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Abstract. Total variation smoothing methods have proven very efficient at discriminating between structures

(edges and textures) and noise in images. Recently, it was shown that such methods do not create new discontinuities

and preserve the modulus of continuity of functions. In this paper, the Rayleigh-Ritz method was applied to the

total variation with L2 penalty denoising model with smooth bivariate spline functions on triangulations as approx-

imating spaces. Using the extension property of functions of bounded variation on Lipschitz domains, a convergent

minimizing sequence of continuous bivariate spline functions of fixed degree for the TV-L2 energy functional was

constructed. An algorithm for computing spline minimizers was developed and its convergence studied.
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1. Introduction. Rudin, Osher and Fatemi [28] proposed a constrained total variation

minimization method for image enhancement. Suppose we have an image f filled with arti-

facts and we want to enhance the quality of our image while preserving its salient details as

much as possible. Assuming that the image f is a function defined on a domain Ω ⊂ R
2,

Rudin, Osher and Fatemi’s approach is to solve the following penalized total variation mini-

mization problem

arg min
u∈L2(Ω)

λJ(u) +
1

2

∫

Ω

|u− f |2 dx, (1.1)

where J(u) is the total variation of u on Ω, and λ is a positive parameter controlling the

fidelity of the recovered image to the initial image f . We shall refer to the minimization

problem (1.1) as the ROF model, and denote its objective functional by

Ef
λ(u) := λJ(u) +

1

2

∫

Ω

|u− f |2 dx. (1.2)

Notice that a minimal condition for the ROF model to be defined is that f be a square inte-

grable function over Ω; thus the domain of Ef
λ(u) is BV (Ω) ∩ L2(Ω), where BV (Ω) stands

for the space of functions of bounded variation over Ω.

The ROF model has been extensively investigated in the past two decades with most

efforts going towards the development of efficient algorithms for digital images. On the

theoretical side, the exact Euler-Lagrange partial differential equation was derived [11] and

regularity results were obtained [8]. More precisely, Caselles et al. [8] proved that if f has

modulus of continuity ω, then so does the minimizer of Ef
λ(u) provided that Ω is convex. It

is also known that regardless of the order of smoothness of the data function f , the solution

of the ROF model is at best Lipschitz continuous. On the computational side of the model, an

exact yet highly efficient algorithm [9, 10] was developed and its error rate derived [29, 18].

Dobson and Vogel [15, Theorem 2.2, p. 1782] gave a sufficient condition for the conver-

gence of a Rayleigh-Ritz scheme for the ROF model. However, they also observed that the
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said condition is easily achieved if the solution of the ROF model is sufficiently smooth and

suggested that more research be done under less stringent regularity assumptions.

This work addresses that question by constructing a convergent Rayleigh-Ritz scheme

regardless of the regularity of the solution of the ROF model. We point out that Bartels [6]

had proved that a conforming Rayleigh-Ritz scheme based on continuous piecewise affine

elements converge with no assumption on the regularity of the ROF minimizer. Also, Lai and

Matamba [21, 27] studied a nonconforming Rayleigh-Ritz scheme with continuous piecewise

affine elements for the ROF model that converged if f ∈ Lip(β, L2(Ω)). Here, we show

that the conforming scheme used by Bartels [6] can be extended to any continuous finite

elements consisting of piecewise polynomials, and propose a new nonconforming scheme

for the approximation of the ROF model. We develop a fixed point algorithm for computing

the terms of the nonconforming approximation and provided numerical evidence that finite

elements methods can successfully be used in digital image processing.

The paper is structured as follows. The next section is devoted to the necessary math-

ematical preliminaries on functions of bounded variation and bivariate spline functions on

triangulations. In section 3, we review relevant properties of the ROF model and prove the

main results of this paper. Section 4 is devoted to study of a fixed-point algorithm for the

nonconforming scheme. The last section 5 reports numerical experiments on various digital

image processing task performed using the fixed-point algorithm analyzed in section 4; we

make a case for the use of finite elements methods in digital image processing.

2. Preliminaries. In this section and throughout the paper, the planar domain Ω is as-

sumed polygonal, unless otherwise noted. We also remind the reader that by domain of R2,

we mean a connected open subset.

2.1. Functions of bounded variation.. A function u : Ω → R is said to be of bounded

variation if u ∈ L1(Ω) and its total variation

J(u) := sup

{∫

Ω

u div(ϕ)dx : ϕ ∈ C1
c (Ω,R

2), |ϕ(x)| ≤ 1, ∀x ∈ Ω

}

(2.1)

is finite. For example any function u ∈ W1,1(Ω) is of bounded variation with total variation

J(u) =

∫

Ω

|∇u|dx. (2.2)

The set of functions of bounded variation, denoted BV (Ω), is a Banach space for the norm

‖u‖BV := ‖u‖L1 + J(u). (2.3)

Furthermore, if u ∈ BV (Ω) then its distributional derivative [7], Du, is a finite vector-valued

Radon measure on Ω, and its total variation |Du| induces a Borel measure on Ω known as the

total variation measure of u. We shall denote the total variation of u over of Borel set B ⊆ Ω

by

∫

B

|Du|.
The following result asserts that a function u defined on a domain Ω of R2 with zero total

variation must be constant.

THEOREM 2.1 (Poincaré Inequality [2, 16]). Suppose that Ω is a bounded Lipschitz

domain of R2. Then there exists a constant C depending only on Ω such that

‖u− uΩ‖L2(Ω) ≤ C

∫

Ω

|Du|, ∀u ∈ BV (Ω), (2.4)
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where uΩ =
1

|Ω|

∫

Ω

u(x)dx is the average value of u over Ω. If Ω = R
2, then there exists

C > 0 such that for any compactly supported function u ∈ BV (R2)

‖u‖L2(R2) ≤ C

∫

R2

|Du|. (2.5)

Another property of functions of bounded variation that is central to our contribution in

this work is the existence of an extension operator from BV (Ω) into BV (R2) that does not

turn the boundary of Ω into a singular set for the total variation measure.

THEOREM 2.2 ([2, Proposition 3.21, p. 131]). Suppose that Ω is a bounded Lipschitz

domain. Then for any bounded open set A ⊂ R
2 such that Ω is relatively compact in A, there

exists a bounded linear extension operator A : BV (Ω) → BV (R2) such that the following

hold:

(a) For any u ∈ BV (Ω),

∫

Γ

|DAu| = 0 and the support of Au is contained in A.

(b) The restriction of A to W 1,1(Ω) is a bounded linear operator into W 1,1(R2).
Proof. The proof is constructive and parallels the construction of an extension operator

[7] from W1,1(Ω) to W 1,1(R2) using a partition of unity argument. A complete proof is

found in [2].

We now review the properties of the total variation functional J : L1(Ω) → [0,∞] that

play a key role in proving the existence and uniqueness of the solution for the ROF model.

PROPOSITION 2.3. The total variation functional J : L1(Ω) → [0,+∞] satisfies the

properties:

(a) J is positively 1-homogeneous, i.e, J(tu) = tJ(u), ∀ t ≥ 0 and ∀u ∈ BV (Ω);
(b) J is convex, i.e, J(tu+(1−t)v) ≤ tJ(u)+(1−t)J(v), ∀ t ∈ [0, 1], ∀u, v ∈ L1(Ω);
(c) J is lower semi-continuous, i.e, if (un) is a sequence which converges in L1(Ω) to

u, then

J(u) ≤ lim inf
n→∞

J(un). (2.6)

Proof. The proof of the proposition is straightforward with (a) and (b) arising from the

definition of the total variation, while (c) is a consequence of Lebesgue Dominated Conver-

gence Theorem.

To establish the main result of this paper, we need to construct a sequence of smooth

functions that converges in L1(Ω) for which the equality holds in (2.6). By exploiting the

extension property of functions of bounded variation (see Theorem 2.2 above), we will use

the standard technique of convolution and the following lemma to achieve this goal.

LEMMA 2.4 ([16, Proposition 1.15]). Suppose u ∈ BV (Ω). If A ⊂⊂ Ω is a relatively

compact open subset of Ω such that

∫

∂A

|Du| = 0, (2.7)

then
∫

A

|Du| = lim
ǫ→0

∫

A

|D(u ∗ ηǫ)|, (2.8)

where ηǫ(x) = ǫ−2η(x/ǫ) and η is radially symmetric mollifier.

We will use convolution to construct a sequence of smooth functions that converge to

the minimizer of the ROF model and use the spline approximation theorems 2.6 and 2.7 to
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derive the spline approximants. In so doing we will need to control the norm of high order

derivatives of the mollification of a BV function. This is done as in the lemma below.

LEMMA 2.5. Let u ∈ BV (R2) be fixed. Then for any integer m ≥ 0, any pair of

nonnegative integer (α, β) such that α+ β = m+ 1, and any ǫ > 0, we have

∥
∥
∥Dα

1D
β
2 (ηǫ ∗ u)

∥
∥
∥
L1(Ω)

≤ C

ǫm
|Du|(R2), (2.9)

where C is a constant depending only on m and Ω.

Proof. Let ϕ ∈ C1
c (Ω) be given. Let α and β be two nonnegative integers such that

α+ β = m+ 1; we may assume without loss of generality that α ≥ 1. Then, we have

∫

Ω

Dα
1D

β
2 (ηǫ ∗ u)ϕdx = −

∫

R2

Dα−1
1 Dβ

2 (ηǫ ∗ u)
∂ϕ

∂x1
dx

= −
∫

R2

Dα−1
1 Dβ

2 ηǫ ∗ u
∂ϕ

∂x1
dx

= −
∫

R2

u η̌mǫ ∗ ∂ϕ

∂x1
dx with η̌mǫ (x) = Dα−1

1 Dβ
2 ηǫ(−x)

= −
∫

R2

u
∂

∂x1
[η̌mǫ ∗ ϕ]dx.

Thus

∫

Ω

Dα
1D

β
2 (ηǫ ∗ u)ϕdx ≤ ‖η̌mǫ ∗ ϕ‖∞|Du|(R2).

Now by Hölder’s inequality we have ‖η̌mǫ ∗ ϕ‖∞ ≤ ‖η̌mǫ ‖L2(R2)‖ϕ‖L2(Ω); a simple

computation shows that

‖η̌mǫ ‖2L2(R2) ≤
√
π

ǫm

∥
∥
∥Dα−1

1 Dβ
2 η
∥
∥
∥

1/2

∞
and ‖ϕ‖L2(Ω) ≤

√

|Ω| ‖ϕ‖∞,

where |Ω| is the Lebesgue measure of Ω. Consequently,

∫

Ω

Dα
1D

β
2 (ηǫ ∗ u)ϕdx ≤ C(m, η)

ǫm
‖ϕ‖∞|Du|(R2) (2.10)

where

C(m, η) =
√

π|Ω| max
α+β=m

∥
∥
∥Dα

1D
β
2 η
∥
∥
∥

1/2

∞
. (2.11)

Taking the supremum in (2.10) over all ϕ ∈ C1
c (Ω) such that ‖ϕ‖∞ ≤ 1, we obtain by

duality and a denseness argument that

∥
∥
∥Dα

1D
β
2 (ηǫ ∗ u)

∥
∥
∥
L1(Ω)

≤ C(m, η)

ǫm
|Du|(R2).
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2.2. Bivariate spline functions on triangulations. Let ∆ be a triangulation of Ω. A

spline function on the triangulation ∆ is a function s defined on Ω such that for any triangle

T ∈ ∆, the restriction s|T of s to T is a polynomial. The degree of a spline function is the

maximum degree of its restrictions to elements of the triangulation ∆. The space of spline

functions of degree d on ∆ is denoted by

S−1
d (∆) := {s : Ω → R : s|T ∈ Pd ∀T ∈ ∆} ,

where Pd is the vector space of bivariate polynomials of degree less than or equal to d. The

space of smooth spline functions of degree d and order 0 ≤ r ≤ d, Sr
d(∆), is defined by

Sr
d(∆) = Cr(Ω) ∩ S−1

d (∆) = {s ∈ Cr(Ω): s|t ∈ Pd, ∀T ∈ ∆} .

Given a basis of the polynomial space Pd, it is easy to see that S−1
d (∆) is isomorphic to

R
N where N = #(∆)

(
d+2
2

)
and #(∆) is the number of triangles in ∆, while the space of

smooth splines Sr
d(∆) is a subspace of RN of the form [22]

Sr
d(∆) ≡

{
c ∈ R

N : Arc = 0
}
, (2.12)

where Ar is an (r + 1)(d + 1)E × N matrix encoding the smoothness condition across the

interior edges of the triangulation ∆, and E is the number of interior edges of ∆. Notice that

Setting up linux-libc-dev (3.2.0-61.92) ... we can use a different basis of Pd for each triangle

T ∈ ∆ and in such instance we shall write

S−1
d (∆h) =

∏

T∈∆

P
T
d .

For our purposes in this paper, we shall use the Bernstein-Bézier basis of PT
d for each triangle

T ∈ ∆.

Spline functions have been used with much success in the numerical computation of

partial differential equations using variational methods [20, 19, 25, 24, 26] and more recently

for the numerical simulation of the Darcy-Stokes equation [4]. In general, spline functions

may be utilized as approximation spaces to study some classes of variational equations using

the Rayleigh-Ritz method. Their appeal to us in this work is twofold. Firstly, bivariate spline

functions possess good approximation power in the Sobolev spaces Wm,p(Ω) as illustrated

by the following theorem.

THEOREM 2.6 ([22, Theorem 10.2, p. 277]). Suppose that ∆ is a regular triangulation

of Ω of mesh size h > 0. Let p ∈ [1,∞] and d ∈ N be given. Then for every u ∈ W d+1,p(Ω),
there exists a spline function su ∈ S0

d(∆) such that

‖Dα
1D

β
2 (u− su)‖Lp(Ω) ≤ Khd+1−α−β |u|d+1,p ∀ 0 ≤ α+ β ≤ d, (2.13)

where K depends only on d and the smallest angle of ∆, and

|u|d+1,p =
∑

α+β=d+1

‖Dα
1D

β
2u‖Lp(Ω).

Natural images contain structural information in the form of edges and textures. Re-

solving these entities with continuous spline functions will require a combination of fine

triangulations and high degree spline functions which in turn demand high resolution images.

An alternative is to use high order spline functions on moderate size triangulations as these

are more capable of capturing the variations corresponding to edges than continuous spline
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functions of low degree. The following result gives the relationship between the degree and

the order of the spline function to guarantee suitable approximation in Sobolev spaces.

THEOREM 2.7 ([22, Theorem 10.10]). Let r and d be two nonnegative integers such that

d ≥ 3r + 2, and suppose ∆ is a regular triangulation of Ω of mesh size h. Then for every

f ∈ W d+1
q (Ω), there exists a spline s ∈ Sr

d(∆h) such that

‖Dα
1D

β
2 (u− su)‖Lp(Ω) ≤ Khd+1−α−β |u|d+1,p ∀ 0 ≤ α+ β ≤ d, (2.14)

If Ω is convex, then the constant K depends only on r, d and the smallest angle on ∆; other-

wise K also depends on the Lipschitz constant of the boundary of Ω.

Secondly, the differential operators Dα
1D

β
2 are bounded linear operators between the

spaces S−1
d (∆) and S−1

d−α−β(∆). This property is known in the literature as the Markov

Inequality. We will use it in section 4 to prove the existence and uniqueness of the solution

of each step of the fixed point algorithm.

THEOREM 2.8 (Markov inequality [22, Theorem 2.32]). Let ∆ be a triangulation of Ω.

Let p ∈ [1,∞) and d ∈ N be fixed. There exists a constant K depending only on d such that

for all nonnegative integers α and β with 0 ≤ α+ β ≤ d, we have

‖Dα
1D

β
2 s‖Lp(Ω) ≤

K

ρα+β
‖s‖Lp(Ω), ∀s ∈ S−1

d (∆), (2.15)

where ρ = min {ρt : t ∈ ∆} with ρt the inradius of the triangle t.

3. Rayleigh-Ritz approximation with splines. In this section, we describe how we

arrive at a family of continuous bivariate spline functions that approximate the minimizer of

the functional

Ef
λ(u) := λJ(u) +

1

2

∫

Ω

|u− f |2dx. (3.1)

Before undertaking the analysis of our approximation method, let us briefly explain why the

ROF model is well posed. In fact, Proposition 2.3 implies that for f ∈ L2(Ω) and λ > 0

fixed, the ROF functional Ef
λ is strictly convex and lower semi-continuous on L2(Ω) for the

norm of L2(Ω). Therefore, the ROF model (1.1) has a unique solution and the problem is

well posed as illustrated by the following result.

THEOREM 3.1. Let uf
λ ∈ BV (Ω) be the minimizer of the ROF functional Ef

λ(u). Then

for any v ∈ BV (Ω), there holds

∥
∥
∥v − uf

λ

∥
∥
∥

2

L2

≤ 2
(

Ef
λ(v)− Ef

λ(u
f
λ)
)

(3.2)

and

inf
x∈Ω

f(x) ≤ uf
λ(x) ≤ sup

x∈Ω
f(x) for a.e. x ∈ Ω. (3.3)

Moreover, if ug
λ is the minimizer of Eg

λ(u), then

‖uf
λ − ug

λ‖L2 ≤ ‖f − g‖L2 . (3.4)

Proof. The proof of (3.2) is a simple exercise of convex analysis and uses the charac-

terization of the minimizer of a convex functional using subdifferentials; the inequality (3.4)
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is a consequence of the inequality (3.2). Finally, the inequality (3.3) follows from the defi-

nition of the total variation of a function as the integral of the perimeters of its level-sets. A

complete proof is found in [27].

The approximation of the minimizer of the ROF model by spline functions is possible be-

cause a function of bounded variation can be approximated by smooth functions and smooth

functions are in turn well approximated by spline functions.

3.1. The conforming method. Suppose that Ω is endowed with a regular triangulation

∆h of size h, and let d ∈ N be given. As a finite dimensional space, S0
d(∆h) is a closed and

convex subset of L2(Ω); thus the ROF functional has a unique minimizer in S0
d(∆h).

Let sdh(f) be the spline function defined by

sdh(f) = arg min
u∈S0

d
(∆h)

λJ(u) +
1

2

∫

Ω

|u− f |2dx. (3.5)

We prove that our construction of minimum splines above yields a minimizing sequence for

the ROF functional. Let hn be a monotonically decreasing sequence of real numbers such

that hn ց 0 as n → ∞. Let ∆n be a quasi-regular triangulation of Ω with mesh size hn and

smallest angle θn. We have the following result:

THEOREM 3.2. Suppose that the sequence of quasi-regular triangulations {∆n}n is

such that

inf
n∈N

θn > θ > 0. (3.6)

Given d ∈ N, the sequence {sdn(f)}n defined by (3.5) converges to the minimizer uf
λ of the

ROF functional Ef
λ on L2(Ω).

Proof. Choose an open neighborhood O of Ω̄ and let T : BV (Ω) → BV (R2) be the ex-

tension operator associated with the O, the existence of which is guaranteed by Theorem 2.2.

We recall that T is also a bounded linear operator from W 1,1(Ω) into W 1,1(R2). Moreover,

for any u ∈ BV (Ω), Tu is supported on O and DTu(Ω̄) = J(u).

Let 0 < ǫ < 1 and d ∈ N be fixed. Let uf
λ be the minimizer of Ef

λ(u) and put uf
ǫ =

ηǫ ∗ Tuf
λ. Let sfǫ ∈ S0

d(∆n) be as in Theorem 2.6. Then by Lemma 2.5, we have

‖uf
ǫ − sfǫ ‖W 1,1(Ω) ≤ C(d, θ)

(
hn

ǫ

)d

, (3.7)

where C depends solely on d and θ. Moreover, since T : W 1,1(Ω) → W 1,1(R2) is bounded,

and Tu is compactly supported for every u, it follows from the Poincaré inequality (2.5) that

‖uf
ǫ − sfǫ ‖L2(Ω) ≤ ‖T (uf

ǫ − sfǫ )‖L2(R2) ≤ C

∫

R2

|∇(T (uf
ǫ − sfǫ ))|dx

≤ C‖T (uf
ǫ − sfǫ )‖W 1,1(R2) ≤ C‖T‖∗‖uf

ǫ − sfǫ ‖W 1,1(Ω), (3.8)

with C a universal constant depending only on Ω1 the 1−neighborhood of Ω, and ‖T‖∗ is the

operator norm of T .

We now show that by choosing a suitable regularization scale ǫ, we achieve the conver-

gence of Ef
λ(s

d
n(f)) to Ef

λ(u
f
λ) as n → ∞. In fact for any ǫ > 0, we have

Ef
λ(s

d
n(f))− Ef

λ(u
f
λ) = Ef

λ(s
d
n(f))− Ef

λ(s
f
ǫ )

︸ ︷︷ ︸

≤0

+Ef
λ(s

f
ǫ )− Ef

λ(u
f
ǫ ) + Ef

λ(u
f
ǫ )− Ef

λ(u
f
λ)

≤ Ef
λ(s

f
ǫ )− Ef

λ(u
f
ǫ ) + Ef

λ(u
f
ǫ )− Ef

λ(u
f
λ).
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So to finish the proof, it suffices to show that Ef
λ(u

f
ǫ ) → Ef

λ(u
f
λ) and Ef

λ(s
f
ǫ ) → Ef

λ(u
f
ǫ )

as n → ∞ for a suitable choice of ǫ. First, we observe that the convergence of Ef
λ(u

f
ǫ )

to Ef
λ(u

f
λ) follows from the fact that uf

ǫ

L2(Ω)−−−−→
ǫ→0

uf
λ and by Lemma 2.4 applied to Tuf

λ:

|Duf
ǫ |(Ω) −−−→

ǫ→0
|DTuf

λ|(Ω) = J(u). Second, by the triangle inequality we have

|Ef
λ(s

f
ǫ )− Ef

λ(u
f
ǫ )| =

∣
∣
∣
∣
λ

[∫

Ω

|∇sfǫ |dx−
∫

Ω

|∇uf
ǫ |dx

]

+
1

2

[
‖sfǫ − f‖2L2 − ‖uf

ǫ − f‖2L2

]
∣
∣
∣
∣

≤ λ

∫

Ω

|∇(sfǫ − uf
ǫ )|dx+

1

2

[

‖sfǫ − uf
ǫ ‖2L2(Ω) + 2‖uf

ǫ − f‖L2(Ω)‖uf
ǫ − sfǫ ‖L2(Ω)

]

≤ λ

∫

Ω

∣
∣∇(sfǫ − uf

ǫ )
∣
∣ dx+

1

2
‖sfǫ − uf

ǫ ‖L2(Ω)(‖uf
ǫ − sfǫ ‖L2(Ω) + 2‖uf

ǫ − f‖L2(Ω))

≤
[

λ+
1

2
‖uf

ǫ − sfǫ ‖L2(Ω) + ‖uf
ǫ − f‖L2(Ω)

]
[
‖uf

ǫ − sfǫ ‖W 1,1(Ω) + ‖uf
ǫ − sfǫ ‖L2(Ω)

]

≤ (1 + C‖T‖∗)
[

λ+
C‖T‖∗

2
‖uf

ǫ − sfǫ ‖W 1,1(Ω) + ‖uf
ǫ − f‖L2

]

‖uf
ǫ − sfǫ ‖W 1,1(Ω),

where we have used the estimate (3.8).

Now, using the estimate (3.7) and letting ǫ = h
1/4d
n , we infer from the latter inequality

that

|Ef
λ(s

f
ǫ )− Ef

λ(u
f
ǫ )| ≤ (1 + C‖T‖∗)C(d, θ)

[

λ+ C(d, θ, T )hd−1/4
n + C(f, uf

λ)
]

hd−1/4
n ,

where

C(f, uf
λ) = ‖f‖L2(Ω) sup

0<ǫ<1
‖uf

ǫ ‖L2(Ω) and C(d, θ, T ) :=
C‖T‖∗C(d, θ)

2
.

Thus, Ef
λ(sn(f)) → Ef

λ(u
f
λ) as hn → 0 and the proof is complete.

REMARK 3.3. It is easy to construct a sequence of triangulation with vanishing mesh

sizes for which condition (3.6) is satisfied. Starting from a triangulation ∆0 of Ω with smallest

angle θ0 and mesh size h0, a sequence of triangulations ∆n is generated via successive

refinements as follows: Given ∆n, we obtain ∆n+1 by subdividing each triangle t ∈ ∆n

into four triangles by connecting the midpoints of the edges of t. The resulting triangulation

∆n+1 has mesh size h02
−n−1 and smallest angle θ0.

COROLLARY 3.4. Under the assumptions of Theorem 3.2, the sequence {sdn(f)}n satis-

fies the following two properties:

sdn(f)
Lp(Ω)−−−−→ uf

λ as n → ∞, for any p ∈ [1, 2], (3.9)

and

J(sdn(f)) → J(u) as n → ∞. (3.10)

Proof. Since Ω is a bounded domain it suffices to establish (3.9) for p = 2. The result for

1 ≤ p < 2 follows from the fact that L2(Ω) is canonically embedded into Lp(Ω). The case

p = 2 follows easily from Theorem 3.1 and Theorem 3.2. Indeed, owing to equation (3.2),

we have

∀n ∈ N, ‖sdn(f)− uf
λ‖2L2(Ω) ≤ 2

(

Ef
λ(s

d
n(f))− Ef

λ(u
f
λ)
)

;



THE RAYLEIGH-RITZ METHOD FOR TV MINIMIZATION 9

thus by Theorem 3.2 above, we have ‖sdn(f)− uf
λ‖2L2(Ω) → 0 as n → ∞. Finally, since

J(sdn(f))− J(u) =
1

λ

[

Ef
λ(s

d
n(f))− Ef

λ(u
f
λ) +

1

2
‖uf

λ − f‖2L2 − 1

2
‖sdn(f)− f‖2L2

]

≤ 1

λ

[

Ef
λ(s

d
n(f))− Ef

λ(u
f
λ) +

1

2
‖uf

λ − sdn(f)‖2‖uf
λ + sdn(f)− 2f‖2

]

≤ 1

λ

(
Ef

λ(s
d
n(f))− Ef

λ(u
f
λ)
)1/2

[

Ef
λ(s

d
n(f))− Ef

λ(u
f
λ) + ‖uf

λ + sdn(f)− 2f‖2
]

and the sequence {‖sdn(f)‖2}n is bounded, thanks to Theorem 3.2 taking the limit of the

latter identity as n → ∞ yields (3.10) and the proof is complete.

REMARK 3.5. Bartels [6] established equation (3.9) of Corollary 3.4 for the case d = 1
and p = 2. Our result generalizes and is applicable to higher order finite elements under

h-refinement for which property (2.13) holds with infinitely differentiable functions.

REMARK 3.6. The results of Theorem 4.3 and Corollary 3.4 hold if we replace S0
d(∆h)

with Sr
d(∆h) in the definition of the spline minimizer sdh(f) provided that the hypotheses of

Theorem 2.7 hold. In particular, we must have d ≥ 3r + 2 and a family of regular triangula-

tions.

3.2. The nonconforming method. The challenge in computing with the ROF model

stems from the fact that the objective functional Ef
λ is not Gâteaux differentiable; so the

solution cannot be characterized by the first variation. The reason being that the associated

Lagrangian

L(p, z, x) = λ|p|+ 1

2
(z − f)2, ∀(p, z, x) ∈ R

2 × R× R
2

is not differentiable with respect to p at the origin p = 0. One way to mitigate this difficulty

is to find a differentiable relaxation of the Lagrangian L such that the corresponding energy

functional is a perturbation of Ef
λ(u); that approach has been successfully implemented for

the ROF model on at least three occasions in the literature [12, 1, 15].

Following Chambolle and Lions [12], we let Φǫ be the real-valued function defined on

R
2 by

Φǫ(x) =







|x|2
2ǫ

+
ǫ

2
if |x| ≤ ǫ,

|x| if |x| > ǫ,
(3.11)

and consider the optimization problem

arg min
u∈S0

d
(∆h)

{

Ef
λ,ǫ(u) := λ

∫

Ω

Φǫ(∇u)dx+
1

2

∫

Ω

|u− f |2dx
}

. (3.12)

The functional Ef
λ,ǫ is strictly convex and lower semicontinuous on S0

d(∆h) for the L2-norm.

Consequently, the minimization problem (3.12) has a unique solution that we denote sdh(f, ǫ).

We now show that the family of functional Ef
λ,ǫ converges uniformly to Ef

λ and the

minimizers sdh(f, ǫ) converge to sdh(f) as ǫ goes to zero. Moreover by choosing a suitable

function ǫ(h), we show that sdh(f, ǫ(h)) converge to uf
λ as h goes to zero.

PROPOSITION 3.7. The family of functionals Ef
λ,ǫ(u) converges uniformly in S0

d(∆h) to

Ef
λ(u) and sdh(f, ǫ)

L2(Ω)−−−−→ sdh(f) as ǫ ց 0. Furthermore, under the assumptions of Theorem

3.2, we have sdh(f, h
1/4d)

L2(Ω)−−−−→ uf
λ as h goes to 0.
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Proof. Let Φ be the continuous function defined on R
2 by Φ(x) = |x| =

√

x2
1 + x2

2. It

is easy to show that

sup
x∈R2

|Φǫ(x)− Φ(x)| ≤ ǫ.

Therefore, for any u ∈ S0
d(∆h) we have the estimate

|Ef
λ,ǫ(u)− Ef

λ(u)| ≤ λ

∫

Ω

|Φǫ(∇u)− Φ(∇u)| dx ≤ λ|Ω|ǫ,

and it follows that Ef
λ,ǫ converges uniformly in S0

d(∆h) to Ef
λ .

Next, we note that Theorem 3.1 remains true on S0
d(∆h). Therefore, rewriting equation

(3.2) in S0
d(∆h) for sdh(f), we obtain

‖sdh(f, ǫ)− sdh(f)‖2L2(Ω) ≤ 2(Ef
λ(s

d
h(f, ǫ))− Ef

λ(s
d
h(f)))

≤ 2(Ef
λ(s

d
h(f, ǫ))−Ef

λ,ǫ(s
d
h(f, ǫ)))+2(Ef

λ,ǫ(s
d
h(f, ǫ))−Ef

λ(s
d
h(f)))

≤ 2
(
λ|Ω|ǫ+Ef

λ,ǫ(s
d
h(f, ǫ))− Ef

λ,ǫ(s
d
h(f))

︸ ︷︷ ︸

≤0

+Ef
λ,ǫ(s

d
h(f))−Ef

λ(s
d
h(f))

)

≤ 4λǫ|Ω|.

Thus,
∥
∥sdh(f, ǫ) − sdh(f)

∥
∥
L2(Ω)

≤ 2
√

λ|Ω|ǫ, and it follows that sdh(f, ǫ) converges to sdh(f)

in L2(Ω) as ǫ goes to 0. Finally, by the triangle inequality we have

∥
∥sdh(f, h

1/4d)− uf
λ

∥
∥
L2(Ω)

≤ 2
√

λ|Ω|h1/4d +
∥
∥sdh(f)− uf

λ

∥
∥
L2(Ω)

.

Taking the limit of the latter inequality as h goes to 0 and using Corollary 3.4, it follows that

sdh(f, h
1/4d) converges to uf

λ in L2(Ω) as h goes to 0.

We close this section with a variational characterization of the nonconforming spline

minimizer sdh,ǫ. We note that the functional Ef
λ,ǫ associated with the relaxation problem

(3.12) is Gâteaux differentiable; therefore the spline function sdh(f, ǫ) is characterized by

PROPOSITION 3.8. A function u ∈ S0
d(∆h) is the minimizer of the functional Ef

λ,ǫ in

S0
d(∆h) if and only if u satisfies the variational equation

λ

∫

Ω

1

ǫ ∨ |∇u|∇u · ∇s dx+

∫

Ω

(u− f)s dx = 0 ∀ s ∈ S0
d(∆h), (3.13)

where a ∨ b := max(a, b).

Proof. First, we observe that Ef
λ,ǫ(u) is Gâteaux differentiable with directional deriva-

tives at any point u ∈ S0
d(∆h) given by

〈dEf
λ,ǫ(u), s〉 = λ

∫

Ω

1

ǫ ∨ |∇u|∇u · ∇s dx+

∫

Ω

(u− f)s dx ∀s ∈ S0
d(∆h). (3.14)

Therefore, u is a minimizer of Ef
λ,ǫ(u) in S0

d(∆h) if and only if dEf
λ,ǫ(u) = 0, i.e (3.13)

holds.
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4. Fixed point relaxation algorithm. In this section, we first establish that the spline

minimizer sdh(f, ǫ) is a fixed-point of a nonlinear operator on Sr
d(∆h) and derive and algo-

rithm for computing sdh(f, ǫ).
Let u ∈ S0

d(∆h) be fixed and define the bilinear form L[u, λ] on S0
d(∆h) by

L[u, λ](v, w) := λ

∫

Ω

1

ǫ ∨ |∇u| ∇v · ∇w dx+

∫

Ω

vwdx.

By Markov Inequality (Theorem 2.8), L[u, λ] is a continuous and coercive bilinear form

on the Hilbert space S0
d(∆h) as a topological subspace of L2(Ω). Thus by Lax-Milgram

Theorem, for any f ∈ L2(Ω), the equation

L[u, λ](v, w) =

∫

Ω

fw dx ∀w ∈ S0
d(∆h)

has a unique solution in S0
d(∆h) that we denote by L[u, λ]f . Moreover, since L[u, λ] is

symmetric, L[u, λ]f is characterized by

L[u, λ]f = arg min
v∈S0

d
(∆h)

Eλ,ǫ,u(v) := λ

∫

Ω

1

ǫ ∨ |∇u| ∇v · ∇v dx+

∫

Ω

|v − f |2dx. (4.1)

Hence for f ∈ L2(Ω) fixed, we define the nonlinear operator

Fλ : S0
d(∆h) → S0

d(∆h)

u 7→ L[u, λ]f.

We claim that Fλ is continuous. Indeed, if {un} ⊂ S0
d(∆h) is a sequence that converges to

u ∈ S0
d(∆h), then Eλ,ǫ,un

converges pointwise to Eλ,ǫ,u as n → ∞. Next, since Eλ,ǫ,u is

lower semicontinuous, it follows that Eλ,ǫ,un
Γ-converges to Eλ,ǫ,u as n → ∞; consequently

Fλ(un) converges to Fλ(u) as n → ∞ and Fλ is continuous. Furthermore, Proposition 3.8

above defines sdh(f, ǫ) as a fixed point of F . So we may compute sdh(f, ǫ) using a fixed point

iteration.

ALGORITHM 4.1. Start from any nonnegative function v0 ∈ S0
d(∆h) and let

un+1 = arg min
u∈S0

d
(∆h)

λ

∫

Ω

vn|∇u|2 dx+

∫

Ω

|u− f |2 dx ∀n ≥ 0, (4.2a)

vn+1 := arg min
0<v≤1/ǫ

∫

Ω

v|∇un+1|2 +
1

v
dx =

1

ǫ ∨ |∇un+1|
. (4.2b)

A standard argument using Lax-Milgram Theorem (see [7, Corollary 5.8 p. 140]) shows

that un+1 is characterized by the variational equation

λ

∫

Ω

vn∇un+1 · ∇s dx+

∫

Ω

(un+1 − f)s dx = 0, ∀ s ∈ S0
d(∆h). (4.3)

The existence and uniqueness of un+1 follows by observing that the bilinear form

L[un](u, v) :=

∫

Ω

λvn∇u · ∇v + uv dx

is continuous – thanks to Theorem 2.8– and coercive on S0
d(∆h) × S0

d(∆h) with respect to

the L2-norm. Consequently, the equation (4.3) has a unique solution.



12 Q. HONG, M.-J. LAI, AND L. MATAMBA MESSI

We fix ǫ > 0 and for the sake of notation conciseness, consider the functional E defined

by

E(u, v) =

∫

Ω

λ(v|∇u|2 + 1

v
) dx+

∫

Ω

|u− f |2 dx. (4.4)

It is easy to check that

un+1 = arg min
u∈S0

d
(∆h)

E(u, vn) and vn+1 = arg min
0<v≤1/ǫ

E(un+1, v). (4.5)

LEMMA 4.2. The sequence {un}n is bounded in H1(Ω) and satisfies

∀n ∈ N, ∀s ∈ S0
d(∆h), ‖s− un‖2L2(Ω) ≤ E(s, vn−1)− E(un, vn−1). (4.6)

In particular, we have

∀n ∈ N, ‖un+1 − un‖2L2(Ω) ≤ E(un, vn)− E(un+1, vn+1). (4.7)

Proof. We observe that in view of Theorem 2.8, proving the boundedness of {un} in

H1(Ω) is equivalent to proving its boundedness in L2(Ω). Let n ∈ N be given. Then by

definition of un, we have

E(un, vn−1) ≤ E(0, vn−1) = ‖f‖2L2 +

∫

Ω

1

vn−1
dx ≤ ‖f‖2L2 +

|Ω|
ǫ
.

Consequently, we get ‖un−f‖2L2(Ω) ≤ ‖f‖2L2(Ω)+
|Ω|
ǫ

, and deduce by the triangle inequality

that

‖un‖L2(Ω) ≤ 2‖f‖L2(Ω) +

√

|Ω|
ǫ
.

We now show that ‖un − s‖2L2(Ω) ≤ E(s, vn−1) − E(un, vn−1). For any s ∈ S0
d(∆h),

we have

E(s, vn−1)− E(un, vn−1) =

∫

Ω

λvn−1(|∇s|2 − |∇un|2) + (|s− f |2 − |un − f |2) dx

=

∫

Ω

λvn−1|∇(s− un)|2 + |s− un|2 dx+

2

∫

Ω

λvn−1∇un · ∇(s− un) + (un − f)(s− un) dx

︸ ︷︷ ︸

=0 by (4.3)

=

∫

Ω

λvn−1|∇(s− un)|2 + |s− un|2 dx

≥ ‖s− un‖2L2(Ω) since vn−1 ≥ 0.

In particular for any n ∈ N,

‖un+1 − un‖2L2(Ω) ≤ E(un, vn)− E(un+1, vn)

= E(un, vn)− E(un+1, vn+1) + E(un+1, vn+1)− E(un+1, vn)
︸ ︷︷ ︸

≤0 by (4.5)

≤ E(un, vn)− E(un+1, vn+1).
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Thus, the sequence {E(un, vn)}n is monotone nonincreasing and ‖un−un+1‖L2(Ω) → 0.

THEOREM 4.3. The sequence {un}n constructed in Algorithm 4.1 converges in L2(Ω)

to the minimizer sdh(f, ǫ) of Ef
λ,ǫ(u).

Proof. In view of Proposition 3.8, it suffices to show that any cluster point u of the

sequence {un}n with respect to the L2-norm satisfies the Euler-Lagrange equation (3.13). To

begin, we note that the sequence {un}n has at least one cluster point as a bounded sequence

in a finite dimensional normed vector space.

Let u be any cluster point of {un}n in L2(Ω) and {unk
}k a subsequence such that

unk

L2(Ω)−−−−→ u. Since ‖unk+1 − unk
‖L2(Ω) → 0, it follows that unk+1

L2(Ω)−−−−→ u as well.

By Markov inequality – Theorem 2.8 – we also have

unk

H1(Ω)−−−−→
k→∞

u and unk+1
H1(Ω)−−−−→
k→∞

u.

Therefore, by Lebesgue dominated convergence theorem, we get

vnk
=

1

|∇unk
| ∧

1

ǫ

L2(Ω)−−−−→
k→∞

1

|∇u| ∧
1

ǫ
=

1

ǫ ∨ |∇u| .

Next, we establish that u satisfies the variational equation

λ

∫

Ω

1

ǫ ∨ |∇u|∇u · ∇s dx+

∫

Ω

(u− f)s dx = 0, ∀s ∈ S0
d(∆h). (4.8)

Indeed by definition of unk+1, for any s ∈ S0
d(∆h), there holds

λ

∫

Ω

vnk
∇s · ∇unk+1 dx+

∫

Ω

(unk+1 − f)s dx = 0, ∀k ∈ N. (4.9)

Since ∇unk+1 converges strongly to ∇u in L2(Ω) × L2(Ω) and vnk
∇s converges strongly

to
∇s

ǫ ∨ |∇u| , it follows that

∫

Ω

vnk
∇s · ∇unk+1 dx −→

∫

Ω

1

ǫ ∨ |∇u|∇u · ∇s dx as k → ∞. (4.10)

Similarly, as unk+1 converges strongly to u in L2(Ω), we infer that

∫

Ω

(unk+1 − f)s dx −→
∫

Ω

(u− f)s dx as k → ∞. (4.11)

On passing to the limit as k → ∞ in (4.9) and taking into account (4.10) and (4.11), we

obtain (4.8) and the proof is complete.

REMARK 4.4. Many choices of the function Φǫ ∈ C1(R2) for constructing a relaxation

of the ROF functional are possible; presumably any choice of a family of convex continuously

differentiable functions that yields a uniform approximation of the Euclidian norm should do

the trick. A common choice seen in the literature and introduced by Acar and Vogel [1] is the

function

Φǫ(x) =
√

ǫ+ |x|2.
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See [15] for a detail analysis of an iterative method for this choice of Φǫ, and the first author’s

dissertation [17] for a detail study of a fixed-point algorithm with respect to spline spaces.

REMARK 4.5. For d = 1 the relaxation algorithm is not necessary as a direct algorithm

for computing the minimizers is readily available. Indeed, in this case the objective functional

reads

Ef
λ(s) = sup

q∈S−1

0
(∆h)×S−1

0
(∆h)∣

∣q
∣
∣
T

∣
∣
2
≤1, T∈∆h

λ

∫

Ω

∇s · qdx+
1

2

∫

Ω

|s− f |2dx, (4.12)

and the ROF model over the continuous affine functions turns into the saddle-point problem

uf
λ = arg min

s∈S0

1
(∆h)

sup
q∈S−1

0
(∆h)×S−1

0
(∆h)

|qT |2≤1, T∈∆h

λ

∫

Ω

∇s · qdx+
1

2

∫

Ω

|s− f |2dx. (4.13)

One can then solve the latter problem using the first-order primal dual algorithm studied by

Chambolle and Pock [13]. Indeed, Bartels [6] has studied it in details and provided ample

evidence of convergence.

5. Applications to digital image processing. In this section we report the results of

some numerical experiments done using the algorithm described above on digital images. It

is well known (some of these observations have been confirmed by theory) that:

(1) the ROF model is excellent on piecewise constant images up to a reduction in con-

trast;

(2) Finite differences algorithms for the ROF model ar vulnerable to the staircase effect,

whereby smooth regions are recovered as mosaics of piecewise constant subregions;

(3) total variation based image enhancement methods are ineffective in discriminating

textures from noise at well mixed scales.

We will present examples addressing these issues. We expect the staircase effect to be reduced

in the spline solution while the edges should not be well resolved due to the continuity of the

spline function. Moreover, we anticipate the issue with textures to more pronounced in our

method.

5.1. A semi-discrete total variation spline model. The algorithm described in the

previous section assumes that f is a function on the continuum domain Ω; however, dig-

ital images are mere samples of such functions. Therefore, for processing digital images

with the ROF model on spline spaces, we should estimate the function f from its samples

{fi : 1 ≤ i ≤ P}. This could be done using any of the spline fitting method introduced by

Awanou, Lai and Wenston [5]. The problem with that approach is that the preliminary estima-

tion step significantly modifies the input data. When the estimated function is fed to the ROF

model, we cannot discriminate the contribution of the total variation smoothing procedure on

the final output.

In order to clearly illustrate the performance of total variation smoothing of digital im-

ages using spline functions, we solve the following variant of the spline minimization problem

(3.5)

arg min
s∈Sr

d
(∆h)

λ

∫

Ω

|∇s|dx+
1

2

∑

T∈∆h

∑

xi∈T

∣
∣s(xi)− fi

∣
∣
2
, (5.1)

where D = {xi ∈ Ω: 1 ≤ i ≤ P} are the loacations of known pixels values and s(xi) is the

value of the spline function s at the pixel location xi ∈ Ω.
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In general, the optimization problem (5.1) may not have a unique solution unless the

pixel locations D = {xi ∈ Ω: 1 ≤ i ≤ P} are well distributed across the triangles of ∆h in

the sense of the following theorem.

THEOREM 5.1. Suppose that the pixel locations D = {xi ∈ Ω: 1 ≤ i ≤ P} are such

that

the mapping ND(s) =

(
∑

T∈∆h

∑

xi∈T

s(xi)
2

)1/2

is a norm on Sr
d(∆h). (5.2)

Then there exists a unique spline function sh ∈ Sr
d(∆h) such that

sh = arg min
s∈Sr

d
(∆h)

Ed(s) := λ

∫

Ω

|∇s|dx+
1

2

∑

T∈∆h

∑

xi∈T

∣
∣s(xi)− fi

∣
∣
2
.

Proof. We note that in general the functional Ed is merely convex and continuous on

Sr
d(∆h); therefore Ed has at least one minimizer in Sr

d(∆h). We claim that under the assump-

tion (5.2), one such minimizer is the limit of a minimizing sequence. Let {sn}n be a mini-

mizing sequence of Ed, i.e Ed(sn) converges to inf
s∈Sr

d
(∆h)

Ed(s). The sequence {ND(sn)}n
is bounded, and since we assumed that ND is a norm and Sr

d(∆h) is finite dimensional, it fol-

lows that any subsequence of {sn}n has a convergent subsequence with respect to the norm

ND.

Now, if s∗ is the limit of a subsequence of {sn}n, then by continuity of Ed we have

Ed(s
∗) = inf

s∈Sr
d
(∆h)

Ed(s)

and s∗ is a minimizer of Ed. Thus, the set of minimizers of Ed is non empty. Finally, since Ed

is strictly convex and limit points of {sn}n are minimizers of Ed, we infer that the minimizing

sequence {sn}n converges to the unique minimizer sh of Ed.

REMARK 5.2. The condition (5.2) is equivalent to saying that the collection of pixel

locations D is determining for the spline space Sr
d(∆h), that is every element s ∈ S−1

d (∆h)
is uniquely determined by the values of s

∣
∣
T

at the pixel locations DT = D ∩ T for every

T ∈ ∆h. Consequently, each triangle T should contain at least (d + 2)(d + 1)/2 pixel

locations. Therefore, given a choice of the degree d, condition (5.2) restricts our options of

triangulations as well as the shape of the individual triangles as well. For example when de-

noising a M×N image, we may not use a triangulation containing more than
2MN

(d+ 2)(d+ 1)
triangles.

Following section 4 above, the actual computation is done by iteratively solving the

sequence of quadratic programs

sn+1 = arg min
s∈Sr

d
(∆h)

λ

∫

Ω

vn
∣
∣∇s

∣
∣
2
dx+

∑

T∈∆h

∑

xi∈T

∣
∣s(xi)− fi

∣
∣
2
, (5.3)

where

vn =
1

ǫ ∨ |∇sn|
.

This expression of vn correspond to the relaxation derived from the function

Φǫ(x) =







|x|2
2ǫ

+
ǫ

2
if |x| ≤ ǫ,

|x| if |x| > ǫ,
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5.2. Implementation of the algorithm for (5.3). First, we identify the space S−1
d (∆h)

of piecewise polynomial funttions of degree d on ∆h to

S−1
d (∆h) ∼=

∏

T∈∆h

P
T
d ,

where P
T
d is the vector space of polynomial of degree less than or equal to d with basis the

Bernstein-Bezier polynomials BT :=
{
BT,d

pqr : p + q + r = d
}

relative to T . In this setting,

a spline function s is represented by its coefficients c = (c1, c2, . . . , ct) such that for each i,
ci are the coefficients of s

∣
∣
Ti

with respect to BT . Furthermore, the spline space Sr
d(∆h) is

the kernel of some linear operator Ar on S−1
d (∆h).

Given an enumeration ∆h = {T1, T2, . . . , Tt} of the triangulation, the quadratic program

(5.3) reduces to the coordinates constrained quadratic program

arg min
c∈Rtm

λ cT Kn c+ ‖Mc− f‖22 subject to Arc = 0, (5.4)

where K is a block diagonal matrix with blocks

Kn,i =

[∫

Ti

vn∇Bµ · ∇Bν dx

]

1≤µ,ν≤m

, 1 ≤ i ≤ t,

M is a P × tm matrix such that the ℓ-th row of M is the evaluation of the Bernstein-Bezier

polynomials at xℓ for every triangle containing xℓ, and f is a column vector of length P
containing the input image. In our implementation of the algorithm, the entries of Kn,i are

computed using a zero-th order quadrature formula.

We solve the constrained optimization problem (5.4) using the augmented Lagrangian

method, leading us to the saddle-point system

[
λKn +MTM AT

r

Ar 0

] [
c

µ

]

=

[
MTf

0

]

, (5.5)

where µ is the vector of Lagrange multipliers associated to the constraints Arc = 0. Notice

that under the assumptions of Theorem 5.1, the matrix λKn + MTM is positive definite.

Therefore, any off-the-shelf algorithm for solving saddle point matrix equations can be used

to solve (5.5). If the assumption of Theorem 5.1 is not satisfied, we compute a least-square

solution of (5.5).

We note that the size of the linear systems (5.5) grows quickly with the degree and the

number of triangles. For example for a triangulation with 10000 triangles and for degree

5, MATLAB displays an out-of-memory message on a typical consumer laptop. To circum-

vent that in the experiments that we report in this paper, we used the domain decomposition

method introduced by Lai and Schumaker in [23].

5.3. Image processing experiments. We present the results of numerical experiments

for various digital image processing situations. Our goal here is to demonstrate that finite

element methods could be used effectively for total variation based image processing. We

consider denoising, inpainting and image resizing. Each of these tasks can be done using

total variation smoothing and may be formulated as in equation (5.1). All the numerical

results reported below are obtained using 10 iterations of the corresponding algorithm. No

attempt was made to produce the best PSNR by tuning any of the parameters λ, the degree d
of the spline, the triangulation, or the number of iterations.
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Denoising a cartoon image. We clean up a realization of Gaussian noise added to an

image made of five geometric shapes. For comparison purposes, we run the spline algorithm

4.1 and the finite difference algorithm studied by the authors in [21]. The spline algorithm

recovers a smoother image than the finite difference algorithm (see the last two panels in the

first row of Figure 5.1), and surprisingly resolves the edges better, too. This is illustrated in

the method noise panels of Figure 5.1. The contours of the shapes are more pronounced in

the method noise of the finite difference algorithm than in that of the spline algorithm. In

Table 5.1 we provide more data documenting the competitiveness of the method when using

splines of various degrees.

Triangulation PSNR=29.38, λ=45, d=5, r=0 PSNR=28.80, λ=45

PSNR=16.08 Method Noise Method Noise

FIG. 5.1. Bottom left: A noisy cartoon image to be cleaned (256× 256). Upper-left: the triangulation (4775

vertexes and 9275 triangles) used with the spline algorithm to clean the image. Top-middle: the image recovered

using continuous quintic splines. Upper-right: the image recovered using the finite-difference algorithm. Method

noise images are computed as the difference between the input image and the recovered image for each method.

Denoising a natural image. We now show the performance of the spline algorithm on a

natural image. Both the finite difference algorithm and the spline method effectively reduce

the noise, see top row, second and third column of Figure 5.2. Also see Table 5.2 for more

PSNR values obtained using splines of various degree.

Denoising a texture-rich image. This experiment aim is to demonstrate that the spline

method studied in this paper remains competive even on images that are rich in textures. The

input image is a noisy image of a woman. The head scarf, the table cloth, and the pants contain

most of the textures. Both the spline and finite difference algorithms perform similarly on this

test, see Table 5.3 for more data comparing the two methods.

Total variation based image resizing. Image resizing consists in increasing/decreasing

the resolution of a given digital image. We achieve this easily by fitting a spline function to

the available image using (5.1) and evaluating the resulting spline at the pixel locations for

the new resolution of the image. We illustrate this approach in Figure 5.4. An image (inset

of each panel) is successively downsampled and upsampled. As expected, the total variation

based rescaling suffer the same travails of any interpolation method for downsampling, see

Figure 5.4 (Top panels).
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d
λ

15 25 45 5

Spline Algorithm with r = 0
2 27.91 27.03 26.28 29.14

3 30.46 28.78 26.73 32.79

4 31.18 29.23 27.95 34.84

5 32.46 30.46 29.38 35.41

6 33.05 30.86 30.14 35.45

7 32.68 30.44 29.87 34.71

8 31.80 29.65 29.71 33.89

Finite Difference Algorithm

33.19 30.49 28.8 35.75

PSNR of noisy input image

22.14 18.58 16.08 28.14
TABLE 5.1

Table of PSNR values for various degrees of spline functions. The triangulation used in all cases is the one

shown in the upper-left panel of Figure 5.1. Even with an unstructured mesh like the one used here, the spline

algorithm is very competitive with the finite difference algorithm.

Triangulation PSNR=27.66, λ=15, d=5, r=0 PSNR=27.72, λ=15

PSNR=22.08 Method Noise Method Noise

FIG. 5.2. Bottom left: A noisy natural image (128 × 128) with PSNR = 22.08 dB. Upper-left: the trian-

gulation (1205 vertexes and 2270 triangles) used to clean the image with continuous quintic splines. Top-middle:

the image recovered using continuous quintic splines. Upper-right: the image recovered using the finite-difference

algorithm. Method noise images are computed as the difference between the input image and the recovered image

for each method (bottom row middle and right).

Total variation Image Inpainting. Image inpainting is an image recovery procedure by

which missing or destroyed portion of the image are reconstructed. Many models of image

inpainting have been proposed in the literature [3] including a total variation minimization

model [14]. We use the spline method to do inpainting on a given image in the following

three cases: (a) missing pixel values at random; (b) text removal from an image; (c) occlusion



THE RAYLEIGH-RITZ METHOD FOR TV MINIMIZATION 19

d
λ

15 25 45 5

Spline Algorithm with r = 0
2 24.91 23.60 21.91 27.12

3 25.89 24.13 22.26 29.28

4 26.72 25.2 23.45 30.23

5 27.66 25.79 23.80 31.26

6 27.98 25.97 24.07 31.71

7 27.87 25.87 24.11 31.46

8 27.66 25.71 24.25 31.15

Finite Difference Algorithm

27.72 25.64 23.74 31.56

PSNR of noisy input image

22.08 18.57 16.16 28.03
TABLE 5.2

Table of PSNR values for various degrees of spline functions. The triangulation used in all cases is the one

shown in the upper-left panel of Figure 5.2. Even with an unstructured mesh like the one used here, the spline

algorithm is very competitive with the finite difference algorithm. However, the spline method is very expensive

computationally compared with the finite difference algorithm.

Triangulation PSNR=25.83, λ=25, d=5, r=0 PSNR=25.77, λ=25

PSNR=18.55 Method Noise Method Noise

FIG. 5.3. Bottom left: A noisy natural image with PSNR = 18.55 dB. Top left: the triangulation (4775 ver-

texes and 9275 triangles) used to clean the image with continuous quintic splines. Top middle: the image recovered

using continuous quintic splines. Top right: the image recovered using the finite-difference algorithm. Method noise

images are computed as the difference between the input image and the recovered image for each method (bottom

row middle and right).

removal. Total variation based inpainting does not correctly restore objects that are discon-

nected by the inpainting domain. This effect is more pronounced when the inpainting domain

covers two heterogeneous region of the image, see the last row in Figure 5.6.

6. Conclusion. In this paper we studied the approximation of the total variation with L2

penalty (TV-L2) model for image denoising. The study was motivated by a recent result in
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d
λ

15 25 45 5

Spline Algorithm with r = 0
2 25.86 24.89 23.66 27.34

3 26.13 25.01 23.85 28.18

4 26.67 25.61 24.56 28.73

5 27.11 25.83 24.74 29.72

6 27.36 25.89 24.84 30.69

7 27.42 25.87 24.87 30.99

8 27.36 25.73 24.89 30.92

Finite Difference Algorithm

27.30 25.77 24.6 30.88

PSNR of input image

22.10 18.55 16.12 28.16
TABLE 5.3

Table of PSNR values for various degrees of spline functions. The triangulation used in all cases is the one

shown in the upper-left panel of Figure 5.3. Even with an unstructured mesh like the one used here, the spline

algorithm is very competitive with the finite difference algorithm.

64× 64 32× 32

256× 256 192× 192

FIG. 5.4. The inset image in each panel represents the original image. Its resolution is 128× 128 pixels. Top

row: From left to right the original image (inset) is downsampled to 64 × 64 and 32 × 32, respectively. Bottom

row: the inset image is upsampled to 256× 256 and 192× 192, respectively.

[8] demonstrating that the TV-L2 model preserves the modulus of continuity of functions, and

the earlier work [15] establishing a sufficient condition for the convergence of Rayleigh-Ritz

approximation of the TV-L2 model. Using the extension property of functions with bounded

variation, we showed that the Rayleigh-Ritz method on bivariate spline spaces leads to a min-
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FIG. 5.5. First column: An image with 80% of the pixels missing at random and another image overlayed with

text. Second column: Both images are recovered using continuous quintic splines with λ = 1.

imizing sequence of smooth spline functions of fixed degree for the TV-L2 model. We formu-

lated a relaxation algorithm for approximating the terms of the minimizing sequence of spline

functions and studied its convergence. Numerous examples demonstrating the competitive-

ness of this algorithm on three distinct digital image processing tasks(denoising, rescaling,

and inpainting) were provided.
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