Due to (13), we have the elementary identities

X(z)H0(z)H̃0
(
z−1) = X(z)

d−1∑
k=0

H0
(
zek

d

)
H̃0

(
z−1e−k

d

)
and

X(z)H0(z)Fj (z) = X(z)

d−1∑
k=0

H0
(
zek

d

)
Fj

(
zek

d

)
.
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Indeed, by (13), the products of X(z) with all components of the sums in the right part are equal to 0 once k �= 0.
Thus, we have

H0(z)

d−1∑
k=0

(
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)
Fj

(
zek

d

))
X

(
zek

d

)

= H0(z)

(
H̃0

(
z−1) +

r+1−d∑
j=1

G̃0,j

(
z−d

)
Fj (z)

)
X(z)

=
(

d−1∑
k=0

H
(
zek

d

)
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

) d−1∑
k=0

H0
(
zek

d

)
Fj

(
zek

d

))
X(z)

=
(

d−1∑
k=0

H
(
zek

d

)
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)(
G0,j

(
zd

) + (
1 − zd

)n
Aj

(
zd

)))
X(z)

= X(z) +
r+1−d∑
j=1

G̃0,j

(
z−d

)(
1 − zd

)n
Aj

(
zd

)
X(z) = X(z).

To prove equalities (16) we transform them to equivalent ones. We subtract linear combinations of (15) with the
coefficients Fq(zel

d ) from the equality (16) with the number q . The equivalent form is

0 = −(
1 − zd

)n
Aq

(
zd

) d−1∑
k=0

(
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)
Fj

(
zek

d

))
X

(
zek

d

)
, q = 1, . . . , r + 1 − d. (17)

So their validity follows just from the fact that 1 − zd has the roots ek
d , k = 0, . . . , d − 1 and X(z) is the z-transform

of a polynomial of the degree n − 1. �
In the next section we show that formulas (11) and (9) describe all possible analysis operators with n vanishing

moments.

6. Related results

Theorem 1 guarantees the existence of the analysis operator with the following properties:

(1) The approximation order of the analysis operator is equal to n, i.e., polynomials up to the order n − 1 can be
recovered using the coefficients of Y0(z) by the formula X(z) = H0(z)Y0(z

d).
(2) The analysis operator has vanishing moments of order n, i.e., polynomials up to the order n−1 have zero framelet

coefficients.

Now we give necessary and sufficient conditions within the VC method for each of 4 properties listed in Section 3. In
particular, we prove that our choice of the coefficients in (11) satisfying (9) is not only sufficient but also necessary to
provide the maximum number of vanishing moments.

We introduce the vectors �G0(z) and �̃
G0(z) which are the first columns of the matrices G(z) and G̃(z) and the

vectors �H0(z) := (H0(z), . . . ,H0(ze
d−1
d ))T and �̃H0(z) := (H̃0(z), . . . , H̃0(ze

d−1
d ))T .

Let us suppose that the polynomials Fj (z) generating the matrix F(z) are arbitrary and, generally speaking, do
not satisfy (9). Then the right part of (11) still can be represented in the matrix form as F(z)�X(z), where the (j, k)th
component of the matrix F(z) is Fj (ze

k
d). Then, instead of (9), we have

F(z) �H0(z) = �G(
zd

) + �P(
zd

)
,

for some vector �P(z) with polynomial entries.



Aut
ho

r's
   

pe
rs

on
al

   
co

py

312 M.-J. Lai, A. Petukhov / Appl. Comput. Harmon. Anal. 22 (2007) 304–318

We start with finding a criterion for Property 3 in terms of the vector �P(z).
Let a formal Laurent series X(z) be the z-transform of coefficients of the decomposition of some distribution

f (t) in the translates of the scaling function in V 1. Obviously, if this distribution belongs to V 0, then we have the
representation

X(z) = H0(z)Q
(
zd

)
,

for some formal Laurent series Q(z). In particular, if f (z) = ϕ(x), we have Q(z) ≡ 1.
Representing (14) in the matrix form, we have

Y0
(
zd

) = �XT (z)
( �̃H0(1/z) + FT (z)

�̃
G0

(
z−d

)) = Q
(
zd

) �HT
0 (z)

( �̃H0(1/z) + FT (z)
�̃
G0

(
z−d

))
= Q

(
zd

)( �HT
0 (z)

�̃H0(1/z) + �HT
0 (z)FT (z)

�̃
G0

(
z−d

))
= Q

(
zd

)( �HT
0 (z)

�̃H0(1/z) + ( �GT
0

(
zd

) + �PT
(
zd

)) �̃
G0

(
z−d

))
= Q

(
zd

)(
1 + �PT

(
zd

) �̃
G0

(
z−d

))
.

Thus, (15) can be rewritten in the form

�H0(z)Q
(
zd

) = �H0(z)Q
(
zd

)(
1 + �PT

(
zd

) �̃
G0

(
z−d

))
or

�H0(z)Q
(
zd

)�PT
(
zd

) �̃
G0

(
z−d

) = 0. (18)

Recall that the validity of the relation (18) means that a distribution from V 0 represented by Q(z) is mapped to
itself by the first component of the analysis operator. Let Q(z) be a function summable on the unit circle. Since H0(z)

and �PT (zd)
�̃
G0(z

−d) are Laurent polynomials, (18) takes place only if

�PT (z)
�̃
G0(1/z) = 0, (19)

i.e., �P(z) has to be orthogonal to �̃
G0(z). However, such a choice of �P(z) guarantees the same projection property for

any distribution Q(z), i.e., the first component of the analysis operator provides us with a projector from V 1 to V 0.
Thus, (19) is necessary and sufficient for Property 3. Of course, the condition (19) is sufficient to provide the maximum
approximation order for the analysis operator.

At the same time, (19) is not necessary for Property 1 since the analysis operator provides the approximation
order n if the operator above is a projector only on algebraic polynomials up to the order n − 1. For polynomials of
the order n − 1, the periodic distribution Q(eiω) is a linear combination of the δ-function and its derivatives up to the

order n − 1 with the support at ω = 0. Since H0(1) �= 0, (18) takes place if and only if the polynomial �PT (eiω)
�̃
G(e−iω)

and its derivatives up to the order n − 1 are equal to 0 at the point ω = 0. Thus,

�PT (z)
�̃
G0(1/z) = (1 − z)nP (z), (20)

where P(z) is an arbitrary Laurent polynomial. Condition (20) is necessary and sufficient to provide the frame approxi-
mation order n, i.e., for Property 1. If the associated framelets form a Bessel system, (20) means that the approximation
order with truncated expansions in the obtained bi-frame is equal to n.

In Section 5, we found a sufficient condition for n vanishing moments of dual framelets provided that the approxi-
mation order of the MRA is not less than n. Now we prove the necessity of that condition.

The condition (20) is necessary and sufficient to satisfy the group of equalities (15). In other words, it guarantees
the recovery of a polynomial using only Y0(z

d). Conditions (16) has no influence on the recovery properties. However,
they prohibit from the leakage of coefficients to framelet spaces. The essence of this effect is as follows. If for elements
of V 0 condition (15) is valid but (16) is not, then, applying the analysis operator to V 0, we may have non-zero framelet
coefficients. At the same time, using those non-zero coefficients as an input for the synthesis operator, we have the
zero output. This effect is undesirable when a compact representation of a function is a priority.

If �X(z) = �H0(z)Q(zd) the condition (16) can be rewritten in the form

F(z) �H0(z)Q
(
zd

) = �G0
(
zd

)
Q

(
zd

)(
1 + �PT

(
zd

) �̃
G0

(
z−d

))
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or ( �G0
(
zd

) + �P(
zd

))
Q

(
zd

) = �G0
(
zd

)
Q

(
zd

)(
1 + �PT

(
zd

) �̃
G0

(
z−d

))
.

Hence,

�P(z)Q(z) = �G0(z)Q(z)�PT (z)
�̃
G0(1/z). (21)

Let Q(z) �≡ 0 represent a function summable on the unit circle with. Due to (19), the right part of (21) is equal to 0.
Hence, �P(z) ≡ �0 is a necessary (and sufficient) condition for Property 4 under which the analysis operator is the
identity operator on the spaces V j .

If Q(z) is a distribution representing a polynomial of the order n, then, by (20), the right part of (21) is equal to zero
again. Therefore, the components of the vector �P(z) have to have zeros of the multiplicity n at the point z = 1. Thus,
the method we used in the proof of Theorem 1 gives all possible analysis operators providing n vanishing moments.

It means that for at least one j = J we have

d−1∑
k=0

FJ

(
zek

d

)
H0

(
zek

d

) = G0,J

(
zd

) + (
1 − zd

)N
B

(
zd

)
,

where N < n, B(1) �= 0. Thus, (17) turns into

0 = −(
1 − zd

)N
B

(
zd

) d−1∑
k=0

(
H̃0

(
z−1e−k

d

) +
r+1−d∑
j=1

G̃0,j

(
z−d

)
Fj

(
zek

d

))
X

(
zek

d

)
.

Summarizing the reasonings above, we can formulate the following theorem.

Theorem 2. Let Me(z), detMe(z) = zk , be an extension of the polyphase matrix of a wavelet frame with an MRA
approximation order n,

M̃e :=
[

M̃(z)

G̃(z)

]
:= M−1

e

(
z−1).

Then all possible polynomial analysis operators M̃#(z) linearly depending on the input can be represented in the form

M̃#(z) = M̃(z) + FT
(
z−1)G̃(z) (22)

with an arbitrary polynomial matrix F(z).
Let �P(z) = F(z) �H0(z) − �G0(z). The analysis operator M̃#(z) satisfies:

(i) Property 1 if and only if �PT (z)
�̃
G0(z) = (1 − z)nP (z), where P(z) is an arbitrary Laurent polynomial;

(ii) Property 2 if and only if �P(z) = (1 − z)n �P(z), where �P(z) is an arbitrary Laurent polynomial vector;

(iii) Property 3 if and only if �PT (z)
�̃
G0(z) = 0;

(iv) Property 4 if and only if �P(z) ≡ �0.

Note that, while the matrix M̃#(z) may have a greater degree than the original matrix M̃(z), in many practically
important cases, the matrices F(z) and G̃(z) have low dimensions. For this reason, sometimes formula (22) allows to
reduce the computational costs significantly if to compute �Y(z) as M̃T (1/z)�X(z) + G̃T (1/z)F(z)�X(z) instead of the
direct computation M̃#T (1/z)�X(z).

7. Examples

In this section, for piecewise linear and piecewise parabolic tight frames, we design parametric families of analysis
operators having 2 and three vanishing moments correspondingly. All presented results combine the symmetry, poly-
nomial FB implementation, and the minimum number (for diadic framelets, this number is 2) of frame generators.
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Fig. 1. Piecewise linear tight frame.

Example 1. We consider the tight frame generated by the piecewise linear B-spline (“the hat-function”) with the
symbol H0(z) = (z−1 + 2 + z)/4. In the polyphase form

H0(z) = 1√
2

(
H0,0

(
z2) + z−1H0,1

(
z2)),

where H0,0(z) = 1/
√

2, H0,1(z) = 1 + z/2
√

2. The standard choice of framelets gives a polyphase matrix

M(z) =

⎛
⎜⎜⎝

1√
2

1+z

2
√

2
1√
2

− 1+z

2
√

2

0 1−z
2

⎞
⎟⎟⎠

of a tight frame (cf. [14]). The graphs of the scaling function and framelets are given in Fig. 1.
Let us extend the matrix M(z) up to the matrix

Me(z) :=

⎛
⎜⎜⎝

1√
2

1+z

2
√

2
− 1−z

2
√

2
1√
2

− 1+z

2
√

2
1−z

2
√

2

0 1−z
2 − 1+z

2

⎞
⎟⎟⎠ .

The matrix Me(z) is paraunitary. Therefore, M̃(z) = M(z), G̃0(z) = G0(z) := −(1 − z)/(2
√

2 ), where we use the
notation from Section 4, turning down the vector symbols for G0 and G̃0.

We are going to describe polyphase matrices of minimal degrees defining dual filter banks providing two vanishing
moments. We mention that even for M̃(z) = M(z) the frame approximation order is equal to 2 (cf. [5]).

We need to solve Eq. (10) for a various choice of A0(z). (Anti)symmetric solutions of the minimal degree is a
special subject of our interest. For this reason, we consider a special choice A0(z) = A(1 − z−1)/2

√
2, where A is an

arbitrary constant. The norming factor 1/2
√

2 is chosen for our convenience. Thus, we have the equation

2F0,0(z) + F0,1(z)(1 + z) = z − 1 + A · (1 − z)2(1 − z−1). (23)

First let us assume A = 0. Then we have P(z) ≡ 0, i.e., Property 4 takes place. The simplest solution to (23) is
F0,0(z) ≡ −1, F0,1(z) ≡ 1. This solution gives the VCs component X3(z) = X2(z) − X1(z). It is clear that the de-
gree of the corrected dual modulation matrix is greater by one than the degree of the initial matrix M̃(z). However,
the components of the corrected matrix are not symmetric any more. The simplest (anti)symmetric filter banks are
generated by the solution F0,0(z) = − 1

2 (1 − z), F0,1(z) ≡ 0. Then the corrected filters can be represented by formulas

H̃ #
0 (z) = H̃0(z) + 2 − z−2 − z2

8
= 3

4
+ z−1 + z

4
− z−2 + z2

8
,

H̃ #
1 (z) = H̃1(z) − 2 − z−2 − z2

8
= 1

4
− z−1 + z

4
+ z−2 + z2

8
= 1

8
(1 − z)2(z−2 + 1

)
,

H̃ #
2 (z) = H̃2(z) + −z−2 + z2

4
√

2
= z−1 − z

2
√

2
+ −z−2 + z2

4
√

2
= 1

4
√

2
(1 − z)2(−z−2 + 1

)
.

The scaling function and the framelets are shown in Fig. 2.
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Fig. 2. Dual almost bi-orthogonal frame.

Fig. 3. Dual frame with 2 vanishing moments, A = 0.16.

Obviously, the obtained pair of the scaling functions coincides with the famous pair generating 5/3 bi-orthogonal
wavelet basis (cf. [1,4]). This case is degenerate. The minor of M̃#(z) corresponding to framelets is equal to zero. We
see that both H̃ #

1 (z) and H̃ #
2 (z) have the common factor (1 − z)2. At the same time, complementary factors depend

on z2. It means that wavelet spaces W̃ 1 and W̃ 2 coincide and, moreover, they coincide with the space W ∗ generated
by a wavelet with a symbol (1 − z)2, i.e., the classical wavelet from the 5/3 pair. Note that the original piecewise
linear tight frame does not possess that property.

If A �= 0, the preserving symmetry solution to (23) of minimal degree has the form F0,0 = − 1
2 (1 − z)+ 2(1 − z)A,

F0,1 = −(1 − z)(1 + z−1)A. Thus, the corrected symbols of the dual scaling function and the framelets can be repre-
sented in the form

H̃A
0 (z) = H̃ #

0 (z) − A
2 − z−2 − z2

2
+ A

(2 − z−2 − z2)(z−1 + z)

4

= 3 − 4A

4
+ (1 + A)

z−1 + z

4
− (1 − 4A)

z−2 + z2

8
− A

z−3 + z3

4
,

H̃A
1 (z) = H̃ #

1 (z) + A
2 − z−2 − z2

2
− A

(2 − z−2 − z2)(z−1 + z)

4

= 1 + 4A

4
− (1 + A)

z−1 + z

4
+ (1 − 4A)

z−2 + z2

8
+ A

z−3 + z3

4
,

H̃A
2 (z) = H̃ #

2 (z) + A
z−2 − z2

√
2

+ A
(z − z−1)(2 + z−2 + z2)

2
√

2

= (1 − A)
z−1 − z

2
√

2
+ (1 − 4A)

−z−2 + z2

4
√

2
− A

z−3 + z3

2
√

2
.

Examples of dual wavelet frames for A = 0.16, 0.2 are given in Figs. 3 and 4.
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Fig. 4. Dual frame with 2 vanishing moments, A = 0.2.

Fig. 5. Piecewise parabolic tight frame.

Example 2. Now we consider the tight frame generated by piecewise parabolic splines [2,13]. The corresponding
symbols generate the extended polyphase matrix

Me(z) = √
2

⎛
⎜⎝

3+z
8

1+3z
8

√
6−1+z

8
−3+z

8
−1+3z

8

√
6 1+z

8√
3

4 −
√

3
4

√
2

4

⎞
⎟⎠ .

The graphs of framelets are given in Fig. 5.
The correcting coefficients can be computed from the equation

F0,0(z)(3 + z) + F0,1(z)(1 + 3z) = √
6(−1 + z) + A · (1 − z)3. (24)

If A = 0, the simplest solution of (24) is F0,0(z) = −√
6/2, F0,1(z) = √

6/2. This correction leads to a symmetric
scaling function (distribution) and a framelet with the symbols

H̃ #
0 (z) = 3

4
(1 + z) − 1

4

(
z−1 + z2), H̃ #

1 (z) = 3

4
(−1 + z) + 1

4

(
z−1 − z2).

Unfortunately, the symbol H̃ #
0 (z) above generates a scaling function with the non-integrable square (cf. [4, Sec-

tion 8.3.4]). Note that since the symbols H1(z) and H̃ #
0 (z) are orthogonal, we have H̃ #

2 (z) = 0. Thus, H0(z), H1(z),
H̃ #

0 (z), H̃ #
1 (z) form a quadruple of biorthogonal symbols.

To construct a genuine symmetric dual frame we need to allow the larger support of framelets. All such dual frames
with the mask support of the length 8 can be represented in the form

H̃ #
0 (z) =

(
3

4
− A(2 − B)

)
(1 + z) +

(
A(3 + 3B) − 1

4

)(
z−1 + z2) − A(1 + 3B)

(
z−2 + z3) + AB

(
z−3 + z4),

H̃ #
1 (z)=

(
3

4
−A(4 + 7B)

)
(−1+ z)+

(
1

4
−A(3+5B)

)(
z−1 − z2)+A(1+3B)

(
z−2 − z3)+AB

(
z−3 − z4),

H̃ #
2 (z) = 2A√

3

(
(3 + 4B)

(−z−1 + 1
) + (1 + 3B)

(
z−2 − z

) − B
(
z−3 − z2)),

where A and B are arbitrary parameters. We present a few relatively smooth examples.
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We note that for B = 0 we have shorter supports. The choice A = 0.08 gives wavelets close to piecewise constant
functions (Fig. 6). For A = 0.09 we have much smoother framelets (Fig. 7).

Fig. 6. Dual frame with 3 vanishing moments, A = 0.08, B = 0.

Fig. 7. Dual frame with 3 vanishing moments, A = 0.09, B = 0.

Fig. 8. Dual frame with 3 vanishing moments, A = 0.0896, B = −0.075.

Fig. 9. Dual frame with 3 vanishing moments, A = 0.2, B = −0.275.
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In the case of masks of the length 8 (i.e., B �= 0), we have more flexibility. In particular, for A = 0.0896, B =
−0.075 we have framelets closer to piecewise constant functions (Fig. 8) and for A = 0.2, B = −0.275 we have very
smooth framelets (Fig. 9) with 3 vanishing moments.
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