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Summary

Global Nonlinear Model Identification
with Multivariate Splines

A model is an abstraction of physical reality in which mathematics are used to reduce
its complexity into a conceptual structure. The field of science concerned with the identi-
fication of models of physical systems is called system identification. In this thesis, a new
methodology is proposed for the identification of models of nonlinear systems with complex
dynamics using multivariate simplex splines. Modeling systems with nonlinear dynamics is
a challenging task, and currently only a handful of methods exist that are capable of creating
sufficiently accurate models of such systems. The four most widely known of these methods
are neural networks, kernel methods, polynomial blending methods, and spline methods.
All these methods are able to produce models of an arbitrarily high approximation power
on a global model scale. Until recently, however, all these methods suffered from inherent
shortcomings. Neural networks are essentially black-box models and use global basis func-
tions, resulting in complex, nontransparent, and inefficient computational schemes for their
training and evaluation. Kernel methods are non-parametric in nature, which means that in
principle there are as many kernel functions as there are data points, leading to inefficient
computational schemes for large datasets. Polynomial blending methods use fuzzy logic
techniques to blend local polynomial models into a single global model. The tuning of the
fuzzy blending operation is done based on expert knowledge, with the result that it is un-
likely to ever become a fully automated technijue. Polynomial spline methods have been
successfully used in the past for the modeling of nonlinear systems. However, these spline
methods employed multivariate tensor product B-splines which are limited to rectangular
domains, and are incapable of fitting widely occurring scattered data.

The new methodology proposed in this thesis is based on multivariate simplex splines,
which are a recent type of multivariate spline that have a number of important advantages
over the above mentioned methods. Firstly, simplex splines have a local polynomial ba-
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sis, which implies that only small subsets of parameters and basis polynomials need to be
considered during estimation and evaluation, resulting in efficient computational schemes,
Secondly. simplex spline models are parametric models, which allows for efficient approx-
imation of very large datasets. Thirdly, the simplex splines are linear in the parameters,
meaning that linear regression methods can be used for their estimation. Fourthly, the sim-
plex splines are defined on non-rectangular domains and can be used to approximate scat-
tered data. And finally, the quality of simplex spline hased models can be assessed using a
number of unique and powerful model quality assessrent methods.

Multivariate simplex splines consist of polynomial basis functions, called B-form poly-
nomials, which are defined on geometric structures called simplices. Every simplex sup-
ports a single B-form polynomial which itself consists of a linear combination of Bernstein
basis polynomials. Each individual Bernstein basis polynomial is scaled by a single coeffi-
cient called a B-coefficient. The B-coefficients have a special property in the sense that they
have a unique spatial location inside their supporting simplex. This spatial structure, also
known as the B-net, provides a number of unique capabilities that add to the desirability of
the simplex splines as a tool for data approximation. For example, the B-net simplifies local
model modification by directly relating specific model regions to subsets of B-coefficients
involved in shaping the model in those regions. This particular capability has the potential
to play an important role in future adaptive model based control systems. In such a con-
trol system, an on-board simplex spline model can be locally adapted in real time to reflect
changes in system dynamics.

The approximation power of the multivariate simplex splines can be increased by joining
any number of simplices together into a geometric structure called a triangulation. Trian-
gulations come in many shapes and sizes, ranging from configurations consisting of just
two simplices to configurations containing millions o1 simplices. Triangulations can be op-
timized by locally increasing or decreasing the density of simplices to reflect local system
complexity. In principle, the total number of simplices in a triangulation is bounded only by
the available computational resources. This thesis shows, however, that there is an important
practical limit to the size and resolution of a triangulztion. This practical limit is the result
of every simplex requiring a minimum data content which is determined by the degree and
continuity order of the basis polynomials. It was shown in this thesis that this data cover-
age problem requires a new approach towards triangu ation optimization, as methods in the
existing literature do not consider per-simplex data coverage as an optimization parameter.
The newly proposed method for triangulation optimization produces triangulations that are
specifically suited for use with simplex splines by ensuring that every individual simplex in
a triangulation contains a minimum amount of data.

While multivariate simplex splines have been used in the past to model scattered nonlin-
ear data in two and three dimensions, no methodology existed for their use inside a frame-
work for system identification. The unique properties of the simplex splines, together with
the above mentioned advantages over existing data approximators, makes them highly de-
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sirable for use within such a framework. It is the main objective of this thesis to present a
new methodology for system identification based on multivariate simplex splines. This new
methodology encompasses the three main aspects of system identification; model structure
selection, parameter estimation, and model validation. The aspect of model structure selec-
tion for the multivariate simplex splines consists of two parts. The first part is the geometric
model structure selection which consists of the selection of the spline model dimensions and
the creation of a triangulation embedded in this set of dimensions. The second part is the
determination of the polynomial model structure. For the aspect of parameter estimation, a
new formulation of the standard linear regression model structure was developed. In this for-
mulation, the B-form polynomials of the simplex splines form the regressors. Using the new
regression model structure, a number of differsnt parameter estimation techniques can be
employed to estimate the B-coefficients of the B-form polynomials. This thesis introduces
two such methods for parameter estimation. The first is a generalized least squares esti-
mator, which enables the estimation of B-coefficients on simplices containing measurement
noise of varying magnitudes. The second parameter estimator is a differentially constrained
recursive least squares estimator which allows, in real-time, the reconfiguration of spline
models using incoming observations. During the aspect of model validation, the quality
of the estimated spline models is assessed using existing methods based on an analysis of
model residuals and parameter variances. Addtionally, a number of completely new qual-
ity assessment methods are enabled by the use of the B-form polynomials. For example,
the variances of the B-coefficients can be pinpointed to specific locations within the model.
This means that regions of high parameter variance can be isolated within the global model
and subjected to further analysis. These unique and powerful properties together may result
in a new perspective on system identification and parameter estimation, potentially leading
to further innovations in the field.

This thesis introduces three major theoretical innovations in the field of multivariate
spline theory. These innovations were essential in the creation of an effective method for
system identification with simplex splines. The first of these innovations was the definition
of the differential constraints, which are used to constrain the directional derivatives of the
simplex splines at selected locations within the spline domain. The differential constraints
enable bounded model extrapolation and limit polynomial divergence near the bounds of the
spline domain. Additionally, the differential constraints can be applied to impose boundary
conditions like Dirichlet or Cauchy conditions on the simplex spline functions, thereby
enabling the approximation of solutions to boundary value problems using simplex splines.
The second innovation was the development of a theory for the quantification of B-net
propagation, a new effect observed in large scale triangulations. B-net propagation is the
spreading of local disturbances from the B-net of one simplex to that of its neighbors. It
was proved that B-net propagation effectively transforms a simplex spline function from a
local approximator into an global approximator if its continuity order is high with respect
to its polynomial degree. and when it is defined on the most widely used triangulation type.
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A final innovation was a new formulation of the B-form in global Cartesian coordinates
instead of local barycentric coordinates. The Bernstein basis polynomials of the simplex
splines are functions in terms of local barycentric coordinates, which means that their global
interpretation is meaningless. The new formulation of the B-form polynomials in global
coordinates adds a global interpretation capability. Additionally, and more importantly, the
new formulation enables the optimization of triangulation and B-coefficients in a single
step, thereby avoiding the need for separate triangulation optimization.

Aircraft aerodynamics are notoriously nonlinear, and the identification of accurate aero-
dynamic models from flight data has historically been a challenging task. Aerodynamic
models are crucial in the correct functioning of flight simulators and flight control sys-
tems. The higher the quality of an aerodynamic model, the more accurate its predictions
on the real aerodynamic forces and moments acting on an aircraft. For flight simulator ap-
plications, this directly translates into an increased simulator fidelity. and consequently a
better training environment for pilots. For flight control systems this results in a more ac-
curate reference signal tracking performance, and an increased tolerance to damage events.
Ultimately, high quality aerodynamic models have ar important societal relevance by ben-
efiting flight safety. The societal relevance of accurate aerodynamic models, together with
the technical challenge of their identification from fiight data. presents the ideal case for
demonstrating the utility of the new methodology proposed in this thesis.

Two identification experiments in the field of aecrodynamic mode identification were
conducted with the new methodology. The first experiment was the identification of an
aerodynamic model for the F-16 fighter aircraft using a NASA wind tunnel dataset. The
internal structure of this wind tunnel model was known, and as such it provided a controlled
environment for testing and validating the new methodology.

In the second identification experiment a complete set of aerodynamic models for the
Cessna Citation Il laboratory aircraft were identified using flight data obtained during seven
test flights conducted between 2006 and 2010. In total, 247 flight test maneuvers were
flown which together provided a significant coverage of the flight envelope of the Citation
II. The complete identification dataset consisted of millions of measurements on more than
sixty flight parameters. For this real-life experiment it was necessary to consider the aspects
of model structure selection, parameter estimation, and model validation. The geometric
model structure selection was performed using a novel approach based on the occurrence
of hysteresis in the time trace of the aerodynamic force and moment coefficients. Using the
hysteresis analysis method, a number of candidate dimension sets was defined. For each
candidate dimension set, a triangulation of the hypercube was created that minimally en-
velopes the flight test data, The polynomial model structure was selected by validating the
performance of a number of prototype simplex spline functions of different degree and con-
tinuity order on the hypercube triangulation. More then 2000 prototype spline models were
identified using a newly developed. highly optimized software implementation of the sim-
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plex spline identification algorithm. The final geometric and polynomial model structures
were selected based on the further optimizatior of the best performing prototype model.

The identified simplex spline based acrodyramic models are phenomenological models,
that is, models that are based directly on observational data. Using the developed methods
for simplex spline model validation it is proved that the models are both accurate and of
guaranteed numerical stability inside the spline domain. The identification and validation
results of the simplex spline models were compared with those of ordinary polynomial
models identified using standard identification methods. These results showed that the mul-
tivariate simplex spline based acrodynamic models were of significantly higher quality than
the aerodynamic models based on ordinary polynomials.

The research performed in the framework of this thesis leads to three principal rec-
ommendations. First, it was found that the greatest practical limit in the application of
multivariate simplex splines in real life data approximation is per-simplex data coverage.
To alleviate this problem, and further improve the practical utility of the simplex splines, a
software tool should be developed for checking, in real time, the coverage of the system op-
erating domain with measurements. In the case of aerodynamic model identification, such a
software tool would provide cues to the pilots for executing specific maneuvers. The second
recommendation is that a general triangulatior optimization method should be developed
that is specifically suited for system identification with simplex splines. Such a method
could be based on the global formulation of B-form polynomials provided in this thesis,
and would close an important gap in current simplex spline theory. A final recommendation
is a real-life implementation of an adaptive model based control system which employs the
recursive B-coefficient estimator introduced in this thesis. For aerospace applications. this
would result in a fault tolerant flight control system with a built in flight envelope prediction
functionality. Installed in future aircraft, simplex spline adaptive model-based flight con-
trollers could increase flight safety by turning catastrophic events into survivable incidents
thereby saving human lives.



Contents

Summary

1

Introduction
11 Modeling Reality . .o s v ve s v viws & vami 5 % ses 5 e 5 4
1.2 Global Models for Control . . .. .. ...................
1.3 Introduction to Aerodynamic Model Identification . . . . ... ... ..
1.4 A Case for Multivariate Splines . . . . . ... ... ...........
1.5 Thesis Goals and Research Apprcach . . . . ... ... ........
1.5.1 Goalsofthisthesis . . .. ... ... ... ............
1.5.2 ResearchApproach .. ......................
1.5.3 Scope andlimitations . . .. ... ................
16 CODIBUHONS. « woow = = s & w5 koamn © Bwes © G & s 3
157 Oubline'oftheE THESIS' « v v v oo b v s 5 P90 © 9SG ¥ 5 5909 3

Introduction to Multivariate Simplex Splines
2.1 Introduction to Multivariate Simplexx Splines . . . . ... ... ... ..
211 Univariagte B-Splines . .. . ...................

2.1.2 The unclear path from univariate to multivariate splines . . . .

vii

10
12
12
13
15
15
16

19
20
21
25



xiv Contents
213 Tensorproductsplines . . ... . ... ... .......... 26
214 Thinplatesplines . . ... ... .. ... .. .. ... ..... 29
21.5 Polyhedralsplines . ....... ................. 31
21.6 Simplexsplines . . ... ... . ... 35

2.2 The Basis of the Multivariate Simplex Spline . . . .. ... ... ... 39
221 TheSimplex . . . ... ... 39
2.22 BarycentricCoordinates . . . .. ................. 43
2.23 Bernsteinbasispolynomials . . . . ... ............. 50
224 TheB-form. . ... . ... .. .. . e 53
225 AVectorformoftheB-form .. .. ... ............. 58
2286 TheB-coefficientnet . . .. ... ................. 59
227 SPINESPEBES!, « » aw = aoms & o iies W S & HeEn B # 60

2.3 Triangulationsof Simplices . . . . . ... ................. 63
231 Simplexmetrics . . .. ... .. ... ... 63
2.3:2: ‘General definition . ... « « v & wam 5 v s e @ & 64
233 Typellltriangulations . . ... .................. 67
234 Delaunaytriangulations . ... .................. 71
2.3.5 B-netsontriangulations . ... .................. 75
236 SimplexStars . . ... .. i e e e 76
2.3.7 Geometric Triangulation optimizetion. . . . ... ... ... .. 77

3 Advances in Simplex Spline Theory 89

3.1 Thede Casteljaualgorithm . ... .. ... ... ............ 90
3.1.1 The ordinary de Casteljau algorithm . . . . ... ... ..... 91
3.1.2 A multi-degree formulation of the de Casteljau recursion . .. 92
3.1.3 A one-step matrix form of the de Casteljau algorithm . . . . . 94

3.2 Calculations with B-form Polynomials . . . . . ... ... ........ 98
3.2.1 Full triangulation vector form of E-form polynomials . . . . . . 98
3.22 SumsofB-formpolynomials. . . .. . ... ... ........ 100
3.2.3 |Integrals of B-form polynomials . . . . ... ... ........ 101



XV

3.2.4 Inner products of B-form polynomials . ... ... .......
325 Degreeraising. . . . ... ...
3.2.6 Directional derivatives of B-form polynomials . . . ... .. ..
3.2.7 Bounds on approximation with B-form polynomials . . . . . . .
3.3 Smoothness Constraints . . . . . ... ..................
3.3.1 Definition of the continuity conditions . . . . . . ... ... ...
3.3.2 A general formulation for the continuity conditions . . . . . . .
3.3.3 Theeffectsofcontinuity . . ....................
334 Bnetpropagation ', . o coen o v o s @ gme @ woen e g
3.3.5 TheSmoothnessMatrix . . ....................
3.4 Differential Constraints . . . . ... ... ... ... ... ... ....
3.4.1 Definition of differential constraints . . . . . . ... ... ....
3.4.2 Differentially constraining polynomials on subsimplices . . . .
3.4.3 Differential constraints for bounded model extrapolation . . . .
3.5 AB-formin Global Coordinates . . . ...................
3.5.1 Barycentric coordinates revisited . . . . ... . ... ......
3.5.2 AB-forminglobal coordinates ... ...............

3.5.3 Globally interpreting B-form polynomials . ... ... ... ..

System Identification with Simplex Splines

4.1 Model Structure Selection . . .. . ... ....... ... ... .....
4.1.1 Geometric model structure selection . . . . . .. ... .....
4.1.2 Polynomial model structure selection. . . . .. ... ......
4.1.3 A linear regression model for B-form polynomials . . ... ..

4.2 Spline Model Estimation . . ... ... ... .. ... . ........
4.2.1 Generalized Least Squares with simplex splines . . . . . . ..
4.2.2 Constrained recursive regresssion with simplex splines . . . . .

4.3 Model Quality Assessment. . .. .. ... ... ... .. .......
431 Modelresidueanalysis. . . ...................

4.3.2 Statistical model quality assessment . . . ... .. ... ....

101
101
103
107
110
110
114
122
126
135
139
140
143
143
149
152
154
159



xvi Contents
4.3.3 Stabilityanalysis . . .. .. .. ... ... 184

4.4 Scattered Data Modeling with Simplex Splines . . . . ... ... ... 184
441 Experimentsetup . . ... ... . ... ... ... 185
442 Modelresidueanalysis. . . ... ................. 188
4.43 Statistical model qualityanalysis . . ... ... ... ...... 190
444 Stabilityanalysis . .. ... ... ... .. ... ... ...... 195
445 Empirical confidencebounds . . ... ... ........... 195
446 Statistical confidencebounds . . . ... .. ... ........ 196

5 Aerodynamic Modeling of the Cessna Citation Il 201
5.1 Introduction . . ... .. ... ... 203
5.1.1 A procedure for AMI with simplex splines . . . . ... ... .. 203
5.1.2 The Cessna Citation llandits FTIS . . ... ... ....... 204

52 FlightTestDesign . . . ... ... ... ... .. . . ..., 205
5.2.1 Aircraft Equationsofmotion . . . . ... ... .......... 207
5.2.2 Determination of the force and moment coefficients . . . . . . 209
5.2.3 Initial assumptions on model structure . . . . . ... ... ... 210
524 Testpointselection . . ... .................... 214
525 Maneuverinputdesign . . ... ... ..... ... . ...... 2186

5.3 Elght TEStREsS ...  « wew o sevms v 5 om 5 5 o ® ey © 5 @ | 219
5:3.1 EhghttestraSulls: ;o v o seams v sy v ien ¥ &5 58 8 355 & 221
5.3.2 Flightenvelopecoverage . .................... 230
533 IMUsensornoiseanalysis. .. ... ............... 232
5.3.4 IMU center of gravity offset correction . . . .. ... ... ... 238

5.4 Flight Path Reconstruction . . . .. .... ... ... ........... 239
5.4.1 Flight path reconstruction procedure . . . . .. ... ...... 240
5.42 The iterated extended Kalman filter . . . ... ... ...... 241
5.4.3 Kalman filter model structure . . . .. ... ......... .. 245
5.4.4 Investigation of state observability . . . .. ... ........ 250

545 Enginemodel .. ... ... ... ... ... ... ... ... 252



546 Massmodel ... ... ..............
5.4.7 Flight path reconstructionresults . . . . .. ..
5.5 Spline Model Estimation . . ... ............
5.5.1 A framework for AMI with simplex splines . . .
5.5.2 Geometric model structure selection . . . . . .
5.5.3 Polynomial model structure selection. . . . . .
5.5.4 Overall results of prototype model estimation .
5.5.5 Specific results of prototype model estimation
5.5.6 Coupled model estimation . . . .........
5.5.7 Modelrefinement . . ... ............
5.5.8 Finalmodelselection. . ... ..........
5.6 Spline Model Validation. . . . ... ...........
5.6.1 Validationresults . . ... ... .........
5.6.2 Global model inspection . . ... ........
5.6.3 Model residual analysis . . ... ........
5.6.4 Stabilityanalysis . .. ..............
5.6.5 Statisticalanalysis . ... ............

5.6.6 Final model quality assessment. . . . . .. ..

6 Conclusions
6.1 Simplexsplinetheory . . . .. ... .. .........
6.2 System identification with simplex splines . . . . . ..
6.3 Aerodynamic model identification with simplex splines

7 Recommendations
7.1 Simplexsplinetheory . . . . ... . ..........
7.2 System identification with simplex splines . . . . . . .
7.3 Aerodynamic model identification with simplex splines

A Reference Frame Definitions

References

331
332
334
336

339
339
340
341

345

349



Appendix A

Reference Frame Definitions

Figure A.1: The body fixed reference frare Fg and the aerodynamic reference
frame Fa.



346 Reference Frame Definitions

Figure A.2: The Earth fixed reference frame [ and the body fixed reference
frame Fg.
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