
Multivariate Spline Method for

Scattered Data Fitting,

Curve and Surface Reconstruction,

and Numerical Solution to Poisson Equations

via Domain Decomposition Method

by

Yidong Xu

(Under the Direction of Ming-Jun Lai)

Abstract

This work investigates three applications of bivariate and trivariate polynomial splines

defined on triangulations and tetrahedralizations.

We first discuss a randomized block coordinate descent method, which can be further

adapted to suit our spline applications. We split the domain into smaller ones randomly,

solve the associated smaller problems while maintaining constraints, combine the solutions

to get a global one, and repeat the whole process until certain stopping criterion is met.

The effectiveness of this method is then illustrated by three applications: scattered data

fitting, curve and surface reconstruction, and spline solutions of Poisson equations. Each

application has its own features. Numerical examples are presented.

Index words: multivariate splines, data fitting, curve and surface reconstruction,
Poisson equations, domain decomposition method

Multivariate Spline Method for

Scattered Data Fitting,

Curve and Surface Reconstruction,

and Numerical Solution to Poisson Equations

via Domain Decomposition Method

by

Yidong Xu

B.S., Shanghai Jiao Tong University, 2011

A Dissertation Submitted to the Graduate Faculty

of The University of Georgia in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Athens, Georgia

2019

c© 2019

Yidong Xu

All Rights Reserved

Multivariate Spline Method for

Scattered Data Fitting,

Curve and Surface Reconstruction,

and Numerical Solution to Poisson Equations

via Domain Decomposition Method

by

Yidong Xu

Approved:

Major Professor: Ming-Jun Lai

Committee: Alexander Petukhov

Jingzhi Tie

Qing Zhang

Electronic Version Approved:

Ron Walcott

Interim Dean of the Graduate School

The University of Georgia

December 2019

Acknowledgments

I would like to thank my advisor Ming-Jun Lai without whose help and patience this work

would not have been possible. I would also like to thank my parents for their understanding

and support during my study.

iv

Contents

Acknowledgments . iv

List of Figures . vii

List of Tables . x

1 Introduction . 1

2 Preliminary on Multivariate Splines . 3

2.1 Bivariate Polynomials . 3

2.2 Trivariate Polynomials . 12

3 Triangulations and Tetrahedralizations . 22

3.1 Introduction . 22

3.2 Two-Dimensional Delaunay Triangulations 23

3.3 Three-Dimensional Delaunay Tetrahedralizations 35

4 Randomized Block Coordinate Descent Method 47

4.1 Introduction . 47

4.2 Problem Formulation and Notations . 48

4.3 Algorithm . 48

4.4 Reduction of General Case . 50

4.5 Convergence Analysis . 53

4.6 Future Work . 60

5 A Randomized Domain Decomposition Method for Computing Multi-

variate Spline Fits of Scattered Data . 61

v

5.1 Introduction . 61

5.2 Two-Dimensional Algorithm . 63

5.3 Three-Dimensional Algorithm . 74

5.4 Remarks and Future Work . 80

6 Multivariate Splines for Curve and Surface Reconstruction 81

6.1 Introduction . 81

6.2 Construction of 2D Smooth Curves . 82

6.3 Construction of 3D Smooth Surfaces . 102

6.4 Future Work . 106

7 A Randomized Domain Decomposition Method for Spline Solutions of

Poisson Equations . 109

7.1 Introduction . 109

7.2 Two-Dimensional Algorithm . 110

7.3 Three-Dimensional Algorithm . 118

7.4 Remarks and Future Work . 126

Bibliography . 127

vi

List of Figures

3.1 A non-Delaunay triangulation. 26

3.2 A Delaunay triangulation. 26

3.3 A Delaunay triangulation of a convex polygon. 34

3.4 A refined triangulation of Figure 3.3. 34

3.5 A Delaunay triangulation of a non-convex polygonal domain with two holes. 35

3.6 A constrained Delaunay triangulation. 36

3.7 An example from [42] that doesn’t have a constrained Delaunay tetrahedral-

ization. 41

3.8 A Delaunay tetrahedralization of a cube. 43

3.9 A Delaunay tetrahedralization of a non-convex polyhedral domain. 44

3.10 A Delaunay tetrahedralization of a cube with two tunnels. 44

3.11 A Delaunay tetrahedralization of a torus-shape domain. 45

3.12 The left figure is a Delaunay tetrahedralization of a human head shape. The

right one shows the inner structure. 45

5.1 star1(T). 65

5.2 star2(T). 65

5.3 Data points for Example 5.2.5. 69

5.4 Data points for Example 5.2.6. 70

5.5 Data points for Example 5.2.7. 71

5.6 Data points for Example 5.2.8. 72

5.7 Data points for Example 5.2.9. 73

5.8 Data points for Example 5.3.3. 78

5.9 Data points for Example 5.3.4. 79

vii

5.10 Data points for Example 5.3.5. 80

6.1 One way to choose points for A−1, A0 and A1. 83

6.2 Another way to choose points for A−1, A0 and A1. 83

6.3 Illustration of computing contours. 86

6.4 Data points for Example 6.2.1. 87

6.5 The triangulation for Example 6.2.1. 88

6.6 The contour curve for Example 6.2.1. 88

6.7 Data points for Example 6.2.2. 89

6.8 The triangulation for Example 6.2.2. 90

6.9 The contour curve for Example 6.2.2. 90

6.10 Data points for Example 6.2.3. 91

6.11 The triangulation for Example 6.2.3. 91

6.12 The contour curve for Example 6.2.3. 92

6.13 A problem caused by C−1. 93

6.14 The saddle point of f(x, y) = x2 − y2. 94

6.15 Generate a hole at the sharp corner. 95

6.16 A constrained triangulation with holes. 96

6.17 Data points for Example 6.2.4. 97

6.18 The triangulation for Example 6.2.4. 97

6.19 The contour curve for Example 6.2.4. 98

6.20 Data points for Example 6.2.5. 99

6.21 The triangulation for Example 6.2.5. 99

6.22 The contour curve for Example 6.2.5. 100

6.23 Data points for Example 6.2.6. 100

6.24 The triangulation for Example 6.2.6. 101

6.25 The contour curve for Example 6.2.6. 101

6.26 Data points and a tetrahedralization for Example 6.3.1. 104

viii

6.27 The isosurface for Example 6.3.1. 105

6.28 Data points and a tetrahedralization for Example 6.3.2. 105

6.29 The isosurface for Example 6.3.2. 106

6.30 Data points and a tetrahedralization for Example 6.3.3. 107

6.31 The isosurface for Example 6.3.3. 107

6.32 The hollow interior of the isosurface in Fig. 6.31. 108

7.1 The triangulation for Example 7.2.3. 115

7.2 The triangulation for Example 7.2.4. 116

7.3 The triangulation for Example 7.2.5. 117

7.4 The tetrahedralization for Example 7.3.3. 122

7.5 The tetrahedralization for Example 7.3.4. 123

7.6 The tetrahedralization for Example 7.3.5. 124

7.7 The tetrahedralization for Example 7.3.6. 125

ix

List of Tables

5.1 Approximation errors in Example 5.2.5 . 69

5.2 Approximation errors in Example 5.2.6 . 70

5.3 Approximation errors in Example 5.2.7 . 71

5.4 Approximation errors in Example 5.2.8 . 72

5.5 Approximation errors in Example 5.2.9 . 73

5.6 Approximation errors in Example 5.3.3 . 77

5.7 Approximation errors in Example 5.3.4 . 79

5.8 Approximation errors in Example 5.3.5 . 79

7.1 Approximation errors in Example 7.2.3 . 115

7.2 Approximation errors in Example 7.2.4 . 117

7.3 Approximation errors in Example 7.2.5 . 117

7.4 Approximation errors in Example 7.3.3 . 121

7.5 Approximation errors in Example 7.3.4 . 123

7.6 Approximation errors in Example 7.3.5 . 124

7.7 Approximation errors in Example 7.3.6 . 125

x

Chapter 1

Introduction

Multivariate spline functions are piecewise polynomial functions which have certain smooth-

ness over given domains. They are useful in function approximation, surface design, and

various other scenarios. Perhaps one of the most important applications is numerical solu-

tions of partial differential equations (PDEs), where the success of the finite element method

is unquestionable. There are many literatures devoted to these topics (cf. [48], [9], [8], and

[7]). However, the implementation of the traditional finite element method with high-order

smoothness is complicated and difficult.

The main focus of our work, polynomial splines on triangulations and tetrahedralizations,

offers a different perspective and handles the smoothness elegantly. The key is to use the

Bernstein representation of polynomials, which provides great flexibility and convenience.

[27] gives a thorough analysis on this powerful tool. This approach may be summarized as

follows. Each spline function s on its corresponding triangle/tetrahedron can be identified

by its B-coefficient vector c. Since the spline function has certain smoothness, smoothness

conditions need to be imposed and can be expressed by a linear system Hc = 0. In fact, as we

shall see, many application problems can be reformulated into an optimization problem. Then

the smoothness conditions serve as the constraints. The constrained optimization problem

can be solved in many ways. For example, one can use the Lagrange multiplier method along

with a matrix iterative method, as shown in [1]. There are many advantages of this approach.

One of the most prominent characteristics is that we can use multivariate spline functions

1

of variable degrees and variable smoothness across any given polygonal/polyhedral domain

with little change of the implementation. This provides a highly user-friendly platform.

The disadvantage is the necessity of solving linear systems of large size. In this work,

we discuss a way to chop the original problem into smaller ones that are easy to handle.

When the solutions to the subproblems are assembled together, it is a feasible solution to

the original problem. Note that our method is an iterative method, and the decomposition

is randomized.

The rest of the work is organized as follows. Chapter 2 gives some preliminaries on

multivariate splines. Since the polynomial splines are based on triangulations and tetrahe-

dralizations, Chapter 3 presents a brief introduction to this topic. Chapter 4 describes a

randomized block coordinate descent method for linearly constrained convex optimization.

This lays the foundation of our analysis. Chapter 5 presents a randomized domain decompo-

sition method for solving large bivariate/trivariate scattered data fitting problems. Chapter

6 shows how to construct a smooth interpolatory or fitting curve of a given point set in the

2D setting, and a smooth surface in the 3D setting. It uses the algorithms from Chapter

5. Chapter 7 presents a randomized domain decomposition method for spline solutions of

Poisson equations. In all three applications, numerical examples are given to illustrate the

effectiveness.

All experiments were conducted on a Mac Pro with two 2.4 GHz quad-core Intel Xeon

processors and 8 GB of memory.

2

Chapter 2

Preliminary on Multivariate Splines

In this chapter, we briefly review multivariate spline functions of any degree d and smoothness

0 ≤ r < d over an arbitrary triangulation 4. Most of the discussion in this chapter can be

found in [27].

2.1 Bivariate Polynomials

Given a nonnegative integer d, we write Pd for the space of bivariate polynomials of degree

at most d. Pd is the linear space of all real-valued functions of the form

p(x, y) :=
∑

0≤i+j≤d

cijx
iyj, (2.1)

where {cij}0≤i+j≤d are real numbers. It is easy to see that the monomials

{xiyj}0≤i+j≤d (2.2)

form a basis for Pd. Thus, the dimension of Pd is
(
d+2

2

)
.

In this section we will construct a different basis for Pd and show that a bivariate polyno-

mial can be written into a convenient form in terms of the barycentric coordinates associated

with a triangle. This form enjoys many nice properties. Moreover, efficient and flexible com-

puter programs can be designed to solve real-life problems.

3

2.1.1 Barycentric Coordinates

In this work, we are mostly working on polynomials on a triangulation. Barycentric coor-

dinates are far more useful than Cartesian coordinates in this scenario. Recall that a non-

degenerate triangle is one with nonzero area. Suppose T is a non-degenerate triangle in R2

with vertices

vi := (xi, yi), i = 1, 2, 3. (2.3)

Let’s write T := 〈v1, v2, v3〉. We will assume that the vertices are numbered in counter-

clockwise order. Barycentric coordinates give a way to represent the location of any point in

R2 in terms of the three vertices of the triangle, as the following lemma shows (cf. [27]).

Lemma 2.1.1. Let T = 〈v1, v2, v3〉 be a non-degenerate triangle. Then every point v :=

(x, y) ∈ R2 has a unique representation in the form

v = b1v1 + b2v2 + b3v3, (2.4)

with

1 = b1 + b2 + b3. (2.5)

The numbers b1, b2, and b3 are called the barycentric coordinates of the point v relative

to T .

In matrix form, equations (2.4) and (2.5) become
1 1 1

x1 x2 x3

y1 y2 y3



b1

b2

b3

 =


1

x

y

 . (2.6)

When T ’s vertices are ordered counter-clockwise, the area of T is given by

AT =
1

2
det(M), (2.7)

4

where M is the 3× 3 matrix in (2.6). Thus, M is nonsingular, and (2.6) then has a unique

solution. By Crammer’s Rule,

b1 =
1

2AT
det


1 1 1

x x2 x3

y y2 y3

 , (2.8)

b2 =
1

2AT
det


1 1 1

x1 x x3

y1 y y3

 , (2.9)

b3 =
1

2AT
det


1 1 1

x1 x2 x

y1 y2 y

 . (2.10)

From (2.8), (2.9) and (2.10), it is clear that bi’s are functions of the Cartesian coordinates

of v = (x, y). More specifically, we have the following lemma (cf. [27]) which will be useful

when we define the Bernstein basis polynomials in the next section.

Lemma 2.1.2. For each i = 1, 2, 3, the function bi is a linear polynomial in x and y which

assumes value 1 at the vertex vi and vanishes at all points on the edge of T opposite to vi.

Also note that a point v lies in the interior of T if and only if all three of its barycentric

coordinates are positive.

2.1.2 Bernstein Basis Polynomials

Let T = 〈v1, v2, v3〉 be a fixed triangle, and d be a fixed positive integer. For each v = (x, y) ∈

R2, let b1, b2, b3 be its barycentric coordinates relative to T . We are now ready to construct

a new basis for Pd. Given nonnegative integers i, j, k such that i+ j + k = d, let

Bd
ijk(v) :=

d!

i!j!k!
bi1b

j
2b
k
3. (2.11)

5

By Lemma (2.1.2), each of bi is a linear polynomial in x and y. It follows that Bd
ijk is a

polynomial of degree d. These Bd
ijk are called the Bernstein basis polynomials of degree d

relative to T .

Bernstein basis polynomials possess many important properties. One of them is that they

form a partition of unity, i.e.,

∑
i+j+k=d

Bd
ijk(v) ≡ 1, for all v ∈ R2. (2.12)

The other one worth mentioning is

0 ≤ Bd
ijk(v) ≤ 1, for all v in the triangle T . (2.13)

The next theorem shows that the set of Bernstein basis polynomials forms a basis for Pd (cf.

[27]).

Theorem 2.1.3. The set

Bd := {Bd
ijk}i+j+k=d (2.14)

of Bernstein basis polynomials is a basis for the space Pd of polynomials of degree at most d.

2.1.3 B-form of Bivariate Polynomials

By Theorem 2.1.3, every bivariate polynomial p of degree at most d can be written uniquely

in the form

p =
∑

i+j+k=d

cijkB
d
ijk, (2.15)

where Bd
ijk are the Bernstein basis polynomials associated with a fixed triangle T . The

representation (2.15) is called the B-form of p relative to T . cijk are called the B-coefficients

of p. By convention, these B-coefficients are ordered lexicographically and form a column

vector c. For example, when d = 3,

c = [c300, c210, c201, c120, c111, c102, c030, c021, c012, c003]τ , (2.16)

6

where the superscript τ means transpose.

Define the associated set of domain points to be

Dd,T := {ξijk :=
iv1 + jv2 + kv3

d
}i+j+k=d. (2.17)

If the domain points are also ordered lexicographically, there is a one-to-one correspondence

between each coefficient cijk and its associated domain point ξijk.

One of the most important properties of the B-form representation is its stability, which

means that the norm of p is comparable to the norm of its B-form coefficient vector.

Given a triangle T and any polynomial p of degree d, define

‖p‖T = sup
v∈T
|p(v)|. (2.18)

Write p in the B-form (2.15) with coefficient vector c. Measure c by

‖c‖∞ = max
i+j+k=d

|cijk|. (2.19)

Let {g1, . . . , gn} be the Bernstein basis polynomials of degree d, arranged in lexicographical

order, and {t1, . . . , tn} be the associated domain points arranged in the same order, where

n :=
(
d+2

2

)
. Define the matrix

M := [gj(ti)]
n
i,j=1. (2.20)

Since M is nonsingular, let

K := ‖M−1‖∞, (2.21)

where ‖ · ‖∞ is the infinity matrix norm.

We are now ready to state the following theorem (cf. [27]).

Theorem 2.1.4. Let p be a polynomial written in the B-form (2.15) with coefficient vector

c. Then

‖c‖∞
K
≤ ‖p‖T ≤ ‖c‖∞, (2.22)

where K is defined as (2.21), which depends only on d.

7

2.1.4 The de Casteljau Algorithm

The B-form representation of a polynomial p is very convenient for evaluation. The algorithm

relies on the following theorem (cf. [27]).

Theorem 2.1.5. Let p be a polynomial written in the B-form (2.15) with coefficients

c
(0)
ijk := cijk, i+ j + k = d. (2.23)

Suppose v has barycentric coordinates b := (b1, b2, b3), and for all l = 1, . . . , d, let

c
(l)
ijk := b1c

(l−1)
i+1,j,k + b2c

(l−1)
i,j+1,k + b3c

(l−1)
i,j,k+1, (2.24)

for i+ j + k = d− l. Then

p(v) =
∑

i+j+k=d−l

c
(l)
ijkB

d−l
ijk (v), (2.25)

for all 0 ≤ l ≤ d. In particular,

p(v) = c
(d)
000. (2.26)

The de Casteljau algorithm now follows (cf. [27]).

Algorithm 2.1.6. (de Casteljau)

For l = 1, . . . , d

For all i+ j + k = d− l

c
(l)
ijk := b1c

(l−1)
i+1,j,k + b2c

(l−1)
i,j+1,k + b3c

(l−1)
i,j,k+1.

return p(v) = c
(d)
000.

2.1.5 Directional Derivatives

We first introduce the notation. Let f be a differentiable function on R2, and u be a vector

in R2. Define the directional derivative of f at v with respect to u as

Duf(v) :=
d

dt
f(v + tu)

∣∣∣∣
t=0

. (2.27)

8

Since every point in R2 can be represented uniquely by its barycentric coordinates, the

direction vector u := v1 − v2 can also be written uniquely by a triple (a1, a2, a3) with

ai := αi − βi, i = 1, 2, 3, (2.28)

where (α1, α2, α3) and (β1, β2, β3) are the barycentric coordinates of the two points v1 and

v2. The triple (a1, a2, a3) is called the directional coordinates of u.

The next lemma gives the directional derivative of the Bernstein basis polynomials (cf.

[27]).

Lemma 2.1.7. Suppose u is a vector with directional coordinates a := (a1, a2, a3). Then for

any i+ j + k = d,

DuB
d
ijk(v) = d

[
a1B

d−1
i−1,j,k(v) + a2B

d−1
i,j−1,k(v) + a3B

d−1
i,j,k−1(v)

]
, (2.29)

with the convention that Bernstein basis polynomials with negative subscripts are taken to be

identically zero.

In view of the B-form, the following theorem is straightforward (cf. [27]).

Theorem 2.1.8. Let p be a polynomial of degree d written in the B-form (2.15) relative to

a triangle T , and let u be a vector with directional coordinates a := (a1, a2, a3). Then the

directional derivative at v of p in the direction u is given by

Dup(v) = d
∑

i+j+k=d−1

c
(1)
ijk(a)Bd−1

ijk (v), (2.30)

where c
(1)
ijk(a) are the quantities obtained in the first step of the de Casteljau algorithm based

on the triple a.

Combining Theorem 2.1.8 with Theorem 2.1.5, we can see that if v has barycentric

coordinates b = (b1, b2, b3), to evaluate Dup(v), one can simply apply one step of the de

Casteljau algorithm using a, followed by d− 1 steps using b.

Theorem 2.1.8 can be easily extended to higher-order directional derivatives (cf. [27]).

9

Theorem 2.1.9. Let 1 ≤ m ≤ d, and u1, . . . , um be m directions described by the triples

a(i) := (a
(i)
1 , a

(i)
2 , a

(i)
3) (2.31)

for i = 1, . . . ,m. Then

Dum · · ·Du1p(v) =
d!

(d−m)!

∑
i+j+k=d−m

c
(m)
ijk (a(1), . . . , a(m))Bd−m

ijk (v), (2.32)

where c
(m)
ijk (a(1), . . . , a(m)) are the quantities obtained after carrying out m steps of the de

Casteljau algorithm using a(1), . . . , a(m) in order.

Corollary 2.1.10. Let u be a direction described by the triple a. Then for 1 ≤ m ≤ d,

Dm
u p(v) := Du · · ·Du︸ ︷︷ ︸

m

p(v) =
d!

(d−m)!

∑
i+j+k=d−m

c
(m)
ijk (a)Bd−m

ijk (v), (2.33)

where c
(m)
ijk (a) are the quantities obtained after carrying out m steps of the de Casteljau

algorithm using a.

2.1.6 Conditions for Smooth Joins of Polynomials

In our study, we deal with a triangulation 4 of a polygonal domain; see Chapter 3 for

more about triangulations. A smooth join between two polynomials on adjoining triangles

is essential for finding a satisfactory surface. The following theorem provides such a useful

tool (cf. [27]).

Theorem 2.1.11. Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v3, v2〉 be triangles sharing the edge

e := 〈v2, v3〉. Let

p(v) :=
∑

i+j+k=d

cijkB
d
ijk(v) (2.34)

and

p̃(v) :=
∑

i+j+k=d

c̃ijkB̃
d
ijk(v), (2.35)

10

where {Bd
ijk} and {B̃d

ijk} are the Bernstein basis polynomials associated with T and T̃ , respec-

tively. Suppose u is any direction not parallel to e. Then

Dn
up(v) = Dn

u p̃(v), for all v ∈ e and n = 0, . . . , r, (2.36)

if and only if

c̃njk =
∑

ν+µ+κ=n

cν,k+µ,j+κB
n
νµκ(v4), for j + k = d− n and n = 0, . . . , r. (2.37)

2.1.7 Integrals and Inner Products of B-Polynomials

There exist explicit formulas for integrals and inner products of polynomials represented in

B-form (cf. [27]).

Theorem 2.1.12. Given a triangle T ,∫
T

Bd
ijk(x, y)dxdy =

AT(
d+2

2

) , (2.38)

for all i+ j + k = d, where AT is the area of T .

Theorem 2.1.13. Given a triangle T , let p be a polynomial of degree d written in the B-form

(2.15). Then ∫
T

p(x, y)dxdy =
AT(
d+2

2

) ∑
i+j+k=d

cijk, (2.39)

where AT is the area of T .

Theorem 2.1.14. Given a triangle T ,∫
T

Bd
ijk(x, y)Bd

νµκ(x, y)dxdy =

(
i+ν
i

)(
j+µ
j

)(
k+κ
k

)
AT(

2d
d

)(
2d+2

2

) , (2.40)

where AT is the area of T .

Theorem 2.1.15. Given a triangle T , let p and p̃ be two polynomials of degree d written in

the B-form (2.15) with coefficient vectors c and c̃ respectively. Then∫
T

p(x, y)p̃(x, y)dxdy =
AT(

2d
d

)(
2d+2

2

) ∑
i+j+k=d
ν+µ+κ=d

(
i+ ν

i

)(
j + µ

j

)(
k + κ

k

)
cijkc̃νµκ, (2.41)

11

where AT is the area of T . In fact, this inner product can be written in the matrix form∫
T

p(x, y)p̃(x, y)dxdy =
AT(

2d
d

)(
2d+2

2

)cτGc̃, (2.42)

where G is a
(
d+2

2

)
square matrix.

2.2 Trivariate Polynomials

Bivariate polynomials can be extended to trivariate ones. Although we will be using the

same notation as in the previous section of bivariate polynomials, it shall cause no confusion

in the context.

Given a nonnegative integer d, we write Pd for the space of trivariate polynomials of

degree at most d. Pd is the linear space of all real-valued functions of the form

p(x, y, z) :=
∑

0≤i+j+k≤d

cijkx
iyjzk, (2.43)

where {cijk}0≤i+j+k≤d are real numbers. It is easy to see that the monomials

{xiyjzk}0≤i+j+k≤d (2.44)

form a basis for Pd. Thus, the dimension of Pd is
(
d+3

3

)
.

Just like the bivariate case, we can construct a different basis for Pd and a trivariate

polynomial can be written into a convenient form in terms of the barycentric coordinates

associated with a tetrahedron. Similar nice properties can be derived and efficient computer

programs can be designed accordingly.

2.2.1 Barycentric Coordinates

In the rest of this section we are mostly working on polynomials on a tetrahedron. We begin

with the definitions of non-degeneracy and the canonical order in a tetrahedron (cf. [27]).

Definition 2.2.1. Suppose T is a non-degenerate tetrahedron in R3 with vertices

vi := (xi, yi, zi), i = 1, 2, 3, 4. (2.45)

12

Write T := 〈v1, v2, v3, v4〉. We say that T is non-degenerate provided that it has nonzero

volume. We say that the vertices of T are in canonical order provided that if we rotate and

translate T so that the triangular face 〈v1, v2, v3〉 lies in the x-y-plane with v1, v2, v3 in

counterclockwise order, then z4 > 0.

On a tetrahedron, barycentric coordinates are far more useful than Cartesian coordinates.

Barycentric coordinates present a way to represent the location of any point in R3 in terms

of the four vertices of the tetrahedron, as the following lemma shows (cf. [27]).

Lemma 2.2.2. Let T = 〈v1, v2, v3, v4〉 be a non-degenerate tetrahedron. Then every point

v := (x, y, z) ∈ R3 has a unique representation in the form

v = b1v1 + b2v2 + b3v3 + b4v4, (2.46)

with

1 = b1 + b2 + b3 + b4. (2.47)

The numbers b1, b2, b3 and b4 are called the barycentric coordinates of the point v relative

to T .

In matrix form, equations (2.46) and (2.47) become

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4





b1

b2

b3

b4


=



1

x

y

z


. (2.48)

When T ’s vertices are in canonical order, the volume of T is given by

VT =
1

6
det(M), (2.49)

13

where M is the 4× 4 matrix in (2.48). Thus, M is nonsingular, and (2.48) then has a unique

solution. By Crammer’s Rule,

b1 =
1

6VT
det



1 1 1 1

x x2 x3 x4

y y2 y3 y4

z z2 z3 z4


, (2.50)

b2 =
1

6VT
det



1 1 1 1

x1 x x3 x4

y1 y y3 y4

z1 z z3 z4


, (2.51)

b3 =
1

6VT
det



1 1 1 1

x1 x2 x x4

y1 y2 y y4

z1 z2 z z4


. (2.52)

b4 =
1

6VT
det



1 1 1 1

x1 x2 x3 x

y1 y2 y3 y

z1 z2 z3 z


. (2.53)

From (2.50) to (2.53), it is clear that bi’s are functions of the Cartesian coordinates of

v = (x, y, z). More specifically, we have the following lemma (cf. [27]) which will be useful

when we define the Bernstein basis polynomials in the next section.

Lemma 2.2.3. For each i = 1, 2, 3, 4, the function bi is a linear polynomial in x, y, and z

which assumes value 1 at the vertex vi and vanishes at all points on the face of T opposite

to vi.

Also note that a point v lies in the interior of T if and only if all four of its barycentric

coordinates are positive.

14

2.2.2 Bernstein Basis Polynomials

Let T = 〈v1, v2, v3, v4〉 be a fixed tetrahedron, and d be a fixed positive integer. For each

v = (x, y, z) ∈ R3, let b1, b2, b3, b4 be its barycentric coordinates relative to T . We can now

construct a new basis for Pd. Given nonnegative integers i, j, k, l such that i+ j+k+ l = d,

let

Bd
ijkl(v) :=

d!

i!j!k!l!
bi1b

j
2b
k
3b
l
4. (2.54)

By Lemma (2.2.3), each of bi is a linear polynomial in x, y and z. It follows that Bd
ijkl is a

polynomial of degree d. These Bd
ijkl are called the Bernstein basis polynomials of degree d

relative to T .

These trivariate Bernstein basis polynomials have many important properties which are

similar to those of the bivariate correspondents. To name a few,∑
i+j+k+l=d

Bd
ijkl(v) ≡ 1, for all v ∈ R3, (2.55)

and

0 ≤ Bd
ijkl(v) ≤ 1, for all v in the tetrahedron T . (2.56)

The next theorem shows that the set of Bernstein basis polynomials forms a basis for Pd (cf.

[27]).

Theorem 2.2.4. The set

Bd := {Bd
ijkl}i+j+k+l=d (2.57)

of Bernstein basis polynomials is a basis for the space Pd of polynomials of degree at most d.

2.2.3 B-form of Trivariate Polynomials

By Theorem 2.2.4, every trivariate polynomial p of degree at most d can be written uniquely

in the form

p =
∑

i+j+k+l=d

cijklB
d
ijkl, (2.58)

15

where Bd
ijkl are the Bernstein basis polynomials associated with a fixed tetrahedron T . The

representation (2.58) is called the B-form of p relative to T . cijkl are called the B-coefficients

of p. As in the bivariate case, these B-coefficients are ordered lexicographically and form a

column vector c. For example, when d = 2,

c = [c2000, c1100, c1010, c1001, c0200, c0110, c0101, c0020, c0011, c0002]τ , (2.59)

where the superscript τ means transpose.

Define the associated set of domain points to be

Dd,T := {ξijkl :=
iv1 + jv2 + kv3 + lv4

d
}i+j+k+l=d. (2.60)

If the domain points are also ordered lexicographically, there is a one-to-one correspondence

between each coefficient cijkl and its associated domain point ξijkl.

One of the most important properties of the B-form representation is its stability, which

means that the norm of p is comparable to the norm of its B-form coefficient vector.

Given a tetrahedron T and any polynomial p of degree d, define

‖p‖T = sup
v∈T
|p(v)|. (2.61)

Write p in the B-form (2.58) with coefficient vector c. Measure c by

‖c‖∞ = max
i+j+k+l=d

|cijkl|. (2.62)

Let {g1, . . . , gn} be the Bernstein basis polynomials of degree d, arranged in lexicographical

order, and {t1, . . . , tn} be the associated domain points arranged in the same order, where

n :=
(
d+3

3

)
. Define the matrix

M := [gj(ti)]
n
i,j=1. (2.63)

Since M is nonsingular, let

K := ‖M−1‖∞, (2.64)

where ‖ · ‖∞ is the infinity matrix norm.

We are now ready to state the following theorem (cf. [27]).

16

Theorem 2.2.5. Let p be a trivariate polynomial written in the B-form (2.58) with coefficient

vector c. Then

‖c‖∞
K
≤ ‖p‖T ≤ ‖c‖∞, (2.65)

where K is defined as (2.64), which depends only on d.

2.2.4 The de Casteljau Algorithm

The bivariate de Casteljau Algorithm can be easily extended to the trivariate case to evaluate

a polynomial in its B-form representation. The algorithm relies on the following theorem (cf.

[27]).

Theorem 2.2.6. Let p be a trivariate polynomial written in the B-form (2.58) with coeffi-

cients

c
(0)
ijkl := cijkl, i+ j + k + l = d. (2.66)

Suppose v has barycentric coordinates b := (b1, b2, b3, b4), and for all m = 1, . . . , d, let

c
(m)
ijkl := b1c

(m−1)
i+1,j,k,l + b2c

(m−1)
i,j+1,k,l + b3c

(m−1)
i,j,k+1,l + b4c

(m−1)
i,j,k,l+1, (2.67)

for i+ j + k + l = d−m. Then

p(v) =
∑

i+j+k+l=d−m

c
(m)
ijklB

d−m
ijkl (v), (2.68)

for all 0 ≤ m ≤ d. In particular,

p(v) = c
(d)
0000. (2.69)

The de Casteljau algorithm now follows (cf. [27]).

Algorithm 2.2.7. (de Casteljau)

For m = 1, . . . , d

For all i+ j + k + l = d−m

c
(m)
ijkl := b1c

(m−1)
i+1,j,k,l + b2c

(m−1)
i,j+1,k,l + b3c

(m−1)
i,j,k+1,l + b4c

(m−1)
i,j,k,l+1.

return p(v) = c
(d)
0000.

17

2.2.5 Directional Derivatives

Let f be a differentiable function on R3, and u be a vector in R3. Define the directional

derivative of f at v with respect to u as

Duf(v) :=
d

dt
f(v + tu)

∣∣∣∣
t=0

. (2.70)

Since every point in R3 can be represented uniquely by its barycentric coordinates, the

direction vector u := v1− v2 can also be written uniquely by a quadruple (a1, a2, a3, a4) with

ai := αi − βi, i = 1, 2, 3, 4, (2.71)

where (α1, α2, α3, α4) and (β1, β2, β3, β4) are the barycentric coordinates of the two points v1

and v2. The quadruple (a1, a2, a3, a4) is called the directional coordinates of u.

The next lemma gives the directional derivative of the trivariate Bernstein basis polyno-

mials which is similar to the bivariate case (cf. [27]).

Lemma 2.2.8. Suppose u is a vector with directional coordinates a := (a1, a2, a3, a4). Then

for any i+ j + k + l = d,

DuB
d
ijkl(v) = d

[
a1B

d−1
i−1,j,k,l(v) + a2B

d−1
i,j−1,k,l(v)

+a3B
d−1
i,j,k−1,l(v) + a4B

d−1
i,j,k,l−1(v)

]
, (2.72)

with the convention that Bernstein basis polynomials with negative subscripts are taken to be

identically zero.

In view of the B-form, the following theorem is straightforward (cf. [27]).

Theorem 2.2.9. Let p be a trivariate polynomial of degree d written in the B-form (2.58) rel-

ative to a tetrahedron T , and let u be a vector with directional coordinates a := (a1, a2, a3, a4).

Then the directional derivative at v of p in the direction u is given by

Dup(v) = d
∑

i+j+k+l=d−1

c
(1)
ijkl(a)Bd−1

ijkl (v), (2.73)

where c
(1)
ijkl(a) are the quantities obtained in the first step of the de Casteljau algorithm based

on the quadruple a.

18

Combining Theorem 2.2.9 with Theorem 2.2.6, we can see that if v has barycentric

coordinates b = (b1, b2, b3, b4), to evaluate Dup(v), one can simply apply one step of the de

Casteljau algorithm using a, followed by d− 1 steps using b.

Theorem 2.2.9 can be easily extended to higher-order directional derivatives (cf. [27]).

Theorem 2.2.10. Let 1 ≤ m ≤ d, and u1, . . . , um be m directions described by the quadruples

a(i) := (a
(i)
1 , a

(i)
2 , a

(i)
3 , a

(i)
4) (2.74)

for i = 1, . . . ,m. Then

Dum · · ·Du1p(v) =
d!

(d−m)!

∑
i+j+k+l=d−m

c
(m)
ijkl(a

(1), . . . , a(m))Bd−m
ijkl (v), (2.75)

where c
(m)
ijkl(a

(1), . . . , a(m)) are the quantities obtained after carrying out m steps of the de

Casteljau algorithm using a(1), . . . , a(m) in order.

Corollary 2.2.11. Let u be a direction described by the quadruple a. Then for 1 ≤ m ≤ d,

Dm
u p(v) := Du · · ·Du︸ ︷︷ ︸

m

p(v) =
d!

(d−m)!

∑
i+j+k+l=d−m

c
(m)
ijkl(a)Bd−m

ijkl (v), (2.76)

where c
(m)
ijkl(a) are the quantities obtained after carrying out m steps of the de Casteljau

algorithm using a.

2.2.6 Conditions for Smooth Joins of Trivariate Polynomials

In our study, we will deal with a tetrahedralization 4 of a polyhedral domain; see Chapter

3 for more about tetrahedralization. A smooth join between two trivariate polynomials on

adjoining tetrahedrons is essential in many applications. The following theorem provides

such a useful tool (cf. [27]).

Theorem 2.2.12. Let T := 〈v1, v2, v3, v4〉 and T̃ := 〈v5, v2, v4, v3〉 be tetrahedrons sharing

the face F := 〈v2, v3, v4〉. Let

p(v) :=
∑

i+j+k+l=d

cijklB
d
ijkl(v) (2.77)

19

and

p̃(v) :=
∑

i+j+k+l=d

c̃ijklB̃
d
ijkl(v), (2.78)

where {Bd
ijkl} and {B̃d

ijkl} are the trivariate Bernstein basis polynomials associated with T

and T̃ , respectively. Then p and p̃ join together with Cr continuity across the face F if and

only if

c̃mijk =
∑

ν+µ+κ+δ=m

cν,i+µ,k+κ,j+δB
m
νµκδ(v5), for i+ j + k = d−m

and m = 0, . . . , r. (2.79)

2.2.7 Integrals and Inner Products of Trivariate B-Polynomials

There exist explicit formulas for integrals and inner products of trivariate polynomials rep-

resented in B-form (cf. [27]).

Theorem 2.2.13. Given a tetrahedron T ,∫
T

Bd
ijkl(x, y, z)dxdydz =

VT(
d+3

3

) , (2.80)

for all i+ j + k + l = d, where VT is the volume of T .

Theorem 2.2.14. Given a tetrahedron T , let p be a trivariate polynomial of degree d written

in the B-form (2.58). Then∫
T

p(x, y, z)dxdydz =
VT(
d+3

3

) ∑
i+j+k+l=d

cijkl, (2.81)

where VT is the volume of T .

Theorem 2.2.15. Given a tetrahedron T ,∫
T

Bd
ijkl(x, y, z)Bd

νµκδ(x, y, z)dxdydz =

(
i+ν
i

)(
j+µ
j

)(
k+κ
k

)(
l+δ
l

)
VT(

2d
d

)(
2d+3

3

) , (2.82)

where VT is the volume of T .

20

Theorem 2.2.16. Given a tetrahedron T , let p and p̃ be two trivariate polynomials of degree

d written in the B-form (2.58) with coefficient vectors c and c̃ respectively. Then∫
T

p(x, y, z)p̃(x, y, z)dxdydz =
VT(

2d
d

)(
2d+3

3

) ∑
i+j+k+l=d
ν+µ+κ+δ=d

(
i+ ν

i

)(
j + µ

j

)(
k + κ

k

)(
l + δ

l

)
cijklc̃νµκδ,

(2.83)

where VT is the volume of T . In fact, this inner product can be written in the matrix form∫
T

p(x, y, z)p̃(x, y, z)dxdydz =
VT(

2d
d

)(
2d+3

3

)cτGc̃, (2.84)

where G is a
(
d+3

3

)
square matrix.

21

Chapter 3

Triangulations and Tetrahedralizations

In order to use multivariate spline functions discussed in Chapter 2, a nice partition of the

domain is crucial. In this chapter, we first introduce some basic concepts. Then we propose

our algorithms for both two-dimensional and three-dimensional scenarios.

3.1 Introduction

In industry, triangulation is sometimes referred to as mesh generation. The automatic mesh

generation problem is to divide a physical domain of a probably complicated geometry into

small simple pieces, such as triangles or rectangles for two-dimensional geometries, and tetra-

hedrons or rectangular prisms for three-dimensional geometries. These small pieces are called

elements of the mesh. Mesh generation has been one of the cutting-edge research fields for

decades, and still remains active.

A nice mesh must satisfy some basic requirements. Here we list three of them. Of course,

additional requirements may be imposed according to the practical applications.

First of all, it must conform to the shape of the domain of interest. For example, in the

finite element method of solving PDE, the boundary condition makes essential the match of

the triangulation and the domain (cf. [23]). When we compute eigenvalues and eigenfunctions

associated with Laplace operator over a polygonal domain, a precise triangulation of the

domain is necessary to guarantee a good approximation.

22

Secondly, the elements in a mesh shall be neither too large nor too small. Many appli-

cations use triangulations to interpolate a multivariate function whose true value might be

unknown. Usually, we know the values of the function at points in a large sample, and want

to approximate the values of the function at points not in the sample. One way to reduce the

interpolation error is to use small elements. However, a small size of the elements results in

a large number of them, hence escalating the scale of computational complexity. So picking

a proper size is important from both theoretic and practical views. Sometimes an adaptive

method can be employed (cf. [26]).

Last but not least, most of the elements shall have the right shape that is neither too long

nor too thin. Large angles (near 180◦) and small angles (near 0◦) would accompany such bad

shapes. Large angles can cause large interpolation errors which, in the finite element method,

induce a large discretization error, the difference between the computed approximation and

the true solution of PDE. On the other hand, small angles can cause the stiffness matrices

associated with the finite element method to be ill-conditioned.

Since meshes find heavy use in hundreds of real-life applications, such as land surveying,

image processing, and mechanical designs, there are numerous literatures devoted to this

topic. The lecture notes [42] provide an elementary and thorough overview. Other excellent

sources include [35] and [32]. Further surveys are supplied by [39], [4], [43], [6] and [16].

3.2 Two-Dimensional Delaunay Triangulations

In this section, we discuss two-dimensional Delaunay triangulations, constrained Delaunay

triangulations, and their geometric properties.

3.2.1 Triangulations

We start with a very general definition of triangulations (cf. [27]).

23

Definition 3.2.1. A collection 4 := {T1, . . . , TN} of triangles in the plane is called a tri-

angulation of Ω = ∪Ni=1Ti provided that if a pair of triangles in 4 intersect, then their

intersection is either a common vertex or a common edge.

This definition is general enough to include most of the triangulations encountered in

applications. Perhaps most importantly, it allows triangulations of a domain Ω with one or

more holes. We will see some examples later in this section.

Definition 3.2.2. The vertices of the triangles of 4 are called the vertices of the triangula-

tion 4. If a vertex v is a boundary point of Ω, we say that it is a boundary vertex. Otherwise,

it is called an interior vertex. Similarly, the edges of the triangles of 4 are called the edges

of the triangulation 4. If an edge e lies on the boundary of Ω, we say that it is a boundary

edge. Otherwise, it is called an interior edge.

There are many methods to generate a triangulation. Below is a simple algorithm for

constructing a triangulation 4 of the convex hull of a set V of vertices (cf. [27]). We call the

resulting 4 a triangulation of V .

If 4 is a triangulation and v is a point, we say that a vertex w of 4 is visible to v

provided that it is possible to draw a line from v to w which does not cross any of the edges

of 4.

Algorithm 3.2.3. (Vertex Insertion Algorithm)

Let V = {vi}ni=1 be a given set of points in R2.

1. Connect vn−2, vn−1, vn to form an initial triangulation 4(0) consisting of one triangle.

2. for i = 1 to n− 3 do

(a) If vi is strictly inside some triangle T of 4(i−1), connect vi to the three vertices of

T . If vi is on an edge e of a triangle T of 4(i−1) connect it to the opposite vertex

of all triangles sharing the edge e.

(b) Otherwise, connect vi to all of the vertices of 4(i−1) which are visible to vi.

24

(c) Define 4(i) to be the new triangulation.

Algorithm 3.2.3 is simple and straightforward, but not very useful in practice, since it

may produce unsatisfactory triangulations of bad shapes and it fails to conform to a general

polygonal domain other than convex ones. In the next subsection, a much better triangulation

with optimal properties will be discussed.

3.2.2 Delaunay Triangulations

As mentioned at the beginning of this chapter, a nice shape of the triangles in the triangu-

lation is preferred. The Delaunay triangulation introduced in Year 1934 is one with most of

the nice properties. To define it geometrically, we need to use circumcircles.

Definition 3.2.4. The circumcircle of a triangle is the unique circle that passed through

all three of its vertices. A circumcircle of an edge is any circle that passes through both its

vertices.

Definition 3.2.5. (Delaunay) Suppose Ω is a convex polygonal domain and 4 is a triangula-

tion of Ω. A triangle T ∈ 4 is Delaunay if there are no vertices of 4 inside the circumcircle

of T . An edge e of 4 is Delaunay if it has at least one empty circumcircle. The triangulation

4 is Delaunay if every triangle in it is Delaunay.

Figure 3.1 shows an example of a non-Delaunay triangulation, while Figure 3.2 is a

Delaunay triangulation of the same four vertices.

There is a useful alternative characterization of the Delaunay triangulation as shown in

the following definition (cf. [42]).

Definition 3.2.6. (Locally Delaunay) Let e be an edge of a triangulation 4. If e is the edge

of only one triangle, then e is said to be locally Delaunay. If e is the edge of two triangles T1

and T2, then e is locally Delaunay if it has a circumcircle enclosing no vertex of T1 nor T2.

Equivalently, the circumcircle of T1 encloses no vertex of T2. Equivalently, the circumcircle

of T2 encloses no vertex of T1.

25

Figure 3.1: A non-Delaunay triangulation.

Figure 3.2: A Delaunay triangulation.

26

One of the most important results about Delaunay triangulation is the Delaunay Lemma,

as shown below (cf. [42]).

Theorem 3.2.7. (The Delaunay Lemma) Suppose Ω is a convex polygonal domain and 4

is a triangulation of Ω. The following three statements are equivalent.

1. Every triangle T ∈ 4 is Delaunay (i.e. 4 is Delaunay).

2. Every edge e of 4 is Delaunay.

3. Every edge e of 4 is locally Delaunay.

The Delaunay Lemma tells us that in order to get a Delaunay triangulation, it suffices

to make every edge locally Delaunay. If an edge e is not locally Delaunay, it must be a

shared edge of two triangles. The union of the two triangles forms a quadrilateral, and e is a

diagonal. The following lemma shows that we can flip the edge and the new edge is locally

Delaunay (cf. [42]). Of course, an edge flip is legal only if the two diagonals cross each other,

or equivalently, if the quadrilateral is convex. Note that unflippable edges are always locally

Delaunay.

Lemma 3.2.8. Let e be an edge of 4. Then either e is locally Delaunay, or e is flippable

and the edge created by flipping e is locally Delaunay.

Lemma 3.2.8 provides us a way to produce a Delaunay triangulation (cf. [27]).

Algorithm 3.2.9. (Flip Algorithm)

1. Construct an initial triangulation 4(0) using any method, for example, Algorithm 3.2.3.

Set k := 0.

2. Do until no longer possible:

Find an edge e of 4(k) which is not locally Delaunay, and flip it. Increase k by one,

and let 4(k) be the new triangulation.

27

A natural question to ask is whether Algorithm 3.2.9 can terminate in a finite number of

steps. The following theorem from [42] claims that the algorithm won’t go on forever.

Theorem 3.2.10. Given a triangulation 4 with n vertices, Algorithm 3.2.9 terminates after

O(n2) edge flips, yielding a Delaunay triangulation.

Given a set V of vertices, we can apply Algorithm 3.2.3 to generate a triangulation of the

convex hull of V . Then we can use Algorithm 3.2.9 to convert it to Delaunay. This implies

the following corollary (cf. [42]).

Corollary 3.2.11. Every finite set of points in R2 has a Delaunay triangulation.

Although Delaunay triangulations may not be unique for a given set of vertices, they

do optimize several geometric criteria, which is the reason why Delaunay triangulations are

useful in practice. The following theorem illustrates those nice properties (cf. [42]), where

the minimum angle in the triangulation 4 is the smallest angle among all the triangles in

4, and the min-containment circle of a triangle is the smallest circle that encloses it.

Theorem 3.2.12. Among all the triangulations of a point set V, every Delaunay triangula-

tion of V maximizes the minimum angle in the triangulation, minimizes the largest circum-

circle, and minimizes the largest min-containment circle.

3.2.3 Constrained Delaunay Triangulations

The Delaunay triangulations we discussed in the last subsection might not respect the

domain’s boundary, especially when the domain is not convex or has holes. One solution

to this problem is to use a constrained Delaunay triangulation (CDT). To put it simple,

the domain boundary is treated as constraints that are required to become an edge of the

resulting triangulation. Apart from respecting the domain boundary, CDT still enjoys many

optimal properties, similar to the Delaunay triangulation.

Recall that the Delaunay triangulation is defined upon a set V of vertices, and the outcome

is always the convex hull of V . In contrast, CDT is defined over a complex composed of

28

points, edges, and polygons. The points serve the same purpose as before; the edges must

be contained in some triangles in CDT; the polygons specify the regions to be triangulated.

Note that the polygons can be quite general; they are not necessarily convex, and may have

holes.

The following definition from [42] formalizes the complex on which CDT is defined.

Definition 3.2.13. (Piecewise Linear Complex) In R2, a piecewise linear complex (PLC)

X is a finite set of vertices, edges, and polygons that satisfies the following properties.

• The vertices and edges in X form a simplicial complex. That is, X contains both vertices

of every edge in X , and the relative interior of an edge in X intersects no vertex in X

nor any other edge in X .

• For each polygon f in X , the boundary of f is a union of edges in X .

• If two polygons in X intersect, their intersection is a union of edges and vertices in X .

The underlying space of X , denoted by |X |, is the union of its polygons; that is, |X | = ∪f∈Xf .

Definition 3.2.14. A vertex, edge, or polygon in a PLC X is called a linear cell in X . The

faces of a linear cell c in a PLC X are the linear cells in X that are subsets of c, including

c itself.

Definition 3.2.15. (Triangulation of a PLC) Let X be a PLC in the R2 plane. A triangu-

lation of X is a simplicial complex 4 such that

• X and 4 have the same vertices.

• 4 contains every edge in X (and perhaps additional edges).

• | 4 | = |X |.

The following theorem guarantees the existence of a triangulation of a PLC (cf. [42]).

Theorem 3.2.16. Every PLC in the R2 plane has a triangulation.

29

Sometimes we need to allow the triangulation 4 to have extra vertices for the sake of

higher quality of the triangles. And this leads to a Steiner triangulation (cf. [42]).

Definition 3.2.17. (Steiner Triangulation of a PLC) Let X be a PLC in the R2 plane. A

Steiner triangulation of X is a simplicial complex 4 such that

• 4 contains every vertex in X (and perhaps additional vertices).

• every edge in X is a union of edges in 4.

• | 4 | = |X |.

From Theorem 3.2.16, we see that given a PLC, there is a triangulation of it, which

respects the boundary of the domain. However, this preliminary triangulation might contain

triangles of bad shapes. If we still want to maintain some of the advantages of Delaunay

triangulations, the constrained Delaunay triangulation (CDT) needs to be introduced with

the requirement that all triangles be Delaunay relaxed (cf. [42]).

Some necessary notions need to be brought up before defining CDT.

Definition 3.2.18. A simplex σ respects a PLC X if σ ⊆ |X | and for every linear cell c in

X that intersect σ, c ∩ σ is a union of faces of σ.

Definition 3.2.19. Two points a and b are visible to each other if the line segment ab

respects X . A linear cell in X that intersects the relative interior of ab but does not include

ab is said to occlude the visibility between a and b.

Definition 3.2.20. (Constrained Delaunay) Given a PLC X , a simplex σ is constrained

Delaunay if it satisfies the following three conditions.

• X contains all vertices of σ.

• σ respects X .

• There is a circumcircle of σ that encloses no vertex in X that is visible from any point

in the relative interior of σ.

30

Definition 3.2.21. (Constrained Delaunay Triangulation) A constrained Delaunay trian-

gulation (CDT) of a PLC X is a triangulation of X in which every triangle is constrained

Delaunay.

Theorem 3.2.7 can be generalized to the constrained case (cf. [42]).

Theorem 3.2.22. (Constrained Delaunay Lemma) Let 4 be a triangulation of a PLC X .

The following three statements are equivalent.

• Every triangle T ∈ 4 is constrained Delaunay (i.e. 4 is constrained Delaunay).

• Every edge e of 4 that is not in X is constrained Delaunay.

• Every edge e of 4 that is not in X is locally Delaunay.

Algorithm 3.2.9 can be modified to construct a constrained Delaunay triangulation. We

only need to make sure that the algorithm never flips an edge that is in X .

Algorithm 3.2.23. (Constrained Flip Algorithm)

1. Construct an initial triangulation 4(0) of X using any method, for example, [10,

Chapter 3]. Set k := 0.

2. Do until no longer possible:

Find an edge e of 4(k) which is not in X and not locally Delaunay, and flip it. Increase

k by one, and let 4(k) be the new triangulation.

Algorithm 3.2.23 can terminate in a finite number of steps, as indicated in the following

theorem (cf. [42]).

Theorem 3.2.24. Given a triangulation of a PLC having n vertices, Algorithm 3.2.23 ter-

minates after O(n2) edge flips, yielding a constrained Delaunay triangulation.

Corollary 3.2.25. Every PLC has a constrained Delaunay triangulation.

31

As expected, CDT may not be unique. The following theorem claims that the CDT has

the almost same optimal properties as the Delaunay triangulation (cf. [42]).

Theorem 3.2.26. Among all the triangulations of a PLC, every constrained Delaunay tri-

angulation maximizes the minimum angle in the triangulation, minimizes the largest circum-

circle, and minimizes the largest min-containment circle.

3.2.4 Algorithms for Constructing Constrained Delaunay Trian-

gulations

The flip algorithms 3.2.9 and 3.2.23 can be slow in practice. Fortunately, many other efficient

methods are available. There are basically three classic types of algorithms. The first type is

the gift-wrapping algorithms (cf. [17]). Gift-wrapping algorithms construct Delaunay trian-

gles one at a time. The second type is the divide-and-conquer algorithm, which partitions a

set of points into two halves, recursively computes the Delaunay triangulation of each subset,

and merges them into one (cf. [12]). The last type is the incremental insertion algorithms

which insert vertices into a Delaunay triangulation one at a time while maintaining the

Delaunay properties (cf. [29, 47]). This type of methods is perhaps the most widely used.

All three types can be extended to constrained Delaunay triangulations.

MATLAB offers a fast built-in function to compute the CDT of a PLC X . However,

the output is always the convex hull of the vertices in X . In order to generate a triangu-

lation respecting the domain’s boundary, and improve its quality, we present the following

algorithm.

Algorithm 3.2.27. (2D Constrained Delaunay Triangulation)

1. Given a set V of vertices, the boundary B of a domain, and a set E of constrained edges,

pick additional vertices inside the domain and on the constrained edges as appropriate.

Let Ṽ be the set of these additional vertices.

32

2. Construct a constrained Delaunay triangulation of V ∪ Ṽ with constraints B and E

using any algorithm.

3. Delete those triangles outside the domain.

In the first step of Algorithm 3.2.27, we pick some extra vertices to make sure that the

triangles have the desired size and shape. There are many strategies as to how to choose these

vertices, depending on the specific application. For example, if one needs a finer triangulation

in a certain subdomain, he can pick more vertices in that area. In general, we can just pick

uniformly distributed vertices over the entire domain. Note that sometimes we also need to

pick some vertices on the edges in B and E to partition them so that the quality of the

triangulation nearby can be improved. This idea of adding vertices comes from the Steiner

triangulation (Definition 3.2.17).

In the second step, one option is to use MATLAB’s built-in function delaunayTriangu-

lation.m. The output triangulation is the convex hull of all the vertices, which might not

respect the boundary of the domain.

In the last step, we delete all those triangles which are outside the domain. The resulting

triangulation must respect the boundary because we included B in the constraints in the

second step. In order to determine whether a triangle lies inside a polygonal domain, we can

first find the center point of the triangle, and then check if this point is in the polygonal

domain. Thus, it reduces to a point-in-polygon problem. Again, MATLAB offers a built-in

function inpolygon.m to do that, of which the idea stems from [19].

3.2.5 Examples

Example 3.2.28. Fig. 3.3 shows a Delaunay triangulation of a convex polygon. Figure

3.4 is a triangulation which is refined from Figure 3.3 by splitting each triangle into four

subtriangles by connecting the midpoints of the edges with straight lines.

33

Figure 3.3: A Delaunay triangulation of a convex polygon.

Figure 3.4: A refined triangulation of Figure 3.3.

34

Figure 3.5: A Delaunay triangulation of a non-convex polygonal domain with two holes.

Example 3.2.29. Fig. 3.5 shows a Delaunay triangulation of a non-convex polygonal domain

with two holes.

Example 3.2.30. Fig. 3.6 shows a constrained Delaunay triangulation, where the red line

segments are constrained edges. Observe how the triangles are assembled around those con-

strained edges.

3.3 Three-Dimensional Delaunay Tetrahedralizations

In this section, we discuss three-dimensional Delaunay tetrahedralizations.

35

Figure 3.6: A constrained Delaunay triangulation.

3.3.1 Tetrahedralizations

Three-dimensional triangulations are sometimes called tetrahedralizations, since the elements

of the mesh are now tetrahedrons. We start with a very general definition of tetrahedraliza-

tions (cf. [27]).

Definition 3.3.1. A collection 4 := {T1, . . . , TN} of tetrahedrons in R3 is called a tetrahe-

dralization of Ω = ∪Ni=1Ti provided that if a pair of tetrahedrons in 4 intersect, then their

intersection is either a common vertex, a common edge, or a common triangular face.

This definition is general enough to include most of the tetrahedralizations encountered

in applications. Perhaps most importantly, it allows tetrahedralizations of a domain Ω with

one or more holes and cavities.

36

Definition 3.3.2. The vertices of the tetrahedrons of 4 are called the vertices of the tetra-

hedralization 4. If a vertex v is a boundary point of Ω, we say that it is a boundary vertex.

Otherwise, it is called an interior vertex. Similarly, the edges and faces of the tetrahedrons

of 4 are called the edges and faces of the tetrahedralization 4. If an edge or face lies on the

boundary of Ω, we say that it is a boundary edge or boundary face. Otherwise, it is called an

interior edge or interior face.

3.3.2 Delaunay Tetrahedralizations

As in the two-dimensional case, a nice shape of the tetrahedrons in the tetrahedralizations is

preferred. The Delaunay tetrahedralization is one with some of the nice properties. To define

it geometrically, we need to use circumspheres.

Definition 3.3.3. The circumsphere of a tetrahedron is the unique sphere that passed through

all four of its vertices. A circumsphere of a triangular face is any sphere that passes through

all three of its vertices. A circumsphere of an edge is any sphere that passes through both its

vertices.

Definition 3.3.4. (Delaunay) Suppose Ω is a convex polyhedral domain and 4 is a tetra-

hedralization of Ω. A tetrahedron T ∈ 4 is Delaunay if there are no vertices of 4 inside the

circumsphere of T . A face or edge of 4 is Delaunay if it has at least one empty circumsphere.

The tetrahedralization 4 is Delaunay if every tetrahedron in it is Delaunay.

There is a useful alternative characterization of the Delaunay tetrahedralization as shown

in the following definition (cf. [42]).

Definition 3.3.5. (Locally Delaunay) Let f be a face of a tetrahedralization 4. If f is the

face of only one tetrahedron, then f is said to be locally Delaunay. If f is the face of two

tetrahedrons T1 and T2, then f is locally Delaunay if it has a circumsphere enclosing no vertex

of T1 nor T2. Equivalently, the circumsphere of T1 encloses no vertex of T2. Equivalently, the

circumsphere of T2 encloses no vertex of T1.

37

One of the most important results about Delaunay tetrahedralization is the Delaunay

Lemma, as shown below (cf. [42]).

Theorem 3.3.6. (The Delaunay Lemma) Suppose Ω is a convex polyhedral domain and 4

is a tetrahedralization of Ω. The following three statements are equivalent.

1. Every tetrahedron T ∈ 4 is Delaunay (i.e. 4 is Delaunay).

2. Every face f of 4 is Delaunay.

3. Every face f of 4 is locally Delaunay.

Given a set V of vertices in R3, there exists a Delaunay tetrahedralization of the convex

hull of V , as implied by the following theorem (cf. [42]).

Theorem 3.3.7. Every finite set of points in R3 has a Delaunay tetrahedralization.

Although Delaunay tetrahedralization may not be unique for a given set of vertices, they

do optimize several geometric criteria. The following theorem illustrates one nice property

(cf. [42]), where the min-containment sphere of a tetrahedron is the smallest sphere that

encloses it.

Theorem 3.3.8. Among all the tetrahedralizations of a point set V, every Delaunay tetra-

hedralization of V minimizes the largest min-containment sphere.

3.3.3 Constrained Delaunay Tetrahedralizations

The Delaunay tetrahedralizations we discussed in the last subsection might not respect the

domain’s boundary, especially when the domain is not convex or has holes or cavities. One

solution to this problem is to use a constrained Delaunay tetrahedralization (CDT). To put

it simple, the domain boundary is treated as constraints that are required to become a face

of the resulting tetrahedralization. Apart from respecting the domain boundary, CDT still

enjoys many optimal properties, similar to the Delaunay tetrahedralization.

38

Recall that the Delaunay tetrahedralization is defined upon a set V of vertices, and the

outcome is always the convex hull of V . In contrast, CDT is defined over a complex composed

of points, edges, polygons, and polyhedrons. The points serve the same purpose as before;

the edges must be contained in some tetrahedrons in CDT; the polygons must be a union of

faces of tetrahedrons; the polyhedrons specify the regions to be tetrahedralized. Note that

the polyhedrons can be quite general; they are not necessarily convex, and may have holes

or cavities.

The following definition from [42] formalizes the complex on which CDT is defined.

Definition 3.3.9. (Piecewise Linear Complex) In R3, a piecewise linear complex (PLC) X

is a finite set of linear cells (vertices, edges, polygons, and polyhedrons) that satisfies the

following properties.

• The vertices and edges in X form a simplicial complex.

• For each linear cell in X , its boundary is a union of linear cells in X .

• If two distinct linear cells f and g in X intersect, their intersection is a union of linear

cells in X , all having lower dimension than at least one of f or g.

The underlying space of X , denoted by |X |, is the union of its polyhedrons; that is, |X | =

∪p∈Xp.

Definition 3.3.10. The faces of a linear cell c in a PLC X are the linear cells in X that

are subsets of c, including c itself.

Definition 3.3.11. (Tetrahedralization of a PLC) Let X be a PLC in R3. A tetrahedraliza-

tion of X is a simplicial complex 4 such that

• X and 4 have the same vertices.

• Every linear cell in X is a union of simplices in 4.

• | 4 | = |X |.

39

Some necessary notions need to be brought up before defining CDT.

Definition 3.3.12. A simplex σ respects a PLC X if σ ⊆ |X | and for every linear cell c in

X that intersect σ, c ∩ σ is a union of faces of σ.

Definition 3.3.13. Two points a and b are visible to each other if |X | includes the open line

segment connecting the two points, but no linear cell in X intersects only part of that open

line segment. A linear cell in X that intersects the open line segment but does not entirely

include it is said to occlude the visibility between a and b.

Definition 3.3.14. (Constrained Delaunay) Given a PLC X , a simplex σ is constrained

Delaunay if it satisfies the following three conditions.

• X contains all vertices of σ.

• σ respects X .

• There is a circumsphere of σ that encloses no vertex in X that is visible from any point

in the relative interior of σ.

Definition 3.3.15. (Constrained Delaunay Tetrahedralization) A constrained Delaunay

tetrahedralization (CDT) of a PLC X is a tetrahedralization of X in which every tetrahedron

is constrained Delaunay.

Unlike the two-dimensional case, not all PLCs have constrained Delaunay tetrahedral-

izations. Figure 3.7 is one such example from [42].

Sometimes we can solve this problem by adding more vertices. The result would be a

Steiner CDT.

Definition 3.3.16. (Steiner Tetrahedralization of a PLC) Let X be a PLC in R3. A Steiner

tetrahedralization of X is a simplicial complex 4 such that

• 4 contains every vertex in X (and perhaps additional vertices).

• Every linear cell in X is a union of simplices in 4.

• | 4 | = |X |.

40

Figure 3.7: An example from [42] that doesn’t have a constrained Delaunay tetrahedraliza-
tion.

3.3.4 Algorithms for Constructing Constrained Delaunay Tetra-

hedralizations

Incremental insertion and gift-wrapping algorithms are the most popular algorithms for

constructing Delaunay tetrahedralizations of the convex hull of a finite set of points (cf. [42]).

Constrained Delaunay tetrahedralizations, however, is much more difficult, partly because

not all PLCs have CDTs.

MATLAB offers a fast built-in function to compute Delaunay tetrahedralizations. How-

ever, the output is always the convex hull of a finite set of points. In order to generate a

tetrahedralization respecting the domain’s boundary, we present the following algorithm.

Algorithm 3.3.17. (3D Constrained Delaunay Tetrahedralization)

1. Given a set of vertices, the boundary faces B of a domain, and a set C of constrained

faces, pick additional vertices inside the domain and on the constrained faces as appro-

priate. Let V be the set of the original vertices and those additional vertices.

2. Construct a Delaunay tetrahedralization 4 of V. Let Ṽ := ∅.

3. For each edge e of 4, if e intersects a face f ∈ B ∪ C at a point v 6∈ V, put v into Ṽ.

41

4. For each edge e of B ∪ C, if e intersects a triangular face f of 4 at a point v 6∈ V, put

v into Ṽ.

5. If Ṽ 6= ∅, set V := V ∪ Ṽ and go back to Step 2. Otherwise, delete those tetrahedrons

outside the domain, and output the result.

In the first step of Algorithm 3.3.17, we pick some extra vertices to make sure that

the tetrahedrons have the desired size and shape. There are many strategies as to how to

choose these vertices, depending on the specific application. For example, if one needs a finer

tetrahedralization in a certain subdomain, he can pick more vertices in that area. In general,

we can just pick uniformly distributed vertices over the entire domain. Note that sometimes

we also need to pick some vertices on the faces in B and C to partition them so that the

quality of the tetrahedralization nearby can be improved. This idea of adding vertices comes

from the Steiner tetrahedralization (Definition 3.3.16).

In the second step, one option is to use MATLAB’s built-in function delaunayTriangula-

tion.m. The output tetrahedralization is the convex hull of all the vertices, which might not

respect the boundary of the domain.

In the third and fourth step, we find all the intersection points which are not in V . Those

intersection points indicate that there exist tetrahedrons which don’t respect the boundary

or constrained faces.

In the fifth step, put those points into V , and go back to Step 2. If no such points are

detected, delete all those tetrahedrons which are outside the domain, then exit. In order to

determine whether a tetrahedron lies inside a polyhedral domain, we can first find the center

point of the tetrahedron, and then check if this point is in the polyhedral domain. Thus, it

reduces to a point-in-polyhedron problem. One solution is to follow [31].

3.3.5 Examples

Example 3.3.18. Fig. 3.8 is a Delaunay tetrahedralization of a standard cube.

42

Figure 3.8: A Delaunay tetrahedralization of a cube.

Example 3.3.19. Fig. 3.9 is a Delaunay tetrahedralization of a non-convex polyhedral

domain.

Example 3.3.20. Fig. 3.10 is a Delaunay tetrahedralization of a cube with two tunnels.

Example 3.3.21. Fig. 3.11 is a Delaunay tetrahedralization of a torus-shape domain.

Example 3.3.22. Fig. 3.12 is a Delaunay tetrahedralization of a human head shape.

3.3.6 Remarks

Algorithm 3.3.17 only works for domains with simple structures. It depends heavily on

MATLAB’s built-in function delaunayTriangulation.m. There are many literatures about

43

Figure 3.9: A Delaunay tetrahedralization of a non-convex polyhedral domain.

Figure 3.10: A Delaunay tetrahedralization of a cube with two tunnels.

44

Figure 3.11: A Delaunay tetrahedralization of a torus-shape domain.

Figure 3.12: The left figure is a Delaunay tetrahedralization of a human head shape. The
right one shows the inner structure.

45

constrained Delaunay tetrahedralizations. It would be beneficial to investigate some of them

and find a good algorithm which suits our spline applications. Further study is needed in

this area.

46

Chapter 4

Randomized Block Coordinate Descent

Method

In this chapter, we introduce a randomized block coordinate descent method for minimizing

convex problems with linearly coupled constraints. This method lays the foundation of our

applications in later chapters.

4.1 Introduction

Coordinate descent (CD) methods are one of the simplest schemes for optimization, and

have been studied for many decades. These days with the advance of parallel and distributed

computing, CD methods are gaining renewed attention. Many applications have witnessed

the new development. See [21], [20], [22], [38], and [41] for some successful examples.

Randomization plays a non-negligible role in the theoretical and practical success of CD

methods. [34] proposed a randomized block CD method for minimizing a separable objective

convex problem with linearly coupled constraints. They also extended their main algorithm,

where two blocks are updated per iteration, to a more general version, where more than

two blocks are updated per iteration. [37] developed a randomized block CD method for

a composite objective convex problem with non-separable linear constraints. But at each

iteration, only two blocks are updated.

47

In this chapter, we combine the ideas from [34] and [37]. Our algorithm works for a

composite objective convex problem with non-separable linear constraints. We update M ≥ 2

blocks per iteration. As we shall see in the later chapters, our algorithm is quite suitable for

our applications.

4.2 Problem Formulation and Notations

We work in the space Rn composed by column vectors.

The optimization problem we are solving is

min
x

f(x) (4.1)

s.t. Ax = 0, (4.2)

where x ∈ Rn and A ∈ Rm×n.

We assume that the entire space Rn is decomposed into N blocks, i.e.,

x = [xτ1, . . . , x
τ
N]τ , (4.3)

where τ is matrix transpose, xi ∈ Rni for i = 1, . . . , N , and n =
∑N

i=1 ni.

For any matrix B with n columns, we use Bi to denote the columns of B corresponding to

xi. If Ψ ⊆ {1, . . . , N}, then BΨ represents the columns of B corresponding to the coordinate

blocks {xi : i ∈ Ψ}. We use U to denote the n× n identity matrix and hence Ui is a matrix

that places an ni dimensional vector into the corresponding block of an n dimensional vector.

For a differentiable function f , we use fi and ∇if to denote the restriction of the function

and its gradient to the block xi. And for Ψ ⊆ {1, . . . , N}, we use fΨ and ∇Ψf to denote the

restriction of the function and its gradient to the coordinate blocks {xi : i ∈ Ψ}.

4.3 Algorithm

In this section, we present the randomized block CD method for the optimization problem

(4.1-4.2).

48

We assume that the function f has L-Lipschitz continuous gradient ∇f , i.e.,

‖∇f(x)−∇f(x+ d)‖ ≤ L‖d‖, (4.4)

for all x, d ∈ Rn.

The following result is standard (cf. [3]).

Lemma 4.3.1. (The Descent Lemma) For any function f : Rn → R with L-Lipschitz

continuous gradient ∇f , we have

f(x+ d) ≤ f(x) + 〈∇f(x), d〉+
L

2
‖d‖2 (4.5)

for any x, d ∈ Rn.

We start with a feasible point x(0). For example, take x(0) = 0. Pick a positive integer

M ≤ N . Then, at each iteration we update M blocks in the vector x. For simplicity of the

exposition, we use the following notation: given the current iterate x, denote the next iterate

by x‡. Similar notations apply to the other variables.

To be more specific, randomly choose Ψ = {i1, . . . , iM} with il ∈ {1, . . . , N} with proba-

bility pΨ. By Lemma 4.3.1, the following inequality holds:

f

(
x+

∑
i∈Ψ

Uidi

)
≤ f(x) + 〈∇Ψf(x), dΨ〉+

L

2
‖dΨ‖2, (4.6)

where dΨ = [dτi1 , . . . , d
τ
iM

]τ . Based on the inequality (4.6), let the next iterate be chosen as

x‡ = x+
∑
i∈Ψ

Uidi, (4.7)

where the direction dΨ is determined by requiring the next iterate x‡ to be also feasible and

minimizing the right-hand side of (4.6), i.e.,

dΨ = arg min
AΨdΨ=0

f(x) + 〈∇Ψf(x), dΨ〉+
L

2
‖dΨ‖2. (4.8)

We can apply the Lagrange multiplier method (cf. [3]) to get an explicit solution to (4.8),

as shown in the following lemma.

49

Lemma 4.3.2. The solution to (4.8) is

di = − 1

L
∇if(x) +

1

L
Aτi λ (4.9)

for each i ∈ Ψ, where

λ =

(∑
j∈Ψ

AjA
τ
j

)+(∑
j∈Ψ

Aj∇jf(x)

)
(4.10)

with + denoting the pseudo-inverse.

To sum up, we obtain the following randomized block coordinate descent method.

Algorithm 4.3.3. (Randomized Block Coordinate Descent Method)

1. Take an initial value x(0) such that Ax(0) = 0

2. for k ≥ 0 do

3. Choose an M-tuple Ψ(k) = {i(k)
1 , . . . , i

(k)
M } with probability pΨ(k)

4. Solve (4.8) to get dΨ(k) by applying (4.9)

5. Set x(k+1) := x(k) + UΨ(k)dΨ(k)

6. k:=k+1

7. end for

4.4 Reduction of General Case

Before we analyze convergence, it would be convenient if we can reduce the original problem

(4.1-4.2) to a simpler one, which is the topic of this section. We will follow the idea from

[37].

We write the constraint (4.2) into

N∑
i=1

Aixi = 0, (4.11)

where A = [A1, . . . , AN] with Ai ∈ Rm×ni for i = 1, . . . , N .

50

For each i = 1, . . . , N , define yi = Aixi so that
∑N

i=1 yi = 0. Use singular value decom-

position to write Ai = PiΣiQ
∗
i . Then

Q∗ixi = Σ+
i P
∗
i yi +Wizi (4.12)

for some zi and Wi with orthonormal columns satisfying range(Wi) = kernel(Σi), where +

denotes the pseudo-inverse. Hence, we have

xi = A+
i yi + Ãizi, (4.13)

where A+
i = QiΣ

+
i P
∗
i and Ãi = QiWi. Note that Ãi has orthonormal columns and

range(Ãi) = kernel(Ai). Also note that each yi ∈ Rm but the dimension of zi may vary

for different i. Nonetheless, by adding all-zero columns to Ãi, we can still assume that the

dimensions of zi are the same for all i. Let y = [yτ1 , . . . , y
τ
N]τ and z = [zτ1 , . . . , z

τ
N]τ .

The problem (4.1-4.2) can then be written as

min
y,z

g(y, z) (4.14)

s.t.
N∑
i=1

yi = 0, , (4.15)

where

g(y, z) = f

(
N∑
i=1

Ui(A
+
i yi + Ãizi)

)
. (4.16)

The next lemma follows from the property of convex functions.

Lemma 4.4.1. Let f(x) be a convex function. Let g(y, z) be the function defined in (4.16).

Then g(y, z) is convex.

The following lemma can be found in [37].

Lemma 4.4.2. Let f(x) be a function with L-Lipschitz continuous gradient ∇f . Let g(y, z)

be the function defined in (4.16). Then we have

‖∇yig(y, z)−∇yig(y′, z)‖ ≤ L

σ2
min(Ai)

‖yi − y′i‖, (4.17)

‖∇zig(y, z)−∇zig(y′, z)‖ ≤ L‖yi − y′i‖, (4.18)

51

where σ2
min(Ai) denotes the minimum non-zero singular value of Ai.

Here and thereafter, we will focus on the following reformulation of the original problem

(4.1-4.2):

min
y,z

f(y, z) (4.19)

s.t.
N∑
i=1

yi = 0, , (4.20)

where yi ∈ Rny and zi ∈ Rnz .

Let x = [yτ , zτ]τ ∈ RN(ny+nz). Take

A = [Iny×ny , . . . , Iny×ny︸ ︷︷ ︸
N

, Ony×nz , . . . , Ony×nz︸ ︷︷ ︸
N

], (4.21)

where Iny×ny is the ny × ny identity matrix and Ony×nz is the ny × nz zero matrix. Then the

constraint (4.20) can be written as

N∑
i=1

yi = A

 y

z

 = Ax = 0. (4.22)

Under this reformulation, we can derive some useful results for Algorithm 4.3.3. Since

x = [yτ , zτ]τ , we can write xi = [yτi , z
τ
i]τ and di = [dτyi , d

τ
zi

]τ for each i ∈ Ψ. Also note that

the matrix A has a special structure as indicated in (4.21). Thus, we can apply the Lagrange

multiplier method to get an explicit solution to (4.8), as shown in the following lemma.

Lemma 4.4.3. The solution to (4.8) is

dyi = − 1

LM

∑
j∈Ψ

(
∇yif(x)−∇yjf(x)

)
, (4.23)

dzi = − 1

L
∇zif(x), (4.24)

for each i ∈ Ψ.

52

4.5 Convergence Analysis

In this section, we discuss the convergence of Algorithm 4.3.3 for the reformulation (4.19-

4.20). First, we have the following lemma.

Lemma 4.5.1. Algorithm 4.3.3 is a descent method.

Proof. Plugging (4.23) and (4.24) into (4.6), we get

f(x‡) ≤ f(x)− 1

LM

∑
i∈Ψ

〈
∇yif(x),

∑
j∈Ψ

(
∇yif(x)−∇yjf(x)

)〉
− 1

L

∑
i∈Ψ

‖∇zif(x)‖2

+
1

2LM2

∑
i∈Ψ

∥∥∥∥∥∑
j∈Ψ

(
∇yif(x)−∇yjf(x)

)∥∥∥∥∥
2

+
1

2L

∑
i∈Ψ

‖∇zif(x)‖2

= f(x)− 1

LM2

∑
i∈Ψ

∥∥∥∥∥∑
j∈Ψ

(
∇yif(x)−∇yjf(x)

)∥∥∥∥∥
2

− 1

L

∑
i∈Ψ

‖∇zif(x)‖2

+
1

2LM2

∑
i∈Ψ

∥∥∥∥∥∑
j∈Ψ

(
∇yif(x)−∇yjf(x)

)∥∥∥∥∥
2

+
1

2L

∑
i∈Ψ

‖∇zif(x)‖2

= f(x)− 1

2LM2

∑
i∈Ψ

∥∥∥∥∥∑
j∈Ψ

(
∇yif(x)−∇yjf(x)

)∥∥∥∥∥
2

− 1

2L

∑
i∈Ψ

‖∇zif(x)‖2. (4.25)

This shows that the method is a descent method.

After k iterations of the algorithm, we generate a random output (x, f(x)), which depends

on the observed history of block selections:

η = {Ψ(0), . . . ,Ψ(k−1)}. (4.26)

Taking expectation over the choice of Ψ given η on both sides of (4.25) yields

E[f(x‡)|η] ≤ f(x)− 1

2LM2

∑
Ψ

pΨ

∑
i∈Ψ

∥∥∥∥∥∑
j∈Ψ

(
∇yif(x)−∇yjf(x)

)∥∥∥∥∥
2


− 1

2L

∑
Ψ

pΨ

(∑
i∈Ψ

‖∇zif(x)‖2

)

= f(x)− 1

2L
∇f(x)τG∇f(x), (4.27)

53

where the matrix G is defined as follows.

Define ιΨ ∈ RN to be a vector with components

ιi =

 1 if i ∈ Ψ

0 otherwise.
(4.28)

Let diag(ι) denote the diagonal matrix with entries ιi on the diagonal. Define

G1 =
∑

Ψ

pΨ

(
diag(ιΨ)− 1

M
ιΨι

τ
Ψ

)
, (4.29)

G2 =
∑

Ψ

pΨdiag(ιΨ). (4.30)

Finally define

G =

 G1 ⊗ Iny×ny 0

0 G2 ⊗ Inz×nz

 . (4.31)

where ⊗ denotes the Kronecker product. It is easy to verify that this G satisfies (4.27).

We observe that G1 can be viewed as a Laplacian matrix of a weighted graph. We can

assume that this graph is connected, which is usually satisfied in our applications in later

chapters. Properties of Laplacian matrices can be found in [36]. In particular, G1 is positive

semidefinite, and has a simple eigenvalue 0 with the associated eigenvector e ∈ RN of which

all entries are equal to 1. Since G2 is positive definite, it is easy to deduce that the matrix

G is positive semidefinite.

As in [34], we define the extended primal norm induced by the matrix G as

‖w‖G :=
√
wτGw, (4.32)

for any w ∈ RN(ny+nz).

Theorem 4.5.2. The extended norm defined by (4.32) is a seminorm. Moreover, if we write

w = [uτ , vτ]τ where u = [uτ1, . . . , u
τ
N]τ ∈ RNny and v ∈ RNnz , then ‖w‖G = 0 if and only if

u1 = u2 = · · · = uN and v = 0.

54

Proof. It is straightforward to show that (4.32) is a seminorm. As to the second statement,

suppose wτGw = 0. Then v = 0 follows from the positive definiteness of G2. Based on

the structure of G1 in (4.29), we will now show that aτ
(
diag(ιΨ)− 1

M
ιΨι

τ
Ψ

)
a = 0 implies

a1 = a2 = · · · = aM , from which u1 = u2 = · · · = uN follows. Indeed,

0 = aτ
(

diag(ιΨ)− 1

M
ιΨι

τ
Ψ

)
a

=
∑
i∈Ψ

ai

(
ai −

1

M

∑
j∈Ψ

aj

)

=
∑
i∈Ψ

a2
i −

1

M

(∑
i∈Ψ

ai

)2

.

Linking this with the Cauchy-Schwarz inequality, we must have a1 = a2 = · · · = aM .

Define the subspace S = {x ∈ RN(ny+nz) : Ax = 0} where A is defined in (4.21). The

extended dual norm can be defined on S as

‖x‖∗G := max
w:‖w‖G≤1

〈x,w〉, (4.33)

for any x ∈ S.

By the definition of dual norm, the Cauchy-Schwarz inequality holds:

〈x,w〉 ≤ ‖x‖∗G‖w‖G, (4.34)

for any x ∈ S and w ∈ RN(ny+nz).

In fact, this dual norm can be computed in the same way as in [34]. Recall that we can

write x = [yτ , zτ]τ and w = [uτ , vτ]τ . In the block form, y = [yτ1 , . . . , y
τ
N]τ , similarly for z, u,

and v. Also recall that e was defined as a vector in RN with all entries equal to 1. For any

x ∈ S, we have

55

‖x‖∗G = max
w:‖w‖G≤1

〈x,w〉

= max
u,v:‖[uτ ,vτ]τ‖G≤1

〈[yτ , zτ]τ , [uτ , vτ]τ 〉

= max
u,v:‖[uτ ,vτ]τ‖G≤1

〈 y

z

 ,
 u

v

−
 e⊗ 1

N

∑N
i=1 ui

0

〉 (4.35)

= max
u,v

〈 y

z

 ,
 u

v

−
 e⊗ 1

N

∑N
i=1 ui

0

〉

s.t.

∥∥∥∥∥∥
 u

v

−
 e⊗ 1

N

∑N
i=1 ui

0

∥∥∥∥∥∥
G

≤ 1 (4.36)

= max
u,v:

‖[uτ ,vτ]τ‖G≤1,∑N
i=1 ui=0

〈[yτ , zτ]τ , [uτ , vτ]τ 〉

= max
u,v: ‖[u

τ ,vτ]τ‖G≤1,
Bu=0

〈[yτ , zτ]τ , [uτ , vτ]τ 〉 (4.37)

= max
u,v: ‖[u

τ ,vτ]τ‖G≤1,
uτBτBu≤0

〈[yτ , zτ]τ , [uτ , vτ]τ 〉

= min
λ≥0,ξ≥0

max
u,v
〈[yτ , zτ]τ , [uτ , vτ]τ 〉+ λ(1− ‖[uτ , vτ]τ‖2

G)− ξuτBτBu (4.38)

= min
λ≥0,ξ≥0

λ+
1

4

〈
x,

λG + ξ

 BτB 0

0 0

+

x

〉
(4.39)

= min
λ≥0,ξ≥0

λ+
1

4λ

〈
x,

G +
ξ

λ

 BτB 0

0 0

+

x

〉

= min
ζ≥0

min
λ≥0

λ+
1

4λ

〈
x,

G + ζ

 BτB 0

0 0

+

x

〉

= min
ζ≥0

√√√√√√
〈
x,

G + ζ

 BτB 0

0 0

+

x

〉
(4.40)

=
√
〈x,G+x〉. (4.41)

(4.35) follows by noting that 〈y, e⊗ 1
N

∑N
i=1 ui〉 = 0 since

∑N
i=1 yi = 0.

56

(4.36) follows from the fact that G1 is a Laplacian matrix so that G1

(
e⊗ 1

N

∑N
i=1 ui

)
= 0.

In (4.37), we define B = [Iny×ny , . . . , Iny×ny︸ ︷︷ ︸
N

] as a submatrix of A.

The derivation of (4.38) will be explained later.

Maximizing the objective function with respect to u, v in (4.38) gives w = [uτ , vτ]τ =

1
2

λG + ξ

 BτB 0

0 0

+

[yτ , zτ]τ , which in turn yields (4.39).

To compute (4.40), it suffices to analyze

G + ζ

 BτB 0

0 0

+

. Recall that G1 is a

Laplacian matrix of a weighted connected graph. It is positive semidefinite, and has a simple

eigenvalue 0 with the associated eigenvector e ∈ RN of which all entries are equal to 1. We can

write G1 = Pdiag(λ1, λ2, . . . , λN)P τ , where 0 = λ1 < λ2 ≤ λ3 ≤ . . . ≤ λN are the eigenvalues

and P = [e/‖e‖, η2, . . . , ηN] is an orthogonal matrix. Then G1 = λ2η2η
τ
2 + . . . ,+λNηNη

τ
N .

Hence, we have G + ζ

 BτB 0

0 0

+

=

 G1 ⊗ Iny×ny + ζBτB 0

0 G2 ⊗ Inz×nz

+

=

 (G1 + ζeeτ)⊗ Iny×ny 0

0 G2 ⊗ Inz×nz

+

=

 (λ2η2η
τ
2 + . . . ,+λNηNη

τ
N + ζeeτ)⊗ Iny×ny 0

0 G2 ⊗ Inz×nz

+

=

 (Pdiag(ζ‖e‖2, λ2, . . . , λN)P τ)⊗ Iny×ny 0

0 G2 ⊗ Inz×nz

+

=

 (Pdiag(ζ‖e‖2, λ2, . . . , λN)+P τ)⊗ Iny×ny 0

0 G−1
2 ⊗ Inz×nz

 , (4.42)

57

from which it is straightforward to see that the minimizer of (4.40) is ζ = 0. Therefore, (4.41)

has been justified.

It remains to justify (4.38). Since the Slater constraint qualification is not satisfied, we

cannot apply the Strong Duality Theorem (cf. [5]). Instead, we use the optimality conditions

in [5, Proposition 6.1.5], which guarantees the correctness of (4.38) if the following claims

can be established:

• Primal Feasibility: (ũ, ṽ) satisfies ‖[ũτ , ṽτ]τ‖G ≤ 1, and ũτBτBũ ≤ 0,

• Dual Feasibility: λ̃ ≥ 0 and ξ̃ ≥ 0,

• Lagrangian Optimality:

(ũ, ṽ) ∈ arg maxu,v〈[yτ , zτ]τ , [uτ , vτ]τ 〉+ λ̃(1− ‖[uτ , vτ]τ‖2
G)− ξ̃uτBτBu,

• Complementary Slackness: λ̃(1− ‖[ũτ , ṽτ]τ‖2
G) = 0 and ξ̃ũτBτBũ = 0,

where λ̃ = 1
2

√
xτG+x, ξ̃ = 0, and [ũτ , ṽτ]τ = 1

2

λ̃G + ξ̃

 BτB 0

0 0

+

[yτ , zτ]τ .

In fact, some algebraic calculations give ‖[ũτ , ṽτ]τ‖G = 1. And by [18, Lemma 2], we can

deduce Bũ = 0, which then implies ũτBτBũ ≤ 0. Lagrangian Optimality can be verified by

taking gradient and by noting that x is in the range of G. Hence, it is now easy to see that

all four claims above hold.

We are now ready to state the convergence result. The proof is similar to that in [37].

Theorem 4.5.3. For the optimization problem (4.19-4.20), assume that f is convex and

has L-Lipschitz continuous gradient. Let f ∗ denote the optimal value and X∗ be the set of

optimal solutions. If {x(k)}k≥0 is generated by Algorithm 4.3.3, then we have the following

rate of convergence for the expected values of the objective function:

E[f(x(k))]− f ∗ ≤ 2LR2(x(0))

k
, (4.43)

where

R(x(0)) = max
x:

Ax=0
f(x)≤f(x(0))

min
x∗∈X∗

‖x− x∗‖∗G. (4.44)

58

Proof. From the convexity of f and the Cauchy-Schwarz inequality (4.34) of the norm ‖ · ‖G,

we have

f(x(k))− f ∗ ≤ 〈∇f(x(k)), x(k) − x∗〉

≤ ‖x(k) − x∗‖∗G‖∇f(x(k))‖G

≤ R(x(0))‖∇f(x(k))‖G. (4.45)

Combining this inequality with (4.27), we obtain

E[f(x(k+1))|η(k)] ≤ f(x(k))− 1

2L

(f(x(k))− f ∗)2

R2(x(0))
. (4.46)

Taking expectation of both sides of this inequality with respect to η(k) gives

E[f(x(k+1))] ≤ E[f(x(k))]− 1

2L

E[(f(x(k))− f ∗)2]

R2(x(0))

≤ E[f(x(k))]− 1

2L

(E[f(x(k))]− f ∗)2

R2(x(0))
, (4.47)

where (4.47) follows from Jensen’s inequality.

Denote Θk = E[f(x(k))]− f ∗. (4.47) now leads to

Θk+1 ≤ Θk −
1

2L

Θ2
k

R2(x(0))
. (4.48)

Dividing both sides with ΘkΘk+1 leads to

1

Θk

≤ 1

Θk+1

− 1

2LR2(x(0))

Θk

Θk+1

≤ 1

Θk+1

− 1

2LR2(x(0))
, (4.49)

since Θk+1 ≤ Θk.

Adding these inequalities for k steps, we obtain 0 ≤ 1
Θ0
≤ 1

Θk
− k

2LR2(x(0))
from which the

statement of the theorem follows.

Note that the reformulation of (4.19-4.20) is presented only for the ease of theoretical

analysis. In practice, we don’t need to do the conversion.

59

4.6 Future Work

[11] presents a parallel multi-block alternating direction method of multipliers (ADMM) with

o(1/k) convergence. One possible future work is to apply the method in [11] to improve our

result.

60

Chapter 5

A Randomized Domain Decomposition

Method for Computing Multivariate Spline

Fits of Scattered Data

A randomized domain decomposition method for solving large bivariate/trivariate scattered

data fitting problems is described in this chapter. This method is based on randomly splitting

the domain into smaller ones, solving the associated smaller fitting problems with boundary

conditions, and iterating.

5.1 Introduction

Suppose f is a smooth function defined on a domain Ω in R2 or R3. Given the values

{fi := f(vi)}Ni=1 of f at some set of scattered points {v1, . . . , vN} ⊂ Ω, we consider the

problem of computing a smooth function s that approximates the data, i.e.,

s(vi) ≈ fi, i = 1, . . . , N. (5.1)

There are many methods for solving this problem, such as the minimal energy (ME)

method, the discrete least-squares (DLS) method, and the penalized least-squares (PLS)

method. These methods have been extensively studied in the literature (cf. [1, 45, 46, 25, 40]).

It is well known that all three work well on fitting smooth functions. The major drawback is

that they are global methods, which means that the coefficients of a fitting spline must be

61

computed from a single linear system of equations. Nowadays many real-life problems can

easily contain a very large scale of data. Thus, it is usually a formidable task to find the

global solution in one shot.

Some researchers have tried to solve global fitting problems by dividing the domain

into smaller subdomains, computing fits on each subdomain, and then blending the patches

together with some blending functions. These blending functions might produce a result that

is not close to the global fit. In [28], a better domain decomposition method for bivariate

splines is constructed. However, their method assumes that there are enough data points in

each subdomain to uniquely determine a solution, which is too strict for real-life practice.

In this chapter, we present a different domain decomposition method. There are three

major differences between our algorithm and that in [28]:

• Our algorithm is iterative while [28] is not.

• [28] fixes a decomposition of Ω at the beginning while our algorithm uses a new random

decomposition at each iteration, and there might be overlapping in our decomposition.

• [28] uses a stable local minimal determining set to ensure that the final result satis-

fies the required smoothness. In contrast, our algorithm uses boundary conditions as

constraints to enforce the smoothness.

As we shall see, our method

• is easy to implement,

• is able to deal with large data fitting problems,

• allows the solution of fitting sparse data,

• produces a spline s with the same smoothness as the global fit,

• does not use a minimal determining set (which may not be easy to find in practice).

62

5.2 Two-Dimensional Algorithm

In this section, we describe the two-dimensional randomized domain decomposition method

for bivariate scattered data fitting problem. The algorithm is presented along with its con-

vergence analysis. Several numerical examples are given at the end.

5.2.1 Problem Formulation

Let Ω ⊆ R2 be a polygonal domain. Suppose we are given values {fi := f(xi, yi)}Ni=1 at points

in A := {vi = (xi, yi)}Ni=1 ⊂ Ω. We wish to compute a smooth function s that approximates

the data. To be more specific, given 0 ≤ r < d and a triangulation 4 of Ω, let

Srd(4) := {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ 4} (5.2)

be the associated space of bivariate splines of degree d and smoothness r, where Pd is the

space of bivariate polynomials of degree at most d, as defined in Section 2.1. Also fix a

constant λ > 0. The corresponding penalized least-squares (PLS) spline (cf. [1]) is defined

to be:

s∗ := arg min
s∈Srd(4)

‖s− f‖2
A + λE(s), (5.3)

where

‖s− f‖2
A :=

N∑
i=1

(s(xi, yi)− fi)2, (5.4)

and

E(s) :=

∫
Ω

[(
∂2s

∂x2

)2

+ 2

(
∂2s

∂x∂y

)2

+

(
∂2s

∂y2

)2
]
dxdy. (5.5)

Note that E(s) is the well-known thin-plate energy of s.

Since s|T is a polynomial of degree d on each triangle T ∈ 4, we can use the B-form

representation (2.15):

s|T =
∑

i+j+k=d

cTijkB
d
ijk. (5.6)

63

Hence, finding the spline solution is equivalent to finding the B-coefficient vector

c := [cTi,j,k, i+ j + k = d, T ∈ 4], (5.7)

where c is a column vector of dimension m
(
d+2

2

)
with m denoting the number of triangles in

4. Moreover, using the B-form representation (2.15), we obtain

‖s− f‖2
A = ‖Ac− b‖2 (5.8)

for some matrix A and b = [f1, . . . , fN]τ . We also have

E(s) = cτKc, (5.9)

for some matrix K. Smoothness conditions from Theorem 2.1.11 helps us to write the con-

straint s ∈ Srd(4) into a linear constraint:

Hc = 0 (5.10)

for some matrix H.

Thus, the optimization problem (5.3) can be reformulated into the following form:

min
c

‖Ac− b‖2 + λcτKc (5.11)

s.t. Hc = 0. (5.12)

5.2.2 Our Algorithm

Instead of finding all the entries of the coefficient vector c at once, we solve a collection of

smaller problems at each iteration. To state our algorithm formally, we need some notations.

For any subset δ ⊂ 4, we set star0(δ) = δ, and for all k ≥ 1, recursively define

stark(δ) = ∪{T ∈ 4 : T ∩ stark−1(δ) 6= ∅}. (5.13)

Fig. 5.1 is an illustration of star1(T), where T is the red triangle. star1(T) consists of

both the red triangle and the green triangles. Fig. 5.2 is star2(T).

The algorithm is as follows.

64

Figure 5.1: star1(T).

Figure 5.2: star2(T).

65

Algorithm 5.2.1. (Randomized Domain Decomposition Method (2D))

1. Fix a triangulation 4 of Ω. Choose k > 0. Initialize the coefficient vector c (e.g.

c := 0).

2. Randomly select a triangle T ∈ 4. Find Ωk
T := stark(T).

3. Let skT ∈ Srd(4)|ΩkT be the spline fit based on the data in Ωk
T such that after updating

cti,j,k = sti,j,k for all i + j + k = d and t ∈ Ωk
T , the resulting spline satisfies the required

smoothness condition.

4. If certain stopping criterion is met, quit; otherwise, go back to step 2.

Let’s take a look at how to find the local fit skT in Step 3 above.

Write the coefficient vector c as [cτ1, c
τ
2]τ , where c1 is the coefficient vector associated with

the triangles in Ωk
T , and c2 is the rest. Write the smoothness matrix H in (5.12) as [H1, H2]

such that

Hc = Hc1 +Hc2. (5.14)

Let A1, K1 and b1 be the submatrices of A, K and b related to the triangles in Ωk
T respectively.

Now finding the local fit skT is equivalent to solving the following minimization problem

min
c1

‖A1c1 − b1‖2 + λcτ1K1c1 (5.15)

s.t. H1c1 = −H2c2. (5.16)

Note that the right-hand side of the constraint (5.16) is constant since c2 is fixed here.

There are many methods that one can use to solve the problem (5.15-5.16). Lagrange

multiplier is one of the popular ones. Letting

L(c1, ξ) = ‖A1c1 − b1‖2 + λcτ1K1c1 + ξτ (H1c1 +H2c2), (5.17)

there exists ξ such that

2(Aτ1A1 + λK1)c1 +Hτ
1 ξ = 2Aτ1b1, (5.18)

H1c1 = −H2c2. (5.19)

66

In general, the linear system above is not invertible. So we need to solve it using the method

of least squares. MATLAB provides a class of efficient algorithms for least squares. Alter-

natively, the iterative method described in [1] can be used. Assuming the existence of an

optimal solution, any least-squares solution would satisfy the above linear system exactly

and is an optimal solution to (5.15-5.16).

5.2.3 Convergence Analysis

In this section, we analyze the convergence of Algorithm 5.2.1.

First of all, the existence and uniqueness of the minimization problem (5.3) is guaranteed

by the following theorem described in [1].

Theorem 5.2.2. Suppose that there exist three data sites, say (xi, yi), i = 1, 2, 3, which are

not collinear. Then there exists a unique s∗ in Srd(4) solving the minimization problem (5.3).

Let Wm
∞(Ω) be the Sobolev space of all functions whose m-th derivatives are essentially

bounded over Ω. |f |m,∞,Ω is the maximal norm of all m-th order derivatives of f over Ω. |4 |

is the longest edge length of the triangles in 4. The following result shows how the surface

s∗ resembles the given data, and can be found in [25].

Theorem 5.2.3. Let s∗ be the minimization solution of (5.3) with d ≥ 3r+ 2. Suppose that

f ∈ Wm+1
∞ (Ω) with 1 ≤ m ≤ d. Then there exists a constant C such that

‖s∗ − f‖L∞(Ω) ≤ C(| 4 |m+1|f |m+1,∞,Ω + λ|f |2,∞,Ω). (5.20)

Since (5.15-5.16) is essentially the minimization problem (5.11-5.12) with respect to c1

with c2 fixed, it can be easily seen that Algorithm 5.2.1 is a randomized block coordinate

descent method. Thus, we can use the results from Chapter 4 to analyze the convergence.

Theorem 5.2.4. For the optimization problem (5.11-5.12), let

g(c) := ‖Ac− b‖2 + λcτKc (5.21)

67

be the objective function with optimal value g∗. If {c(n)}n≥0 is generated by Algorithm 5.2.1,

then we have the following rate of convergence for the expected values of g:

E[g(c(n))]− g∗ ≤ M

n
(5.22)

for some constant M > 0.

Proof. The only difference between Algorithm 5.2.1 and Algorithm 4.3.3 is that instead of

using (4.9), Algorithm 5.2.1 computes the minimum of the left-hand side of (4.6) directly by

the method of least squares mentioned in the last subsection. However, this little difference

would make no difference since the inequality (4.25) still holds. Thus, the proof of Theorem

4.5.3 passes through. Now this theorem follows.

5.2.4 Numerical Examples

Example 5.2.5. This is a very basic example. Consider 4867 points uniformly distributed

over a convex polygon as shown in Fig. 5.3 with the red dots representing the data points.

There are 167 triangles in the triangulation 4. Let {(xi, yi, f(xi, yi)), i = 1, . . . , 4867} be a

scattered data set, where

f(x, y) = x4 + 2y3 − xy + 2y − 1 (5.23)

is a polynomial. We use Algorithm 5.2.1 to find a spline function s ∈ Srd(4) to fit the data.

In the algorithm, we choose k = 2. The maximum errors are measured on 31242 points

uniformly distributed over the domain. The results are summarized in Table 5.1. As can been

seen, the best result is splines of degree 4, the same degree as f .

68

Figure 5.3: Data points for Example 5.2.5.

Table 5.1: Approximation errors in Example 5.2.5

Errors CPU Errors CPU
S0

3 1.05e-04 1.18s S1
3 3.11e-02 20.87s

S0
4 7.17e-05 1.41s S1

4 9.93e-06 23.01s
S0

5 9.32e-04 1.95s S1
5 2.08e-05 4.27s

69

Figure 5.4: Data points for Example 5.2.6.

Table 5.2: Approximation errors in Example 5.2.6

Errors CPU Errors CPU
S0

4 2.10e-01 1.19s S1
4 1.45e-01 8.97s

S0
5 2.99e-02 1.55s S1

5 3.15e-02 4.90s
S0

6 4.81e-02 3.02s S1
6 1.91e-02 5.52s

Example 5.2.6. Consider 3704 points uniformly distributed over a non-convex polygon as

shown in Fig. 5.4 with the red dots representing the data points. There are 136 triangles. Let

{(xi, yi, f(xi, yi)), i = 1, . . . , 3704} be a scattered data set, where

f(x, y) = sin(π(x2 + 2y2)). (5.24)

Again, we choose k = 2 in the algorithm. The maximum errors are measured on 40401 points

uniformly distributed over the domain. The results are summarized in Table 5.2.

70

Figure 5.5: Data points for Example 5.2.7.

Table 5.3: Approximation errors in Example 5.2.7

Errors CPU Errors CPU
S0

4 1.20e-02 3.46s S1
4 2.35e-02 49.48s

S0
5 7.50e-03 40.11s S1

5 4.61e-03 9.75s
S0

6 3.03e-02 5.29s S1
6 8.11e-04 98.83s

Example 5.2.7. We use the same data set as in Example 5.2.6. But the triangulation is

more refined as shown in Fig. 5.5. We now have 308 triangles. The results summarized in

Table 5.3 are better as expected.

71

Figure 5.6: Data points for Example 5.2.8.

Table 5.4: Approximation errors in Example 5.2.8

Errors CPU Errors CPU
S0

4 5.53e+00 7.15s S1
4 5.18e-02 185.27s

S0
5 19.79e+00 12.33s S1

5 6.18e-02 19.83s
S0

6 7.94e+00 22.49s S1
6 7.25e-02 26.65s

Example 5.2.8. Consider 1681 points randomly chosen over a non-convex polygon as shown

in Fig. 5.6 with the red dots representing the data points. There are 758 triangles. Let

{(xi, yi, f(xi, yi)), i = 1, . . . , 1681} be a scattered data set, where

f(x, y) = sin(π(x2 + 2y2)) + 2e−(x−0.5)2−(y−0.3)2

. (5.25)

We choose k = 4 in the algorithm. The maximum errors are measured on 9701 points

uniformly distributed over the domain. The results are summarized in Table 5.4.

72

Figure 5.7: Data points for Example 5.2.9.

Table 5.5: Approximation errors in Example 5.2.9

Errors CPU Errors CPU
S0

4 2.33e-02 0.86s S1
4 7.91e-03 2.41s

S0
5 2.80e-02 1.15s S1

5 8.30e-03 3.36s
S0

6 2.95e-02 2.24s S1
6 8.80e-03 3.95s

Example 5.2.9. Consider 1583 points randomly chosen over a domain with two holes as

shown in Fig. 5.7 where the red dots represent the data points. There are 212 triangles. Let

{(xi, yi, f(xi, yi)), i = 1, . . . , 1583} be a scattered data set, where

f(x, y) = sin(π(x2 + 2y2)) + x3 − 2x4y2. (5.26)

We choose k = 3 in the algorithm. The maximum errors are measured on 2396 points

uniformly distributed over the domain. The results are summarized in Table 5.5.

73

5.3 Three-Dimensional Algorithm

The three-dimensional randomized domain decomposition method for trivariate scattered

data fitting is essentially the same as the two-dimensional one. We briefly present the algo-

rithm and illustrate its effectiveness by several examples.

5.3.1 Problem Formulation

Let Ω ⊆ R3 be a polyhedral domain. Suppose we are given values {fi := f(xi, yi, zi)}Ni=1 at

points in A := {vi = (xi, yi, zi)}Ni=1 ⊂ Ω. We wish to compute a smooth function s that

approximates the data. To be more specific, given 0 ≤ r < d and a tetrahedralization 4 of

Ω, let

Srd(4) := {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ 4} (5.27)

be the associated space of trivariate splines of degree d and smoothness r, where Pd is the

space of trivariate polynomials of degree at most d, as defined in Section 2.2. Also fix a

constant λ > 0. The corresponding penalized least-squares (PLS) spline (cf. [1]) is defined

to be:

s∗ := arg min
s∈Srd(4)

‖s− f‖2
A + λE(s), (5.28)

where

‖s− f‖2
A :=

N∑
i=1

(s(xi, yi, zi)− fi)2, (5.29)

and

E(s) :=

∫
Ω

∑
α,β,γ≥0
α+β+γ=2

(
∂2s

∂xα∂yβ∂zγ

)2

dxdydz. (5.30)

Since s|T is a polynomial of degree d on each tetrahedron T ∈ 4, we can use the B-form

representation (2.58):

s|T =
∑

i+j+k+l=d

cTijklB
d
ijkl. (5.31)

74

Hence, finding the spline solution is equivalent to finding the B-coefficient vector

c := [cTi,j,k,l, i+ j + k + l = d, T ∈ 4], (5.32)

where c is a column vector of dimension m
(
d+3

3

)
with m denoting the number of tetrahedrons

in 4. Moreover, using the B-form representation (2.58), we obtain

‖s− f‖2
A = ‖Ac− b‖2 (5.33)

for some matrix A and b = [f1, . . . , fN]τ . We also have

E(s) = cτKc, (5.34)

for some matrix K. Smoothness conditions from Theorem 2.2.12 helps us to write the con-

straint s ∈ Srd(4) into a linear constraint:

Hc = 0 (5.35)

for some matrix H.

Thus, the optimization problem (5.28) can be reformulated into the following form:

min
c

‖Ac− b‖2 + λcτKc (5.36)

s.t. Hc = 0. (5.37)

5.3.2 Our Algorithm

Instead of finding all the entries of the coefficient vector c at once, we solve a collection of

smaller problems at each iteration.

For any subset δ ⊂ 4, we set star0(δ) = δ, and for all k ≥ 1, recursively define

stark(δ) = ∪{T ∈ 4 : T ∩ stark−1(δ) 6= ∅}. (5.38)

The algorithm is as follows.

Algorithm 5.3.1. (Randomized Domain Decomposition Method (3D))

75

1. Fix a tetrahedralization 4 of Ω. Choose k > 0. Initialize the coefficient vector c (e.g.

c := 0).

2. Randomly select a tetrahedron T ∈ 4. Find Ωk
T := stark(T).

3. Let skT ∈ Srd(4)|ΩkT be the spline fit based on the data in Ωk
T such that after updating

cti,j,k,l = sti,j,k,l for all i + j + k + l = d and t ∈ Ωk
T , the resulting spline satisfies the

required smoothness condition.

4. If certain stopping criterion is met, quit; otherwise, go back to step 2.

The local fit skT in Step 3 above can be computed in the same way as in the two-

dimensional case.

Write the coefficient vector c as [cτ1, c
τ
2]τ , where c1 is the coefficient vector associated

with the tetrahedrons in Ωk
T , and c2 is the rest. Write the smoothness matrix H in (5.37) as

[H1, H2] such that

Hc = Hc1 +Hc2. (5.39)

Let A1, K1 and b1 be the submatrices of A, K and b related to the tetrahedrons in Ωk
T

respectively.

Now finding the local fit skT is equivalent to solving the following minimization problem

min
c1

‖A1c1 − b1‖2 + λcτ1K1c1 (5.40)

s.t. H1c1 = −H2c2. (5.41)

5.3.3 Convergence Analysis

The convergence of Algorithm 5.3.1 is essentially the same as that of Algorithm 5.2.1. So we

give the following theorem without proof.

Theorem 5.3.2. For the optimization problem (5.36-5.37), let

g(c) := ‖Ac− b‖2 + λcτKc (5.42)

76

Table 5.6: Approximation errors in Example 5.3.3

Errors CPU
S1

3 1.36e+00 940.29s
S1

4 8.87e-06 1594.51s
S1

5 3.91e-06 1771.87s

be the objective function with optimal value g∗. If {c(n)}n≥0 is generated by Algorithm 5.3.1,

then we have the following rate of convergence for the expected values of g:

E[g(c(n))]− g∗ ≤ M

n
(5.43)

for some constant M > 0.

5.3.4 Numerical Examples

Example 5.3.3. Consider 8000 points uniformly distributed over a cube as shown in Fig.

5.8 with the red dots representing the data points. There are 384 tetrahedrons in the tetrahe-

dralization 4. Let {(xi, yi, zi, f(xi, yi, zi)), i = 1, . . . , 8000} be a scattered data set, where

f(x, y, z) = x4 + 2y3 + xyz − z2 + 3xz − yz + 2x− 1 (5.44)

is a polynomial. We use Algorithm 5.3.1 to find a spline function s ∈ Srd(4) to fit the data.

In the algorithm, we choose k = 2. The maximum errors are measured on 125000 points

uniformly distributed over the domain. The results are summarized in Table 5.6.

Example 5.3.4. Consider 20700 points uniformly distributed over a non-convex domain as

shown in Fig. 5.9 with the red dots representing the data points. There are 619 tetrahedrons.

Let {(xi, yi, zi, f(xi, yi, zi)), i = 1, . . . , 20700} be a scattered data set, where

f(x, y, z) = sin(π(x2 + y2 + z2)) + xy − z. (5.45)

77

Figure 5.8: Data points for Example 5.3.3.

We choose k = 2 in the algorithm. The maximum errors are measured on 95000 points

uniformly distributed over the domain. The results are summarized in Table 5.7.

Example 5.3.5. Consider 24952 points uniformly distributed over a torus-shape domain as

shown in Fig. 5.10 with the yellow dots representing the data points. There are 588 tetrahe-

drons. Let {(xi, yi, zi, f(xi, yi, zi)), i = 1, . . . , 24952} be a scattered data set, where

f(x, y, z) = 2e−(x−1.5)2−y2−z2

+ x2 − yz. (5.46)

We choose k = 2 in the algorithm. The maximum errors are measured on 49296 points

uniformly distributed over the domain. The results are summarized in Table 5.8.

78

Figure 5.9: Data points for Example 5.3.4.

Table 5.7: Approximation errors in Example 5.3.4

Errors CPU
S1

3 2.51e+00 901.58s
S1

4 4.27e-02 1867.81s
S1

5 2.40e-03 2829.66s

Table 5.8: Approximation errors in Example 5.3.5

Errors CPU
S1

3 1.19e-01 713.08s
S1

4 6.58e-04 949.69s
S1

5 5.60e-04 1085.77s

79

Figure 5.10: Data points for Example 5.3.5.

5.4 Remarks and Future Work

Since the data fitting problems discussed in this chapter have been formulated into opti-

mization problems, and the energy terms (5.5) and (5.30) are included, our algorithm can

handle sparse data set. In fact, this can be seen from Examples 5.2.8 and 5.2.9 where some

triangles contain very few data points.

The goal of data fitting is to find a good approximation of the given data. With that

in mind, we can mix in some empirical ways to choose blocks. For example, for every odd

iteration, we randomly pick a triangle/tetrahedron T and update the spline on stark(T),

while for every even iteration, we pick T which has the largest fitting error. This alternating

method will not undermine the convergence since it is still a descent method.

One possible future work would be to use parallel or distributed computing to accelerate

the computation. Extra care is needed due to the coupled constraints and overlapping blocks.

80

Chapter 6

Multivariate Splines for Curve and Surface

Reconstruction

6.1 Introduction

In this chapter, we construct a smooth interpolatory or fitting curve of a given point set

in the 2D setting, and a smooth surface in the 3D setting. This will have some important

applications in real life. For example, when designing airplanes, one would like to connect

the wings to the plane body in C2 fashion. The smoothness can help reduce air friction and

hence increase fuel efficiency.

There have been a lot of theories and methods for computing smooth curves and surfaces.

One typical method is to use tensor products of B-splines. Some aerospace and car companies

use the nonuniform rational B-splines (NURB) (cf. [15]). The concepts of G1 continuity

instead of C1 continuity for connecting smooth surfaces was introduced and studied (cf.

[33]). Another popular method is subdivision schemes (cf. [13]). However, these tools are not

flexible enough to connect two surface patches together in a smooth fashion.

In this chapter, we use multivariate spline functions to construct curves and surfaces

with smoothness Cr, where r ≥ 1. The intuition is that any smooth enough curve can be

viewed as a contour or a part of a contour of a smooth spline function defined on a polygonal

domain, and any smooth enough surface can be treated as an isosurface of a smooth spline

function defined on a polyhedral domain.

81

6.2 Construction of 2D Smooth Curves

In this section we describe the algorithm to generate smooth curves in the 2D setting.

6.2.1 Our Algorithm

Suppose we are given points A0 := {(xi, yi)}N0
i=1 from some unknown planar closed smooth

curve C. We first construct a polygonal domain Ω ⊆ R2 which contains all the given points

in its interior. For simplicity, we can just use a rectangular bounding box. Then we find a

triangulation 4 of Ω. If there are some known connectivity relationships of the data points,

e.g., piecewise linear interpolations, we can adopt a constrained triangulation to include

those line segments.

We wish to compute a smooth function s whose contour at value 0 approximates the

desired curve. In order for the curve to stand out, we choose auxiliary points in the following

sense. Pick points A−1 := {(xi, yi)}N−1

i=1 ⊂ Ω outside the closed curve, and assign them

function value −1. Pick points A1 := {(xi, yi)}N1
i=1 ⊂ Ω inside the closed curve, and assign

them function value 1. There are no absolute rules of how to choose these auxiliary points.

According to our experiments, there are two ways that usually work well. The first way is

to pick A−1 near the boundary of Ω and A1 near the center of the curve. Another way is

to pick points on both sides of the curve, maintaining nearly equal distances of A−1 and A1

from the curve. Fig. 6.1 and 6.2 illustrate these two ways, where the red points are on the

curve, the blue ones are inside the curve, and the black ones are outside the curve.

The next task is to do the data fitting as discussed in Chapter 5. Given 0 ≤ r < d and a

triangulation 4, let

Srd(4) := {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ 4} (6.1)

be the associated space of bivariate splines of degree d and smoothness r, where Pd is the

space of bivariate polynomials of degree at most d, as defined in Section 2.1. Also fix a

constant λ > 0. The corresponding penalized least-squares (PLS) spline (cf. [1]) is defined

82

Figure 6.1: One way to choose points for A−1, A0 and A1.

Figure 6.2: Another way to choose points for A−1, A0 and A1.

83

to be:

s∗ := arg min
s∈Srd(4)

‖s− (−1)‖2
A−1

+ ‖s− 0‖2
A0

+ ‖s− 1‖2
A1

+ λE(s), (6.2)

where

‖s− t‖2
A :=

∑
(xi,yi)∈A

(s(xi, yi)− t)2, (6.3)

and

E(s) :=

∫
Ω

[(
∂2s

∂x2

)2

+ 2

(
∂2s

∂x∂y

)2

+

(
∂2s

∂y2

)2
]
dxdy. (6.4)

Since s|T is a polynomial of degree d on each triangle T ∈ 4, we can use the B-form

representation (2.15):

s|T =
∑

i+j+k=d

cTijkB
d
ijk. (6.5)

Hence, finding the spline solution is equivalent to finding the B-coefficient vector

c := [cTi,j,k, i+ j + k = d, T ∈ 4], (6.6)

where c is a column vector of dimension m
(
d+2

2

)
with m denoting the number of triangles in

4. Moreover, using the B-form representation (2.15), we obtain

‖s− (−1)‖2
A−1

+ ‖s− 0‖2
A0

+ ‖s− 1‖2
A1

= ‖Ac− b‖2 (6.7)

for some matrix A and b = [−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1]τ . We also have

E(s) = cτKc, (6.8)

for some matrix K. Smoothness conditions from Theorem 2.1.11 helps us to write the con-

straint s ∈ Srd(4) into a linear constraint:

Hc = 0 (6.9)

for some matrix H.

84

Thus, the optimization problem (6.2) can be reformulated into the following form:

min
c

‖Ac− b‖2 + λcτKc (6.10)

s.t. Hc = 0. (6.11)

In fact, our spline method is so flexible that it supports not only fitting but also inter-

polation. To be more specific, if we want to make sure that the points in some set A′0 :=

{(xi, yi)}
N ′0
i=1 are on the resulting curve, we can express them as a linear equation Bc = 0 and

put the equation into the constraint. This gives us the following more general form:

min
c

‖Ac− b‖2 + λcτKc (6.12)

s.t. Hc = 0, (6.13)

Bc = 0. (6.14)

It is recommended that the triangulation 4 be manipulated so that the points in A′0 are

at the vertices of 4.

If the scale of the problem is very large, then instead of finding all the entries of the

coefficient vector c at once, we can apply the randomized domain decomposition method

presented in Chapter 5 with a little modification to handle (6.14).

6.2.2 Finding Contours

After finding the spline function, we need to figure out how to get the contour curve of value

0. We need an algorithm that is capable of computing points on the contour. Moreover, the

density of these points can be set arbitrarily. Note that it is very important to be able to get

as many points on the contour as wanted, especially in applications like computer graphics.

First we need to assume that the points in the set A′0 which are guaranteed to be on

the contour by the constraint (6.14) are dense enough such that for any two adjacent points

u, v ∈ A′0, the straight line segment connecting u and v is close enough to the contour. We

will see later what we mean by “close enough”.

85

Figure 6.3: Illustration of computing contours.

Under this assumption, on each line segment connecting adjacent u and v, pick points as

needed. For example, pick 20 points uniformly. For every such point, fix one of its coordinate,

and use the well-known root-finding Newton’s method to produce the other coordinate, using

the original coordinate as the initial estimate, such that the resulting point is on the contour.

This process is illustrated in Fig. 6.3. In the picture, the red curve is the contour we want.

We already know the two endpoints since they are in A′0. Take as many points as needed on

the connecting line segment. For each point, fix its x-coordinate, and use its y-coordinate as

the initial guess to apply Newton’s method. The iteration formula is

yn+1 = yn −
s(x, yn)

sy(x, yn)
, (6.15)

where sy = ∂s
∂y

. The resulting point would have the same x-coordinate and lie on the contour

curve.

86

Figure 6.4: Data points for Example 6.2.1.

In order for the Newton’s method to converge to the desired root, the initial guess needs

to be close enough to the root. This is where the assumption we mentioned earlier comes

from.

6.2.3 Examples

Example 6.2.1. We are given some points sampled from a circle as shown by the red points

in Fig. 6.4. These points form a piecewise linear closed curve. We select some other points

inside and outside the closed curve as shown by the blue and black dots in the figure. We then

find a constrained triangulation 4 where the piecewise linear curve serves as the constraint.

See Fig. 6.5. We compute the spline function s ∈ S1
5 (4) to fit the data with A′0 composed of

those red points. The result is shown in Fig. 6.6.

87

Figure 6.5: The triangulation for Example 6.2.1.

Figure 6.6: The contour curve for Example 6.2.1.

88

Figure 6.7: Data points for Example 6.2.2.

Example 6.2.2. In this example, points are sampled from two circles as shown in Fig.

6.7. The constrained triangulation 4 is shown in Fig. 6.8. We compute the spline function

s ∈ S1
5 (4) to fit the data with A′0 composed of those red points. The result is shown in Fig.

6.9.

Example 6.2.3. We are given some points on a curve as shown by the red points in Fig.

6.10. The constrained triangulation 4 is shown in Fig. 6.11. We compute the spline function

s ∈ S1
5 (4) to fit the data with A′0 composed of those red points. The result is shown in Fig.

6.12.

89

Figure 6.8: The triangulation for Example 6.2.2.

Figure 6.9: The contour curve for Example 6.2.2.

90

Figure 6.10: Data points for Example 6.2.3.

Figure 6.11: The triangulation for Example 6.2.3.

91

Figure 6.12: The contour curve for Example 6.2.3.

6.2.4 Curves with Sharp Corners

Previously we only talked about smooth curves. In practice, it is inevitable to come across

curves with sharp corners at a couple of places while smooth elsewhere. In this section, we

present a method to deal with this important situation.

As is known, no C1 spline function has contours with sharp corners. So naturally, splines

which are C0 near the corner might be a candidate. However, due to the energy term in

(6.2), it is very difficult, if not impossible, to enforce a corner, since a corner usually doesn’t

have the minimum energy.

One might resort to C−1 instead. But this would cause technical problems. As is known

to all, floating-point arithmetic is used in computers, and it is inevitably susceptible to loss

of accuracy . Fig. 6.13 is a simple example to illustrate this problem. Suppose we want to

evaluate the spline function at a point p in T1, and p is very close to one of T1’s edges.

92

Figure 6.13: A problem caused by C−1.

When the coordinates of p is represented as a floating-point number in computer, inaccuracy

of machine precision might actually assign the coordinates of another point q to p. Quite

unfortunately, q lies in T2 which shares a common edge with T1. Now, if the spline function

is C−1 on this common edge, the function values at p and q can be quite different. This

would cause huge problems. In contrast, if the function is continuous on the common edge,

the error would be acceptably small.

The argument above indicates that some other techniques need to be considered to gen-

erate a corner which is computationally tractable. And hopefully, the spline function is still

smooth to some extent. One inspiration is the contour of the function f(x, y) = x2−y2. This

function has a saddle point at the origin, and the contours at value 0 form a cross at the

origin. See Fig. 6.14.

93

Figure 6.14: The saddle point of f(x, y) = x2 − y2.

Observe that if we can eliminate half of the cross, we get a sharp corner. So the basic

idea is to form a saddle point on the boundary of the domain Ω.

In order to achieve this, we need to assume that the tip of the corner is formed by two

short straight line segments. Note that this is a pretty mild assumption.

On the other side of the corner, we remove a hole from the domain to make sure that the

corner point is on the boundary of the domain Ω. This can be done easily. In fact, we have

a program to generate holes automatically given the corner tip vertex and two additional

points on its two sides. Figure 6.15 shows the process. First find the angle bisector L1. Then

find the line L2 perpendicular to L1 and passing through the tip vertex. Finally a rectangular

hole is generated along L2. The position of the hole is to guarantee that the two sides of

the corner are completely cut off right there. Also note that the shape of the hole can be

94

Figure 6.15: Generate a hole at the sharp corner.

arbitrary. It can be a rectangle, a triangle, or any polygon, as long as it can intercept the

two sides.

Next is to find a triangulation of the domain Ω with the hole produced above. The tri-

angulation is constrained by the two short line segments of the sides of the corner. This

is the reason why we assumed that the tip of the corner is formed by two short line seg-

ments. Fig. 6.16 is such a constrained triangulation. The wanted contour is a triangle. So

the triangulation has three holes corresponding to the three corners.

The final step is to compute the desired spline function as described in the previous

subsections. The important thing is that the spline function must maintain constant 0 on

the two short line segments at each corner. For example, in Fig. 6.16, the spline function

should be constant 0 on all the red line segments. This can be achieved by manipulating the

95

Figure 6.16: A constrained triangulation with holes.

corresponding domain points and putting them into the constraint (6.14). Also note that we

can still enforce smoothness of the spline function, say, C1 everywhere.

6.2.5 More Examples

Example 6.2.4. We are given some points sampled from some curve with several sharp

corners as shown by the red points in Fig. 6.17. A constrained triangulation 4 with holes

is shown in Fig. 6.18. We compute the spline function s ∈ S1
5 (4) to fit the data with A′0

composed of those red points. Note that the spline function needs to be constant 0 on the line

segments that form the sharp corners. The result is shown in Fig. 6.19.

Example 6.2.5. We are given some points sampled from a rose curve as shown by the red

points in Fig. 6.20. A constrained triangulation 4 is shown in Fig. 6.21. Note that there is

96

Figure 6.17: Data points for Example 6.2.4.

Figure 6.18: The triangulation for Example 6.2.4.

97

Figure 6.19: The contour curve for Example 6.2.4.

no hole in this triangulation. At the origin, we have several short line segments on which the

spline function shall be constant 0 so that the required shape can be generated. We compute

the spline function s ∈ S1
5 (4) to fit the data with A′0 composed of those red points. The result

is shown in Fig. 6.22.

Example 6.2.6. We are given some points sampled from a slightly complicated curve with

several sharp corners as shown by the red points in Fig. 6.23. A constrained triangulation 4

with holes is shown in Fig. 6.24. We compute the spline function s ∈ S1
5 (4) to fit the data

with A′0 composed of those red points. The result is shown in Fig. 6.25.

98

Figure 6.20: Data points for Example 6.2.5.

Figure 6.21: The triangulation for Example 6.2.5.

99

Figure 6.22: The contour curve for Example 6.2.5.

Figure 6.23: Data points for Example 6.2.6.

100

Figure 6.24: The triangulation for Example 6.2.6.

Figure 6.25: The contour curve for Example 6.2.6.

101

6.3 Construction of 3D Smooth Surfaces

In this section we describe the algorithm to generate smooth surfaces in the 3D setting. It

is very similar to the 2D case.

6.3.1 Our Algorithm

Suppose we are given points A0 := {(xi, yi, zi)}N0
i=1 from some unknown closed smooth surface

C. We first construct a polyhedral domain Ω ⊆ R3 which contains all the given points in its

interior. For simplicity, we can just use a cuboid bounding box. Then we find a tetrahedral-

ization 4 of Ω.

We wish to compute a smooth function s whose isosurface at value 0 approximates the

desired surface. In order for the isosurface to stand out, we choose auxiliary points in the

following sense. Pick points A−1 := {(xi, yi, zi)}N−1

i=1 ⊂ Ω outside the closed surface, and

assign them function value −1. Pick points A1 := {(xi, yi, zi)}N1
i=1 ⊂ Ω inside the closed

surface, and assign them function value 1.

Now do the data fitting. Given 0 ≤ r < d and a tetrahedralization 4, let

Srd(4) := {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ 4} (6.16)

be the associated space of trivariate splines of degree d and smoothness r, where Pd is the

space of trivariate polynomials of degree at most d, as defined in Section 2.2. Also fix a

constant λ > 0. The corresponding penalized least-squares (PLS) spline (cf. [1]) is defined

to be:

s∗ := arg min
s∈Srd(4)

‖s− (−1)‖2
A−1

+ ‖s− 0‖2
A0

+ ‖s− 1‖2
A1

+ λE(s), (6.17)

where

‖s− t‖2
A :=

∑
(xi,yi,zi)∈A

(s(xi, yi, zi)− t)2, (6.18)

102

and

E(s) :=

∫
Ω

∑
α,β,γ≥0
α+β+γ=2

(
∂2s

∂xα∂yβ∂zγ

)2

dxdydz. (6.19)

Since s|T is a polynomial of degree d on each tetrahedron T ∈ 4, we can use the B-form

representation (2.58):

s|T =
∑

i+j+k+l=d

cTijklB
d
ijkl. (6.20)

Hence, finding the spline solution is equivalent to finding the B-coefficient vector

c := [cTi,j,k,l, i+ j + k + l = d, T ∈ 4], (6.21)

where c is a column vector of dimension m
(
d+3

3

)
with m denoting the number of tetrahedrons

in 4. Moreover, using the B-form representation (2.58), we obtain

‖s− (−1)‖2
A−1

+ ‖s− 0‖2
A0

+ ‖s− 1‖2
A1

= ‖Ac− b‖2 (6.22)

for some matrix A and b = [−1, . . . ,−1, 0, . . . , 0, 1, . . . , 1]τ . We also have

E(s) = cτKc, (6.23)

for some matrix K. Smoothness conditions from Theorem 2.2.12 helps us to write the con-

straint s ∈ Srd(4) into a linear constraint:

Hc = 0 (6.24)

for some matrix H.

Thus, the optimization problem (6.17) can be reformulated into the following form:

min
c

‖Ac− b‖2 + λcτKc (6.25)

s.t. Hc = 0. (6.26)

We can apply the randomized domain decomposition method presented in Chapter 5 to

find the solution.

103

Figure 6.26: Data points and a tetrahedralization for Example 6.3.1.

6.3.2 Examples

Example 6.3.1. We are given some points sampled from a sphere as shown by the red points

in Fig. 6.26. We select some other points inside and outside the closed surface. The inside

points are shown by the blue points in the figure. A tetrahedralization 4 is then constructed

from the bounding box. We compute the spline function s ∈ S1
5 (4) to fit the data. The result

is shown in Fig. 6.27.

Example 6.3.2. We are given some points sampled from a torus as shown by the red points

in Fig. 6.28. We compute the spline function s ∈ S1
5 (4) to fit the data. The result is shown

in Fig. 6.29.

104

Figure 6.27: The isosurface for Example 6.3.1.

Figure 6.28: Data points and a tetrahedralization for Example 6.3.2.

105

Figure 6.29: The isosurface for Example 6.3.2.

Example 6.3.3. We are given some points sampled from a double torus as shown by the red

points in Fig. 6.30. We compute the spline function s ∈ S1
5 (4) to fit the data. The result is

shown in Fig. 6.31. Fig. 6.32 shows the hollow interior of the isosurface.

6.4 Future Work

There are lots of open problems in the surface reconstruction. For complicated 3D shapes,

a customized constrained tetrahedralization might be necessary. However, as we mentioned

in Chapter 3, this is not very easy. In addition, shape corner problems in 3D are much more

involved than that in 2D. For example, we have not only pointy corners but also corner

edges. These problems are quite challenging.

106

Figure 6.30: Data points and a tetrahedralization for Example 6.3.3.

Figure 6.31: The isosurface for Example 6.3.3.

107

Figure 6.32: The hollow interior of the isosurface in Fig. 6.31.

Another possible future work is to analyze how many sample points are needed and how

to choose the size of the triangulation/tetrahedralization so that the desired curve/surface

has the minimum energy among all candidates and can be reconstructed.

108

Chapter 7

A Randomized Domain Decomposition

Method for Spline Solutions of Poisson

Equations

In this chapter, we present a randomized domain decomposition method for computing spline

solutions of Poisson equations.

7.1 Introduction

We mainly introduce the two-dimensional problem. The three-dimensional case is similar.

7.1.1 Poisson Problems

Let Ω be a polygonal domain in Euclidean space R2 with boundary ∂Ω. The problem of

finding a function u satisfying the following partial differential equation with boundary con-

dition  −∆u = f in Ω

u = g on ∂Ω
(7.1)

is called the Dirichlet problem of Poisson equations, where f ∈ L2(Ω) and g is continuous

over ∂Ω. The existence, uniqueness and stability of the solution has been studied extensively.

See [14] for a detailed analysis.

109

The weak formulation is to find u ∈ H1(Ω) such that∫
Ω

∇u · ∇vdxdy =

∫
Ω

fvdxdy. (7.2)

holds for all v ∈ H1
0 (Ω), and u = g on ∂Ω.

Based on the standard calculus of variations, the weak solution is the minimizer of

E(u) =

∫
Ω

(
1

2
∇u · ∇u− uf

)
dxdy (7.3)

over the set of admissible functions (cf. [14]).

Our job is to compute approximate weak solutions with multivariate spline functions.

7.1.2 Related Works

Many PDEs are related to physical phenomena. Examples include Navier-Stokes equations

in fluid mechanics, elasticity systems in solid mechanics, Schrödinger equations in quantum

mechanics, etc. Solving such equations often leads to a series of linear systems. As the scale

of the problems gets larger every day, more efficient and tractable algorithms are needed.

Domain decomposition methods (DDMs) have thus received lots of attention. DDMs gener-

ally refer to the splitting of a PDE into coupled problems on smaller subdomains forming a

partition of the original domain. Schwarz alternating method is one of the pioneers (cf. [44]).

Many DDMs provide preconditioners that can be accelerated by Krylov subspace methods

and operate on parallel machines (cf. [30], [2], and [24]).

In contrast, our algorithm is based on constrained optimization. We hope that it can

provide some new perspective.

7.2 Two-Dimensional Algorithm

7.2.1 Spline Approximation of Weak Solutions

Given 0 ≤ r < d and a triangulation 4 of Ω, let

Srd(4) := {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ 4} (7.4)

110

be the associated space of bivariate splines of degree d and smoothness r, where Pd is the

space of bivariate polynomials of degree at most d, as defined in Section 2.1.

Our goal is to find an approximate weak solution s∗ such that

s∗ := arg min
s∈Srd(4)
s=g on ∂Ω

E(s), (7.5)

where

E(s) =

∫
Ω

(
1

2
∇s · ∇s− sf

)
dxdy. (7.6)

For the existence and uniqueness of the spline solution, see [1].

Since s|T is a polynomial of degree d on each triangle T ∈ 4, we can use the B-form

representation (2.15):

s|T =
∑

i+j+k=d

cTijkB
d
ijk. (7.7)

Hence, finding the spline solution is equivalent to finding the B-coefficient vector

c := [cTi,j,k, i+ j + k = d, T ∈ 4], (7.8)

where c is a column vector of dimension m
(
d+2

2

)
with m denoting the number of triangles in

4. Moreover, using the B-form representation (2.15), we obtain

E(s) =
1

2
cτKc− cτfMc, (7.9)

for some matrices K and M , where cf is the B-coefficient vector of the spline approximation

of f . The boundary condition can be written as

Ac = bg, (7.10)

for some matrix A, where bg is the vector composed of the values of g at the domain points on

∂Ω. Smoothness conditions from Theorem 2.1.11 helps us to write the constraint s ∈ Srd(4)

into a linear constraint:

Hc = 0 (7.11)

111

for some matrix H.

Thus, to find an approximate weak solution in Srd(4), we need to solve the following

minimization problem:

min
c

1

2
cτKc− cτfMc (7.12)

s.t. Hc = 0, (7.13)

Ac = bg. (7.14)

7.2.2 Our Algorithm

Instead of finding all the entries of the coefficient vector c at once, we solve a collection of

smaller problems at each iteration. To state our algorithm formally, we need some notations

similar to those in Chapter 5. For any subset δ ⊂ 4, we set star0(δ) = δ, and for all k ≥ 1,

recursively define

stark(δ) = ∪{T ∈ 4 : T ∩ stark−1(δ) 6= ∅}. (7.15)

The algorithm is as follows.

Algorithm 7.2.1. (Randomized Domain Decomposition Method for 2D Poisson Equations)

1. Fix a triangulation 4 of Ω. Choose k > 0. Apply Algorithm 5.2.1 to get an initial guess

c0 of the coefficient vector c such that c0 satisfies the boundary condition (7.14).

2. Randomly select a triangle T ∈ 4. Find Ωk
T := stark(T).

3. Let skT ∈ Srd(4)|ΩkT be the restricted minimizer of (7.12) such that after updating cti,j,k =

sti,j,k for all i+j+k = d and t ∈ Ωk
T , the resulting spline still satisfies (7.13) and (7.14).

4. If certain stopping criterion is met, quit; otherwise, go back to step 2.

Let’s take a look at how to find the local fit skT in Step 3 above.

112

Write the coefficient vector c as [cτ1, c
τ
2]τ , where c1 is the coefficient vector associated with

the triangles in Ωk
T , and c2 is the rest. Write the smoothness matrix H in (7.13) as [H1, H2]

such that

Hc = Hc1 +Hc2. (7.16)

Similarly, write the matrix A in (7.14) as [A1, A2] such that

Ac = A1c1 + A2c2. (7.17)

Let K1, M1 and cf1 be the submatrices of K, M and cf related to the triangles in Ωk
T

respectively.

Now finding the local fit skT is equivalent to solving the following minimization problem

min
c1

1

2
cτ1K1c1 − cτf1M1c1 (7.18)

s.t. H1c1 = −H2c2, (7.19)

A1c1 = bg − A2c2. (7.20)

Note that the right-hand sides of the constraints (7.19) and (7.20) are constant since c2 is

fixed here.

We can use the same method as in Chapter 5 to solve the problem (7.18-7.20). For

example, Lagrange multiplier can be used. Letting

L(c1, ξ, η) =
1

2
cτ1K1c1 − cτf1M1c1 + ξτ (H1c1 +H2c2) + ητ (A1c1 + A2c2 − bg), (7.21)

there exist ξ and η such that

K1c1 +Hτ
1 ξ + Aτ1η = M τ

1 cf1, (7.22)

H1c1 = −H2c2, (7.23)

A1c1 = bg − A2c2. (7.24)

The method of least squares or the iterative method described in [1] can be applied then.

113

7.2.3 Convergence Analysis

In this section, we analyze the convergence of Algorithm 7.2.1.

Since (7.18-7.20) is essentially the minimization problem (7.12-7.14) with respect to c1

with c2 fixed, it can be easily seen that Algorithm 7.2.1 is a randomized block coordinate

descent method. Thus, we can use the results from Chapter 4 to analyze the convergence.

Theorem 7.2.2. For the optimization problem (7.12-7.14), let

g(c) :=
1

2
cτKc− cτfMc (7.25)

be the objective function with optimal value g∗. If {c(n)}n≥0 is generated by Algorithm 7.2.1,

then we have the following rate of convergence for the expected values of g:

E[g(c(n))]− g∗ ≤ M

n
(7.26)

for some constant M > 0.

Proof. The only difference between Algorithm 7.2.1 and Algorithm 4.3.3 is that instead of

using (4.9), Algorithm 7.2.1 computes the minimum of the left-hand side of (4.6) directly by

the method of least squares mentioned in the last subsection. However, this little difference

would make no difference since the inequality (4.25) still holds. Thus, the proof of Theorem

4.5.3 passes through. Now this theorem follows.

7.2.4 Numerical Examples

Example 7.2.3. Consider the Dirichlet problem of Poisson equation with exact solution

u(x, y) = 10e−x
2−y2

(7.27)

over a square domain. The triangulation 4 is shown in Fig. 7.1 with the red dots representing

the boundary data points for the degree 5 case. There are 200 triangles. We use Algorithm

7.2.1 to find a spline function in Srd(4). In the algorithm, we choose k = 2. The maximum

errors are measured on 40401 points uniformly distributed over the domain. The results are

summarized in Table 7.1.

114

Figure 7.1: The triangulation for Example 7.2.3.

Table 7.1: Approximation errors in Example 7.2.3

Errors CPU
S1

5 1.25e-05 24.31s
S1

6 1.32e-05 33.97s
S1

7 1.26e-05 51.37s
S1

8 8.19e-06 76.05s

115

Figure 7.2: The triangulation for Example 7.2.4.

Example 7.2.4. Consider the Dirichlet problem of Poisson equation with exact solution

u(x, y) = sin(π(2x+ y))− y2 + x+ 2y (7.28)

over a convex polygon. The triangulation is shown in Fig. 7.2. There are 607 triangles. We

choose k = 4 in the algorithm. The maximum errors are measured on 31234 points uniformly

distributed over the domain. The results are summarized in Table 7.2.

Example 7.2.5. Consider the Dirichlet problem of Poisson equation with exact solution

u(x, y) = (x+ y) sin(π(2x+ y)) +
1

x2 + y2 + 1
+ (x+ y)ex

2−y (7.29)

over a non-convex polygonal domain with two holes. The triangulation is shown in Fig.

7.3. There are 1169 triangles. We choose k = 4 in the algorithm. The maximum errors are

measured on 59945 points uniformly distributed over the domain. The results are summarized

in Table 7.3.

116

Table 7.2: Approximation errors in Example 7.2.4

Errors CPU
S1

5 6.62e-05 76.11s
S1

6 1.73e-05 118.16s
S1

7 1.64e-05 231.31s
S1

8 9.72e-06 415.52s

Figure 7.3: The triangulation for Example 7.2.5.

Table 7.3: Approximation errors in Example 7.2.5

Errors CPU
S1

5 1.58e-05 164.01s
S1

6 2.01e-05 277.22s
S1

7 1.57e-05 539.41s
S1

8 1.08e-05 680.11s

117

7.3 Three-Dimensional Algorithm

The three-dimensional randomized domain decomposition method is essentially the same as

the two-dimensional one. We briefly present the algorithm and illustrate its effectiveness by

several examples.

7.3.1 Spline Approximation of Weak Solutions

Let Ω ⊆ R3 be a polyhedral domain. Given 0 ≤ r < d and a tetrahedralization 4 of Ω, let

Srd(4) := {s ∈ Cr(Ω) : s|T ∈ Pd, for all T ∈ 4} (7.30)

be the associated space of trivariate splines of degree d and smoothness r, where Pd is the

space of trivariate polynomials of degree at most d, as defined in Section 2.2.

Our goal is to find an approximate weak solution s∗ such that

s∗ := arg min
s∈Srd(4)
s=g on ∂Ω

E(s), (7.31)

where

E(s) =

∫
Ω

(
1

2
∇s · ∇s− sf

)
dxdydz. (7.32)

Since s|T is a polynomial of degree d on each tetrahedron T ∈ 4, we can use the B-form

representation (2.58):

s|T =
∑

i+j+k+l=d

cTijklB
d
ijkl. (7.33)

Hence, finding the spline solution is equivalent to finding the B-coefficient vector

c := [cTi,j,k,l, i+ j + k + l = d, T ∈ 4], (7.34)

where c is a column vector of dimension m
(
d+3

3

)
with m denoting the number of tetrahedrons

in 4. Moreover, using the B-form representation (2.58), we obtain

E(s) =
1

2
cτKc− cτfMc, (7.35)

118

for some matrices K and M , where cf is the B-coefficient vector of the spline approximation

of f . The boundary condition can be written as

Ac = bg, (7.36)

for some matrix A, where bg is the vector composed of the values of g at the domain points on

∂Ω. Smoothness conditions from Theorem 2.2.12 helps us to write the constraint s ∈ Srd(4)

into a linear constraint:

Hc = 0 (7.37)

for some matrix H.

Thus, to find an approximate weak solution in Srd(4), we need to solve the following

minimization problem:

min
c

1

2
cτKc− cτfMc (7.38)

s.t. Hc = 0, (7.39)

Ac = bg. (7.40)

7.3.2 Our Algorithm

As in the two-dimensional algorithm, instead of finding all the entries of the coefficient vector

c at once, we solve a collection of smaller problems at each iteration.

For any subset δ ⊂ 4, we set star0(δ) = δ, and for all k ≥ 1, recursively define

stark(δ) = ∪{T ∈ 4 : T ∩ stark−1(δ) 6= ∅}. (7.41)

The algorithm is as follows.

Algorithm 7.3.1. (Randomized Domain Decomposition Method for 3D Poisson Equations)

1. Fix a tetrahedralization 4 of Ω. Choose k > 0. Apply Algorithm 5.3.1 to get an initial

guess c0 of the coefficient vector c such that c0 satisfies the boundary condition (7.40).

119

2. Randomly select a tetrahedron T ∈ 4. Find Ωk
T := stark(T).

3. Let skT ∈ Srd(4)|ΩkT be the restricted minimizer of (7.38) such that after updating

cti,j,k,l = sti,j,k,l for all i + j + k + l = d and t ∈ Ωk
T , the resulting spline still satis-

fies (7.39) and (7.40).

4. If certain stopping criterion is met, quit; otherwise, go back to step 2.

The local fit skT in Step 3 above can be computed in the same way as in the two-

dimensional case.

Write the coefficient vector c as [cτ1, c
τ
2]τ , where c1 is the coefficient vector associated

with the tetrahedrons in Ωk
T , and c2 is the rest. Write the smoothness matrix H in (7.39) as

[H1, H2] such that

Hc = Hc1 +Hc2. (7.42)

Similarly, write the matrix A in (7.40) as [A1, A2] such that

Ac = A1c1 + A2c2. (7.43)

Let K1, M1 and cf1 be the submatrices of K, M and cf related to the tetrahedrons in Ωk
T

respectively.

Now finding the local fit skT is equivalent to solving the following minimization problem

min
c1

1

2
cτ1K1c1 − cτf1M1c1 (7.44)

s.t. H1c1 = −H2c2, (7.45)

A1c1 = bg − A2c2. (7.46)

7.3.3 Convergence Analysis

The convergence of Algorithm 7.3.1 is essentially the same as that of Algorithm 7.2.1. So we

give the following theorem without proof.

120

Table 7.4: Approximation errors in Example 7.3.3

Errors CPU
S1

5 7.93e-05 813.96s
S1

6 9.07e-07 1440.37s

Theorem 7.3.2. For the optimization problem (7.38- 7.40), let

g(c) :=
1

2
cτKc− cτfMc (7.47)

be the objective function with optimal value g∗. If {c(n)}n≥0 is generated by Algorithm 7.3.1,

then we have the following rate of convergence for the expected values of g:

E[g(c(n))]− g∗ ≤ M

n
(7.48)

for some constant M > 0.

7.3.4 Numerical Examples

Example 7.3.3. Consider the Dirichlet problem of Poisson equation with exact solution

u(x, y, z) = 5e−(x−0.5)2−(y−0.5)2−(z−0.5)2

(7.49)

over a cube. The tetrahedralization 4 is shown in Fig. 7.4. There are 384 tetrahedrons. We

use Algorithm 7.3.1 to find a spline function in Srd(4). In the algorithm, we choose k = 2.

The maximum errors are measured on 125000 points uniformly distributed over the domain.

The results are summarized in Table 7.4.

121

Figure 7.4: The tetrahedralization for Example 7.3.3.

Example 7.3.4. Consider the Dirichlet problem of Poisson equation with exact solution

u(x, y, z) = sin(π(x+ y + 2z)) + x2 − y + z (7.50)

over a non-convex domain. The tetrahedralization 4 is shown in Fig. 7.5. There are 312

tetrahedrons. We choose k = 2 in the algorithm. The maximum errors are measured on

95000 points uniformly distributed over the domain. The results are summarized in Table

7.5.

Example 7.3.5. Consider the Dirichlet problem of Poisson equation with exact solution

u(x, y, z) = sin(2π(x+ y + z)) (7.51)

over the same non-convex domain as in Example 7.3.4. But the tetrahedralization here is

more refined with 619 tetrahedrons as shown in Fig. 7.6. We choose k = 2 in the algorithm.

122

Figure 7.5: The tetrahedralization for Example 7.3.4.

Table 7.5: Approximation errors in Example 7.3.4

Errors CPU
S1

5 9.58e-04 630.29s
S1

6 4.92e-05 611.98s

123

Figure 7.6: The tetrahedralization for Example 7.3.5.

Table 7.6: Approximation errors in Example 7.3.5

Errors CPU
S1

5 2.30e-03 2344.87s
S1

6 2.44e-04 2590.52s

The maximum errors are measured on 95000 points uniformly distributed over the domain.

The results are summarized in Table 7.6.

Example 7.3.6. Consider the Dirichlet problem of Poisson equation with exact solution

u(x, y, z) = (x+ y + z) sin(π(2x+ y − z)) +
2

x2 + y2 + z2 + 1
+ (x− z)ex

2−y (7.52)

124

Figure 7.7: The tetrahedralization for Example 7.3.6.

Table 7.7: Approximation errors in Example 7.3.6

Errors CPU
S1

5 8.20e-03 745.77s
S1

6 3.93e-04 763.38s

over a torus-shape domain. The tetrahedralization 4 is shown in Fig. 7.7. There are 588

tetrahedrons. We choose k = 2 in the algorithm. The maximum errors are measured on

49296 points uniformly distributed over the domain. The results are summarized in Table

7.7.

125

7.4 Remarks and Future Work

Since the goal is to have −∆u = f in Ω, we can mix in some empirical ways to choose blocks.

For example, for every odd iteration, we randomly pick a triangle/tetrahedron T and update

the spline on stark(T), while for every even iteration, we pick T on which −∆u = f is the

least satisfied. This alternating method will not undermine the convergence since it is still a

descent method.

One possible future work would be to extend this approach to other types of PDEs.

Another direction is to use parallel or distributed computing to accelerate the computation.

Extra care is needed due to the coupled constraints and overlapping blocks.

126

Bibliography

[1] G. Awanou, M.-J. Lai, and P. Wenston. The multivariate spline method for scattered

data fitting and numerical solutions of partial differential equations. Wavelets and

splines: Athens, pages 24–74, 2005.

[2] S. Badia and F. Verdugo. Robust and scalable domain decomposition solvers for unfitted

finite element methods. Journal of Computational and Applied Mathematics, 344:740–

759, 2018.

[3] A. Beck. Introduction to nonlinear optimization: Theory, algorithms, and applications

with MATLAB, volume 19. Siam, 2014.

[4] M. Bern and D. Eppstein. Mesh generation and optimal triangulation. Computing in

Euclidean geometry, 1:23–90, 1992.

[5] D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society,

48(3):334–334, 1997.

[6] J.-D. Boissonnat, D. Cohen-Steiner, B. Mourrain, G. Rote, and G. Vegter. Meshing of

surfaces. In Effective Computational Geometry for Curves and Surfaces, pages 181–229.

Springer, 2006.

[7] S. C. Brenner and L. R. Scott. The mathematical theory of finite element methods.

2002. Texts in applied mathematics, 2008.

127

[8] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15. Springer

Science & Business Media, 2012.

[9] P. G. Ciarlet. The finite element method for elliptic problems, volume 40. Siam, 2002.

[10] M. De Berg, M. Van Kreveld, M. Overmars, and O. Schwarzkopf. Computational geom-

etry. In Computational geometry, pages 1–17. Springer, 1997.

[11] W. Deng, M.-J. Lai, Z. Peng, and W. Yin. Parallel multi-block admm with o (1/k)

convergence. Journal of Scientific Computing, 71(2):712–736, 2017.

[12] R. A. Dwyer. A faster divide-and-conquer algorithm for constructing delaunay triangu-

lations. Algorithmica, 2(1-4):137–151, 1987.

[13] N. Dyn, D. Levine, and J. A. Gregory. A butterfly subdivision scheme for surface

interpolation with tension control. ACM transactions on Graphics (TOG), 9(2):160–

169, 1990.

[14] L. C. Evans. Partial differential equations, 2 nd. Graduate Studies in Mathematics, 19,

2010.

[15] G. E. Farin. NURB curves and surfaces: from projective geometry to practical use. AK

Peters, Ltd., 1995.

[16] D. A. Field. Qualitative measures for initial meshes. International Journal for Numerical

Methods in Engineering, 47(4):887–906, 2000.

[17] C. Frederick, Y. Wong, and F. Edge. Two-dimensional automatic mesh generation

for structural analysis. International Journal for Numerical Methods in Engineering,

2(1):133–144, 1970.

[18] I. Gutman and W. Xiao. Generalized inverse of the laplacian matrix and some

applications. Bulletin (Académie serbe des sciences et des arts. Classe des sciences

mathématiques et naturelles. Sciences mathématiques), pages 15–23, 2004.

128

[19] K. Hormann and A. Agathos. The point in polygon problem for arbitrary polygons.

Computational Geometry, 20(3):131–144, 2001.

[20] C.-J. Hsieh, K.-W. Chang, C.-J. Lin, S. S. Keerthi, and S. Sundararajan. A dual coordi-

nate descent method for large-scale linear svm. In Proceedings of the 25th international

conference on Machine learning, pages 408–415. ACM, 2008.

[21] C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable selection

for non-negative matrix factorization. In Proceedings of the 17th ACM SIGKDD inter-

national conference on Knowledge discovery and data mining, pages 1064–1072. ACM,

2011.

[22] C.-J. Hsieh, I. S. Dhillon, P. K. Ravikumar, and M. A. Sustik. Sparse inverse covariance

matrix estimation using quadratic approximation. In Advances in neural information

processing systems, pages 2330–2338, 2011.

[23] C. Johnson. Numerical solution of partial differential equations by the finite element

method. Courier Corporation, 2012.

[24] P. Jolivet, F. Hecht, F. Nataf, and C. Prud’Homme. Scalable domain decomposition

preconditioners for heterogeneous elliptic problems. Scientific Programming, 22(2):157–

171, 2014.

[25] M.-J. Lai. Multivariate splines for data fitting and approximation. Approximation

Theory XII: San Antonio, pages 210–228, 2007.

[26] M.-J. Lai and C. Mersmann. Adaptive triangulation methods for bivariate spline solu-

tions of the poisson equation. 2016.

[27] M.-J. Lai and L. L. Schumaker. Spline functions on triangulations. Number 110. Cam-

bridge University Press, 2007.

129

[28] M.-J. Lai and L. L. Schumaker. A domain decomposition method for computing

bivariate spline fits of scattered data. SIAM Journal on Numerical Analysis, 47(2):911–

928, 2009.

[29] C. L. Lawson. Software for c1 surface interpolation. In Mathematical software, pages

161–194. Elsevier, 1977.

[30] R. Li and Y. Saad. Low-rank correction methods for algebraic domain decomposition

preconditioners. SIAM Journal on Matrix Analysis and Applications, 38(3):807–828,

2017.

[31] J. Linhart. A quick point-in-polyhedron test. Computers & graphics, 14(3-4):445–447,

1990.

[32] D. L. Marcum and N. P. Weatherill. Unstructured grid generation using iterative point

insertion and local reconnection. AIAA journal, 33(9):1619–1625, 1995.

[33] C. A. Micchelli. Mathematical aspects of geometric modeling. SIAM, 1995.

[34] I. Necoara, Y. Nesterov, and F. Glineur. A random coordinate descent method on large

optimization problems with linear constraints. University Politehnica Bucharest, Tech.

Rep, 2011.

[35] J. Peraire, J. Peiró, and K. Morgan. Advancing front grid generation. Handbook of grid

generation, pages 17–1, 1999.

[36] C. Poignard, T. Pereira, and J. P. Pade. Spectra of laplacian matrices of weighted

graphs: structural genericity properties. SIAM Journal on Applied Mathematics,

78(1):372–394, 2018.

[37] S. Reddi, A. Hefny, C. Downey, A. Dubey, and S. Sra. Large-scale randomized-

coordinate descent methods with non-separable linear constraints. arXiv preprint

arXiv:1409.2617, 2014.

130

[38] P. Richtárik and M. Takáč. Distributed coordinate descent method for learning with

big data. The Journal of Machine Learning Research, 17(1):2657–2681, 2016.

[39] R. Schneiders. Refining quadrilateral and hexahedral element meshes. transition, 2:1,

1996.

[40] L. L. Schumaker. Computing bivariate splines in scattered data fitting and the finite-

element method. Numerical Algorithms, 48(1-3):237–260, 2008.

[41] S. Shalev-Shwartz and T. Zhang. Stochastic dual coordinate ascent methods for reg-

ularized loss minimization. Journal of Machine Learning Research, 14(Feb):567–599,

2013.

[42] J. R. Shewchuk. Lecture notes on delaunay mesh generation. 1999.

[43] J. Thompson and N. WEATHERILL. Aspects of numerical grid generation-current

science and art. In 11th Applied Aerodynamics Conference, page 3539, 1993.

[44] A. Toselli and O. Widlund. Domain decomposition methods-algorithms and theory,

volume 34. Springer Science & Business Media, 2006.

[45] M. von Golitschek, M.-J. Lai, and L. L. Schumaker. Error bounds for minimal energy

bivariate polynomial splines. Numerische Mathematik, 93(2):315–331, 2002.

[46] M. Von Golitschek and L. L. Schumaker. Bounds on projections onto bivariate polyno-

mial spline spaces with stable local bases. Constructive approximation, 18(2):241–254,

2002.

[47] D. F. Watson. Computing the n-dimensional delaunay tessellation with application to

voronoi polytopes. The computer journal, 24(2):167–172, 1981.

[48] A. Žeńı̌sek. Polynomial approximation on tetrahedrons in the finite element method.

Journal of Approximation Theory, 7(4):334–351, 1973.

131

	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Preliminary on Multivariate Splines
	Bivariate Polynomials
	Trivariate Polynomials

	Triangulations and Tetrahedralizations
	Introduction
	Two-Dimensional Delaunay Triangulations
	Three-Dimensional Delaunay Tetrahedralizations

	Randomized Block Coordinate Descent Method
	Introduction
	Problem Formulation and Notations
	Algorithm
	Reduction of General Case
	Convergence Analysis
	Future Work

	A Randomized Domain Decomposition Method for Computing Multivariate Spline Fits of Scattered Data
	Introduction
	Two-Dimensional Algorithm
	Three-Dimensional Algorithm
	Remarks and Future Work

	Multivariate Splines for Curve and Surface Reconstruction
	Introduction
	Construction of 2D Smooth Curves
	Construction of 3D Smooth Surfaces
	Future Work

	A Randomized Domain Decomposition Method for Spline Solutions of Poisson Equations
	Introduction
	Two-Dimensional Algorithm
	Three-Dimensional Algorithm
	Remarks and Future Work

	Bibliography

