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ABSTRACT

The following dissertation consists of two parts. Throughout this dissertation, we assume
that the spherical triangulation A could be a part of a sphere with or without holes, or the
whole sphere S?. In the first part, given a set of function values and derivatives at scattered
data locations over a spherical surface, we first use the minimal energy method to find a
Hermite interpolation on the spherical spline spaces over a spherical triangulation A of the
scattered data locations. We show that the minimal energy method produces a unique spher-
ical Hermite interpolation spline of the given scattered data with derivatives. Also we show
that the Hermite interpolatory surface converges to a given sufficiently smooth function f in
L, and L., norm if the values are obtained from this f. That is, the surface of the spherical
Hermite interpolation spline resembles the given set of scattered data values and derivatives.
Some numerical results are given to demonstrate our method. In the second part, for any
integer > 0, we first give a method of C" hole filling by the minimal energy quasi-Hermite
interpolation method and delicate care of C" related boundaries. Then we present a method
to deal with point cloud with C" continuity by using the minimal energy Hermite interpo-

lation method or minimal energy quasi-Hermite interpolation method, and our surface can



interpolate these points and their derivatives if they are given. Several numerical experiments

are presented to show our methods.
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CHAPTER 1

INTRODUCTION

Spline surfaces have been studied for more than 40 years, and have become very impor-
tant tools in approximation theory and numerical analysis, cf. [14], [3] and [37]. They have
found many applications in CAGD(computer-aided geometric design) which is concerned
with the approximation and representation of curves and surfaces that arise when these
objects have to be processed by a computer, CG(computer graphics), CAD(computer-aided
design), signal processing, numerical solution of ordinary differential equations and partial
differential equations, financial engineering etc., cf. [14], [3], [37], [9], [33], [36] and [15]. By
far the most important spline surfaces are polynomial spline surfaces like classical Bézier
patches defined on triangular and rectangular domains, B-spline surfaces defined on rect-
angular domains in terms of tensor product form and their extensions on higher dimension
domains, and spherical splines defined on sphere. Interpolation and approximation are the
main research interests. Many important achievements have been obtained, for example, the
de Casteljau algorithm, subdivision algorithms and smoothness conditions connecting two
surface patches, cf. [14], [13], [20], [3]. In particular, the most recent and important achieve-
ment is ALW method which enables us to use spline functions of any degree d and any
smoothness r with d > 37 + 2 over a triangulation for numerical solution of partial differen-
tial equations and scattered data interpolation, cf. [9]. These results have been documented
in [Lai & Schumaker’07] monograph, cf. [37].

The theory of spherical splines on triangulations of the sphere S? in R? have been devel-

oped by P. Alfeld, M. Neamtu, and L. L. Schumaker in a series of papers [3]-[5]. Spherical



splines are an interesting example for surfaces defined on surfaces and have important appli-
cations in geophysics and metrology which involve approximations of functions defined on
the sphere, cf. [13] and [37]. Many theories of bivariate polynomial splines on planar trian-
gulations carry over, but there are several significant differences because the sphere which
is a closed manifold much different from planar domains. For example, the summation of
barycentric coordinates is greater than one for any interior points while it is always one as in
planar domains, computation of the derivatives of functions defined on sphere, integration
of spherical splines over spherical triangulation and calculable spherical Sobolev space semi-
norms. In [40], M. Neamtu, and L. L. Schumaker studied approximation bounds of spherical
splines on functions in Sobolev spaces on the sphere, where a spherical spline of degree d is
a C" function whose pieces are the restrictions of homogeneous polynomials of degree d to
the sphere. The bounds are expressed in terms of approximate seminorms defined with the
help of a natural radial projection, and are obtained using appropriate quasi-interpolation
operators. The derivatives of a Bézier-Bernstein polynomial defined on the sphere can be
obtained by calculating the restriction of derivatives of its homogeneous extension to R* on
sphere S2.

Scattered data fitting has been studied widely. For planar domain case, Hermite inter-
polants in a triangulation of a planar domain was studied in [20], and the energy minimization
method for scattered data Hermite interpolation has been studied recently in [48]. For spher-
ical domain, minimal energy Lagrange interpolation using spherical splines was first studied
in [4], then studied in [11] with a modification of energy functional, where triangulations in
these papers are the whole sphere. In this dissertation, we first study the minimal energy
method for Hermite interpolation problem on the sphere S? in R3. The notion of spherical
Hermite interpolation with first order directional derivatives was introduced in [22]. We use
a general notation of Hermite interpolation discussed in [20] and [48] with a change of deriva-
tives with respect to latitude and longitude direction. The Hermite interpolation problem

does have an important practical application. In 2007, a satellite called GOCE (Gravity



field and steady-state Ocean Circulation Explorer) will be launched to collect gravitational
vectors over sampling points around the Earth. Together with the geopotential data from
CHAMP (CHAllenging Minisatellite Payload) which is a German small satellite mission for
geoscientific and atmospheric research and its applications, we have location data and its
derivatives up to second order for the geopotential function around the Earth, cf. [25]. The
purpose of the satellite is to get a more accurate estimate of geopotential near the surface of
the Earth. An important intermediate step is to estimate the geopotential very accurately
at the orbital level of the satellite, cf. [12]. This motivates us to use spherical spline sur-
faces to solve Hermite interpolation problem over scattered data on the sphere, and make
them resemble the shape of the given data values and approximate the geopotential very
accurately.

On the second part of this dissertation, we study hole filling and C" scattered data smooth
fitting with centralizable data. Scattered data interpolation and hole filling are important
research questions and there are many papers about the planar domain case, e.g.,cf. [14],
[16], [32], [34], [30] and [31]. For spherical domains, we use the minimal energy method for
quasi-Hermite interpolation (cf. Definition 3.1.1) to deal with hole filling problem. Mainly we
use this method to find a spherical spline surface satisfying Hermite interpolation conditions
only at the vertices of boundary edges of curved polygon holes.

We always assume that the spherical triangulation A is a part of a sphere with or without
holes, or the whole sphere throughout this dissertation. Our main contributions lie in the

following.

e Given a set of scattered data with derivatives, we use minimal energy method to
construct Hermite interpolation on spherical spline spaces over a spherical triangulation
A of the scattered data locations. Then we show that the minimal energy method
produces a unique Hermite spherical interpolation spline of given scattered data with
derivatives. Finally we show that the Hermite interpolation spline converges to a given

sufficiently smooth function f in Ly and L., norm if the values are obtained from this



f. Hence the surface of the Hermite spherical spline interpolation resembles the given

set of derivatives.

e For any integer » > 0, we first give a method of C” hole filling using the minimal
energy quasi-Hermite interpolation over a spherical triangulation of polygonal holes on
the sphere. Then we implement several numerical experiments for r =0, 1, and 2 to

demonstrate our method.

e For any integer r > 0, we deal with centralizable point cloud by using the minimal
energy Hermite interpolation method or the quasi-Hermite interpolation method to
get a surface with global C” continuity. Our surface can interpolate data locations
and derivatives up to r-th order if they are given. Also we implement experiments for

r=20, 1, and 2 to show our method.

The organization of dissertation is as follows. Chapter 2 presents the basic topics of
spherical splines as preliminaries. Chapter 3 addresses the minimal energy method for Her-
mite interpolation. Chapter 4 is devoted to surface design based on spherical splines, and it
includes hole filling and C" scattered data fitting. The last chapter, Chapter 5, focuses on

numerical experiments to support our methods and theories in Chapter 3 and Chapter 4.



CHAPTER 2

PRELIMINARIES

In this chapter, we review well-established notations and theory in spline spaces defined on
triangulations of the unit sphere S? in R3. The spaces are natural analogs of the bivariate
spline spaces discussed in [37], and are made up of pieces of trivariate homogeneous poly-
nomials restricted to S?. Thus, they are piecewise spherical harmonics. As we shall see,
virtually the entire theory of bivariate polynomial splines on planar triangulation carries
over, although there are several significant differences. Spherical splines are an interesting
example of surfaces defined on surfaces, and the sphere is a closed manifold much different
from planar domain, cf. [13]. We divide this chapter into three sections, and discuss the basic

theory of spherical splines and approximation properties of spherical splines.

2.1 SPHERICAL TRIANGULATIONS AND RADIAL PROJECTION

In this section we introduce some basic notation, definitions and lemmas used throughout
this dissertation. These contents including proof can be found in [40], [37] and [10]. Let S?
denote the unit sphere in R3. Given two points u, v on S? that are not antipodal, i.e., they
do not lie on a line through the origin. Then the points u,v divide the great circle passing
through u,v into two circular arcs. We write wo for the shorter of the arcs. Its length is
just the geodesic distance between u,v. Now let us give definitions for a spherical triangle,

spherical triangulation and a regular spherical triangulation.

DEFINITION 2.1.1. Given three points vi, vy and vs on the unit sphere S* which lie strictly

in one hemisphere. Then we define the associated spherical triangle 7 := < v1,v2,v3 > to



be the set of points on S? that lie in the region bounded by the three circular arcs 010s, UgU3
and v3v1, which are called edges of the spherical triangle 7. And the points vy, vy and vs are

called vertices of 7. We say T is non-degenerate if 7 has nonzero area.

DEFINITION 2.1.2. A set of spherical triangles A = {T;}Y is called a spherical tri-
angulation provided that the intersection of two triangles in A is empty, or is a common

vertex or common edge. We write () := UZN T; for associated domain. If Q = S?, then we say

that A covers S2.

In this dissertation, we are interested in cases where A covers S? and where A does
not cover S?. Note that the hole filling problem is the second case. To state results on the
relationship between the number #)V of vertices, number #FE of edges, and number #7T of
triangles in a spherical triangulation, we have to distinguish between the cases when A covers

S? and when it does not. First we consider the case when A does not cover S2.

DEFINITION 2.1.3. Let A be a spherical triangulation of a domain Q C S?. Then we say
that A is shellable provided it consists of a single triangle, or if it can be obtained from a
shellable triangulation of A by adding one triangle T such that T intersects A precisely along
one or two edges. We say that A is regular provided that A is shellable, or it can be obtained
from a shellable triangulation A by removing one or more shellable subtriangulations, all of

whose vertices are interior vertices of A.

It is easy to show that for regular spherical triangulation that does not cover S?, exactly

the same Euler relations as in the planar case hold.

THEOREM 2.1.4. (Euler relations that A does not cover S, cf. [37] ) Let A be a reqular
triangulation, and #Vg, #Vi, #Eg, #H and #T denote the number of boundary vertices,

interior vertices, boundary edges, holes and triangles respectively. Then we have
1) #Ep = #Vg,

2) #E; = 3#V; + Vg -8 + 3#H,



3) #T =2#V; + #Vp -2 + 2#H.

For case that A is regular and covers the whole unit sphere S?, we can state the following

properties of A( cf. [37]).

1) For A to exist the cardinality of V must be at least 4.
2) The number #E of edges of A is related to the number of triangles as #FE = 3#71'/2.

3) The number of vertices #V and the number of triangles #7T are related as #E =
3(#V —2).

4) The number of vertices #) and the number of triangles #7T are related as #T =

2#V — 2).

To study spherical spline space we need a notion of the size of a spherical partition.
Given a spherical triangle 7 let |7| denote the diameter of the smallest spherical cap

containing 7 and let p, denote the diameter of the largest spherical cap contained in 7. Then
|A| = max{|r|, 7€ A}

pa =min{p,, 7€ A}

are correspondingly the diameter of the largest triangle in A and the diameter of the smallest

spherical cap inscribed in A.

DEFINITION 2.1.5. Let (8 be a positive real number. A triangulation A is said to be [3-

quasi-uniform provided that
A
—| | <p.

2N
It is well-known that in the planar case, the smallest angle of a quasi-uniform triangulation
is bounded below by 1/, see [35]. We make use of a concept of a natural radial projection
developed in [40] to relate properties of planar quasi-uniform triangulations to the spherical
ones. It will be clear from our construction that we need to bound triangulation size. In

order to use the results of [40], we need to choose this bound to be 1.



Figure 2.1: Radial mapping of a spherical triangle to a planar triangle.

DEFINITION 2.1.6. (c¢f. [40]) Fiz a spherical triangle T with |T| < 1. Define r, to be the
center of a spherical cap of smallest possible radius containing 7, and let T, be the tangent

plane touching S* at r. . We define the radial projection R. from T, into S* by

E

w:= R,w = €S*weT,.

Since R, is one-to-one, R-' is well-defined. Let T be the image of T under R

B

Let p- and |7| be diameters of the inscribed and outscribed circles of 7 correspondingly.

It is not too difficult to check that

7] < |7| < Kal7],

K5 'pr < pz < Kopr, (2.1.1)
for some positive constants K; and K5 (cf. [40]). However we make use of the following

LEMMA 2.1.7. (cf. [10]) Let T be a spherical triangle with |7| < 1. Let T denote the image

of T under the map R:'. Then

2tan — = |T| (2.1.2)



and

2tan'02—T < p-. (2.1.3)

ProOF. By the definition of R, the center of the smallest spherical cap containing 7
is the center of the circle outscribing 7. Let © be one of the vertices of 7. The center of
the unit sphere O, v and r, form a right triangle with the leg Or, of length 1, the leg vr,

7]

7 and the angle ZvOr, having radian measurement 5 Then (2.1.2) follows

having length >
immediately.
The largest spherical cap o contained in 7 is mapped onto an ellipse € in the plane T,
which is contained in 7. The largest circle & contained in 7 has a radius % greater than
or equal to r. which is the radius of the largest circle contained in the ellipse. Let o be the
center of ¢ and v be any point on the boundary do of the cap. Let 0 and v be the images

of 0 and v under R respectively. Then r, can defined by 7. := min,es,{|0 — ¥|}. Note now

that
|o — 0| > tan|o — v|, Vv € do.
Therefore
% > r. > tan %
and we have (2.1.3). O

Since great circles are mapped into straight lines under the inverse of the radial projection
R., any cluster of spherical triangles w with |w| < 1 is mapped into a planar triangulation

w.

LEMMA 2.1.8. (cf. [10], [37]) Let A be a (-quasi-uniform triangulation of the unit sphere

with |A| < 1. Let ©a denote the smallest angle of A. There exists a constant Ay such that

1
> .
@A_Alﬁ (2.1.4)
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PROOF. Fix a spherical triangle 7 € A and construct the radial projection R.. By

Lemma 2.1.7 we have

[l

T tan 5 1

m < 2 < 2tan- f.

pr ~ tanf; 2
Since T is a planar triangle, its every angle is bounded below by A%ﬁ with A; = 2tan%.
Since the corresponding spherical angles are even greater (2.1.4) follows. O

We will need another lemma comparing areas A, of spherical triangles to the size param-

eters |A] and pa characterizing spherical triangulations.

LEMMA 2.1.9. (¢f. [10], [37])For every spherical triangle 7 € A with |A] <1

2 AQ
% <A, < W|4 © (2.1.5)

PROOF. The area A, of a spherical triangle is bounded above by the area of the smallest
spherical cap containing 7. The diameter of this cap is |7|. Without loss of generality we
assume that the center of this cap is located at the north pole. Then

2 |T|/2 |A|2
A < / / sinndndf = 27 (1 — cos(|7]/2)) < T
o Jo

Similarly, A, is bounded below by the area of the largest spherical cap contained in 7, which
by the definition has a diameter p,. Therefore

TPA

Ar 2 2r(1 = cos(p,/2)) = °2

O

Another result that we need concerning (-quasi-uniform triangulations is a bound on the
number of triangles n; in the k-th disk around 7. We denote the union of all triangles in A

that share the vertex v by star!(v). Define recursively
star’(v) := U{star’ (w) : w is a vertex of star*~'(v)},¢ > 1,

and

star’(7) := U{star’(w) : w is a vertex of 7}, ¢ > 1.
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LEMMA 2.1.10. (cf. [37])Suppose A is a B-quasi-uniform triangulation such that |A| < 1.

Then for any triangle T € A and any k > 0 the number ny, of triangles in star® () is

2
7%32%@k+nﬂ (2.1.6)
and
> 2@k+D2 (2.1.7)
k = Wﬁ2

PROOF. Note that star®(7) is contained in a spherical cap of radius R = (2k + 1)% and

area Ap = 27(1 — cos R). By Lemma 2.1.9 we have

A < 4
5 — T

Then

2
nk% < Ar =2n(1 —cosR) < nR*.

Therefore
56%(2k + 1)
ny < %

On the other hand, star®(7) contains a spherical cap of radius r = (2k 4+ 1)22 and area

A, =27(1 — cosr). Then by Lemma 2.1.9

A 2
2r? < 2m(1 —cosr) = A, < nkﬂ|4 | ,
therefore
2(2k + 1)2
ne = 5 .
73

2.2 SPHERICAL POLYNOMIALS

In this section, we introduce the key buildings for spherical splines. Throughout this disser-
tation, we write v for a point on the unit sphere S? in R3, when there is no confusion. At
times we will also use v to denote the corresponding unit vector. Before introducing spherical

polynomials, first we need to discuss spherical barycentric coordinates.
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2.2.1 SPHERICAL BARYCENTRIC COORDINATES

In this subsection we define an analog of planar barycentric coordinates on the sphere and
analyze some of their basic properties as well as two important differences as compared to
planar barycentric coordinates. We start by introducing a special set of coordinates in R3

which will be used later to construct barycentric coordinates on the sphere, see [3].
DEFINITION 2.2.1. (cf. [3]) Let V := {vy,va,vs} be a basis for R3. We call
T:={veR’:v=>0bvy+byva+byvs, b >0} (2.2.1)
the trihedron generated by V. Each v € R3 can be written in the form
Vv = b1vy + byva + b3vgs. (2.2.2)
We call by, by, by the trihedral coordinates of v with respect to V.

Equation (2.2.2) defining the trihedral coordinates can be written as a system of three

equations for b;’s:

T x T
v vy v b1 v
(A0 ) 4 by | = | v¥ |
vy v V3 bs v*

where v* denotes the z-coordinate of v, etc. The matrix above is nonsingular since vy, va, v3
are linearly independent. Using Crammer’s rule we immediately have

_det(v,v2,v3) b — det(vi, v, v3) _det(vy,v2,v)

by = = —
! det(vl,w,vg)’ 2 det(Ul,Ug,U:g)’ 3 det(’Ul,’UQ,’Ug)

, (2.2.3)

where

det(vl, Vo, Ug) = det 1)31/ 1)32/ 'Ug

and so forth. Equations above show that the b;’s are ratios of volumes of tetrahedra.
The concept of homogeneity plays a very important role in the construction of spherical

spline functions. Let us present a formal definition and relate it to trihedral coordinates.
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DEFINITION 2.2.2. (cf. [3], [4], [37])Given an arbitrary integer d,a trivariate function F

is said to be homogeneous of degree d provided that for every real number o # 0,
F(av) = a’F(v), v e R*{0}. (2.2.4)
Let
Hq = {p € Py : p is homogeneous of degree d},
where Py is the space of trivariate polynomaials of degree d. Then we refer to Hy as the space

of homogeneous trivariate polynomials of degree d.

By definition, we have b;(av) = ab;(v) for all @ € R, i = 1,2, 3, this implies that the b;’s
are homogeneous linear functions of v of degree of homogeneity 1.

We summaries some additional properties of trihedral coordinates in the following

LEMMA 2.2.3. (cf. [3])
1) {b;(v),1=1,2,3} is a linearly independent set,
2) If L is the space of trivariate linear homogeneous polynomials, then £ = span{by, by, bs},
3) bj(vj) = 6;5,4,5 =1,2,3,
4) bj(v) >0 for all v in the interior of trihedron T .

PROOF. 1) Suppose there are scalars g, as, a3 such that
a1b1(v) + asba(v) + asbs(v) = 0,Vv € R®. (2.2.5)
Define vg := a1vy + asvy + agvy. By uniqueness of trihedral coordinates, we must have
a; = b;(vg),i =1,2,3.

Then (2.2.5) implies

3
Za? =0,
i=1
and thus a; = 0,7 =1,2,3.

2) Since b;’s are homogeneous linear functions, clearly

span{by, by, b3} C L
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Let P(z,y, z) = ax+by+cz+d € L. Since P(x,y, z) is linearly homogeneous P(az, ay, az) =

aP(z,y,z),Va € R. Choose o # 1. Then we must have
alar +by +cz) +d = alax + by + cz) + ad

and thus d = 0. Then P(x,y, 2) = ax+by+cz, and £ = span{z, y, z}. Since z, y, z are linearly
independent dim(L£) = 3. Since by, by, b3 are linearly independent and dim(span{b;, by, b3}) =
3, L = span{by, by, bs3}.

3) Consider for some v;,j = 1,2, 3,

Then ,
(bj(v) = vy + > bi(vy)vi =0.

i=1,i#j

Since vi’s are linearly independent we must have
bj(v;) =1
bi(Uj) == O,Z §£ j

4) If b;(v) = 0 for some i, then v = 33

i=1,2i 0j(v)v;. Hence v € span{b;, j # i}, thus v is

not in the interior of 7. Thus if v is in the interior of 7 we must have b;(v) # 0 for all i. By

the definition of 7 b;(v) > 0 for i = 1,2,3, and all v in the interior of 7. O
THEOREM 2.2.4. (cf. [3]) Let R be any nonsingular matriz. Then
bE(Rv) = bi(v), i =1,2,3, (2.2.6)
where bE are the trihedral coordinates of Rv with respect to { Rvy, Rva, Rvs}.
PROOF. Multiplying (2.2.2) by R, we have

Rv = blRV1 + bgRVz + b3RV3.
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Since R is nonsingular matrix, so det(R) # 0. Using Crammer’s rule we immediately have

_ det(Rv, Rvg, Ruz)  det(R)det(v, vz, v3)

b1 (Rv) = =
(fiv) det(Ruvy, Ruy, Rug)  det(R)det(vy, vg,v3)’
by (Ro) = det(Rvy, Rv, Rus)  det(R)det(vy,v,v3)
20 = det(Ruvy, Rvy, Rus)  det(R)det (v, vo, v3)’
b (o) — det(Rvy, Rvy, Rv)  det(R)det(vy, vz, v)
’  det(Ruvy, Rvy, Rus)  det(R)det(vy, vo, v3)
where _ -
vf vy U3
det(’Ul,’UQ,Ug) = det 1)31/ 1)32/ 'Ug
vi vy U3
Therefore, b%1(Rv) = by (v), by(Rv) = by(v), bF3(Rv) = bz(v). O

THEOREM 2.2.5. (cf. [3]) The three planes spanned by pairs of the vi’s divide R3 into
eight trihedra. The functions by, by, bs have constant signs on each of the eight trihedra. In

particular, v € T if and only if b; >0, i =1,2,3.

PROOF. Let 79* denote a trihedron generated by {(—1)vy, (—1)va, (—=1)kvs}, i, 4,k €
{0,1}. Note that 7% = 7 and each of the eight trihedra can be described this way. Fix
i,4, k. We show that for all v in the interior of 7% % (b, (v) with respect to 7) has a
constant sign.

Let 7% be the first trihedral coordinate of v in the interior of 7% with respect to T4*. Note

that by Lemma 2.2.3, b7%(v) > 0 for any such v. Then

det (v, (—1)7vy, (—1)*vs)

A e ey o s

L LC ST

det(vy, vo, v3)

Since b7%(v) > 0 by above b has a constant sign in the interior of 7%*. O
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Now we introduce spherical barycentric coordinates and relate their properties to the
set of trihedral coordinates. We also describe the two important differences between planar

barycentric coordinates and spherical barycentric coordinates.

DEFINITION 2.2.6. (cf. [3]) Assume intersection of S* with the trihedron T generated by
V' is a spherical triangle T, then the spherical barycentric coordinates of a point v on

S? relative to 7 are the unique real numbers by, by, by such that
VvV = b1V1 + bsz + b3V3. (227)

The spherical barycentric coordinates of a point v with respect to 7 are exactly the same
as the trihedral coordinates of v with respect to 7. This implies they have the following

properties:

LEMMA 2.2.7. (cf. [3], [37]) For any non-degenerate spherical triangle T :=< vy, va, v3 >,

we have
1) bi(’Uj) = 5ij7i7j = 1,2,3,

2) The b; are ratios of volumes of tetrahedra,i.e., by is the ration of the signed volume of the

tetrahedra t1 :=< 0,v,v9,v3 > and t :=< 0, vy, v9,v3 >, with a similar interpretation,
3) For all v in the interior of T, b;(v) > 0,

4) If a point v lies on an edge of T, then one of its spherical barycentric coordinates
vanishes, i.e., b; vanishes on the edge of T opposite to v; for alli = 1,2,3. The remaining
two spherical barycentric coordinates are ratios of sines of geodesic distances, rather

then ratios of geodesic distances,

5) If the edges of a spherical triangle T are extended to great circles, the sphere is divided
into eight regions. The spherical barycentric coordinates by, bs, by have constant signs

on each of these eight regions,
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6) Spherical barycentric coordinates are infinitely differentiable functions of v,

7) The spherical barycentric coordinates of a point v on the sphere relative to one spherical
triangle T can be computed from those relative to another spherical triangle by matriz

multiplication,

8) The spherical barycentric coordinates of a point v are rotation invariant, i.e., they

depend only on the relative positions of v and vy, vy, v3 to each other,

9) The span of the spherical barycentric coordinates by(v),bs(v), b3(v) relative to any tri-
angle is always the three-dimensional linear space obtained by restricting the space L
of linear homogeneous polynomials on R3 to the sphere S?,and is thus independent of

the triangle,

10) In contrast to the usual barycentric coordinates on the planar triangles which always
sum to 1, by(v) 4+ ba(v) + b3(v) > 1, if v € T and v # v1,v9,v5. And this is most

significant difference as compared to planar case.

PRrROOF. Apply Lemma 2.2.3, Theorem 2.2.4 and Theorem 2.2.5. O

We now show that spherical barycentric coordinates can also be expressed in terms of
certain natural angles associated with the geometry. Let n; denote the unit normal vectors
to the planes P; := span(V'\v;),i = 1,2, 3. The orientation of these vectors is chosen to be

consistent with the orientation of the vectors v; relative to P;, i.e.,
sgn det(vy, vg, v3) = sgn det(ny, vy, v3) =

sgn det(vy, ng, v3) = sgn det(vy, va, n3).

For a point v € S?, let the angles a;, 3;, be defined by the dot products
sino; 1= Vv - nj, sinf3; :=v;-ng, =123

The «; represent oriented angles between the vector v and the planes P;, while the (3; are the

analogous angles between v; and P;. For nontrivial spherical triangles, det(vy, v, v3) # 0,
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and therefore sin 3; # 0,7 = 1,2, 3.

THEOREM 2.2.8. (cf. [3]) The spherical barycentric coordinates of a point v € S* with

respect to a triangle T are given by

sin «;
bi(v) = —==, i=1,2,3. 2.2.8
©) = s (228
PROOF. Let i, j, k denote the unit coordinate vectors and || - || the usual Euclidean norm.
Define _ -
1 vy v

d1 = det .] UZQJ Ué/ s

d2 = det 1)31/ j Ug 5

d3 = det 1)31/ 1)32/ j

Then n; = d;/||d;||, and thus

sin;  venmy  vedi/[[di]|  v-d;

= = = ) 2.2.
sinf; vieny o vi-di/|[dil] v dg (229)

It is easy to check that

v; - d; = det(vy, v9,v3), 1 =1,2,3,

and that

AN d1 = det(v, Vo, Ug),
AN d2 = det(vl, U,’Ug),
AN d3 = det(vl, Vo, U).

Then by (2.2.9) and the property (2.2.3) of trihedral coordinates we get (2.2.8). O
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LEMMA 2.2.9. (¢f. [2]) Let C be the unit circle in R* centered at the origin, and let A
be a circular arc with vertices vy # vy which are not antipodal. Let by, by denote the circular

barycentric coordinates of v € C' relative to A. Then

in(f, — 0
bi(v) = M’
Sln(eg — 91)
sin(6 — 6,)
bo(v) = S — 1) 2.2.10
2(1)) Sin(eg — 91)’ ( )
where 0, 01, 0y are the polar coordinates of v, vy, vy respectively.
PROOF. Since
v1 = (cosfy,sinf;)”
vy = (cos 0, sin 65)7
v = (cosf ,sinf )T
and
v =b1vy + byva,
the circular barycentric coordinates of v are solving the system:
cos ) cosby by cos 6
sinf, sin 6 by sin 0
We immediately get the result. O

THEOREM 2.2.10. (cf. [3]) For each i =1,2,3, let C; be the great circle passing through
the points v € S* and v; € V, and let y; denote the intersection of C; with the edge of T

opposite to v;. Then the spherical barycentric coordinates of v can be computed as

sin 52

= MmO 93 2.2.11
sin(d; + ;) ! ( )

where §; is the signed geodesic distance (measured along C;) from y; to v, and ~y; is the signed

geodesic distance from v to v;.
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PRrROOF. It suffices to prove (2.2.11) for ¢ = 1. By Lemma 2.2.9 if v € C} it can be

expressed relatively to y; and vy as:

sin 0y sin v

v sin(6, + 71)V1 sin(d1 + 1)

yi1.

By the same lemma we can write y; as a linear combination of vy and vg only. Then by the

uniqueness of barycentric coordinates

o sin 51
e SiIl((Sl + ’71) '

Similarly, we can show the result for i = 2, 3. O

2.2.2 HOMOGENEOUS BERNSTEIN-BEZIER POLYNOMIALS

Since the spherical polynomials are the restriction to S? of certain homogeneous trivariate

polynomials, we first study the homogeneous Bernstein-Bézier polynomials. Let P; denote

d+3)

the space of polynomials of total degree d on R3. Recall that the dimension of Py is ( 3

and that the set of classical Bernstein polynomials

B4

(V) = Wbibéb’gfbi, i+j+k+l=d (2.2.12)

forms a basis for Py (cf. [3]).

Let H,4 denote the space of polynomials of degree d which are homogeneous of degree d.

LEMMA 2.2.11. (cf. [3], [37]) The space Hy is an (*1?) dimensional subspace of Py. More-
over, if we choose vy to be the origin in the above construction of the Bernstein polynomials,

then the set { Bl i+ j+k = d} forms a basis for Hg.

PRrROOF. Let f,g € Hy, and o € R. Then
(i) (f + 9)(aw) = flaw) + glaw) = af(v) + ag(v) = a(f + g)(v)
(i) VB € R, Bf(av) = Baf(v) = a(Bf)(v).
Thus H, is a subspace of P,.
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_ iiok e - -
Let f = ociyjineaCise®'y'z" be in Hy. Since f is homogeneous of degree d we must
have for all « € R
Oéd § Cijkxzyzzk — E al-l—j-l—kcijkxzyzzk
0<i+j+k<d 0<i+j+k<d

and thus

E : (Oéd . a2+J+k)cijkl,zyzzk = 0.
0<i+j+k<d

Since {2%,y%,2*,0 < i+ j + k < d} is a linearly independent set

(a® — @™ tF) e =0 (2.2.13)

Choose « # 1. Then (2.2.13) implies
cijk:(), VZ‘F]—'—k#d,

and

f: cijkxyz.

itjtk=d

It follows that {x% 4% 2%, i+ j + k = d} spans Hy and thus dim(Hy) = (dJ2r2)'
Next, we show that the set {B};, : i +j + k = d} forms a basis for H,;. Since {ijkl :
i+j+k+{¢=d}is alinearly independent set, so is {Bfljk0 i+ j+k=d}. Each BidjkO IS a

homogeneous polynomial of degree d, thus
Span{ijkO i+ j+k=d} C Hg

Since
d+2

dim{span{BidjkO i+ j+k=d}} = ( 5

) = dim(r

we complete the proof. O

For convenience, we drop the last subscript and introduce the following definition.

DEFINITION 2.2.12. (c¢f. [3])Let T be a trihedron generated by {vy,ve,vs}, and let by(v),

by(v), bs(v) denote the trihedral coordinates as functions of v € R3. Given an integer d > 0,
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we define the homogeneous Bernstein-Bézier basis polynomials of degree d on 7 to

be the set of polynomials

R o
Bijy(v) 1= W%(“)%(U)bg(v), it jk=d

We call
> cipBii(v)
i+j+k=d

a homogeneous Bernstein-Bézier (HBB-) polynomial of degree d.

(2.2.14)

(2.2.15)

Many properties of classical, planar, Bernstein-Bézier polynomials hold for HBB-

polynomials. We present several important results.

The first one is the classical de Casteljau algorithm to evaluate P at points in R? :

THEOREM 2.2.13. (de Casteljau algorithm , cf. [3]) Suppose we want to evaluate the

HBB-polynomial at a point w with trihedral coordinates by, by, bs.
Set C?jk = Cijk, 1 +] + k=d.

For?{=1tod

Fori+j+k=d—1{

¢

Czyk blcz—l—l ,J.k + b2cz J+1LE + b3cz] k+1°

Then P(w) = cl,.
PROOF. Let By, (w) = 1. Suppose

/-1 __ /—1
Cijk — E : Ci+7“7j+8,k+tBrst (’LU)
r4s+t=~0—1

for some ¢ and all 7, j, k such that i + j + k = d — £ + 1. By the definition

4 /—1
Cijk = blcz+1 gk + bQCz J+1k + b3cz gkl T =b § : Ci+1+7“7j+8,k+tBrst +
r+s+t=~—1
/—1 /—1
by E Citrj+itsh+tBrg + b3 E Citrjtskri+tBrg =
r4+s+t=~—1 r+s+t=~0—1
b b b (e- 1) b"bsbt
( 1Cit14r jtshtt T 02Citr j+14s bt + 3Ci+r,j+s,k+1+t) sl =

r4+s+t=~0—1
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| / — 1)|
1 t (f ]‘) 11t ( .
Z Citl+r,j+s, k+tbr+ bsb rlsltl + Z Citrj+1+s, k-i-tbrbs-i_ b rlsltl +
r4+s+t=~0—1 r+s+t=~0—1
|
41 (0= 1)
Z Ci+r,j+s,k+1+tb§bsb+ rlsltl =
r+s+t=~0—1
r+1 rlrspt 1l
—Cit1 e+t0] b —————+
Z ¢ Citltritskt 2 (e +1)lslt!
r+1+4s+t=~
Z 5+ 1 brbs-i-lbt E' +
/ i+r,j+1+s,k+tV1Y2 37“!(S—|— 1)|t|
r+14s+t=~L
LSO () ——
¢ IS IRTLTES gl (1)
r+1+4s+t=~
/ |
r 14 4
Z et by B3t IR Z Cl+m+s kD103 b T
r'+s+t=~ r+s'+t= Z
t/ v g r+ s+ t
5 el = 3 T el =
r4+s+t'=~ r4-s+t=~
¢
Z Ci+7“7j+8,k+tBrst
r+s+t=~0

Then
Cgoo = Z CT’,S,thst(w) = P(w).

r+s+t=d
O
The second important result is the subdivision algorithm to show how to write p in HBB-
polynomials on each of the subtriangles. This result is the analog of the classical subdivision

algorithm for bivariate BB-polynomials.

THEOREM 2.2.14. (Subdivision algorithm, cf. [3], [37]) Let {c{;.} be the coefficients pro-
duced by de Casteljau algorithm using trihedral coordinates by, bs,bs of a point w € T with

vertices {v1,vq,v3}. Then
Zi-l—j-i—k:d Cé,j,kaljk;1(U)> v e T ={w,vy,vs}
P(U) - Zi+j+k:d Cg,o,kaljk;z(U)a vel = {Ulu w7U3} (2-2-16)
ZH i+k=d C?,j,oBfljk;s(U)a v €T3 ={v,v9,w},
J

where szk , are Bernstein-Bézier polynomials associated with the trihedron 7, v =1,2,3.
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PROOF. Suppose v € 77, and

P)= Y ciuBi ) (2.2.17)

i+j+k=d
with respect to 7', and

P)= Y cijmaBiia(v)

i+jt+k=d

with respect to 7;. We claim that ¢;j;.1 = cé, ik The trihedral coordinates of w with respect
to 7 are determined by

W = a1vV1 + AoU2 + A3V3.
The trihedral coordinates of v with respect to 7 are determined by
v = bivy + bovg + byvs
and with respect to 7; are determined by
V= CiW + CaV2 + C3Vs3.
Then
v = ¢ (a1vy + agvs + azvs) + covy + c3v3 =

cra1vy + (cras + c2)ve + (cras + ¢3)vs.

The uniqueness of barycentric coordinates implies that
by = c1a4,

by = cras + c2,
bg = c1as + C3.

By (2.2.17)

d .
P(v) = Z Cijk 177 .'k'blb%blg =
itith=d T
b j k
Z Cijkmclal(clag + o) (cra3 + ¢3)".
i+j+k=d R
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Using binomial expansion and rearranging the terms we get

d' ) ]' ror .S k' m
P(v) = Z Cijkmcﬂl( Z @01%02)( mclﬂécs )=

i+j+k=d r4s=j ’ l+m=k

H—r—i—Z s m i 1 £ __
E E E C; CoCq 1050
ik Z'r's'ﬁ'm' 27 TR

i+j+k=dr+s=j t+m==k

Z Z Z g t‘:'z—' 2k Bz+r+£s m; 1a1a£ag =

i+j+k=dr+s=j {+m==k

C+r+0! 0
Z Z Z Cirdsl+m™— 7 3 il a1a2a'3Bi+r+é,s,m;l =

i+j+k=dr+s=j l+m=k

§ § : § i+r—44
C; r+s Z—I—mBz R¥4 BZ—I—T—{—Z s,m;l*

i+j+k=dr+s=j {+m==k

Introducing a new index of summation p =i + r + ¢, and since

z+r+£ z+r+£
E : CZT+SZ+mBZT’Z Co,s,m

i+r+l=p
we have
_ P d _
P('U) - E ( § : Ci77“+57£+mBi,r,m)Bp,s,m;l -
p+s+m=d i+r+L=p
P
§ CO,s,m p,s,m;1"
p+s+m=d
A similar proof works for v € 75 and for v € 73. O

The third important result is smoothness conditions for joining two HBB-polynomials. The
following theorem establishes necessary and sufficient conditions for two HBB-polynomials
to join together smoothly across a plane trough the origin in the sense that the polynomials
and their usual directional derivatives as trivariate functions are continuous as we cross the

plane.

THEOREM 2.2.15. (Smoothness conditions, cf. [3])Let T and T be trihedra generated by

vertices V = {vy,va,vs} and V = {vy,vs,v4}. Let

> cipBiv)

i+j+k=d
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and

p(“): Z 6ijkBidjk('U)a

i+j+k=d
where { B} and {ngl} are the Bernstein-Bézier basis functions associated with T and T .
Then P and P and all of their derivatives up to order m agree on the face shared by T and
T if and only if

éijk: Z Cr,j+s,k+tBTi»5t(U4> (2218)

r+s+t=t
for alli=0,...,m and all j, k such that i+ j + k = d.

PROOF. Suppose

Qv) = Z CijleZdjkl(U) (2.2.19)
i+j+k+i=d
and
Qv) = Z éijleidjkl(U)a (2.2.20)
i+j+k+t=d
where
Ciiky Zf (=0
Copr=14 " (2.2.21)
0, otherwise
and
~ 62 5 1 g =0
Cogu =4 " d (2.2.22)

0, otherwise

and Bz-djkl(v) are the usual BB-polynomials of degree d associated with the trihedron with
vertices {vy,vq,v3,0} and Efjkl(v) are those associated with the trihedron with vertices
{vy, va,v3,0}. It is well-known that these polynomials join with C™ continuity if and only if
Cijpe=" Y CrjrshrtiruBio(vs), i =0, .. .m. (2.2.23)

rstttu=i
In view of (2.2.21) and (2.2.22) we can choose ¢ = u = 0. In this case, (2.2.23) holds if and
only if (2.2.18) holds. But P = @ and P =@, proof is complete. O



27

2.2.3  SPHERICAL BERNSTEIN-BEZIER POLYNOMIALS

The spherical Bernstein-Bézier polynomials are the restriction of HBB-polynomials on the
sphere. In this subsection, we discuss the existence of homogeneous extensions for functions
defined on the sphere, the directional derivatives of spherical functions, the smoothness
conditions to join two SBB-polynomials, and the calculation of integration on the sphere.

Let us first present the definition of SBB-polynomials.

DEFINITION 2.2.16. (cf. [3]) The restriction of an HBB-polynomial of degree d to the
points on the unit sphere is called a spherical Bernstein-Bézier (SBB-) polynomial of

degree d.
Now we state the existence of homogeneous extensions.
LEMMA 2.2.17. (cf. [4]) Suppose f is a function defined on S* and let t € R. Then
Fy(v) = [oll"f(v/llv]]) (2.2.24)

is the unique homogeneous extension of f of degree t to all of R3\{0}, i.e., Fy|s2 = f, and

F, is homogeneous of degree t.
PROOF. The assertion is an immediate consequence of the definition. O

Many properties of SBB-polynomials follow naturally from the properties of HBB-

polynomials.

THEOREM 2.2.18. (cf. [4]) The polynomials {ijk,i + 7+ k = d} restricted to S* are

linearly independent.

PROOF. Suppose

Pw)= Y cuBlv)=0
i+j+k=n

for all v € S%. By Lemma 2.2.17 there exists the unique homogeneous extension of P(v) to all
of R? of degree d. Then P(v) = 0 for all v € R3. The linear independence of the Bidj S implies

that ¢;;, = 0,74 j + k = d and thus the ngk’s restricted to S? are linearly independent. [
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de Casteljau and subdivision algorithms can also be applied to the polynomials restricted on
the sphere. Now we turn to a question how to compute derivatives of spherical functions and
in particular SBB-polynomials. Let us define what we mean by the derivatives of a spherical

function.

DEFINITION 2.2.19. (cf. [{])We define the directional derivative D,f of f at a point
veS? by
D,f(v) := DyF(v) = g" VF(v), (2.2.25)

where F' is some homogeneous extension of f, and VF' is the gradient of the trivariate

function F.

While a polynomial of degree d has a natural homogeneous extension to R?, a general
function f on S? has infinitely many different extensions. The value of its derivative may
depend on which extension we take. The following lemma shows that we get the same value

for derivatives no matter what degree extension we take.

LEMMA 2.2.20. (cf. [4]) Suppose f is a function on S* and g is a tangent vector to S? at
a point v. Then the value of D, f(v) can be computed from (2.2.25) using any homogeneous

extension of f.

PROOF. Let F be a homogeneous extension of f, and let C' be a C' smooth curve on
S? passing through the point v, parameterized by a parameter 6 such that C(f) = v and

C'(0) = g for § = 0. By the chain rule we obtain

df(C(0)) dF(C(9))

T|9:0 = T|9:0 = QTVF(U) = DgF(U)-

This shows that D,F(v) does not depend on the degree of homogeneity of F' since the

left-hand side clearly depends only on f = F|s2. O

Let us continue with directional derivatives of barycentric coordinates.
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LEMMA 2.2.21. (cf. [4]) Let g be a given unit vector in R3. Then

Dyb; = bilg). (2.2.26)

PROOF. Let 7 = {v1,v9,v3} and v € §%. By (2.2.25), we have

x
1
Dby = ¢'Vb, = ¢" — _det
g¥1 g \Y% 1 g V(det(U17U27’U3) € ( Yy 702703))
2
1 0
1
= m<91d€t< 0 7U27U3) —|—g2det< 1 7U2703>
0 0
0
+93d6t< 0 702703))
1
det(g, va, v3)
_ Mgty
det(vy, va, v3) 1(9),
x
1
D,by = ¢'Vby = ¢" — _det
;02 g Vb, =g V(det(vl,v2,vg) e ( y ,Uz,vg))
2
1 0
1
= m<91d6t<vh 0 7U3) +g2d6t<U1, 1 7U3)
0 0
0
+ g3d6t (Uly 0 7U3))
1
— det(’Ul,g,’Ug) :bg(g)

det(vy, vo, v3)
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and
x
1
Dybs = ¢'Vby=g'V| ———det
gU3 g Vb3 =g v(det(vl,v2,v3) € (0171127 Y ))
z
1 0
-t det| vy, v + godet | vy, v
- det(vl,'l}g,'l}g) g1 1, V2, 0 g2 1, V2, 1
0 0
0
+ g3d€t (U17 V2, 0 ))
1
det(vy, va, g)
————= =)
det(’Ul,’UQ,Ug) 3( )
So the proof is complete. O
PROPOSITION 2.2.22. (¢f. [4]) Suppose P is an SBB-polynomial. Then
D,P(v) = b"(g9)V,P, (2.2.27)
where
0o 0 0 p
=(=,=,—)". 2.2.28
Vo= (Gor oy by ( )

PROOF. By the definition, we have

OP oby 4 OP Oby 4 OP Obs
9by 9z " 9by Oz ' Obs Ox

T T
DyP(v) = g VP(v)=g" | SR04 S88n 4 BP0k

OP 0by OP Oba OP Obs
31)1 0z + 8b2 0z + abg 0z

T

b 8b 8b op

Ngr + 9252 + 9352 For

_ b 8b 8b op
= 915 T 9252 + 9352 by

ob Ob: Ob: oP
915 t 925, T 935, Ty
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So we get
0by  Oby  Obs or
oz oz ox obi
— 4T | oby 0Oby b P
boP)y=g" 1 5 5 5 || &
Oby  Oby  Obs or
0z 0z 0z 0Obs
Therefore,
T T
gTVbl bl(g)
DyP(v) = | ¢TVhy | VuP = | by(g) | VP
gTng bg(g)

O

We now turn to the problem of computing higher derivatives of SBB-polynomials. Let Cza g =
cijr be the Bézier coefficients of P of degree d, and let gi,...,9m, 1 < m < d, be a set of
direction vectors. For each 1 < ¢ <'m, let nglm 1+ j+k =d—{, be the intermediate values

obtained in carrying out de Casteljau algorithm using b(g,). That is, ¢} ;& 15 obtained from

the recursion

¢ (—1 -1 1
Cijle = b (gf)ci-',-l,j,k + b2(gé)ci,j+1,k + bB(QZ)Ci,j,kHa t=1,...,m.
It follows that cfjk depend on the vectors gy, ..., g¢, but not on their ordering.

THEOREM 2.2.23. (cf. [4]) For any 0 < m <d,

d!
Dy,...gnP(v) := Dy, - -+ Dy, P(v) = m Z szyk (v). (2.2.29)
D idj+k=d—m

PRrROOF. By Lemma 2.19, for i+ j + k = d,

|
Dy, B (v) = dk [i0 7 0,6 Dy, by 4 G016 D Dy by + KV BADE D, bs) =
5!

d[B{} 1 (0)b1(91) + B (0)ba(91) + B4y (0)bs(g1)]-
Substituting this in

Dy, P(v) = Y cijuDg Biiy(v)

i+jt+k=d

and rearranging terms we get (2.2.29) for m = 1. The general result follows by induction. O
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Now we consider derivatives at the vertices of triangles. It is clear from the properties of
trihedral coordinates that the values of an SBB-polynomial P at the vertices of its domain
triangle are given by P(v1) = caoo, P(v2) = coao, P(v3) = cooq. The derivatives of P at the

vertices of 7 also have a simple form.

PROPOSITION 2.2.24. (cf. [4]) For all 0 < m < d,

a
Dy,,... ng(U1>:mcd—m,0,07
a
Dy,,... ng(U2>:mCO,d—m,07
a
Dgl 7777 QmP(,U3) = m00,07d—m' (2230)

Proor. Consider P(v;). By Theorem 2.2.23

d! m -m
Dy,..., ng(?fl):m Yo B (),

Citjtk=d—m
where
ijk (v1) = (WW!)bl(Ul) ba(v1)7b3(v1)" = (ZUT')l 00F =1,
ifi=d—m,j=0,k=0 and is 0 otherwise. Thus
d! -
D91 ..... ng(U1) =

O

Let us consider the question when two polynomials on adjoining surface triangles join

smoothly across a common edge e.

THEOREM 2.2.25. (cf. [3], [37]) Suppose Q and Q are polynomials as in (2.2.19) and
(2.2.20) and let T and T be the surface triangles with a common edge e. Then the restrictions
of Q and Q to S%, P and ]5, along with their derivatives up to order m join continuously

along e, i.e., for every point v € e and every curve ¢ € S crossing e at v,

DIP(v)=DP(v), j=0,..,m, (2.2.31)
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if and only if

éijk: Z Cr,j-l—s,k—i—thingt('U4)a (2.2.32)
r4s+t=1

for alli=0,...,m and all j, k such that i+ j + k = d.

PROOF. Suppose (2.2.31) holds for all v € e and for all ¢ € S? crossing e at v. Since
P and P are polynomials of degree d, by Lemma 2.2.17 there exist unique homogeneous

extensions of degree d which thus must be our () and Q. Since Qls2 = P and @|gz =p
DIQ) = DIQ(v),  j=0,..,m, (2.2.33)

for every point v € e and every curve ¢ € S? crossing e at v. Now we claim that (2.2.33)
holds for any v on the common face of tetrahedra corresponding to 7 and 7. Let v belong
to the common face of 7 and 7. Clearly, if v # 0, there exist v' € e and A € R, such that

v = \v'. Since ) and Q are homogeneous of degree d
Qv) = QW) = XQ(v),
and similarly for Q. Then we have

DIQ(v) = MDIQ(v') = XDIQ(v') = DIQ(v), j=0,...,m.

[

By the Theorem 2.2.15

~ )
Cijk = § : CT7j+S,k+tBrst(rU4)'

r4+s+t=i

For the other direction, suppose (2.2.32) holds. Then by Theorem 2.15 Q(v) and Q(v) join

smoothly across the common face, i.e.,
DiQ(v) = D’Q(v), j=0,...m, (2.2.34)

for any v on the face. This condition holds for any curve on the common face and thus for
the edge e as well. Since Q(v)|e = P(v) and Q(v)|e = P(v) (2.2.34) holds for the restrictions.

In particular,
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Now let ¢ be a curve on the sphere-like surface S?, then by the chain rule

~

VP(v) = VeD, P(v) = VeD,P(v) = VP(v),
and so on. Thus we have the result for any v € e and any curve ¢ crossing e at v. O

For many practical applications it is necessary to compute integrals of piecewise polyno-
mial functions. Evaluating integrals of spherical polynomials is considerably more difficult
than in the planar case. Recall that for planar triangles, the integral of a Bernstein basis
polynomial of degree d is equal to the area of the corresponding triangle divided by d+1, see
[37]. Thus, the value of the integral does not depend on the particular basis polynomial or on
the precise shape of the triangle. Unfortunately, this wonderful and attractive property does
not carry over to spherical polynomials. In general, for two different triangles, the values of
the integrals are different unless the two triangles are similar. Moreover, the integrals of the
Bernstein basis polynomials of degree d associated with a single triangle are also different in
general.

To compute integrals in this case we propose a mapping of a surface triangle 7 to a planar
triangle 7 by means of radial projection defined in Section 2.1. This will enable us to use a

standard integration technique for planar triangles.

LEMMA 2.2.26. (cf. Proposition 4.1 in [4]) Let T be a spherical triangle and T its radial
projection as in Section 2.1. Suppose |T| < 1 and R, denotes the radial projection defined by
R.w = % for w € 7. If 0 and ¢ denote the Lebesque measures on 7 and T correspondingly

then

/ F(w)do(w) = / F(R.®)|5] 25 (). (2.2.35)

Proor. Without loss of generality assume that the tangent plane T, is z = 1. Recall

e

that % = w, and for w = (x,y,z) we can write w = (2/,y/,1) with 2’ = z/z and ¢ = y/=z.

=

Then do = da’dy’. For the spherical measure recall that do = sin ¢d¢pdf, where ¢ and 6 are

spherical coordinates of w defined by

x = cosfsin ¢
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y = sin#sin ¢
Z = COS .
Therefore
2’ = cosftan ¢
y' = sinf tan ¢.

We can compute the partial derivatives

g—z = cos O sec? ¢,
2—% = cos 0 tan ¢,
g—‘g = sin @ sec? ¢.

Then, by definition, we have

roo —sinftand cosfsec?

(0 ¢) cosftang  sinf sec? ¢
Therefore,
(', y') ) 2 2 2
= | —sin” ftan ¢ sec” ¢ — cos” f sec” ¢ tan ¢
| 20, 0) | | |
B o, Sing
= tan¢sec” ¢ = m
and hence using cos ¢ = 2z = |0|™! we get (2.2.35). O

2.2.4 NON-HOMOGENEOUS SPHERICAL POLYNOMIALS

In this subsection, we define non-homogeneous spherical polynomials and trace their prop-
erties to the properties outlined above for homogeneous polynomials, see [29].
In Theorem 1 of [29] it is shown that Py = Hy®Hg_1, i.e., Hqa®Hq_1 restricted to the unit

sphere is identical to the space Py of trivariate non-homogeneous polynomials of degree d
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restricted to the unit sphere. Therefore the set { B, i+j+k = d}U{Bfﬁcl, i+j+k=d-1}
forms a basis for P;. We call spherical polynomials in P; non-homogeneous spherical
polynomials, and we can express a non-homogeneous spherical polynomial P in terms of
BB-basis functions as
P)= Y agBi)+ > cuBil(v).
i+jtk=d i+j+k=d—1
With this definition it is easy to see that the methods of evaluating values (de Casteljau’s

algorithm), taking derivatives and computing integrals with homogeneous polynomials can

be easily applied to non-homogeneous polynomials.

2.3  APPROXIMATION OF SPHERICAL SPLINES

In this section, we discuss how well smooth functions defined on S? can be approximated
by spherical polynomials and spherical splines. It consists of two subsections, first one is
Spherical Sobolev Spaces and Seminorms, the second one is Approximation by Spherical

Polynomials.

2.3.1 SPHERICAL SOBOLEV SPACES AND SEMINORMS

In this subsection we introduce notations of spherical Sobolev spaces and seminorms that
annihilate spherical polynomials, also state some relating results, see [40]. To define Sobolev-
type norms and seminorms for functions on the unit sphere, we need to use a concept of a

homogeneous extension. Recall that a trivariate function f(v) is homogeneous of degree n if

flav) = a"f(v),Yv € R*\{0},a # 0. (2.3.1)

Also recall that by Lemma 2.2.17, every spherical function f has a unique homogeneous

extension of degree n to R*\{0} defined by

falw) = [ul"f <i) : (2.3.2)

Jul
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Let Q be a domain on S? such that 2| < 1, and let Q denote the image of © under
the inverse radial projection as defined in Section 2.1. We will be relating properties of a
spherical function f defined on €2 to the properties of its homogeneous extension f,, restricted
to 2, and we denote such a restriction by f,, i.e., f, := fula.-

Fix 1 < p < oo. Assume k is a nonnegative integer and B is an open set in R?. Recall
that the corresponding classical Sobolev space W*P(B) is the space of functions on B whose

derivatives up to order k belong to L,(B) [1]. A norm on W*?(B) can be defined as

lgleps = > DI DPglps, (2.3.3)
m+72<k

M)y — 0Nt
where D' DJ? = 55555

DEFINITION 2.3.1. ([40]) Suppose that {(I';, ¢;)} is an atlas for Q. Let {a;} be a parti-

tion of unity subordinate to the atlas. We define spherical Sobolev spaces W*?(Q) as

follows:
WHEP(Q) :={f : (a;f) 0 97" € WHP(¢(Ty)), for all j}. (2.3.4)
with norm || f{|xp.0 = >_; |[(ajf) o 05 e, ) -
Then the Sobolev space W*P(Q) is just the space of all functions f defined on Q for
which || f||xpq is finite. It is well known that this definition does not depend on the choice
of the atlas and the partition of unity, in the sense that other choices will give rise to the

same space with a norm that is equivalent to the above one, see [7] and [39]. Now we give

definition of Sobolev-type seminorm on the sphere.

DEFINITION 2.3.2. Let Q C S%, and let f € WFP(Q) for some k > 0 and 1 < p < oo.

Then we define Sobolev-type seminorm of f on W*P(Q) to be

| flrpo = Z 1D fr—1llp.0, (2.3.5)

laf=k

where || D fr_1||p.q is understood as the L,-norm of the restriction of the trivariate function

D% fr_1 to Q. For k =0, the above seminorm reduces to the usual L, — norm

| flop.a = 1fllzr)-
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Let us present several elementary facts of concerning homogeneous extensions and semi-

norms to end this subsection.

LEMMA 2.3.3. (¢f. [40]) 1) Let k,n € Z, and suppose [ is a function defined on €,
with |Q| < 1. Then f € WEP(Q) if and only if f, € WFP(Q).
2)Let f € WHP(Q) for some k > 1 with |Q| < 1. Then (D*fy_1)|la € L,(Q) for all multi-
indices a such that |of = k.
3) Let Q C S? with |Q] < 1. Suppose f € W*P(Q) and let f,, and f, be two homogeneous

extensions of f restricted to Q. Then

1 fmllkpa < Csllfallkpo,

for some constant C3 depending only on k, m, and n. This implies that the Sobolev norm of

fn = fula does not depend in an essential way on the degree n of the homogeneous extension

of f that is used to define f,.

PROPOSITION 2.3.4. (c¢f. [40]) Let Q C S* with |Q| < 1. Then there exist positive con-

stants Cy, Cy depending only on k and p such that for every f € Wi ,(€2)

Cilflepo < | fi-tlipa < Col flipo- (2.3.6)

Our last proposition shows that the semi-norm defined by (2.3.5)annihilates certain homo-

geneous polynomials.

PROPOSITION 2.3.5. (cf. [40]) Suppose Q is an open connected subset of S®. Let f €
WHEP(Q) and k > 2. | flrpa = 0 if and only if f is a homogeneous spherical polynomial of

degree k — 1.

2.3.2  APPROXIMATION ORDER OF SPHERICAL POLYNOMIALS

In this subsection, we mainly discuss the error bounds of spherical spline approximation.
First we presents some important inequalities, then local approximation, finally the local

stable basis, existence of Quasi-interpolant, and approximation order of spherical splines.



39

Given a homogeneous trivariate polynomial P in BB form (2.2.15), let ¢ be a vector of
its coeflicients. Let ||c||oo and ||c|/, . denote its ¢, and ¢, norms on a spherical triangle 7

respectively. Then we have following lemma.

LEMMA 2.3.6. (cf. [40], [10]) Any homogeneous polynomial P of degree d in Bernstein-

Bézier form (2.2.15) with respect to a spherical triangle T with || < 1 satisfies the property

Ax [lefloo,r < [[P[loo,r < Aslle]|oo,r (2.3.7)

and

A AL |lellpr S NIPlpr < As AP el (2.3.8)

forany 1l < p < oo. Here Ay, Ay are positive constants independent of 7, P and p. A3 depends

d, p and the smallest angle of T.

PROOF. Proof of (2.3.7) can be found in [40]. For (2.3.8) fix 1 < p < co. By Lemma 4.4
in [40] there exists a positive constant K3 depending on d, p and the smallest angle ©, of 7
such that

APl < 1Pl < KA Pl (239)

Then using (2.3.7) and |||, < (d;2)||c||0077 we get

Aql_/P d+2 —-1/p Aql_/P A}_/p
A T<—A OOTS POOTS P T
11 ("57) el < G Al < 1Pl < 1P

Similarly, by (2.3.9)
1Pllpr < AV Pllooyr < A AYP|llloc,r < Az AP lc]lpr-
Therefore we obtain (2.3.8) with Az := [A}—;(dgz)_l/p. O

Next we need Markov-type inequality for spherical polynomials.

LEMMA 2.3.7. (c¢f. [40], [10]) Let P be a trivariate homogeneous polynomial of degree d

defined on a spherical triangle T with |T| < 1. There exist constants A, depending on d and
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O, only, and As depending on d, such that

Ajg
|Plkcor < =7 | Plloors (2.3.10)
(tan &0 )*
and
Plipr < 7o | Pl 2.3.11
| |k7p7 = (tan%)kﬂ ||p, ( )

for 1 < p < oo. Here p; is a the diameter of the largest spherical cap contained in T.

PROOF. For the first equation in (2.3.11) we modify the proof of Proposition 4.3 in [40)]
by replacing (2.1.1) with (2.1.3). To prove (2.3.10) we apply Lemma 4.4 in [40] to both sides

of (2.3.11) to get
AllK
(tan &-)*

for some K depending on d — k and Ox. O

| P00, < [Pl oo,r

Now we express a bound on the values of certain spherical functions in terms of its 2nd

Sobolev semi-norm over a spherical triangle.

LEMMA 2.3.8. (cf. [10], [37]) Let T be a spherical triangle such that |T| < 1 and suppose

f € W2P(7) vanishes at the vertices of 7, that is f(v;) = 0,1 = 1,2,3. Then for allv € T,

2
1< 40 (1 ) o (2312

for some positive constants Ag independent of f and 7. Moreover, if f is a homogeneous

polynomial of degree d, then

il

2
|f(v)] < A7 AZYP (tan 7) | flopr (2.3.13)

for some positive constants A7 dependent only on d, p and the smallest angle in T.

PrRoOOF. Let R, be the radial projection defined before. Let v;,7 = 1,2,3 denote the
vertices of a planar triangle 7, which is the image of 7 under the inverse of R, and v = R-'v

for v € 7. Recall that |T| = Qtan@ by Lemma 2.1.7
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Let f5(v) = |[v]|°f (ﬁ) be the homogeneous extension of f to R*\{0} of degree § = 0 or

1, and let f; denote its restriction to the planar triangle 7. By Lemma 3.2 in [40], f5 belongs

to W2P(7). Note also that fs(v:) = |0’ fs(z5) = [0:l’f(55) = [0:°f(v;) = 0,i = 1,2,3.

Therefore by Lemma 6.1 in [26], we have for every v € 7

| £5(0)] < 127 52,007 (2.3.14)

Since f(v) = f(Z) = 229 and |o]° > 1 for all ¥ € 7,

v 0]

2
701 < Vo)) < 18 (an 1) 1l

by (2.3.14). By Proposition 2.3.4 we get (2.3.12) with Ag = 48Kj.
If f is a homogeneous polynomial, then its second derivatives are homogeneous polyno-

mials and by (2.3.9) we have

|f|2007'§K8 1/p|f|2

and
|f|2007’§K8 1/p|f|2p7'
for some Ky depending on d, p and the smallest angle in 7. Hence

|f(v)] < 48K <tang) | fl2,00, < A7 AZYP <tan| |) |fl2.pr

This completes the proof with A; = 48 K3 K. O

DEFINITION 2.3.9. Let A a regular spherical triangulation which is a part of sphere with
or without holes or the whole sphere. For d > 1 and r > 0, two integers with d > 3r + 2, we

define S;'(A) to be the space of homogeneous splines of degree d and smoothness —1, i.e.
STHA) = {s: 5|, € Hg, V7 € A}.
And we define C" spline spaces with degree d as

SH(A) = S;H(A) N C(S?).
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Although the construction of stable basis is a delicate process, as pointed out in [18],
the construction presented there for the bivariate analog of S}(A) also carries over to the
spherical spline spaces S} (A). We shall briefly outline the construction after presenting some
definitions, and also use the spline spaces that have a local basis to solve the interpolation

problem on the sphere.

Let
D = Urea{&ij, i +J + k= dj, (2.3.15)
with &y = W for 7 =< u, v, w > be the set of domain points associated with A and

d. Tt is well known that each spline in SY(A) is uniquely determined by associating one Bézier
coefficient with each domain point. A subset M C D is called a minimal determining set
for S5 (A) if the values of the coefficients of s € S} (A) associated with domain points in M

uniquely determine all of the coefficients of s.

DEFINITION 2.3.10. (cf. [40], [37]) A basis { Be }ecp for a space S of splines on a triangu-
lation A is a stable local basis, if there exists an integer ¢ and constants 0 < C; < Cy < 00

depending only on d and the smallest angle O in the triangulation A such that

1) for each & € M, supp(Be) C star*(ve) for some ve of A,

2) fOT dll {CE}EEM;

Crmazgepce| < || Y ceBelloog < Comazeep|cel. (2.3.16)
EeM

The construction of a stable local basis using the Bernstein-Bézier representation of
splines in S}(A) when d > 3r + 2 is outlined in [40] with a reference to [18]. Now let us
show it. Given a minimal determining set, we can construct a basis {B¢}eca for SH(A) by
requiring

B = b 1 €M, (23.17)
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where f, is the linear functional which picks the coefficient associated with the domain
point 7. In particular, B¢ has the property that the coefficient associated with & is 1 while
the coefficients associated with all other points in M are zero. The remaining coefficients of
Be¢ are computed using smoothness conditions.

For any given spline space S;(A), there are many possible choices for a minimal deter-
mining set M. A choice of M presented in [18] leads to a basis with the following properties,

where for each &, Q¢ := supp(B¢) and 7¢ is the triangle in which £ lies.

PROPOSITION 2.3.11. (cf. [40]) Let {Be}eem be the basis for S5(A) corresponding to the
minimal determining set M described in [18]. Then there exist constants Cs, ..., Cy depending

only on d,p and the minimal angle in A such that for each & € M,
1) there exists a vertex ve € A such that Q¢ C star®(ve),
2) | Belloog2 < Cs,
3) |pes| < Culls]lcc,re, for all s € SH(A),
4) |pes| < C5A;,51/p]|s]|p775, for all s € S5(A), and for every T € A,
5) || Bellpr < CoAY”,
6) #1, < Cr, where I, :=={& 7 C Q¢},
7) |Belkoor < Cspyk, for all0 <k <d
8) | Belppr < Cop#AYP, for all 0 < k < d.

The proof of the above lemma can be found in [40]. Furthermore, the analysis of the
proof of 8) of the above lemma leads to a refinement of 8) as follows. Using (2.1.1) instead
of (2.1.3) in [40] one gets

|Belppr < Co (tan %)_k Al/p (2.3.18)

with Cy = A;Cg, see [10].
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It was shown in [40] that with the basis defined above one can construct a quasi-
interpolation operator @ : L,(S?*) — S75(A) which achieves the optimal approximation prop-
erty. Indeed, extend the linear functionals y¢ to all of L,(S*) using Hahn-Banach theorem.

Then for every f € L,(7e),
e f| < C5AZP| fllpire, € € M. (2.3.19)

This inequality implies that for each &, the carrier of the extended functional s is contained
in 7¢, ie, if f =0 on 7, then pef = 0. With (2.3.18) in mind we modify the proof of

Proposition 5.2 in [40] accordingly to get the following

PROPOSITION 2.3.12. (¢f. [40]) For each f € L,(S?), let

Qf =Y (nef)Be. (2.3.20)

geM
Then Qg = g for all g € Hq(S?). Moreover, there exists a constant Cyy depending only on

d,p and the smallest angle in A such that for each triangle T € A,

—k
1Q flrpr < Cho (tan %T) I fllp.ns (2.3.21)
where Q= Uger, Qe and I = {& : 7 C Q¢}.

Theorem 4.2 in [40] states the existence of a spherical polynomial of degree d approxi-

mating f € WatLP(7) for |7] < 1 satisfying
| = 8lkpr < KolT ™5 flasrp,r

for some positive constant Ko depending on d, p and the smallest angle of 7. With a little

modification in the proof we can see that in fact

T
‘f - S‘k,p,ﬂ' < Kg(tan %)d+1_k‘f|d+l,p77 (2322)

for a positive constant Ko depending on d, p and the smallest angle of 7. Using this inequality

we can prove the following result on local approximation.
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THEOREM 2.3.13. (cf. [40], [10], [37]) Suppose T € A is a spherical triangle with |T| < 1.
Let f € W™mtLP(1) for 0 < m < d such that (d — m)mod 2 = 0. There exists a spherical

homogeneous polynomial s of degree d such that for every 0 < k <m

m+1—k
T
|f — S|k7p77- S Cll (tan %) |f|m+17p77-. (2323)

Here C4y 1s a constant that depends on p,m and Oa. Moreover

T/ m+1—k
|f — S|k7p7QT S Cll (tan | 5 |) |f|m+1’p7QT. (2.3.24)

Here T is the largest triangle in Q,, i.e. |T| = maz{|T|: T € Q.}.

PrOOF. Fix m. By Theorem 4.2 in [40], there exists a spherical homogeneous polynomial

s’ of degree m such that for every 0 < k <m
|f - Sl|k,p,‘r < C111|'7-|m+1_k|f|m—i—1,p,'r- (2325)

If we slightly modify the proof of Theorem 4.2 [40], i.e. replace (2.1.1) by (2.1.2), we can get

m+1—k
T
|f — S,|k7p77- S Cll (tan %) |f|m+17p77-. (2326)

Since (d — m)mod 2 = 0, s = |v|¢"™s is a homogeneous spherical polynomial of degree d.
Since on the unit sphere s’ = s, their (k—1)-st extensions are the same, and we have (2.3.23).

To get (2.3.24), sum (2.3.23) over triangles in .. We are done. O

Finally we describe a theorem on approximation order of spherical splines to end this chapter.

THEOREM 2.3.14. ([40], [10], [37]) Let A be a [(-quasi-uniform spherical triangulation
with |[A| < 1. Let 1 <p<oo,d>3r+2, and 0 < k < d. Then there exists a constant Cio

depending only on d,p and the smallest angle in A, such that

T/ m+1—k
|f - Qf|k,p,7 S Cl2 (tan | 2 |) |f‘m+1,p,977 (2327)

for all f € Wm™tLP(S?) and all T € A. Moreover, there exists a constant C3 such that

A m+1—k
‘f — Qf‘k,p,SQ S 013 (tan %) ‘f|m+1,p,§27 (2328)
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for all f € WmHLP(S?) and all 0 < k < d such that Qf € WH5P(S?). Here m is taken between
0 and d with (d —m) mod 2 = 0.

PROOF. Let 7 € A with |7| < 1. By Theorem 2.3.13 there exists a spherical homogeneous
polynomial s of degree d such that (2.3.23) holds. By the linearity of () and the fact that Q

reproduces polynomials of degree d we can write

‘f - Qf‘k,p,ﬂ- S |f - S|k,p,7— + |Q(f - S)|k,p,7—-

We now consider the last term in the above inequality. By (2.3.21)

—k
QU = 9)lpr < Cro (tanZ2) 7 If = sl

'
B

pr 1, [T
tan — > tan > — tan

2 28 ~ 1 2

Since A is assumed to be -quasi-uniform |p,| > and therefore

By Theorem 2.3.13

T/ —k T/ m+1
QU =g < CuCu@ (tan L) (tan ) 1

< CiCu(p) tan 5 | flm+1p.0.-

Therefore we get (2.3.27) with O, = C11(1 + Co58%).

To prove (2.3.28), we sum (2.3.27) over all triangles in A.

A m+1—k
|f = Qfleps: = Z |f = Qflkpr < Crz (tan %) Z | flm+1p.0,

TEA TEA
< (Chs (tan 7) Z Z |f|k,Pv7'/
TEA T CQr
= 012 <tan 7) Z #{T . 7'/ C QT}‘f|m+1,p,T’
T'eEA
< Cngl() <tan 7) Z |f|m+1,P77'/‘
T'eA

Here Ky := max{#{7 : 7/ C Q,},7" € A} which is bounded by Lemma 2.1.10. Therefore
(2.3.28) holds with C13 = C12K39. We are done. O



CHAPTER 3

SPHERICAL HERMITE INTERPOLATION

In this chapter, we study spherical Hermite interpolation problem. Given a set of scattered
data with derivative values, we use the minimal energy method to find Hermite interpolation
on spherical spline spaces over a spherical triangulation of the scattered data locations. Note
that the spherical triangulation is a part of a sphere with or without holes, or the whole
sphere. We show that the minimal energy method produces a unique Hermite spherical
spline interpolation for a given scattered data with derivative values. Also we show that the
Hermite interpolation spline converges to a given sufficiently smooth function f if the values
are obtained from this f. That is, the surface of the Hermite interpolation spherical spline
resembles the given set of derivative values. We organize this chapter as the following. In
section 1, we give an overview of spherical Hermite interpolation. In section 2, we discuss
the existence and uniqueness of the Hermite data interpolatory splines with minimal energy.
In section 3, we study the approximation properties of spline interpolants. In section 4, we

give a computational method for minimal energy spherical Hermite interpolatory splines.

3.1 OVERVIEW

DEFINITION 3.1.1. Let S* denote a unit sphere in R® and V = {v; = (z;,yi, z:)}7-; be a
set of scattered points on S?. Suppose that we are given the following data values
ffPo<a+pB<li=1,---,n,
wherel > 0. Then the Hermite interpolation problem on-the-sphere is to find a smooth
function s € C™(S?) such that
DYDys(v) = fP0<a+pB<li=1,...n. (3.1.1)

47
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where Dg and Dy are the derivative along latitude and longitude direction respectively, and
in general we need m > 1. If we only interpolate partial values defined in (3.1.1), then we call
this kind of interpolation problem as quasi-Hermite interpolation on-the-sphere, and
we shall use this notion in Chapter 4 for hole filling problem and point cloud(scattered data)
problem. For C"(r > 0) hole filling problem, we may only interpolate the derivatives up to the
r-th order at vertices of boundary edges, that is, our surface is Hermite interpolation curve
when it 1s restricted to boundary curves. For point cloud problem, we may only interpolate

partial points or their derivatives.

In case | = 1, this definition is similar to the Definition 8 in [22] where the Hermite inter-
polation problem is to find a function s on the sphere such that s interpolates location values
and two first order independent direction derivatives. We have generalized this definition.

Note that we have a fixed coordinate (¢, ) such that

x = sin(¢) cos(0),y = sin(¢) sin(0), z = cos(¢)

with ¢ € [0, 7] and 6 € [0, 2n]. If we use three-dimensional coordinate system in R?, then we

need to construct a smooth function s € C™(S?) such that
« ,6 _ Cl{,ﬁ, ;
DyDDIs(vi) = fi"7,0<a+f+y<Li=1,...,n (3.1.2)

And this is a generalization of the planar case in [48]. It is easy to show these expressions are
equivalent to each other exception polar points. We use polar system to avoid the computing
trouble in polar points.

We shall use spherical spline functions to construct such an interpolative surface s. When
[ =0, this is a standard Lagrange interpolation problem and it was studied in [4], [11], [22].
In this chapter, we consider [ > 1. For [ > 1, it is a classical Hermite interpolation problem.
It has been studied in [4] with [ = 1 by constructing C* macro-elements. As pointed in [37],
it is also an analog of planar case with [ > 1 by constructing C'**! macro-elements. However,

all the constructions require higher order derivative information than the given data. Also
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derivatives at edges are needed in order to make these macro-elements smooth across common
edges. Since such higher order derivatives and normal derivative information are not available
in practice, we have to use other techniques to estimate the needed information. As in the
case [ = 0, one can use a minimal energy method to construct an interpolation spline. For
Hermite interpolation problem, we can also use minimal energy technique.

The interpolation problem with { < 2 does have an important practical application. In
the year 2007, a satellite called GOCE(Gravity field and steady-state Ocean Circulation
Explorer) will be launched in December to collect gravitational vectors over sampling points
around the Earth . Together the geopotential data from CHAMP(CHAllenging Minisatellite
Payload which is a German small satellite mission for geoscientific and atmospheric research

and applications), we have
g(v;) up to a constant, D,g(v;), Dyg(v;), D.g(v;),i=1,...,n

and
2 2 2 L
D3.9(vi), Dy, 9(vi), Dy g(vi),i =1,...,n

will be available around the Earth for a large integer n, where g denotes the geopotential

function, cf. [25]. Let (¢;,6;) be the spherical coordinate for point v;. Then the following

Dyg(v;) = Dyg(v;)cos(¢;)cos(8;) + Dyg(v;) cos(¢;)sin(6;) — D.g(v;) sin(¢;)
Dog(vi) = —D,g(v;)sin(¢;)sin(6;) + Dyg(v;)sin(¢;) cos(6;) (3.1.3)

as well as D7 ,g(v;), Dg,g(vi), Dgag(v;) for all i = 1,...,n will be available. The purpose of
the satellite is to get more accurate estimate of geopotential near the surface of the Earth.
An important intermediate step is to estimate the geopotential very accurately at the orbital
level of the satellite, cf. [12] and [25]. That is, we want s to resemble the given data values.
More precisely, if f is sufficiently smooth over S?, we would like a spherical spline function

s € S satisfying (3.1.1) and approximate f very well in the following sense:

A
If = sl < C(tan%)l“ (3.1.4)
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for a constant C' dependent on f, where f is a sufficiently smooth function over S?. These
spherical splines were introduced in [3] more than 10 years ago and were used for scattered
data interpolation and fitting, e.g., [22] and [11]. Recall that space of spherical polynomial
splines

SH(A) = {s € C"(Q) : s|r € Ha(S?),VT € A},

where d > 3r + 2 and H, is a homogeneous polynomial spaces on sphere with degree d, and
Q) is the sphere domain bounded by A which is a triangulation of the sphere projection of
data locations in R? that could cover sphere S? or could not cover S%.

For d > 3r + 2, the existence of Hermite interpolatory spline satisfying conditions (3.1.1)
can be easily understood from [4], [40], [37]. For the proof of uniqueness, see next section.
Next we are interested in how well the interpolatory spline resemble the given data. For only
location interpolation(standard Lagrange interpolation spline problem), the approximation
of spherical splines with the second order energy functional E? was studied in [10]. The
researchers in [10] showed that the minimal energy interpolatory splines converges to values of
the given location data when the number of data values increases and the size of triangulation
decreases. Here we need to consider additional interpolation conditions except the location
values. Also we are going to use the third order energy functional E3. We want to attain an
analog of planar case in [48]. But the main difficulty lies in that we do not have the planar
counterpart of Taylor expansion on sphere. Our main theorems give the convergence rate of

minimal energy interpolation under two different norms.

3.2 EXISTENCE AND UNIQUENESS OF SPHERICAL HERMITE MINIMAL ENERGY INTER-

POLATION

In this section we first give a brief review of energy functionals and then give the the proof of
existence and uniqueness of minimal energy spherical Hermite interpolatory splines. Recall
that an energy functional E(f) is an expression for the amount of potential energy in a

thin elastic plate f that passes through the data points V' over planar region. The potential
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energy of the thin plate is given by
E= /[aH2 + bK] dxdy, (3.2.1)
Q

where H and K are mean curvature and Gaussian curvature of the surface S and a and b

are constants which depend on the materials of the plate, cf. [43]. In particular,

H— K1+ Ko _ (1 + fg?)fyy - 2fxfyf;cy + (1 —+ f;)fxx

2 L+ f2+ £

and

f:c:cfyy - :?y
(L+ 2+ )%

where k1 and ko are the principle curvatures of the surface of the plate. Suppose that f, = 0

K:K,llﬁg =

and f, = 0 when the plate has small deflections. The potential energy £ can be simplified

in the following form:

E(f) = / 0(far + Fip)? — 201 — @) (fanfyy — f2,)] drdy,

where the parameter w is a constant depending on the material at the hand, cf. [24]. For

simplicity, we choose @ = 1 and w = 0. That is,

E(f) = /Q[ 2212+ f1] dady, (3.2.2)
-/ [Z (2)[(%)%%)2-%2] dxdy (3.23)

which is commonly used in the literature, cf. [21]. In [48] the following energy functional was

taken:

B - [Z (9 [(%)’“(a%)m‘kf]?] dndy.

For spherical domain, the energy functional in [4] was defined as

BN = [ (&1 d

where A* is the Laplace-Beltrami operator, j is the Lebesgue measure on S?, and the integral

in this definition is taken over the unit sphere. Because the Laplace-Beltrami operator only
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annihilates constants. In [11], the researchers introduced an alternative functional motivated
by S