
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. SCI. COMPUT. c© 2015 Society for Industrial and Applied Mathematics
Vol. 37, No. 1, pp. A488–A514

ORTHOGONAL RANK-ONE MATRIX PURSUIT
FOR LOW RANK MATRIX COMPLETION∗

ZHENG WANG† , MING-JUN LAI‡ , ZHAOSONG LU§ , WEI FAN¶, HASAN DAVULCU‖,
AND JIEPING YE#

Abstract. In this paper, we propose an efficient and scalable low rank matrix completion
algorithm. The key idea is to extend the orthogonal matching pursuit method from the vector case
to the matrix case. We further propose an economic version of our algorithm by introducing a novel
weight updating rule to reduce the time and storage complexity. Both versions are computationally
inexpensive for each matrix pursuit iteration and find satisfactory results in a few iterations. Another
advantage of our proposed algorithm is that it has only one tunable parameter, which is the rank.
It is easy to understand and to use by the user. This becomes especially important in large-scale
learning problems. In addition, we rigorously show that both versions achieve a linear convergence
rate, which is significantly better than the previous known results. We also empirically compare the
proposed algorithms with several state-of-the-art matrix completion algorithms on many real-world
datasets, including the large-scale recommendation dataset Netflix as well as the MovieLens datasets.
Numerical results show that our proposed algorithm is more efficient than competing algorithms while
achieving similar or better prediction performance.

Key words. low rank, singular value decomposition, rank minimization, matrix completion,
matching pursuit

AMS subject classifications. 15A83, 68W40, 90C06

DOI. 10.1137/130934271

1. Introduction. Recently, low rank matrix learning has attracted significant
attention in machine learning and data mining due to its wide range of applica-
tions, such as collaborative filtering, dimensionality reduction, compressed sensing,
multiclass learning, and multitask learning. See [1, 2, 3, 7, 9, 23, 34, 40, 37] and
the references therein. In this paper, we consider the general form of low rank ma-
trix completion: given a partially observed real-valued matrix Y ∈ �n×m, the low
rank matrix completion problem is to find a matrix X ∈ �n×m with minimum rank
that best approximates the matrix Y on the observed elements. The mathematical
formulation is given by

(1.1)
min

X∈�n×m
rank(X)

s.t. PΩ(X) = PΩ(Y),

∗Submitted to the journal’s Methods and Algorithms for Scientific Computing section August 26,
2013; accepted for publication (in revised form) November 18, 2014; published electronically February
19, 2015. This research was partially supported by NSF (IIS-0953662, CCF-1025177, IIS-1421057),
NIH (LM010730), China 973 Fundamental R&D Program (2014CB340304), NSERC Discovery Grant
and a collaboration grant from the Simons Foundation.

http://www.siam.org/journals/sisc/37-1/93427.html
†Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor,

MI 48109 (zhengwang@umich.edu).
‡Department of Mathematics, University of Georgia, Athens, GA 30602 (mjlai@math.uga.edu).
§Department of Mathematics, Simon Fraser University, Burnaby, BC V5A 156, Canada

(zhaosong@sfu.ca).
¶Huawei Noah’s Ark Lab, Units 520–530 Core Building 2, Hong Kong Science Park, Hong Kong

(wei.fan@gmail.com).
‖School of Computing, Informatics, and Decision Systems Engineering, Arizona State University,

Tempe, AZ 85287 (hasandavulcu@asu.edu).
#Department of Computational Medicine and Bioinformatics, and Department of Electrical En-

gineering and Computer Science, University of Michigan, Ann Arbor, MI 48109 (jpye@umich.edu).

A488

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.siam.org/journals/sisc/37-1/93427.html
mailto:zhengwang@umich.edu
mailto:mjlai@math.uga.edu
mailto:zhaosong@sfu.ca
mailto:wei.fan@gmail.com
mailto:hasandavulcu@asu.edu
mailto:jpye@umich.edu


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A489

where Ω is the set of all index pairs (i, j) of observed entries, and PΩ is the orthogonal
projector onto the span of matrices vanishing outside of Ω.

1.1. Related works. As it is intractable to minimize the matrix rank exactly
in the general case, many approximate solutions have been proposed to attack the
problem (1.1) (cf., e.g., [7, 24, 28]). A widely used convex relaxation of matrix rank is
the trace norm or nuclear norm [7]. The matrix trace norm is defined by the Schatten
p-norm with p = 1. For matrix X with rank r, its Schatten p-norm is defined by
(
∑r

i=1 σ
p
i )

1/p, where {σi} are the singular values of X and without loss of generality
we assume they are sorted in descending order. Thus, the trace norm of X is the �1
norm of the matrix spectrum as ||X||∗ =

∑r
i=1 |σi|. Then the convex relaxation for

problem (1.1) is given by

(1.2)
min

X∈Rn×m
||X||∗

s.t. PΩ(X) = PΩ(Y).

Cai, Candès, and Shen [6] propose an algorithm to solve (1.2) based on soft singular
value thresholding (SVT). Keshavan and Oh [21] and Jain, Meka, and Dhillon [18]
develop more efficient algorithms by using the top-k singular pairs.

Many other algorithms have been developed to solve the trace norm penalized
problem:

(1.3) min
X∈Rn×m

||PΩ(X)− PΩ(Y)||2F + λ||X||∗.

Ji and Ye [20], Liu, Sun, and Toh [27], and Toh and Yun [44] independently propose to
employ the proximal gradient algorithm to improve the algorithm of [6] by significantly
reducing the number of iterations. They obtain an ε-accurate solution in O(1/

√
ε)

steps. More efficient soft singular vector thresholding algorithms are proposed in
[29, 30] by investigating the factorization property of the estimated matrix. Each step
of the algorithms requires the computation of a partial singular value decomposition
(SVD) for a dense matrix. In addition, several methods approximate the trace norm
using its variational characterizations [32, 40, 46, 37] and proceed by alternating
optimization. However, these methods lack global convergence guarantees.

Solving these low rank or trace norm problems is computationally expensive for
large matrices, as it involves computing SVD. Most of the methods above involve
the computation of SVD or truncated SVD iteratively, which is not scalable to large-
scale problems. How to solve these problems efficiently and accurately for large-scale
problems has attracted much attention in recent years.

Recently, the coordinate gradient descent method has been demonstrated to be
efficient in solving sparse learning problems in the vector case [11, 39, 47, 48]. The key
idea is to solve a very simple one-dimensional problem (for one coordinate) in each
iteration. One natural question is whether and how such a method can be applied to
solve the matrix completion problem. Some progress has been made recently in this
direction. Dud́ık, Harchaoui, and Malick [9] propose a coordinate gradient descent
solution for the trace norm penalized problem. They recast the nonsmooth objective
in problem (1.3) as a smooth one in an infinite dimensional rank-one matrix space,
then apply the coordinate gradient algorithm on the collection of rank-one matrices.
Zhang, Yu, and Schuurmann [49] further improve the efficiency using the boosting
method, and the improved algorithm guarantees an ε-accuracy within O(1/ε) iter-
ations. Although these algorithms need slightly more iterations than the proximal

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A490 WANG, LAI, LU, FAN, DAVULCU, AND YE

methods, they are more scalable as they only need to compute the top singular vec-
tor pair in each iteration. Note that the top singular vector pair can be computed
efficiently by the power method or Lanczos iterations [13]. Jaggi and Sulovský [17]
propose an algorithm which achieves the same iteration complexity as the algorithm in
[49] by directly applying Hazan’s algorithm [15]. Tewari, Ravikumar, and Dhillon [42]
solve a more general problem based on a greedy algorithm. Shalev-Shwartz, Gonen,
and Shamir [38] further reduce the number of iterations based on heuristics without
theoretical guarantees.

Most methods based on the top singular vector pair include two main steps in
each iteration. The first step involves computing the top singular vector pair, and the
second step refines the weights of the rank-one matrices formed by all top singular
vector pairs obtained up to the current iteration. The main differences among these al-
gorithms lie in how they refine the weights. Jaggi’s algorithm (JS) [17] directly applies
Hazan’s algorithm [15], which relies on the Frank–Wolfe algorithm [10]. It updates
the weights with a small step size and does not consider further refinement. It does
not choose the optimal weights in each step, which leads to a slow convergence rate.
Similar to JS, Tewari, Ravikumar, and Dhillon [42] use a small update step size for a
general structure constrained problem. The greedy efficient component optimization
(GECO) [38] optimizes the weights by solving another time-consuming optimization
problem. It involves a smaller number of iterations than the JS algorithm. However,
the sophisticated weight refinement leads to a higher total computational cost. The
lifted coordinate gradient descent algorithm [9] updates the weights with a constant
step size in each iteration and conducts a LASSO-type algorithm [43] to fully correct
the weights. The weights for the basis update are difficult to tune as a large value
leads to divergence and a small value makes the algorithm slow [49]. The matrix
norm boosting approach (Boost) [49] learns the update weights and designs a local
refinement step by a nonconvex optimization problem which is solved by alternating
optimization. It has a sublinear convergence rate.

We summarize their common drawbacks as follows:
• Some weight refinement steps are inefficient, resulting in a slow convergence
rate. The current best convergence rate is O(1/ε). Some refinement steps
themselves contain computationally expensive iterations [9, 49], which do not
scale to large-scale data.
• They have heuristic-based tunable parameters which are not easy to use.
However, these parameters severely affect their convergence speed and the
approximation result. In some algorithms, an improper parameter even makes
the algorithm diverge [6, 9].

In this paper, we present a simple and efficient algorithm to solve the low rank
matrix completion problem. The key idea is to extend the orthogonal matching pur-
suit (OMP) procedure [35] from the vector case to the matrix case. In each iteration,
a rank-one basis matrix is generated by the left and right top singular vectors of the
current approximation residual. In the standard version of the proposed algorithm,
we fully update the weights for all rank-one matrices in the current basis set at the
end of each iteration; this is achieved by performing an orthogonal projection of the
observation matrix onto the spanning subspace of those rank-one matrices. The most
time-consuming step of the proposed algorithm is to calculate the top singular vec-
tor pair of a sparse matrix, which involves O(|Ω|) operations in each iteration. An
appealing feature of the proposed algorithm is that it has a linear convergence rate.
This is different from traditional OMP or weak orthogonal greedy algorithms, whose
convergence rate for sparse vector recovery is sublinear, as shown in [26]. See also

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A491

[8], [41], [45] for an extensive study on various greedy algorithms. With this rate of
convergence, we only need O(log(1/ε)) iterations for achieving an ε-accuracy solution.

One drawback of the standard algorithm is that it needs to store all rank-one
matrices in the current basis set for full weight updating, which contains r|Ω| elements
in the rth iteration. This makes the storage complexity of the algorithm dependent on
the number of iterations, which restricts the approximation rank especially for large-
scale matrices. To tackle this problem, we propose an economic weight updating rule
for this algorithm. In this economic version of the proposed algorithm, we only track
two matrices in each iteration. One is the current estimated matrix and the other
is the pursued rank-one matrix. When restricted to the observations in Ω, each has
|Ω| nonzero elements. Thus the storage requirement, i.e., 2|Ω|, remains the same in
different iterations, which is the same as the greedy algorithms [17, 42]. Interestingly,
we show that using this economic updating rule we still retain the linear convergence
rate. Besides the convergence property, we also analyze the recovery guarantee of our
proposed algorithm. Specifically, we extend our proposed algorithm to a more general
matrix sensing problem and show the recovery guarantee of the proposed algorithm
under the rank-restricted isometry property [25]. We verify the efficiency of our
algorithm empirically on large-scale matrix completion problems, such as MovieLens
[31] and Netflix [4, 5].

The main contributions of our paper are as follows:

• We propose a computationally efficient and scalable algorithm for matrix
completion, which extends OMP from the vector case to the matrix case.
• We theoretically prove the linear convergence rate of our algorithm. As a
result, we only need O(log(1/ε)) iterations to obtain an ε-accuracy solution,
and in each iteration we only need to compute the top singular vector pair,
which can be computed efficiently.
• We further reduce the storage complexity of our algorithm based on an eco-
nomic weight updating rule while retaining the linear convergence rate. This
version of our algorithm has a constant storage complexity which is indepen-
dent of the approximation rank and is more practical for large-scale matrices.
• We extend our proposed algorithm to a more general matrix sensing problem
and show the recovery guarantee of the proposed algorithm under the rank-
restricted isometry property.
• Both versions of our algorithm have only one free parameter, i.e., the rank
of the estimated matrix. The proposed algorithm is guaranteed to converge,
i.e., no risk of divergence.

1.2. Notation and organization. Let Y = (y1, . . . ,ym) ∈ �n×m be an n×m
real matrix, and let Ω ⊂ {1, . . . , n} × {1, . . . ,m} denote the indices of the observed
entries ofY. PΩ is the projection operator onto the space spanned by the matrices van-
ishing outside of Ω so that the (i, j)th component of PΩ(Y) equals toYi,j for (i, j) ∈ Ω

and zero otherwise. The Frobenius norm of Y is defined as ||Y||F =
√∑

i,j Y
2
i,j .

Let vec(Y) = (yT
1 , . . . ,y

T
m)T denote a vector reshaped from matrix Y by concate-

nating all its column vectors. Let ẏ = vecΩ(Y) = {(yω1 , . . . , yω|Ω|)
T ∀ ωi ∈ Ω}

denote a vector generated by concatenating all observed elements of Y indexed by
Ω. The Frobenius inner product of two matrices X and Y is defined as 〈X,Y〉 =
trace(XTY), which also equals the componentwise inner product of the correspond-
ing vectors as 〈vec(X), vec(Y)〉. Given a matrix A ∈ �n×m, we denote PΩ(A)
by AΩ. For any two matrices A,B ∈ �n×m, we define 〈A,B〉Ω = 〈AΩ,BΩ〉 and

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A492 WANG, LAI, LU, FAN, DAVULCU, AND YE

‖A‖Ω =
√〈A,A〉Ω. Without further declaration, the matrix norm refers to the

Frobenius norm, which is also written as ‖A‖ =√〈A,A〉.
The rest of the paper is organized as follows. We present the standard version of

our algorithm in section 2. Section 3 analyzes the convergence rate of the standard
version of our algorithm; we further propose an economic version of our algorithm
and prove its linear convergence rate in Section 4. Section 5 extends the proposed
algorithm to a more general matrix sensing case and presents its guarantee of finding
the optimal solution under the rank-restricted isometry property condition. In section
6 we analyze the stability of both versions of our algorithm; empirical evaluations are
presented in section 7 to verify the efficiency and effectiveness of our algorithm. We
finally conclude our paper in section 8.

2. Orthogonal rank-one matrix pursuit. It is well-known that any matrix
X ∈ �n×m can be written as a linear combination of rank-one matrices, that is,

(2.1) X = M(θ) =
∑
i∈I

θiMi,

where {Mi : i ∈ I} is the set of all n × m rank-one matrices with unit Frobenius
norm. Clearly, there are infinitely many choices of Mi’s. Such a representation can
be obtained via the standard SVD of X.

The original low rank matrix approximation problem aims to minimize the zero-
norm of θ subject to the constraint

(2.2)
min
θ

||θ||0
s.t. PΩ(M(θ)) = PΩ(Y),

where ||θ||0 denotes the number of nonzero elements of the vector θ.
If we reformulate the problem as

(2.3)
min
θ

||PΩ(M(θ))− PΩ(Y)||2F
s.t. ||θ||0 ≤ r,

we could solve it by an OMP type algorithm using rank-one matrices as the basis. In
particular, we are to find a suitable subset of overcomplete rank-one matrix coordi-
nates and learn the weight for each selected coordinate. This is achieved by executing
two steps alternatively: one is to pursue the basis, and the other is to learn the weight
of the basis.

Suppose that after the (k − 1)th iteration, the rank-one basis matrices M1, . . . ,
Mk−1 and their current weight vector θk−1 are already computed. In the kth iteration,
we are to pursue a new rank-one basis matrix Mk with unit Frobenius norm, which is
mostly correlated with the current observed regression residual Rk = PΩ(Y)−Xk−1,
where

Xk−1 = (M(θk−1))Ω =

k−1∑
i=1

θk−1
i (Mi)Ω.

Therefore, Mk can be chosen to be an optimal solution of the following problem:

(2.4) max
M
{〈M,Rk〉 : rank(M) = 1, ‖M‖F = 1} .

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A493

Notice that each rank-one matrix M with unit Frobenius norm can be written as the
product of two unit vectors, namely, M = uvT for some u ∈ �n and v ∈ �m with
‖u‖ = ‖v‖ = 1. We then see that problem (2.4) can be equivalently reformulated as

(2.5) max
u,v
{uTRkv : ‖u‖ = ‖v‖ = 1}.

Clearly, the optimal solution (u∗,v∗) of problem (2.5) is a pair of top left and right
singular vectors of Rk. It can be efficiently computed by the power method [17, 9].
The new rank-one basis matrix Mk is then readily available by setting Mk = u∗vT

∗ .
After finding the new rank-one basis matrix Mk, we update the weights θ

k for all
currently available basis matrices {M1, . . . ,Mk} by solving the following least squares
regression problem:

(2.6) min
θ∈�k

||
k∑

i=1

θiMi −Y||2Ω.

By reshaping the matrices (Y)Ω and (Mi)Ω into vectors ẏ and ṁi, we can easily see
that the optimal solution θk of (2.6) is given by

(2.7) θk = (M̄T
kM̄k)

−1M̄T
k ẏ,

where M̄k = [ṁ1, . . . , ṁk] is the matrix formed by all reshaped basis vectors. The
row size of matrix M̄k is the total number of observed entries. It is computationally
expensive to directly calculate the matrix multiplication. We simplify this step by an
incremental process and give the implementation details in the appendix.

We run the above two steps iteratively until some desired stopping condition is
satisfied. We can terminate the method based on the rank of the estimated matrix
or the approximation residual. In particular, one can choose a preferred rank of the
solution matrix. Alternatively, one can stop the method once the residual ‖Rk‖ is less
than a tolerance parameter ε. The main steps of orthogonal rank-one matrix pursuit
(OR1MP) are given in Algorithm 1.

Algorithm 1. OR1MP.

Input: YΩ and stopping criterion.
Initialize: Set X0 = 0, θ0 = 0 and k = 1.
repeat
Step 1: Find a pair of top left and right singular vectors (uk,vk) of the observed
residual matrix Rk = YΩ −Xk−1 and set Mk = ukv

T
k .

Step 2: Compute the weight vector θk using the closed form least squares solu-
tion θk = (M̄T

kM̄k)
−1M̄T

k ẏ.

Step 3: Set Xk =
∑k

i=1 θ
k
i (Mi)Ω and k ← k + 1.

until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

∑k
i=1 θ

k
i Mi.

Remark 2.1. In our algorithm, we adapt OMP on the observed part of the matrix.
This is similar to the GECO algorithm. However, GECO constructs the estimated
matrix by projecting the observation matrix onto a much larger subspace, which is a
product of two subspaces spanned by all left singular vectors and all right singular
vectors obtained up to the current iteration. So it has a much higher computational
complexity. Lee and Bresler [25] recently proposed the ADMiRA algorithm, which is

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A494 WANG, LAI, LU, FAN, DAVULCU, AND YE

also a greedy approach. In each step it first chooses 2r components by top-2r trun-
cated SVD and then uses another top-r truncated SVD to obtain a rank-r estimated
matrix. Thus, the ADMiRA algorithm is computationally more expensive than the
proposed algorithm. The difference between the proposed algorithm and ADMiRA is
somewhat similar to the difference between OMP [35] for learning sparse vectors and
CoSaMP [33]. In addition, the performance guarantees (including recovery guarantee
and convergence property) of ADMiRA rely on strong assumptions, i.e., the matrix
involved in the loss function satisfies a rank-restricted isometry property [25].

3. Convergence analysis of Algorithm 1. In this section, we will show that
Algorithm 1 is convergent and achieves a linear convergence rate. This result is given
in the following theorem.

Theorem 3.1. OR1MP satisfies

||Rk|| ≤
(√

1− 1

min(m,n)

)k−1

‖Y ‖Ω ∀k ≥ 1.

Before proving Theorem 3.1, we need to establish some useful and preparatory
properties of Algorithm 1. The first property says that Rk+1 is perpendicular to all
previously generated Mi for i = 1, . . . , k.

Property 3.2. 〈Rk+1,Mi〉 = 0 for i = 1, . . . , k.
Proof. Recall that θk is the optimal solution of problem (2.6). By the first-order

optimality condition, one has〈
Y −

k∑
i=1

θki Mi,Mi

〉
Ω

= 0 for i = 1, . . . , k,

which together with Rk = YΩ −Xk−1 and Xk =
∑k

i=1 θ
k
i (Mi)Ω implies that 〈Rk+1,

Mi〉 = 0 for i = 1, . . . , k.
The following property shows that as the number of rank-one basis matrices Mi

increases during our learning process, the residual ‖Rk‖ does not increase.
Property 3.3. ‖Rk+1‖ ≤ ‖Rk‖ for all k ≥ 1.
Proof. We observe that for all k ≥ 1,

‖Rk+1‖2 = min
θ∈�k

{‖Y −
k∑

i=1

θiMi‖2Ω}

≤ min
θ∈�k−1

{‖Y −
k−1∑
i=1

θiMi‖2Ω}
= ‖Rk‖2,

and hence the conclusion holds.
We next establish that {(Mi)Ω}ki=1 is linearly independent unless ‖Rk‖ = 0. It

follows that formula (2.7) is well-defined and hence θk is uniquely defined before the
algorithm stops.

Property 3.4. Suppose that Rk = 0 for some k ≥ 1. Then, M̄i has a full
column rank for all i ≤ k.

Proof. Using Property 3.3 and the assumption Rk = 0 for some k ≥ 1, we see
that Ri = 0 for all i ≤ k. We now prove the statement of this lemma by induction
on i. Indeed, since R1 = 0, we clearly have M̄1 = 0. Hence the conclusion holds for

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A495

i = 1. We now assume that it holds for i− 1 < k and need to show that it also holds
for i ≤ k. By the induction hypothesis, M̄i−1 has a full column rank. Suppose for
contradiction that M̄i does not have a full column rank. Then, there exists α ∈ �i−1

such that

(Mi)Ω =

i−1∑
j=1

αj(Mj)Ω,

which together with Property 3.2 implies that 〈Ri,Mi〉 = 0. It follows that

σ1(Ri) = uT
i Rivi = 〈Ri,Mi〉 = 0,

and hence Ri = 0, which contradicts the fact that Rj = 0 for all j ≤ i. Therefore,
M̄i has a full column rank and the conclusion holds for general i.

We next build a relationship between two consecutive residuals ‖Rk+1‖ and ‖Rk‖.
For convenience, define θk−1

k = 0 and let

θk = θk−1 + ηk.

In view of (2.6), one can observe that

(3.1) ηk = argmin
η
||

k∑
i=1

ηiMi −Rk||2Ω.

Let

(3.2) Lk =
k∑

i=1

ηki (Mi)Ω.

By the definition of Xk, one can also observe that

Xk = Xk−1 + Lk,

Rk+1 = Rk − Lk.

Property 3.5. ||Rk+1||2 = ||Rk||2 − ||Lk||2 and ||Lk||2 ≥ 〈Mk,Rk〉2, where Lk

is defined in (3.2).
Proof. Since Lk =

∑
i≤k η

k
i (Mi)Ω, it follows from Property 3.2 that 〈Rk+1,Lk〉 =

0. We then have

||Rk+1||2 = ||Rk − Lk||2

= ||Rk||2 − 2〈Rk,Lk〉+ ||Lk||2

= ||Rk||2 − 2〈Rk+1 + Lk,Lk〉+ ||Lk||2

= ||Rk||2 − 2〈Lk,Lk〉+ ||Lk||2

= ||Rk||2 − ||Lk||2.
We next bound ‖Lk‖2 from below. If Rk = 0, ||Lk||2 ≥ 〈Mk,Rk〉2 clearly holds.
We now suppose throughout the remaining proof that Rk = 0. It then follows from
Property 3.4 that M̄k has a full column rank. Using this fact and (3.1), we have

ηk =
(
M̄T

k M̄k

)−1
M̄T

k ṙk,

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A496 WANG, LAI, LU, FAN, DAVULCU, AND YE

where ṙk is the reshaped residual vector of Rk. Invoking that Lk =
∑

i≤k η
k
i (Mi)Ω,

we then obtain

(3.3) ||Lk||2 = ṙTk M̄k(M̄
T
k M̄k)

−1M̄T
k ṙk.

Let M̄k = QU be the QR factorization of M̄k, where QTQ = I and U is a k × k
nonsingular upper triangular matrix. One can observe that (M̄k)k = ṁk, where
(M̄k)k denotes the kth column of the matrix M̄k and ṁk is the reshaped vector of
(Mk)Ω. Recall that ‖Mk‖ = ‖ukv

T
k ‖ = 1. Hence, ‖(M̄k)k‖ ≤ 1. Due to QTQ = I,

M̄k = QU, and the definition of U, we have

0 < |Ukk| ≤ ‖Uk‖ = ‖(M̄k)k‖ ≤ 1.

In addition, by Property 3.2, we have

(3.4) M̄T
k ṙk = [0, . . . , 0, 〈Mk,Rk〉]T .

Substituting M̄k = QU into (3.3), and using QTQ = I and (3.4), we obtain that

‖Lk‖2 = ṙTk M̄k(U
TU)−1M̄T

k ṙk

= [0, . . . , 0, 〈Mk,Rk〉]U−1U−T [0, . . . , 0, 〈Mk,Rk〉]T
= 〈Mk,Rk〉2/(Ukk)

2 ≥ 〈Mk,Rk〉2,
where the last equality follows since U is upper triangular and the last inequality is
due to |Ukk| ≤ 1.

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Using the definition of Mk, we have

〈Mk,Rk〉 = 〈ukv
T
k ,Rk〉 = σ1(Rk)

≥
√∑

i σ
2
i (Rk)

rank(Rk)
=

√
‖Rk‖2

rank(Rk)
≥
√
‖Rk‖2

min(m,n)
.

Using this inequality and Property 3.5, we obtain that

||Rk+1||2 = ||Rk||2 − ||Lk||2 ≤ ||Rk||2 − 〈Mk,Rk〉2

≤ (1− 1
min(m,n) )||Rk||2.

In view of this relation and the fact that ‖R1‖ = ‖Y‖2Ω, we easily conclude that

||Rk|| ≤
(√

1− 1

min(m,n)

)k−1

‖Y‖Ω.

This completes the proof.
Remark 3.6. If Ω is the entire set of all indices of {(i, j), i = 1, . . . , n, j =

1, . . . ,m}, our OR1MP algorithm equals the standard SVD using the power method.
In particular, when Ω is the set of all indices while the given entries are noisy values
of an exact matrix, our OR1MP algorithm can help remove the noise.

Remark 3.7. In a standard study of the convergence rate of OMP or the or-
thogonal greedy algorithm, one can only get |〈Mk,Rk〉| ≥ ‖Rk‖2, which leads to a
sublinear convergence. Our Mk is a data dependent construction which is based on
the top left and right singular vectors of the residual matrix Rk. It thus has a better
estimate which gives us the linear convergence.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A497

Algorithm 2. EOR1MP.

Input: YΩ and stopping criterion.
Initialize: Set X0 = 0, θ0 = 0 and k = 1.
repeat
Step 1: Find a pair of top left and right singular vectors (uk,vk) of the observed
residual matrix Rk = YΩ −Xk−1 and set Mk = ukv

T
k .

Step 2: Compute the optimal weights αk for Xk−1 and Mk by solving
min
α
||α1Xk−1 + α2(Mk)Ω −YΩ||2.

Step 3: Set Xk = αk
1Xk−1 + αk

2(Mk)Ω; θ
k
k = αk

2 and θki = θk−1
i αk

1 for i < k;
k ← k + 1.

until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

∑k
i=1 θ

k
i Mi.

4. An economic OR1MP algorithm. The proposed OR1MP algorithm has
to track all pursued bases and save them in the memory. It demands O(r|Ω|) storage
complexity to obtain a rank-r estimated matrix. For large-scale problems, such storage
requirement is not negligible and restricts the rank of the matrix to be estimated. To
adapt our algorithm to large-scale problems with a large approximation rank, we
simplify the orthogonal projection step by only tracking the estimated matrix Xk−1

and the rank-one update matrix Mk. In this case, we only need to estimate the
weights for these two matrices by solving the following least squares problem:

(4.1) αk = arg min
α={α1,α2}

||α1Xk−1 + α2Mk −Y||2Ω.

This still fully corrects all weights of the existed bases, though the correction is sub-
optimal. If we write the estimated matrix as a linear combination of the bases, we
have Xk =

∑k
i=1 θ

k
i (Mi)Ω with θkk = αk

2 and θki = θk−1
i αk

1 , for i < k. The detailed
procedure of this simplified method is given in Algorithm 2.

The proposed economic orthogonal rank-one matrix pursuit algorithm (EOR1MP)
uses the same amount of storage as the greedy algorithms [17, 42], which is significantly
smaller than that required by our OR1MP algorithm, i.e., Algorithm 1. Interestingly,
we can show that the EOR1MP algorithm is still convergent and retains the linear
convergence rate. The main result is given in the following theorem.

Theorem 4.1. Algorithm 2, the EOR1MP algorithm, satisfies

||Rk|| ≤
(√

1− 1

min(m,n)

)k−1

‖Y‖Ω ∀k ≥ 1.

Before proving Theorem 4.1, we present several useful properties of our Algo-
rithm 2. The first property says that Rk+1 is perpendicular to matrix Xk−1 and
matrix Mk.

Property 4.2. 〈Rk+1,Xk−1〉 = 0 and 〈Rk+1,Mk〉 = 0.

Proof. Recall that αk is the optimal solution of problem (4.1). By the first-order
optimality condition according to Xk−1 and Mk, one has

〈Y − αk
1Xk−1 − αk

2Mk,Xk−1〉Ω = 0

and

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A498 WANG, LAI, LU, FAN, DAVULCU, AND YE

〈Y − αk
1Xk−1 − αk

2Mk,Mk〉Ω = 0,

which together with Rk = YΩ − Xk−1 imply that 〈Rk+1,Xk−1〉 = 0 and 〈Rk+1,
Mk〉 = 0.

Property 4.3. ‖Rk+1‖2 = ‖YΩ‖2 − ‖Xk‖2 for all k ≥ 1.
Proof. We observe that for all k ≥ 1,

‖YΩ‖2 = ‖Rk+1 +Xk‖2
= ‖Rk+1‖2 + ‖Xk‖2 + 2〈Rk+1,Xk〉
= ‖Rk+1‖2 + ‖Xk‖2

as 〈Rk+1,Xk〉 = αk
1〈Rk+1,Xk−1〉 + αk

2〈Rk+1,Mk〉 = 0, and hence the conclusion
holds.

The following property shows that as the number of rank-one basis matrices Mi

increases during our iterative process, the residual ‖Rk‖ decreases.
Property 4.4. ‖Rk+1‖ ≤ ‖Rk‖ for all k ≥ 1.
Proof. We observe that for all k ≥ 1,

‖Rk‖2 = min
α∈�2

‖Y − α1Xk−2 − α2Mk−1‖2Ω
= ‖Y − (αk−1

1 Xk−2 + αk−1
2 Mk−1)‖2Ω

≥ min
α∈�2

‖Y − α1(α
k−1
1 Xk−2 + αk−1

2 Mk−1)− α2Mk‖2Ω
= min

α∈�2
‖Y − α1Xk−1 − α2Mk‖2Ω

= ‖Rk+1‖2,
and hence the conclusion holds.

Let

Ak = BT
kBk =

[〈Xk−1,Xk−1〉 〈Xk−1,Mk〉
〈Mk,Xk−1〉 〈Mk,Mk〉Ω

]

and Bk = [vec(Xk−1), vec((Mk)Ω)]. The solution of problem (4.1) is αk = A−1
k

BT
k vec(YΩ). We next establish that vec(Xk−1) and vec((Mk)Ω) are linearly inde-

pendent unless ‖Rk‖ = 0. It follows that Ak is invertible and hence αk is uniquely
defined before the algorithm stops.

Property 4.5. If Xk−1 = β(Mk)Ω for some β = 0, then ‖Rk+1‖ = ‖Rk‖.
Proof. If Xk−1 = β(Mk)Ω with nonzero β, we get

‖Rk+1‖2 = min
α∈�2

‖Y − α1Xk−1 − α2Mk‖2Ω
= min

α∈�2
‖Y − (α1 + α2/β)Xk−1‖2Ω

= min
γ∈�
‖Y − γXk−1‖2Ω

= min
γ∈�
‖Y − γαk−1

1 Xk−2 − γαk−1
2 Mk−1‖2Ω

≥ min
γ∈�2

‖Y − γ1Xk−2 − γ2Mk−1‖2Ω
= ‖Y −Xk−1‖2Ω
= ‖Rk‖2,

and hence the conclusion holds with ‖Rk‖2 ≥ ‖Rk+1‖2 given in Property 4.4.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A499

Property 4.6. Let σ1(Rk) be the maximum singular value of Rk. 〈Mk,Rk〉 =
σ1(Rk) ≥ ‖Rk‖√

min(m,n)
for all k ≥ 1.

Proof. The optimum Mk in our algorithm satisfies

〈Mk,Rk〉 = max
rank(M)=1

〈M,Rk〉 = σ1(Rk).

Using the fact that
√
rank(Rk)σ1(Rk) ≥ ‖Rk‖ and rank(Rk) ≤ min(m,n), we get

the conclusion.
Property 4.7. Suppose that Rk = 0 for some k ≥ 1. Then, Xk−1 = β(Mk)Ω

for all β = 0.
Proof. If Xk−1 = β(Mk)Ω with β = 0, we have

‖Rk+1‖2 = ‖Y −Xk‖2Ω
= min

α∈�2
‖Y − α1Xk−1 − α2Mk‖2Ω

= min
α∈�2

‖Y − (α1 + α2/β)Xk−1‖2Ω
= min

γ∈�
‖Y − γXk−1‖2Ω

= ‖Y − γkXk−1‖2Ω
= ‖Rk‖2
= ‖Y −Xk−1‖2Ω.

As Rk = 0, we have (Mk)Ω = 0 and Xk−1 = 0. Then from the above equality, we
conclude that γk = 1 is the unique optimal solution of the minimization in terms of
γ, and thus we obtain its first-order optimality condition: 〈Xk−1,Rk〉 = 0. However,
this contradicts

〈Xk−1,Rk〉 = β〈Mk,Rk〉 = βσ1(Rk) = 0.

This completes the proof.
We next build a relationship between two consecutive residuals ‖Rk+1‖ and ‖Rk‖.
Property 4.8. ‖Rk+1‖2 ≤ ‖Rk‖2 − σ2

1(Rk)
〈Mk,Mk〉Ω .

Proof.

‖Rk+1‖2 = min
α∈�2

‖Y − α1Xk−1 − α2Mk‖2Ω
≤ min

α2∈�
‖Y −Xk−1 − α2Mk‖2Ω

= min
α2∈�

‖Rk − α2Mk‖2Ω.

This has a closed form solution as α∗
2 = 〈Rk,Mk〉

〈Mk,Mk〉Ω . Plugging this optimum α∗
2 back

into the formulation, we get

‖Rk+1‖2 ≤ ‖Rk − 〈Rk,Mk〉
〈Mk,Mk〉ΩMk‖2Ω

= ‖Rk‖2 − 〈Rk,Mk〉2
〈Mk,Mk〉Ω

= ‖Rk‖2 − σ2
1(Rk)

〈Mk,Mk〉Ω .

This completes the proof.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A500 WANG, LAI, LU, FAN, DAVULCU, AND YE

We are now ready to prove Theorem 4.1.
Proof of Theorem 4.1. Using the definition of Mk with its normalization property

〈Mk,Mk〉Ω ≤ 1, Property 4.8, and Property 4.6, we obtain that

||Rk+1||2 ≤ ||Rk||2 − σ2
1(Rk)

〈Mk,Mk〉Ω ≤ ||Rk||2 − σ2
1(Rk)

≤
(
1− 1

min(m,n)

)
||Rk||2.

In view of this relation and the fact that ‖R1‖ = ‖Y‖2Ω, we easily conclude that

||Rk|| ≤
(√

1− 1

min(m,n)

)k−1

‖Y‖Ω.

This completes the proof.

5. An extension to the matrix sensing problem and its convergence
analysis. In this section, we extend our algorithm to deal with the following matrix
sensing problem (cf. [36, 25, 18, 19]):

(5.1) min
X∈�n×m

rank(X) : A(X) = A(Y),

where Y is a target low rank matrix and A is a linear operator, e.g., A consists of a
set of measurements 〈Ai,X〉 = 〈Ai,Y〉 for a sequence of matrices {Ai}. A(X) could
be written in a compact form as

A(X) =

⎡
⎢⎣

vec(A1)
T

...
vec(Ad)

T

⎤
⎥⎦ vec(X)

for d measurements. Clearly, the matrix completion studied in the previous sections
is a special case of the above problem by setting the linear operator A to be the
observation operator PΩ.

We first explain how to use our algorithm to solve this matrix sensing prob-
lem (5.1). Recall a linear operator vec which maps a matrix X of size n × m to a
vector vec(X) of size mn× 1. We now define an inverse operator matnm which con-
verts a vector v of size mn× 1 to a matrix V = matnm(v) of size n×m. Note that
when X is vectorized into vec(X), the linear operator A can be expressed in terms

of matrix A = [vec(A1), . . . , vec(Ad)]
T
. That is, A(X) = A(Y) can be rewritten

as Avec(X) = Avec(Y). For convenience, we can write A = Avec. It is clear that
A is a matrix of size d × mn. Certainly, one can find its pseudoinverse A† which
is A
(AA
)−1 as we have assumed that A is of full row rank. We note that since
d << mn, AA† = Id while A†A = Imn, where Id and Imn are the identity matrices of
size d×d and mn×mn, respectively. For convenience, we let A−1 denote matnm ◦A†,
where ◦ is the Hadamard product. The linear operators satisfy

AA−1b = b

for any vector b of size d × 1, while A−1A is not an identity operator. We are now
ready to tackle the matrix sensing problem (5.1) as follows: let b = A(Y) = Avec(Y)
and R0 = A−1(b) be the given matrix. We apply Algorithm 3 to obtain M(θk) in
k ≥ r steps.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A501

Algorithm 3. Rank-one matrix pursuit for matrix sensing.

Input: R0 and stopping criterion.
Initialize: Set X0 = 0 and k = 1.
repeat
Step 1: Find a pair of top left and right singular vectors (uk,vk) of the residual
matrix Rk by using the power method and set Mk = ukv

T
k .

Step 2: Compute the weight vector θk using the closed form least squares ap-
proximation of R0 by the best rank-one matrices Mi, i = 1, . . . , k:

θk = arg min
θ1,...,θk

‖R0 −
k∑

i=1

θiA−1A(Mi)‖2F .

Step 3: Set M(θk) =
∑k

i=1 θ
k
i Mi, Rk+1 = R0 − A−1A(M(θk)) and set k ←

k + 1.
until stopping criterion is satisfied
Output: the constructed matrix Ŷ = M(θk).

We shall show that M(θk) converges to the exact rank-r matrix Y. First of all,
Algorithm 3 can also be proved to be linearly convergent using the same procedure as
in the proof of Theorem 3.1. We thus have the following theorem without presenting
a detailed proof.

Theorem 5.1. Each step in Algorithm 3 satisfies

||Rk|| ≤
(√

1− 1

min(m,n)

)k−1

‖A−1(b)‖ ∀k ≥ 1.

This holds for all matrices Y of rank at most r.
We now show M(θk) approximates the exact matrix Y for a large k. In the

setting of matrix sensing, we are able to use the rank-RIP condition. Let us recall the
following.

Definition 5.2. Let A be a linear map on linear space of matrices of size n×m
with n ≤ m. For every integer r with 1 ≤ r ≤ n, let the rank-r restricted isometry
constant be the smallest number δr(A) such that

(1− δr(A))‖X‖2F ≤ ‖A(X)‖22 ≤ (1 + δr(A))‖X‖2F
holds for all matrices X of rank at most r.

It is known that for some random matrices A, A = Avec satisfies the rank-RIP
condition with high probability [36]. Armed with the rank-RIP condition, we are able
to establish the following result.

Theorem 5.3. Let Y be a matrix of rank r. Suppose the measurement mapping
A(X) satisfies rank-RIP for rank-r0 with δr0 = δr0(A) < 1 with r0 ≥ 2r. The output
matrix M(θk) from Algorithm 3 approximates the exact matrix Y in the following
sense: there is a positive constant τ < 1 such that

‖M(θk)−Y‖F ≤ C√
1− δr0

τk

for all k = 1, . . . , r0 − r, where C > 0 is a constant dependent on A.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A502 WANG, LAI, LU, FAN, DAVULCU, AND YE

Proof. Using the definition of δr0 , for k + r ≤ r0, we have

(1− δr0)‖M(θk)−Y‖2F ≤ ‖A(M(θk))−A(Y)‖22
= ‖A(Rk)‖22 = ‖Avec(Rk)‖22
≤ ‖A‖22‖vec(Rk)‖22 = ‖A‖22‖Rk‖2F
≤ ‖A‖22τ2k‖A−1(b)‖2F ,

where the last inequality follows from Theorem 5.1 with τ =
√
1− 1

min{m,n} . It

follows that

‖M(θk)−Y‖2F ≤
‖A‖22τ2k
1− δr0

‖A−1(b)‖2F .

Therefore, we have the desired result.

Similarly we can extend our economic algorithm to the setting of matrix sensing.
We leave it to the interested reader. In the above convergence analysis, we require
k ≤ r0 − r, which guarantees the matrix-RIP condition for all estimated matrices
during the learning process. It will be interesting to explore if a similar result can be
obtained for any k > 0.

6. Effect of inexact top singular vectors. In our rank-one matrix pursuit
algorithms, we need to calculate the top singular vector pair of the residual matrix in
each iteration. We rewrite it here as

(6.1) max
u,v

{
uTRkv : ‖u‖ = ‖v‖ = 1

}
.

We solve this problem efficiently by the power method, which is an iterative method.
In practice, we obtain a solution with approximation error less than a small tolerance
δk ≥ 0, that is,

(6.2) ũTRkṽ ≥ (1− δk) max
‖u‖=‖v‖=1

{uTRkv}.

We show that the proposed algorithms still retain the linear convergence rate when
the top singular pair computed at each iteration satisfies (6.2) for 0 ≤ δk < 1. This
result is given in the following theorem.

Theorem 6.1. Assume that there is a tolerance parameter 0 ≤ δ < 1 such that
δk ≤ δ for all k. Then the orthogonal rank-one matrix pursuit algorithms achieve a
linear convergence rate

||Rk|| ≤
(√

1− q2

min(m,n)

)k−1

‖Y‖Ω,

where q = 1− δ satisfies 0 < q ≤ 1.

Proof. In Step 1 of our algorithms, we iteratively solve the problem (6.1) using
the power method. In this method, we stop the iteration such that

ũT
k Rkṽk ≥ (1− δk) max

‖u‖=1,‖v‖=1

{
uTRkv

} ≥ 0

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A503

with 0 ≤ δk ≤ δ < 1. Denote M̃k = ũkṽ
T
k as the generated basis. Next, we show that

the following holds for both OR1MP and EOR1MP:

‖Rk+1‖2 ≤ ‖Rk‖2 − 〈M̃k,Rk〉2.

For the OR1MP algorithm, we have

‖Rk+1‖2 = min
θ∈�k

‖Y −
k∑

i=1

θiM̃i‖2Ω

≤ min
θk∈�

‖Y −Xk−1 − θkM̃k‖2Ω
= min

θk∈�
‖Rk − θkM̃k‖2Ω.

For the EOR1MP algorithm, we have

‖Rk+1‖2 = min
α∈�2

‖Y − α1Xk−1 − α2M̃k‖2Ω
≤ min

α2∈�
‖Y −Xk−1 − α2M̃k‖2Ω

= min
α2∈�

‖Rk − α2M̃k‖2Ω.

In both cases, we obtain closed form solutions as 〈Rk,M̃k〉
〈M̃k,M̃k〉Ω . Plugging the opti-

mum solution into the corresponding formulations, we get

‖Rk+1‖2 ≤ ‖Rk − 〈Rk, M̃k〉
〈M̃k, M̃k〉Ω

M̃k‖2Ω

= ‖Rk‖2 − 〈Rk, M̃k〉2
〈M̃k, M̃k〉2Ω

〈M̃k, M̃k〉Ω

≤ ‖Rk‖2 − 〈Rk, M̃k〉2,

as 〈M̃k, M̃k〉Ω ≤ 1. It follows from Properties 4.5 and 4.6 that

〈Rk, M̃k〉 ≥ (1− δk)σ1(Rk) ≥ (1− δk)
‖Rk‖√
rank(Rk)

.

Combining the above two results, we get

‖Rk+1‖2 ≤
(
1− (1− δk)

2

min(m,n)

)
‖Rk‖2.

In view of this relation and the fact that ‖R1‖ = ‖Y‖2Ω, we conclude that

||Rk|| ≤
(√

1− q2

min(m,n)

)k−1

‖Y‖Ω,

where q = 1 − δ ≤ inf(1 − δk) = 1 − sup δk and is a constant between (0, 1]. This
completes the proof.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A504 WANG, LAI, LU, FAN, DAVULCU, AND YE

7. Experiments. In this section, we compare the two versions of our algorithm,
e.g., OR1MP and EOR1MP, with several state-of-the-art matrix completion methods
in the literature. The competing algorithms include SVP [18], SVT [7], Jaggi’s fast
algorithm for trace norm constraint (JS) [17], the spectral regularization algorithm
(SoftImpute) [30], low rank matrix fitting (LMaFit) [46], a boosting-type accelerated
matrix-norm penalized solver (Boost) [49], atomic decomposition for minimum rank
approximation (ADMiRA) [25], and GECO [38]. The first three solve trace norm
constrained problems; the next three solve trace norm penalized problems; the last
two directly solve the low rank constrained problem. The general greedy method [42]
is not included in our comparison, as it includes JS and GECO (included in our
comparison) as special cases for matrix completion. The lifted coordinate descent
method [9] is not included in our comparison as it is sensitive to the parameters and
is less efficient than Boost proposed in [49].

The codes for most of these methods are available online:
• SVP, http://www.cs.utexas.edu/∼pjain/svp;
• SVT, http://svt.stanford.edu;
• SoftImpute, http://www-stat.stanford.edu/∼rahulm/software.html;
• LMaFit, http://lmafit.blogs.rice.edu;
• Boost, http://webdocs.cs.ualberta.ca/∼xinhua2/boosting.zip;
• GECO, http://www.cs.huji.ac.il/∼shais/code/geco.zip.

We compare these algorithms in two applications: image recovery and collab-
orative filtering or recommendation problem. The data size for image recovery is
relatively small, and the recommendation problem is large-scale. All the competing
methods are implemented in MATLAB1 and call some external packages for fast com-
putation of SVD2 and sparse matrix computations. The experiments are run on a PC
with the windows 7 system, Intel 4 core 3.4-GHz CPU, and 8G RAM.

In the following experiments, we follow the recommended settings of the param-
eters for the competing algorithms. If no recommended parameter value is available,
we choose the best one from a candidate set using cross validation. For our OR1MP
and EOR1MP algorithms, we only need a stopping criterion. For simplicity, we stop
our algorithms after r iterations. In this way, we approximate the ground truth using
a rank-r matrix. We present the experimental results using two metrics, peak signal-
to-noise ratio (PSNR) [16] and root-mean-square error (RMSE) [22]. PSNR is a test
metric specific for images. A higher value in PSNR generally indicates better quality
[16]. RMSE is a general metric for prediction. It measures the approximation error
of the corresponding result.

7.1. Convergence and efficiency. Before we present the numerical results
from these comparison experiments, we shall include another algorithm called the
forward rank-one matrix pursuit algorithm (FR1MP), which extends the matching
pursuit method from the vector case to the matrix case. The detailed procedure of
this method is given in Algorithm 4.

In FR1MP, we add the pursued rank-one matrix with an optimal weight in each it-
eration, which is similar to the forward selection rule [14]. This is a standard algorithm
to find SVD of any matrix Y if all its entries are given. In this case, the FR1MP
algorithm is more efficient in finding SVD of the matrix than our two proposed al-

1GECO is written in C++ and we call its executable file in MATLAB.
2PROPACK is used in SVP, SVT, SoftImpute and Boost. It is an efficient SVD package,

which is implemented in C and Fortran. It can be downloaded from http://soi.stanford.edu/∼
rmunk/PROPACK.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.cs.utexas.edu/~pjain/svp
http://svt.stanford.edu
http://www-stat.stanford.edu/~rahulm/software.html
http://lmafit.blogs.rice.edu
http://webdocs.cs.ualberta.ca/~xinhua2/boosting.zip
http://www.cs.huji.ac.il/~shais/code/geco.zip
http://soi.stanford.edu/~rmunk/PROPACK
http://soi.stanford.edu/~rmunk/PROPACK


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A505

Algorithm 4. FR1MP.

Input: YΩ and stopping criterion.
Initialize: Set X0 = 0, θ0 = 0 and k = 1.
repeat
Step 1: Find a pair of top left and right singular vectors (uk,vk) of the observed
residual matrix Rk = YΩ −Xk−1 and set Mk = ukv

T
k .

Step 2: Set θkk = (uT
k Rkvk)/‖Mk‖Ω, and θki = θk−1

i for i ≤ k − 1.
Step 3: Set Xk = Xk−1 + θkk(Mk)Ω; k ← k + 1.

until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

∑k
i=1 θ

k
i Mi.

gorithms. However, when only partial entries are known, the FR1MP algorithm will
not be able to find the best low rank solution. The computational step to find θk in
our proposed algorithms is necessary.

The empirical results for convergence efficiency of our proposed algorithms are
reported in Figures 1 and 2. They are based on an image recovery experiment as
well as an experiment of a movie recommendation dataset, Netflix [22, 4, 5]. The
Netflix dataset has 108 ratings of 17,770 movies by 480,189 Netflix3 customers. This
is a large-scale dataset, and most of the competing methods are not applicable for
this dataset. In Figure 1, we present the convergence characteristics of the proposed
OR1MP algorithm. As the memory demand is increasing w.r.t. the iterations, we can
run it for only about 40 iterations on the Netflix dataset. The EOR1MP algorithm
has no such limitation. The results in Figure 2 show that our EOR1MP algorithm
rapidly reduces the approximation error. We also present the same residual curves in
logarithmic scale with a relatively large number of iterations in Figure 3, which verify
the linear convergence property of our algorithms. These results are consistent with
our theoretical analysis.

In the convergence analysis, we derive the upper bound for the convergence
speed of our proposed algorithms. From Theorems 3.1 and 4.1, the convergence
speed is controlled by the value of ‖Rk‖2F /σ2

k,∗, where σk,∗ is the maximum singu-
lar value of the residual matrix Rk in the kth iteration. A smaller value indicates
a faster convergence of our algorithms. Though it has a worst-case upper bound of
‖Rk‖2F /σ2

k,∗ ≤ rank(Rk) ≤ min(m,n), in the following experiments, we empirically
verify that its value is much smaller than the theoretical worst case. Thus the con-
vergence speed of our algorithms is much faster than the theoretical worst case. We
present the values of ‖Rk‖2F /σ2

k,∗ at different iterations on the Lenna image and the
MovieLens1M dataset for both of our algorithms in Figure 4. The results show that
the quantity ‖Rk‖2F /σ2

k,∗ is much smaller than min(m,n).

In the following experiments, we plot the residual curves over iterations for dif-
ferent rank-one matrix pursuit algorithms, including our OR1MP algorithm, our
EOR1MP algorithm, and the FR1MP algorithm. The evaluations are conducted
on the Lenna image and the MovieLens1M dataset, which are given in Figure 5.
The results show that among the three algorithms, EOR1MP and OR1MP perform
better than the forward pursuit algorithm. It is interesting to note that EOR1MP
achieves a similar performance as OR1MP, while it demands much less computational
cost.

3http://www.netflixprize.com.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.netflixprize.com.


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A506 WANG, LAI, LU, FAN, DAVULCU, AND YE

0 100 200 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

rank

R
M

S
E

Lenna

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8
Lenna

rank

T
im

e 
(s

ec
on

ds
)

0 10 20 30 40
0.01

0.012

0.014

0.016

0.018

0.02

rank

R
M

S
E

Netflix

0 10 20 30 40
0

1000

2000

3000

4000

5000

6000

7000

8000
Netflix

rank

T
im

e 
(s

ec
on

ds
)

Fig. 1. Illustration of convergence of the proposed OR1MP algorithm on the Lenna image and
the Netflix dataset: the x-axis is the rank, the y-axis is the RMSE (left column), and the running
time is measured in seconds (right column).

0 50 100 150 200 250 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Iteration

R
M

S
E

Lenna

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iteration

T
im

e 
(s

ec
on

ds
)

Lenna

0 20 40 60 80 100
0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

Iteration

R
M

S
E

Netflix

0 20 40 60 80 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Iteration

T
im

e 
(s

ec
on

ds
)

Netflix

Fig. 2. Illustration of convergence of the proposed EOR1MP algorithm on the Lenna image and
the Netflix dataset: the x-axis is the rank, the y-axis is the RMSE (left column), and the running
time is measured in seconds (right column).

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A507

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

Lenna

rank

R
M

S
E

0 5 10 15 20 25 30 35 40
10

−2

rank

R
M

S
E

Netflix

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

Lenna

rank

R
M

S
E

20 40 60 80 100
10

−2

Netflix

rank

R
M

S
E

Fig. 3. Illustration of the linear convergence of different rank-one matrix pursuit algorithms
on the Lenna image and the Netflix dataset: the x-axis is the iteration, and the y-axis is the RMSE
in log scale. The curves in the first row are the results for OR1MP and the curves in the second
row are the results for EOR1MP.

0 20 40 60 80 100
0

100

200

300

400

500

600

OR1MP on Lenna

Iteration

 

 

||R||2 / σ2
*

min(m,n)

0 10 20 30 40 50
0

1000

2000

3000

4000

5000

Iteration

OR1MP on MovieLens1M

 

 

||R||2 / σ2
*

min(m,n)

0 20 40 60 80 100
0

100

200

300

400

500

600

EOR1MP on Lenna

Iteration

 

 

||R||2 / σ2
*

min(m,n)

0 10 20 30 40 50
0

1000

2000

3000

4000

5000
EOR1MP on MovieLens1M

Iteration

 

 

||R||2 / σ2
*

min(m,n)

Fig. 4. Illustration of the values of ‖R‖2/σ2∗ at different iterations and the value of min(m,n)
on the Lenna image and MovieLens1M for both R1MP and ER1MP algorithms: the x-axis is the
iteration number; the y-axis is the value.D

ow
nl

oa
de

d 
02

/2
7/

15
 to

 1
28

.1
92

.3
.7

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A508 WANG, LAI, LU, FAN, DAVULCU, AND YE

0 20 40 60 80 100
0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Iteration

R
M

S
E

Lenna

 

 

OR1MP
EOR1MP
FR1MP

0 20 40 60 80 100
0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

0.0165

0.017

0.0175

Iteration

R
M

S
E

MovieLens1M

 

 

OR1MP
EOR1MP
FR1MP

Fig. 5. Illustration of convergence speed of different rank-one matrix pursuit algorithms on the
Lenna image and the MovieLens1M dataset: the x-axis is the iteration; the y-axis is the RMSE.

0 20 40 60 80 100
0.013

0.014

0.015

0.016

0.017

0.018

Iteration

R
M

S
E

OR1MP on MovieLens1M

 

 

iteration = 1
iteration = 2
iteration = 5
iteration = 10
iteration = 20

0 20 40 60 80 100
0.013

0.014

0.015

0.016

0.017

0.018

Iteration

R
M

S
E

EOR1MP on MovieLens1M

 

 

iteration = 1
iteration = 2
iteration = 5
iteration = 10
iteration = 20

Fig. 6. Illustration of convergence property of the proposed algorithms with different iteration
numbers in the power method on the MovieLens1M dataset: the x-axis is the outer iteration number;
the y-axis is the RMSE.

7.2. Inexact top singular vectors. We empirically analyze the performance
of our algorithms with inexact singular vector computation. In the experiments, we
control the total number of iterations in the power method for computing the top
singular vector pair. The numbers of iterations are set as {1, 2, 5, 10, 20}. We plot
the learning curves for the OR1MP and EOR1MP algorithms on the MovieLens1M
dataset in Figure 6. The results show that the linear convergence speed is preserved
for different iteration numbers. However, the results under the same outer iterations
depend on the accuracy of the power methods. This verifies our theoretical results.
Our empirical results also suggest that in practice we need to run more than 5 iter-
ations in the power method, as the learning curves for 5, 10, and 20 power method
iterations are close to each other but are far away from the other two curves, especially
for the EOR1MP algorithm.

7.3. Recovery on synthetic data. In this experiment, we use synthetic data
to evaluate the recovery performance of different matrix completion algorithms. We
generate a square n× n matrix Y of rank r as the ground truth. We construct Y by
first generating a random matrix with i.i.d. entries drawn from the standard normal
distribution and then setting its ith singular value to 2r−i+1. Given this matrix Y, we

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A509

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Observation Ratio

R
ec

o
ve

ry
 E

rr
o

r

 

 
SVT
SVP
LMaFit
ADMiRA
SoftImpute
JS
OR1MP
EOR1MP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Observation Ratio

R
ec

o
ve

ry
 E

rr
o

r

 

 
SVT
SVP
LMaFit
ADMiRA
SoftImpute
JS
OR1MP
EOR1MP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Observation Ratio

R
ec

o
ve

ry
 E

rr
o

r

 

 
SVT
SVP
LMaFit
ADMiRA
SoftImpute
JS
OR1MP
EOR1MP

Fig. 7. Comparison of recovery performance of different matrix completion algorithms with
different percentages of observations: the three figures correspond to the results on three rank-10
random matrices of size 50 × 50 without noise (top figure), size 100 × 100 without noise (middle
figure), and size 100 × 100 with Gaussion noise (bottom figure); the x-axis is the percentage of
observations; the y-axis is the recovery error.

sample a subset Ω of l entries uniformly at random as the observations. We run the
experiment in two different settings—noise-free matrix completion and noisy matrix
completion. We fix the rank of the ground truth matrices as r = 10 in all experiments.
In the noise-free case, we use two different matrix sizes in the experiment: n = 50 and
n = 100. In the noisy case, we use n = 100 with 5% Gaussion noise. The entries of
the noise matrix are drawn from the standard normal distribution and are normalized
to make the matrix Frobenius norm equal to 0.05‖Y‖F . We evaluate the recovery
performance of the algorithms based on the relative reconstruction error calculated as
‖Y−Ŷ‖F

‖Y‖F
, with Ŷ as the reconstructed matrix. In the experiment, we fix the number

of iterations to 200 for the JS algorithm. For OR1MP and EOR1MP, we stop the
algorithm after 50 iterations. For other algorithms, we use the true rank r = 10 for
the estimated matrix.

For each algorithm, we present its average result with 50 runs at different per-
centages of observations in Figure 7. We can observe from the figure that for most
algorithms the recovery error decreases with an increasing number of observations.
The proposed algorithms are very competitive in most cases, particularly when the
observations are scarce.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A510 WANG, LAI, LU, FAN, DAVULCU, AND YE

Table 1

Image recovery results measured in terms of the PSNR.

Dataset SVT SVP SoftImpute LMaFit ADMiRA JS OR1MP EOR1MP

Barbara 26.9635 25.2598 25.6073 25.9589 23.3528 23.5322 26.5314 26.4413
Cameraman 25.6273 25.9444 26.7183 24.8956 26.7645 24.6238 27.8565 27.8283
Clown 28.5644 19.0919 26.9788 27.2748 25.7019 25.2690 28.1963 28.2052
Couple 23.1765 23.7974 26.1033 25.8252 25.6260 24.4100 27.0707 27.0310
Crowd 26.9644 22.2959 25.4135 26.0662 24.0555 18.6562 26.0535 26.0510
Girl 29.4688 27.5461 27.7180 27.4164 27.3640 26.1557 30.0878 30.0565
Goldhill 28.3097 16.1256 27.1516 22.4485 26.5647 25.9706 28.5646 28.5101
Lenna 28.1832 25.4586 26.7022 23.2003 26.2371 24.5056 28.0115 27.9643
Man 27.0223 25.3246 25.7912 25.7417 24.5223 23.3060 26.5829 26.5049
Peppers 25.7202 26.0223 26.8475 27.3663 25.8934 24.0979 28.0781 28.0723

7.4. Image recovery. In the image recovery experiments, we use the following
benchmark test images: Barbara, Cameraman, Clown, Couple, Crowd, Girl, Goldhill,
Lenna, Man, and Peppers.4 The size of each image is 512×512. We randomly exclude
50% of the pixels in the image, and the remaining ones are used as the observations.
As the image matrix is not guaranteed to be low rank, we use rank 50 for the estimated
matrix for each experiment. In our OR1MP and EOR1MP algorithms, we stop the
algorithms after 150 iterations. The JS algorithm does not explicitly control the
rank, thus we fix its number of iterations to 2000. The numerical results in terms of
the PSNR are listed in Table 1. We also present the images recovered by different
algorithms for Lenna in Figure 8. The results show SVT, our OR1MP, and EOR1MP
achieve the best numerical performance. However, our algorithm is much better than
SVT for Cameraman, Couple, Peppers but only slightly worse than SVT for Lenna,
Barbara, and Clown. Besides, our algorithm is much faster and more stable than SVT
(SVT may diverge). For each image, EOR1MP uses around 3.5 seconds, but SVT
consumes around 400 seconds. Image recovery needs a relatively higher approximation
rank; both GECO and Boost fail to find a good recovery in most cases, so we do not
include them in the result tables.

7.5. Recommendation. In the following experiments, we compare different
matrix completion algorithms using large recommendation datasets: Jester [12] and
MovieLens [31]. We use six datasets: Jester1, Jester2, Jester3, MovieLens100K,
MovieLens1M, and MovieLens10M. The statistics of these datasets are given in Ta-
ble 2. The Jester datasets were collected from a joke recommendation system. They
contain anonymous ratings of 100 jokes from the users. The ratings are real values
ranging from −10.00 to +10.00. The MovieLens datasets were collected from the
MovieLens website.5 They contain anonymous ratings of the movies on this web
made by its users. For MovieLens100K and MovieLens1M, there are 5 rating scores
(1–5), and for MovieLens10M there are 10 levels of scores with a step size 0.5 in the
range of 0.5 to 5. In the following experiments, we randomly split the ratings into
training and test sets. Each set contains 50% of the ratings. We compare the running
time and the prediction result from different methods. In the experiments, we use
100 iterations for the JS algorithm, and for other algorithms we use the same rank
for the estimated matrices; the values of the rank are {10, 10, 5, 10, 10, 20} for the
six corresponding datasets. We first show the running time of different methods in

4Images are downloaded from http://www.utdallas.edu/∼cxc123730/mh bcs spl.html.
5http://movielens.umn.edu.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://www.utdallas.edu/~cxc123730/mh_bcs_spl.html.
http://movielens.umn.edu.


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A511

Original SVT SVP

SoftImpute LMafit ADMiRA

JS OR1MP EOR1MP

Fig. 8. The original image and images recovered by different methods used on the Lenna image.

Table 2

Characteristics of the recommendation datasets.

Dataset # row # column # rating

Jester1 24983 100 106

Jester2 23500 100 106

Jester3 24983 100 6×105

MovieLens100k 943 1682 105

MovieLens1M 6040 3706 106

MovieLens10M 69878 10677 107

Table 3. The reconstruction results in terms of the RMSE are given in Table 4. We
can observe from the above experiments that our EOR1MP algorithm is the fastest
among all competing methods to obtain satisfactory results.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A512 WANG, LAI, LU, FAN, DAVULCU, AND YE

Table 3

The running time (measured in seconds). Boost fails on MovieLens10M.

Dataset SVP SoftImpute LMaFit Boost JS GECO OR1MP EOR1MP

Jester1 18.35 161.49 3.68 93.91 29.68 > 104 1.83 0.99

Jester2 16.85 152.96 2.42 261.70 28.52 > 104 1.68 0.91

Jester3 16.58 10.55 8.45 245.79 12.94 > 103 0.93 0.34
MovieLens100K 1.32 128.07 2.76 2.87 2.86 10.83 0.04 0.04

MovieLens1M 18.90 59.56 30.55 93.91 13.10 > 104 0.87 0.54

MovieLens10M > 103 > 103 154.38 – 130.13 > 105 23.05 13.79

Table 4

Recommendation results measured in terms of the RMSE.

Dataset SVP SoftImpute LMaFit Boost JS GECO OR1MP EOR1MP

Jester1 4.7311 5.1113 4.7623 5.1746 4.4713 4.3680 4.3418 4.3384
Jester2 4.7608 5.1646 4.7500 5.2319 4.5102 4.3967 4.3649 4.3546
Jester3 8.6958 5.4348 9.4275 5.3982 4.6866 5.1790 4.9783 5.0145
MovieLens100K 0.9683 1.0354 1.2308 1.1244 1.0146 1.0243 1.0168 1.0261
MovieLens1M 0.9085 0.8989 0.9232 1.0850 1.0439 0.9290 0.9595 0.9462
MovieLens10M 0.8611 0.8534 0.8625 – 0.8728 0.8668 0.8621 0.8692

8. Conclusion. In this paper, we propose an efficient and scalable low rank
matrix completion algorithm. The key idea is to extend the OMP method from the
vector case to the matrix case. We also propose a novel weight updating rule under
this framework to reduce the storage complexity and make it independent of the
approximation rank. Our algorithms are computationally inexpensive for each matrix
pursuit iteration and find satisfactory results in a few iterations. Another advantage
of our proposed algorithms is they have only one tunable parameter, which is the rank.
It is easy to understand and to use by the user. This becomes especially important in
large-scale learning problems. In addition, we rigorously show that both algorithms
achieve a linear convergence rate, which is significantly better than the previous known
results (a sublinear convergence rate). We also extend our proposed algorithm to a
more general matrix sensing case and analyze its recovery guarantee under rank-
restricted isometry property. We empirically compare the proposed algorithms with
state-of-the-art matrix completion algorithms, and our results show that the proposed
algorithms are more efficient than competing algorithms while achieving similar or
better prediction performance. We plan to generalize our theoretical and empirical
analysis to other loss functions in the future.

Appendix A. Inverse matrix update. In our OR1MP algorithm, we use
the least squares solution to update the weights for the rank-one basis matrices.
In this step, we need to calculate (M̄T

k M̄k)
−1. To directly compute this inverse is

computationally expensive, as the matrix M̄k has a large row size. We implement
this efficiently using an incremental method. As

M̄T
k M̄k = [M̄k−1, ṁk]

T [M̄k−1, ṁk],

its inverse can be written in block matrix form:

(M̄T
k M̄k)

−1 =

[
M̄T

k−1M̄k−1 M̄T
k−1ṁk

ṁT
k M̄

T
k−1 ṁT

k ṁk

]−1

.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RANK-ONE MATRIX PURSUIT FOR MATRIX COMPLETION A513

Then it is calculated by blockwise inverse as[
A+ dAbbTA −dAb
−dbTA d

]
,

where A = (M̄T
k−1M̄k−1)

−1 is the corresponding inverse matrix in the last step, b =

M̄T
k−1ṁk is a vector with |Ω| elements, and d = (bTb−bTAb)−1 = 1/(bTb−bTAb)

is a scalar. M̄T
k ẏ is also calculated incrementally by [M̄T

k−1ẏ, ṁ
T
k ẏ], as ẏ is fixed.

REFERENCES

[1] A. Argyriou, T. Evgeniou, and M. Pontil, Convex multi-task feature learning, Mach.
Learn., 73 (2008), pp. 243–272.

[2] F. Bach, Consistency of trace norm minimization, J. Mach. Learn. Res., 9 (2008), pp. 1019–
1048.

[3] L. Balzano, R. Nowak, and B. Recht, Online identification and tracking of subspaces from
highly incomplete information, in Proceedings of the Allerton Conference on Communica-
tion, Control and Computing, 2010.

[4] R. Bell and Y. Koren, Lessons from the netflix prize challenge, ACM SIGKDD Explorations,
9 (2007), pp. 75–79.

[5] J. Bennett and S. Lanning, The netflix prize, in Proceedings of KDD Cup and Workshop,
2007.

[6] J.-F. Cai, E. J. Candès, and Z. Shen, A singular value thresholding algorithm for matrix
completion, SIAM J. Optim., 20 (2010), pp. 1956–1982.

[7] E. J. Candès and B. Recht, Exact matrix completion via convex optimization, Found. Com-
put. Math., 9 (2009), pp. 717–772.

[8] R. A. DeVore and V. N. Temlyakov, Some remarks on greedy algorithms, Adv. Comput.
Math., 5 (1996), pp. 173–187.

[9] M. Dud́ık, Z. Harchaoui, and J. Malick, Lifted coordinate descent for learning with trace-
norm regularization, in Proceedings of the 15th International Conference on Artificial In-
telligence and Statistics (AISTATS), 2012.

[10] M. Frank and P. Wolfe, An algorithm for quadratic programming, Naval Res. Logist. Quart.,
3 (1956), pp. 95–110.

[11] J. H. Friedman, T. Hastie, and R. Tibshirani, Regularization paths for generalized linear
models via coordinate descent, J. Statist. Software, 33 (2010), pp. 1–22.

[12] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, Eigentaste: A constant time collabo-
rative filtering algorithm, Inform. Retrieval, 4 (2001), pp. 133–151.

[13] G. H. Golub and C. F. V. Loan, Matrix Computations, 3rd ed., Johns Hopkins University
Press, Baltimore, MD, 1996.

[14] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical learning: Data
mining, inference, and prediction, Springer-Verlag, New York, 2009.

[15] E. Hazan, Sparse approximate solutions to semidefinite programs, in Proceedings of the 8th
Latin American Conference on Theoretical Informatics, 2008.

[16] Q. Huynh-Thu and M. Ghanbari, Scope of validity of psnr in image/video quality assessment,
Electron. Lett., 44 (2008), pp. 800–801.

[17] M. Jaggi and M. Sulovský, A simple algorithm for nuclear norm regularized problems, in
Proceedings of the 27th International Conference on Machine Learning (ICML), 2010,
pp. 471–478.

[18] P. Jain, R. Meka, and I. S. Dhillon, Guaranteed rank minimization via singular value
projection, Adv. Neural Inf. Process. Syste. 22 (2010), pp. 937–945.

[19] P. Jain, P. Netrapalli, and S. Sanghavi, Low-rank matrix completion using alternating
minimization, in Proceedings of the 45th Annual ACM Symposium on Symposium on
Theory of Computing (STOC), 2013, pp. 665–674.

[20] S. Ji and J. Ye, An accelerated gradient method for trace norm minimization, in Proceedings
of the 26th International Conference on Machine Learning (ICML), 2009, pp. 457–464.

[21] R. Keshavan and S. Oh, Optspace: A Gradient Descent Algorithm on the Grassmann Manifold
for Matrix Completion, http://arxiv.org/abs/0910.5260 (2009).

[22] Y. Koren, Factorization meets the neighborhood: A multifaceted collaborative filtering model,
in Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD), 2008.

D
ow

nl
oa

de
d 

02
/2

7/
15

 to
 1

28
.1

92
.3

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://arxiv.org/abs/0910.5260


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A514 WANG, LAI, LU, FAN, DAVULCU, AND YE

[23] Y. Koren, R. Bell, and C. Volinsky, Matrix factorization techniques for recommender
systems, Computer, 42 (2009), pp. 30–37.

[24] M.-J. Lai, Y. Xu, and W. Yin, Improved iteratively reweighted least squares for unconstrained
smoothed �q minimization, SIAM J. Numer. Anal., 51 (2013), pp. 927–957.

[25] K. Lee and Y. Bresler, Admira: atomic decomposition for minimum rank approximation,
IEEE Trans. Inform. Theory, 56 (2010), pp. 4402–4416.

[26] E. Liu and T. N. Temlyakov, The orthogonal super greedy algorithm and applications in
compressed sensing, IEEE Trans. Inform. Theory, 58 (2012), pp. 2040–2047.

[27] Y.-J. Liu, D. Sun, and K.-C. Toh, An implementable proximal point algorithmic framework
for nuclear norm minimization, Math. Program., 133 (2012), pp. 399–436.

[28] Z. Lu and Y. Zhang, Penalty Decomposition Methods for Rank Minimization,
http://arxiv.org/abs/1008.5373 (2010).

[29] S. Ma, D. Goldfarb, and L. Chen, Fixed point and bregman iterative methods for matrix
rank minimization, Math. Program., 128 (2011), pp. 321–353.

[30] R. Mazumder, T. Hastie, and R. Tibshirani, Spectral regularization algorithms for learning
large incomplete matrices, J. Mach. Learn. Res., 99 (2010), pp. 2287–2322.

[31] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and J. Riedl, MovieLens unplugged:
Experiences with an occasionally connected recommender system, in Proceedings of the 8th
International Conference on Intelligent User Interfaces, 2003, pp. 263–266.

[32] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre, Low-rank optimization with trace norm
penalty, SIAM J. Optim., 23 (2013), pp. 2124–2149.

[33] D. Needell and J. A. Tropp, Cosamp: Iterative signal recovery from incomplete and inac-
curate samples, Comm. ACM, 53 (2010), pp. 93–100.

[34] S. Negahban and M. Wainwright, Estimation of (near) low-rank matrices with noise and
high-dimensional scaling, in Proceedings of the 27th International Conference on Machine
Learning (ICML), 2010.

[35] Y. C. Pati, R. Rezaiifar, Y. C. P. R. Rezaiifar, and P. S. Krishnaprasad, Orthogonal
matching pursuit: Recursive function approximation with applications to wavelet decom-
position, in Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and
Computers, 1993, pp. 40–44.

[36] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471–501.

[37] B. Recht and C. Ré, Parallel stochastic gradient algorithms for large-scale matrix completion,
Math. Program. Comput., 5 (2013), pp. 201–226.

[38] S. Shalev-Shwartz, A. Gonen, and O. Shamir, Large-scale convex minimization with a low-
rank constraint, in Proceedings of the 28th International Conference on Machine Learning
(ICML), 2011, pp. 329–336.

[39] S. Shalev-Shwartz and A. Tewari, Stochastic methods for l1 regularized loss minimization,
in Proceedings of the 26th International Conference on Machine Learning (ICML), 2009,
pp. 929–936.

[40] N. Srebro, J. Rennie, and T. Jaakkola, Maximum-margin matrix factorizations, Adv. Neu-
ral Inf. Process. Syst., 17 (2004), pp. 1329–1336.

[41] V. N. Temlyakov, Greedy approximation, Acta Numer., 17 (2008), pp. 235–409.
[42] A. Tewari, P. Ravikumar, and I. S. Dhillon, Greedy algorithms for structurally constrained

high dimensional problems, Adv. Neural Inf. Process. Syst., 24 (2011), pp. 882–890.
[43] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B, 58

(1994), pp. 267–288.
[44] K.-C. Toh and S. Yun, An accelerated proximal gradient algorithm for nuclear norm regular-

ized least squares problems, Pacific J. Optim., 6 (2010), pp. 615–640.
[45] J. A. Tropp, Greed is good: Algorithmic results for sparse approximation, IEEE Trans. Inform.

Theory, 50 (2004), pp. 2231–2242.
[46] Z. Wen, W. Yin, and Y. Zhang, Solving a low-rank factorization model for matrix completion

by a nonlinear successive over-relaxation algorithm, Math. Program. Comput., 4 (2012),
pp. 333–361.

[47] T. T. Wu and K. Lange, Coordinate descent algorithms for lasso penalized regression, Ann.
Appl. Stat., 2 (2008), pp. 224–244.

[48] S. Yun and K.-C. Toh, A coordinate gradient descent method for l1-regularized convex mini-
mization, Comput. Optim. Appl., 48 (2011), pp. 273–307.

[49] X. Zhang, Y. Yu, and D. Schuurmans, Accelerated training for matrix-norm regularization:
A boosting approach, Adv. Neural Inf. Process. Syst., 25 (2012), pp. 2906–2914.D

ow
nl

oa
de

d 
02

/2
7/

15
 to

 1
28

.1
92

.3
.7

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

http://arxiv.org/abs/1008.5373


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
    /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


