
Orthogonal Rank-One Matrix Pursuit for Matrix Completion

Zheng Wang1,2, Ming-Jun Lai3, Zhaosong Lu4, Wei Fan5, Jieping Ye1,2

1Computer Science and Engineering, Arizona State University, AZ 85287, USA
2The Biodesign Institute, Arizona State University, AZ 85287, USA

3Department of Mathematics, The University of Georgia, Athens, GA 30602, USA
4Department of Mathematics, Simon Frasor University, Burnaby, BC, V5A 156, Canada

5Huawei Noah’s Ark Lab Hong Kong

ABSTRACT
Low rank modeling has found applications in a wide range
of machine learning and data mining tasks, such as matrix
completion, dimensionality reduction, compressed sensing,
multi-class and multi-task learning. Recently, significant ef-
forts have been devoted to the low rank matrix completion
problem, as it has important applications in many domains
including collaborative filtering, Microarray data imputa-
tion, and image inpainting. Many algorithms have been pro-
posed for matrix completion in the past. However, most of
these algorithms involve computing singular value decom-
position, which is not scalable to large-scale problems. In
this paper, we propose an efficient and scalable algorithm
for matrix completion. The key idea is to extend the well
known orthogonal matching pursuit from the vector case to
the matrix case. In each iteration, we pursue a rank-one
matrix basis generated by the top singular vector pair of the
current approximation residual and fully update the weights
for all rank-one matrices obtained up to the current itera-
tion. The computation of the top singular vector pair and
the updating of the weights can be implemented efficiently,
making the proposed algorithm scalable to large matrices.
We further establish the linear convergence of the proposed
iterative algorithm. This is quite different from the exist-
ing theory for convergence rate of orthogonal greedy algo-
rithms. A linear convergence rate is achieved due to our
construction of matrix bases. We empirically evaluate the
proposed algorithm on many real-world datasets, including
the largest publicly available benchmark dataset Netflix as
well as the MovieLens datasets. Results show that our al-
gorithm is much more efficient than state-of-the-art matrix
completion algorithms while achieving similar or better pre-
diction performance.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications
Data Mining

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD ’13 Chicago, Illinois USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

General Terms
Algorithm

Keywords
Low rank, singular value decomposition, rank minimization,
matrix completion, matching pursuit

1. INTRODUCTION
Low rank matrix learning has attracted significant atten-

tions in machine learning and data mining due to its wide
range of applications, such as collaborative filtering, dimen-
sionality reduction, compress sensing, multi-class learning
and multi-task learning [1, 2, 6, 8, 19, 31, 35]. In this paper,
we consider the general form of low rank matrix completion:
given a partially observed real-valued matrix Y ∈ <n×m,
the low rank matrix completion problem is to find a ma-
trix X ∈ Rn×m with minimum rank that best approximates
the matrix Y on the observed elements. The mathematical
formulation is given by

min
X∈Rn×m

rank(X)

s.t. PΩ(X) = PΩ(Y),
(1)

where Ω includes the index pairs (i, j) of all observed entries,
and PΩ is the orthogonal projector onto the span of matrices
vanishing outside of Ω.

As it is intractable to minimize the matrix rank exactly
in the general case, many approximate solutions have been
proposed for problem (1) [6, 20, 24]. A widely used convex
relaxation of matrix rank is the trace norm or nuclear norm
[6]. The matrix trace norm is defined by the Schatten p-
norm as p = 1. For matrix X with rank r, its Schatten p-
norm is defined by (

∑r
i=1 σ

p
i)1/p, where {σi} are the singular

values of X. Thus, the trace norm of X is the `1 norm of
the matrix spectrum as ||X||∗ =

∑r
i=1 |σi|. Then the convex

relaxation for problem (1) is given by

min
X∈Rn×m

||X||∗
s.t. PΩ(X) = PΩ(Y).

(2)

1.1 Related Works
Solving the standard low rank or trace norm problem

is computationally expensive for large matrices, as it in-
volves computing singular value decomposition (SVD). How
to solve these problems efficiently and accurately for large-
scale problems attracts much attention in recent years. Sev-
eral techniques have been adopted to accelerate the training

speed [5, 15, 17, 27]. Cai et al. [5] propose an algorithm
by using soft singular value thresholding. Keshavan et al.
[17] and Meka et al. [27] use top k singular pairs and attain
more efficient methods.

Another set of approaches solve the trace norm penalized
problem:

min
X∈Rn×m

||PΩ(X)− PΩ(Y)||2F + λ||X||∗. (3)

Ji et al. [16], Liu et al. [23] and Toh et al.[39] indepen-
dently propose proximal gradient algorithms to improve the
algorithm of [5] by significantly reducing the iteration steps.
They obtain an ε-accurate solution in O(1/

√
ε) steps. More

efficient soft singular vector thresholding algorithms are pro-
posed in [25, 26] by investigating the factorization property
of the estimation matrix. Each step of the algorithms re-
quires the computation of a partial SVD for the estimated
matrix. In addition, several methods approximate the trace
norm using its variational characterizations [29, 35, 43], and
proceed by alternating optimization. However these meth-
ods lack global convergence guarantees.

All the methods above involve the computation of SVD
iteratively, which is not scalable to large-scale problems. Re-
cently, the coordinate gradient descent method has been
demonstrated to be efficient in solving sparse learning prob-
lems in the vector case [10, 34, 41, 42]. The key idea is to
solve a very simple one-dimensional problem (for one coor-
dinate) in each iteration. One natural question is whether
and how such method can be applied to solve the matrix
completion problem. Some progress has been made recently
along this direction. Dud́ık et al. [8] propose a coordinate
gradient descent solution for the trace norm penalized prob-
lem. They recast the non-smooth objective in problem (3)
as a smooth one in an infinite dimensional rank-one matrix
space, then apply the coordinate gradient algorithm on the
collection of rank-one matrices. Zhang et al. [44] further
improve the efficiency using the boosting method, and the
improved algorithm guarantees an ε-accuracy within O(1/ε)
iterations. Although these algorithms need slightly more it-
erations than the proximal methods, they are more scalable
as they only need to compute the top singular vector pair
in each iteration. Note that the top singular vector pair
can be computed efficiently by the power method or Lanc-
zos iterations [12]. Jaggi et al. [15] use the same order of
iterations as [44] by directly applying the Hazan’s algorithm
[13]. Tewari et al. [37] solve a more general problem based
on a greedy algorithm. Shalev-Shwartz et al. [33] further
reduce the number of iterations based on a heuristic without
theoretical guarantees.

Most methods based on the top singular vector pair in-
clude two main steps in each iteration. The first step in-
volves computing the top singular vector pair, and the sec-
ond step refines the weights of the rank-one matrices formed
by all top singular vector pairs obtained up to the current
iteration for constructing the target matrix. The main dif-
ferences among these methods lie in how they refine the
weights. The Jaggi’s algorithm (JS) [15] directly applies
the Hazan’s algorithm, which relies on the Frank-Wolfe al-
gorithm [9]. It updates the weights with a small step size
and does not consider further refinement. It does not use
all information in each step, which leads to a slow conver-
gence rate. The greedy efficient component optimization
(GECO) [33] optimizes the weights by solving another time
consuming optimization problem. It involves a smaller num-

ber of iterations than the JS algorithm. However, the so-
phisticated weight refinement makes it slower in total com-
putational time. Similar to JS, Tewari et al. [37] use a
small update step size for a general structure constrained
problem. The lifted coordinate gradient descent algorithm
(Lifted) [8] updates the rank-one matrix basis with a con-
stant weight in each iteration, and conducts a lasso type
algorithm [38] to fully correct the weights. The weights for
the basis update are difficult to tune: a large value leads
to divergence; a small value makes the algorithm slow [44].
The matrix norm boosting approach (Boost) [44] learns the
update weights and designs a local refinement step by a non-
convex optimization problem which is solved by alternating
optimization. It has a sub-linear convergence rate.

We summarize their common drawbacks as follows:

• The weight refinement steps are inefficient, resulting
in a slow convergence rate. The current best conver-
gence rate is O(1/ε). Some refinement steps them-
selves contain computationally expensive iterations [8,
44], which cannot run on large-scale data.

• They have heuristic-based tunable parameters which
are not easy to use. However, these parameters severely
affect their convergence speed and the approximation
result. In some algorithms, an improper parameter
even makes the algorithm diverge [5, 8].

In this paper, we propose a simple and efficient algorithm
to solve the low rank matrix completion problem. The key
idea is to extend the orthogonal matching pursuit (OMP)
procedure [32] from the vector case to matrix case. In our al-
gorithm, we use rank-one matrix as the update basis, which
is generated by the left and right top singular vectors of the
current approximation residual. And we fully update the
weights for all rank-one matrices in the current basis set at
the end of each iteration by orthogonally projecting the ob-
servation matrix onto their spanning subspace. The main
computational cost of the proposed algorithm is to calculate
the top singular vector pair of a sparse matrix, which costs
O((n+m)|Ω|) operations in each iteration. Another impor-
tant feature of the proposed algorithm is that it has a linear
convergence rate. This is quite different from traditional
orthogonal matching pursuit or weak orthogonal greedy al-
gorithms. Their convergence rate for sparse vector recovery
is sub-linear as shown in [22]. See also [7], [36], [40] for
an extensive study on various greedy algorithms. With this
rate of convergence, we only need O(log(1/ε)) iterations for
achieving an ε-accuracy solution. To the best of our knowl-
edge, this is the fastest algorithm among all related meth-
ods. We verify the efficiency of our algorithm empirically in
large-scale matrix completion problems, such as MovieLens
[28] and Netflix [3, 4].

The main contributions of our paper include:

• We propose a computationally efficient and scalable
algorithm for matrix completion, which extends the
orthogonal matching pursuit from the vector case to
the matrix case.

• We theoretically prove the linear convergence rate of
our algorithm. As a result, we only need O(log(1/ε))
steps to get an ε-accuracy solution, and in each step
we only need to compute the top singular vector pair,
which can be computed efficiently.

• Our algorithm has only one free parameter, i.e., the
rank of the approximation matrix. The proposed al-
gorithm is guaranteed to converge, i.e., no risk of di-
vergence.

Notions: Let Y = (y1, · · · ,ym) ∈ <n×m be an n × m
real matrix, Ω ⊂ {1, · · · , n}×{1, · · · ,m} denote the indices
of the observed entries of Y. PΩ is the projection operator
onto the space spanned by the matrices vanishing outside
of Ω so that the (i, j)-th component of PΩ(Y) equals to
Yi,j for (i, j) ∈ Ω and zero otherwise. The Frobeius norm

of Y is defined as ||Y||F =
√∑

i,j X2
i,j . Let vec(Y) =

(yT1 , · · · ,yTm)T denote a vector reshaped from matrix Y by
concatenating all its column vectors. Let ẏ = vec(PΩ(Y))
be the vector by concatenating all observed entries in Y.
The inner product of two matrices X and X is defined as
〈X,Y〉 = 〈vec(X), vec(Y)〉.

2. ORTHOGONAL RANK-ONE MATRIX
PURSUIT

It is well-known that any matrix X ∈ <n×m can be written
as a linear combination of rank-one matrices, that is,

X = M(θ) =
∑
i∈I

θiMi, (4)

where {Mi : i ∈ I} is the set of all n×m rank-one matrices
with unit Frobenius norm. Clearly, θ is an infinite dimen-
sional real vector. Such a representation can be obtained
from the standard SVD decomposition of X.

The original low rank matrix approximation problem can
be reformulated as

min
θ

||θ||0

s.t. PΩ(M(θ)) = PΩ(Y),
(5)

where ||θ||0 denotes the cardinality of the number of nonzero
elements of θ.

If we reformulate the problem as

min
θ

||PΩ(M(θ))− PΩ(Y)||2F
s.t. ||θ||0 ≤ r,

(6)

we could solve it by an orthogonal matching pursuit type
greedy algorithm using rank-one matrices as the basis. In
particular, we are to find a suitable subset with over-complete
rank-one matrix coordinates, and learn the weight for each
coordinate. This is achieved by executing two steps alter-
natively: one is to pursue the basis; and the other one is
to learn the weights of the basis. Before presenting this
approach, we introduce some notations that will be used
subsequently. Given a matrix A ∈ <n×m, we denote PΩ(A)
by AΩ. For any two matrices A,B ∈ <n×m, we define

〈A,B〉Ω = 〈AΩ,BΩ〉,

‖A‖Ω =
√
〈A,A〉Ω and ‖A‖ =

√
〈A,A〉.

Suppose that after the (k − 1)th iteration, the rank-one
basis matrices M1, . . . ,Mk−1 and their current weight θk−1

are already computed. In the kth iteration, we are to pur-
sue a new rank-one basis matrix Mk with unit Frobenius
norm, which is mostly correlated with the current observed

regression residual Rk = PΩ(Y)−Xk−1, where

Xk−1 = (M(θk−1))Ω =

k−1∑
i=1

θk−1
i (Mi)Ω.

Therefore, Mk can be chosen to be an optimal solution of
the following problem:

max
M
{〈M,Rk〉 : rank(M) = 1, ‖M‖F = 1}. (7)

Notice that each rank-one matrix M with unit Frobenius
norm can be written as the product of two unit vectors,
namely, M = uvT for some u ∈ <n and v ∈ <m with
‖u‖ = ‖v‖ = 1. We then see that problem (7) can be
equivalently solved as

max
u,v
{uTRkv : ‖u‖ = ‖v‖ = 1}. (8)

Clearly, the optimal solution (u∗,v∗) of problem (8) is a
pair of top left and right singular vectors of Rk. It can
be efficiently computed by the power method; a simple and
efficient variant is given in the Appendix. The new rank-
one basis matrix Mk is then readily available by setting
Mk = u∗v

T
∗ .

After finding the new rank-one basis matrix Mk, we up-
date the weights θk for all currently available basis matrices
{M1, · · · ,Mk} by solving the least squares regression prob-
lem

min
θ∈<k

||
k∑
i=1

θiMi −Y||2Ω. (9)

By reshaping the matrices (Y)Ω and (Mi)Ω into vectors ẏ
and ṁi, we can easily see that the optimal solution θk of
(9) is given by

θk = (M̄T
k M̄k)−1M̄T

k ẏ, (10)

where M̄k = [ṁ1, · · · , ṁk] is the matrix formed by all re-
shaped basis vectors. The row size of matrix M̄k is the
number of total observed entries. It is computationally ex-
pensive to directly calculate the matrix multiplication. We
simplify this step by an incremental process, and give the
implementation details in the Appendix.

We run the above two steps iteratively until some de-
sired stopping condition is satisfied. We can terminate the
method based on the rank of the approximation matrix or
the approximation residual. In particular, one can choose a
preferred rank of the approximate solution matrix and run
the method for that number of iterations. Alternatively, one
can stop the method once the residual ‖Rk‖ is less than a
tolerance parameter ε. The main steps of Orthogonal Rank-
One Matrix Pursuit (OR1MP) are given in algorithm 1.

Remark 2.1. In our algorithm, we adapt orthogonal match-
ing pursuit on the observed part of the matrix. This is simi-
lar to the GECO algorithm. However, GECO constructs the
estimated matrix by projecting the observation matrix onto
a much larger subspace, which is a product of two subspaces
spanned by all left singular vectors and all right singular
vectors obtained up to the current iteration. So it has much
higher computational complexity. Lee et al. [21] recently
propose another similar algorithm called ADMiRA by ex-
tending the compressive sampling matching pursuit (CoSaMP)
algorithm [30]. It requires iteratively computing hard singu-
lar value thresholding, which is computationally expensive
especially for large-scale problems.

Algorithm 1 Orthogonal Rank-One Matrix Pursuit

Input: Y and a tolerance parameter ε.
Initialize: Set X0 = 0, θ0 = 0 and k = 1.
repeat

Step 1: Find a pair of top left and right singular vectors
(uk,vk) of the observed residual matrix Rk = YΩ −
Xk−1 and set Mk = uk(vk)T .
Step 2: Compute the weight θk using closed form least
squares solution θk = (M̄T

k M̄k)−1M̄T
k ẏ.

Step 3: Set Xk =
∑k
i=1 θ

k
i (Mi)Ω and k ← k + 1.

until observed residual ‖Rk‖ is smaller than ε

Output: Learned matrix Ŷ =
∑k
i=1 θ

k
i Mi.

3. CONVERGENCE ANALYSIS
In this section, we will show that our proposed orthogonal

rank-one matrix pursuit algorithm converges in linear time.
This main result is given in the following theorem.

Theorem 3.1. The orthogonal rank-one matrix pursuit
algorithm satisfies

||Rk|| ≤

(√
1− 1

min(m,n)

)k−1

‖Y ‖Ω, ∀k ≥ 1.

Before proving Theorem 3.1, we need to establish some
useful and preparatory properties of our orthogonal rank-
one matrix pursuit algorithm.

The first property says that Rk+1 is perpendicular to all
previously generated Mi for i = 1, · · · , k.

Property 3.2. 〈Rk+1,Mi〉 = 0 for i = 1, · · · , k.

Proof. Recall that θk is the optimal solution of problem
(9). By the first-order optimality condition, one has

〈Y −
t∑
i=1

θki Mi,Mi〉Ω = 0 for i = 1, · · · , k,

which together with Rk = YΩ−Xk−1 and Xk =
∑k
i=1 θ

k
i (Mi)Ω

implies that 〈Rk+1,Mi〉 = 0 for i = 1, · · · , k.

The following property shows that as the number of rank-
one basis matrices Mi increases during our learning process,
the residual ‖Rk‖ does not increase.

Property 3.3. ‖Rk+1‖ ≤ ‖Rk‖ for all k ≥ 1.

Proof. We observe that for all k ≥ 1,

‖Rk+1‖2 = min
θ∈<k

{‖Y −
∑k
i=1 θiMi‖2Ω}

≤ min
θ∈<k−1

{‖Y −
∑k−1
i=1 θiMi‖2Ω}

= ‖Rk‖2,

and hence the conclusion holds.

We next establish that {(Mi)Ω}ki=1 is linearly independent
unless ‖Rk‖ = 0. It follows that formula (10) is well-defined
and hence θk is uniquely defined before the algorithm stops.

Property 3.4. Suppose that Rk 6= 0 for some k ≥ 1.
Then, M̄i has a full column rank for all i ≤ k.

Proof. Using Property 3.3 and the assumption Rk 6= 0
for some k ≥ 1, we see that Ri 6= 0 for all i ≤ k. We
now prove this statement by induction on i. Indeed, since
R1 6= 0, we clearly have M̄1 6= 0. Hence the conclusion
holds for i = 1. We now assume that it holds for i − 1 <
k and need to show that it also holds for i ≤ k. By the
induction hypothesis, M̄i−1 has a full column rank. Suppose
for contradiction that M̄i does not have a full column rank.
Then, there exists α ∈ <i−1 such that

(Mi)Ω =

i−1∑
j=1

αj(Mj)Ω,

which together with Property 3.2 implies that 〈Ri,Mi〉 = 0.
It follows that

σmax(Ri) = uTi Rivi = 〈Ri,Mi〉 = 0,

and hence Ri = 0, which contradicts the fact that Rj 6= 0
for all j ≤ k. Therefore, M̄i has a full column rank and the
conclusion holds.

We next build a relationship between two consecutive resid-
uals ‖Rk+1‖ and ‖Rk‖.

For convenience, define θk−1
k = 0 and let

θk = θk−1 + ηk,

In view of (9), one can observe that

ηk = arg min
η
||

k∑
i=1

ηiMi −Rk||2Ω. (11)

Let

Lk =

k∑
i=1

ηki (Mi)Ω. (12)

By the definition of Xk, one can also observe that

Xk = Xk−1 + Lk,

Rk+1 = Rk − Lk.

Property 3.5. ||Rk+1||2 = ||Rk||2−||Lk||2 and ||Lk||2 ≥
〈Mk,Rk〉2, where Lk is defined in (12).

Proof. Since Lk =
∑
i≤k η

k
i (Mi)Ω, it follows from Prop-

erty 3.2 that 〈Rk+1,Lk〉 = 0. We then have

||Rk+1||2 = ||Rk − Lk||2

= ||Rk||2 − 2〈Rk,Lk〉+ ||Lk||2

= ||Rk||2 − 2〈Rk+1 + Lk,Lk〉+ ||Lk||2

= ||Rk||2 − 2〈Lk,Lk〉+ ||Lk||2

= ||Rk||2 − ||Lk||2

We next bound ‖Lk‖2 from below. If Rk = 0, ||Lk||2 ≥
〈Mk,Rk〉2 clearly holds. We now suppose throughout the
remaining proof that Rk 6= 0. It then follows from Prop-
erty 3.4 that M̄k has a full column rank. Using this fact
and (11), we have

ηk =
(
M̄T

k M̄k

)−1

M̄T
k ṙk,

where ṙk is the reshaped residual vector of Rk. Invoking
that Lk =

∑
i≤k

ηki (Mi)Ω, we then obtain

||Lk||2 = ṙTk M̄k(M̄T
k M̄k)−1M̄T

k ṙk. (13)

Let M̄k = QU be the QR factorization of M̄k, where QTQ =
I and U is a k×k nonsingular upper triangular matrix. One
can observe that (M̄k)k = ṁk, where (M̄k)k denotes the
kth column of the matrix M̄k and mk is the reshaped vec-
tor of (Mk)Ω. Recall that ‖Mk‖ = ‖ukvTk ‖ = 1. Hence,
‖(M̄k)k‖ ≤ 1. Due to QTQ = I, M̄k = QU and the defini-
tion of U, we have

0 < |Ukk| ≤ ‖Uk‖ = ‖(M̄k)k‖ ≤ 1.

In addition, by Property 3.2, we have

M̄T
k ṙk = [0, · · · , 0, 〈Mk,Rk〉]T . (14)

Substituting M̄k = QU into (13), and using QTQ = I and
(14), we obtain that

‖Lk‖2 = ṙTk M̄k(UTU)−1M̄T
k ṙk

= [0, · · · , 0, 〈Mk,Rk〉] U−1U−T [0, · · · , 0, 〈Mk,Rk〉]T

= 〈Mk,Rk〉2/(Ukk)2 ≥ 〈Mk,Rk〉2,

where the last equality follows since U is upper triangular
and the last inequality is due to |Ukk| ≤ 1.

We are now ready to prove Theorem 3.1.

Proof. Using the definition of Mk, we have

〈Mk,Rk〉 = 〈uk(vk)T ,Rk〉 = σmax(Rk)

≥
√∑

i σ
2
i (Rk)

rank(Rk)
=
√

‖Rk‖2
rank(Rk)

≥
√

‖Rk‖2
min(m,n)

.

Using this inequality and Property 3.5, we obtain that

||Rk+1||2 = ||Rk||2 − ||Lk||2 ≤ ||Rk||2 − 〈Mk,Rk〉2

≤ (1− 1
min(m,n)

)||Rk||2.

In view of this relation and the fact that ‖R1‖ = ‖Y‖2Ω, we
easily conclude that

||Rk|| ≤

(√
1− 1

min(m,n)

)k−1

‖Y‖Ω.

This completes the proof.

Remark 3.6. In a standard study of the convergence rate
of the Orthogonal Match Pursuit(OMP) or Orthogonal Greedy
Algorithm(OGA), the term |〈Mk,Rk〉| ≥ ‖Rk‖2 which leads
a sublinear convergence. Our Mk is a data dependent con-
struction which is based on the top left and right singular
vectors of the residual matrix Rk. It has a better estimate
which gives us the linear convergence.

4. EXPERIMENTS
In this section, we compare our orthogonal rank-one ma-

trix pursuit (OR1MP) algorithm with state-of-the-art ma-
trix completion methods. The competing algorithms in-
clude: singular value projection (SVP) [27], singular value
thresholding (SVT) [6], Jaggi’s fast algorithm for trace norm
constraint (JS) [15], spectral regularization algorithm (Soft-
Impute) [26], low rank matrix fitting (LMaFit) [43], boosting

type accelerated matrix-norm penalized solver (Boost) [44]
and greedy efficient component optimization (GECO) [33].
The first three solve trace norm constrained problems; the
next three solve trace norm penalized problems; the last one
directly solves the low rank constrained problem. The gen-
eral greedy method [37] is not included in our comparison,
as it includes JS and GECO as special cases for matrix com-
pletion. The lifted coordinate descent method (Lifted) [8] is
not included in our comparison as it is very sensitive to the
parameters and is less efficient than Boost proposed in [44].

The code for most of these methods are available online:

• singular value projection (SVP):
http://www.cs.utexas.edu/∼pjain/svp/

• singular value thresholding (SVT):
http://svt.stanford.edu/

• spectral regularization algorithm (SoftImpute):
http://www-stat.stanford.edu/∼rahulm/
software.html

• low rank matrix fitting (LMaFit):
http://lmafit.blogs.rice.edu/

• boosting type solver (Boost):
http://webdocs.cs.ualberta.ca/∼xinhua2/boosting.zip

• greedy efficient component optimization (GECO):
http://www.cs.huji.ac.il/∼shais/code/geco.zip

We compare these algorithms in two problems, including
image recovery and collaborative filtering. The data size for
image recovery is relatively small, and the recommendation
problem is in large-scale. All the competing methods are
implemented in MATLAB1 and call some external packages
for fast computation of SVD2 and sparse matrix computa-
tions. The experiments are run in a PC with WIN7 system,
Intel 4 core 3.4 GHz CPU and 8G RAM.

To set the parameters in the following experiments, we fol-
low the recommended settings for competing algorithms. If
no recommended parameter value is available, we choose the
best one from a candidate set using cross validation. For our
OR1MP algorithm, we only need a stop criterion. For sim-
plicity, we stop our algorithm after r iterations. In this way,
we approximate the ground truth using a rank r matrix. We
present the experimental results using three metrics, peak
signal-to-noise ratio (PSNR)[14], normalized mean absolute
error (NMAE) [11] and root-mean-square error (RMSE) [18].
PSNR is a test metric specific for images. A higher value
in PSNR generally indicates a better quality [14]. NMAE
is a metric for recommendation systems. RMSE is a gen-
eral metric for prediction. NMAE and RMSE measure the
approximation error of the corresponding result.

4.1 Efficiency and Convergence
We firstly evaluate the efficiency of our algorithm. The

results are reported for image recovery as well as the largest
publicly available recommendation dataset, Netflix [3, 4,

1We warp GECO into MATLAB.
2PROPACK is used in SVP, SVT, SoftImpute and Boost.
It is an efficient SVD package, which is implemented in C
and Fortran. It can be downloaded from
http://soi.stanford.edu/∼rmunk/PROPACK/

0 100 200 300
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

rank

R
M

S
E

Lenna

0 50 100 150 200 250 300 350
0

1

2

3

4

5

6

7

8

Lenna

rank

T
im

e
 (

s
e

c
o

n
d

s
)

0 10 20 30 40
0.01

0.012

0.014

0.016

0.018

0.02

rank

R
M

S
E

Netflix

0 10 20 30 40
0

1000

2000

3000

4000

5000

6000

7000

8000

Netflix

rank

T
im

e
 (

s
e

c
o

n
d

s
)

Figure 1: Illustration of convergence of the proposed
algorithm on Lenna image and Netflix dataset: the
x-axis is the rank, the y-axis is the RMSE (left col-
umn), and the running time measured in second
(right column).

18]. The Netflix dataset is available at the Netflix web-
site3. It has 108 ratings of 17,770 movies by 480,189 Netflix
customers. This is a large-scale dataset, and most of the
competing methods are not applicable for this dataset. The
results in Figure 1 show that our method rapidly reduces the
approximation error, which is consistent with our theoretical
analysis.

4.2 Image Recovery
In the image recovery experiments, we use the follow-

ing benchmark test images: Lenna, Barbara, Cameraman,
Clown, Couple, Crowd, Girl, Man, Peppers4. The size of
each image is 512 × 512. We randomly exclude 50% of the
pixels in the image, and the remaining ones are used as the
observations. The numerical results in terms of the PSNR
and the RMSE are separately listed in Table 1 and Table 2.
The results show SVT and our OR1MP achieve the best nu-
merical performance. We also present the recovered images
for Lenna in Figure 2. Image recovery needs a relatively
higher approximation rank; both GECO and Boost fail to
find a good recovery in most cases, so we do not include
them in the result tables.

4.3 Recommendation
Table 3: Recommendation Data Sets.

Data Set # row # column # rating

Jester1 24983 100 106

Jester2 23500 100 106

Jester3 24983 100 6×105

MovieLens100k 943 1682 105

MovieLens1M 6040 3706 106

MovieLens10M 69878 10677 107

3http://www.netflixprize.com/
4Images are downloaded from
http://www.utdallas.edu/∼cxc123730/mh bcs spl.html

In the following experiments, we compare the different
matrix completion algorithms using large recommendation
datasets, Jester [11] and MovieLens [28]. In these experi-
ments, we use six datasets including, Jester1, Jester2, Jester3,
MovieLens100K, MovieLens1M, and MovieLens10M. The statis-
tics of these datasets are given in Table 3. The Jester
datasets were collected from a joke recommendation system.
They contain anonymous ratings of 100 jokes from the users.
The ratings are real values ranging from −10.00 to +10.00.
The MovieLens datasets were collected from the MovieLens
website5. They contains anonymous ratings of the movies
on this web made by its users. For MovieLens100K and
MovieLens1M, there are 5 rating scores (1–5), and for Movie-
Lens10M there are 10 levels of scores with a step size 0.5 in
the range of 0.5 to 5. In the following experiments, we ran-
domly split the ratings into training and test sets. Each
set contains 50% of the ratings. We compare the prediction
results from different methods. The results in RMSE and
NMAE are given in Table 4 and Table 5. We also show
the running time of different methods in Table 6. We can
observe from the above experiments that our algorithm is
the fastest among all competing methods to obtain satisfac-
tory results. We can also observe that our method obtains
comparable results with a much lower rank.

5. CONCLUSION
In this paper, we propose an efficient and scalable low

rank matrix completion algorithm. The key idea is to ex-
tend orthogonal matching pursuit method from the vector
case to the matrix case. However, our extension is nontriv-
ial as we build up a set of rank one matrices dependent on
the given incomplete entries of the unknown matrix. Our
algorithm is computationally inexpensive for each matrix
pursuit iteration, and finds a satisfactory result in a few it-
erations. Another advantage of our method is it has only
one tunable parameter, which is the rank. It is easy to un-
derstand and to use by the user. This becomes especially
important in large-scale learning problems. In addition, we
rigorously show that our method achieves a linear conver-
gence rate, which is significantly better than the previous
known result (a sub-linear convergence rate). We also em-
pirically compare it with state-of-the-art low rank matrix
completion algorithms, and our results show that the pro-
posed algorithm is more efficient than competing algorithms.
Our method can be easily adapted to optimize other forms of
convex functions, by substituting the residual with the gra-
dient. We plan to generalize our theoretical and empirical
analysis to other loss functions in the future.

6. REFERENCES
[1] A. Argyriou, T. Evgeniou, and M. Pontil. Convex

multi-task feature learning. Machine Learning,
73(3):243–272, 2008.

[2] F. Bach. Consistency of trace norm minimization. Journal
of Machine Learning Research, 9:1019–1048, 2008.

[3] R. Bell and Y. Koren. Lessons from the netflix prize
challenge. SIGKDD Explorations, 9(2), 2007.

[4] J. Bennett and S. Lanning. The netflix prize. In In
Proceedings of KDD Cup and Workshop, 2007.

[5] J.-F. Cai, E. J. Candès, and Z. Shen. A singular value
thresholding algorithm for matrix completion. SIAM
Journal on Optimization, 20(4):1956–1982, 2010.

5http://movielens.umn.edu

Table 1: Image recovery results measured in terms of the peak signal-to-noise ratio (PSNR).

Data Set SVT SVP SoftImpute LMaFit JS OR1MP

Lena 28.1832 25.4586 26.7022 23.2003 24.5056 28.0115
Barbara 26.9635 25.2598 25.6073 25.9589 23.5322 26.5314
Cameraman 25.6273 25.9444 26.7183 24.8956 24.6238 27.8565
Clown 28.5644 19.0919 26.9788 27.2748 25.2690 28.1963
Couple 23.1765 23.7974 26.1033 25.8252 24.4100 27.0707
Crowd 26.9644 22.2959 25.4135 26.0662 18.6562 26.0535
Girl 29.4688 27.5461 27.7180 27.4164 26.1557 30.0878
Goldhill 28.3097 16.1256 27.1516 22.4485 25.9706 28.5646
Man 27.0223 25.3246 25.7912 25.7417 23.3060 26.5829
Peppers 25.7202 26.0223 26.8475 27.3663 24.0979 28.0781

Table 2: Image recovery results measured in terms of the RMSE.

Data Set SVT SVP SoftImpute LMaFit JS OR1MP

Lena 0.0390 0.0533 0.0462 0.0692 0.0595 0.0398
Barbara 0.0449 0.0546 0.0524 0.0504 0.0666 0.0471
Cameraman 0.0547 0.0504 0.0460 0.0569 0.0587 0.0404
Clown 0.0373 0.1110 0.0448 0.0433 0.0545 0.0389
Couple 0.0677 0.0646 0.0493 0.0511 0.0602 0.0443
Crowd 0.0449 0.0768 0.0536 0.0497 0.1167 0.0498
Girl 0.0336 0.0419 0.0411 0.0426 0.0492 0.0313
Goldhill 0.0384 0.1562 0.0439 0.0754 0.0503 0.0373
Man 0.0446 0.0542 0.0513 0.0516 0.0683 0.0469
Peppers 0.0586 0.0500 0.0455 0.0428 0.0624 0.0395

Table 4: Recommendation results measured in terms of RMSE. Boost fails on MovieLens10M.

Data Set SVP SoftImpute LMaFit Boost JS GECO OR1MP

Jester1 4.7311 5.1113 4.7623 5.1746 4.4713 4.3680 4.3418
Jester2 4.7608 5.1646 4.7500 5.2319 4.5102 4.3967 4.3649
Jester3 8.6958 5.4348 9.4275 5.3982 4.6866 5.1790 4.9783
MovieLens100K 0.9683 1.0354 1.2308 1.1244 1.0146 1.0243 1.0168
MovieLens1M 0.9085 0.8989 0.9232 1.0850 0.9290 1.1439 0.9595
MovieLens10M 0.8611 0.8534 0.8825 – 0.8928 0.8668 0.8621

Table 5: Recommendation results measured in terms of normalized mean absolute error (NMAE).

Data Set SVP SoftImpute LMaFit Boost JS GECO OR1MP

Jester1 0.1759 0.2141 0.1772 0.2259 0.1758 0.1683 0.1682
Jester2 0.1761 0.2168 0.1761 0.2196 0.1765 0.1681 0.1681
Jester3 0.3067 0.2314 0.3289 0.2298 0.1933 0.2020 0.1994
MovieLens100K 0.1886 0.2083 0.2309 0.2363 0.2026 0.1992 0.2011
MovieLens1M 0.1765 0.1754 0.1786 0.2259 0.2246 0.1797 0.1901
MovieLens10M 0.1454 0.1447 0.1481 – 0.1775 0.1757 0.1563

Table 6: The running time (measured in seconds) for all methods on all recommendation datasets.

Data Set SVP SoftImpute LMaFit Boost JS GECO OR1MP

Jester1 18.3495 161.4941 3.6756 93.9142 29.6751 > 104 1.8317

Jester2 16.8519 152.9600 2.4237 261.7005 28.5228 > 104 1.6769

Jester3 16.5801 1.5450 8.4513 245.7895 12.9441 > 103 0.9264
MovieLens100K 1.3237 128.0658 2.7613 2.8669 2.8583 10.8300 0.0418

MovieLens1M 18.9020 59.5600 30.5475 93.9142 13.0972 > 104 0.8714

MovieLens10M > 103 > 103 > 105 – 130.1343 > 105 23.0513

Original Observed SVT

SVP SoftImpute LMafit

Boost JS OR1MP

Figure 2: The original, observed images and images recovered by different methods on the Lenna image.

[6] E. J. Candès and B. Recht. Exact matrix completion via
convex optimization. Foundations of Computational
Mathematics, 9(6):717–772, 2009.

[7] R. A. DeVore and V. N. Temlyakov. Some remarks on
greedy algorithms. Advances in computational
Mathematics, 5:173–187, 1996.

[8] M. Dud́ık, Z. Harchaoui, and J. Malick. Lifted coordinate
descent for learning with trace-norm regularization. In
Proceedings of the 15th International Conference on
Artificial Intelligence and Statistics (AISTATS), 2012.

[9] M. Frank and P. Wolfe. An algorithm for quadratic
programming. Naval Research Logistics Quarterly,
3(1-2):95–110, 1956.

[10] J. H. Friedman, T. Hastie, and R. Tibshirani.
Regularization paths for generalized linear models via
coordinate descent. Journal of Statistical Software,
33(1):1–22, 2010.

[11] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins.

Eigentaste: A constant time collaborative filtering
algorithm. Information Retrieval, 4(2):133–151, 2001.

[12] G. H. Golub and C. F. V. Loan. Matrix computations (3rd
ed.). The Johns Hopkins University Press, 1996.

[13] E. Hazan. Sparse approximate solutions to semidefinite
programs. In Proceedings of the 8th Latin American
conference on Theoretical informatics, 2008.

[14] Q. Huynh-Thu and M. Ghanbari. Scope of validity of psnr
in image/video quality assessment. Electronics Letters,
44(13):800–801, 2008.

[15] M. Jaggi and M. Sulovský. A simple algorithm for nuclear
norm regularized problems. In Proceedings of the 27th
International Conference on Machine Learning (ICML),
pages 471–478, 2010.

[16] S. Ji and J. Ye. An accelerated gradient method for trace
norm minimization. In Proceedings of the 26th
International Conference on Machine Learning (ICML),
pages 457–464, 2009.

[17] R. Keshavan and S. Oh. Optspace: A gradient descent
algorithm on grassmann manifold for matrix completion.
http://arxiv.org/abs/0910.5260, 2009.

[18] Y. Koren. Factorization meets the neighborhood: a
multifaceted collaborative filtering model. In Proceedings of
the 14th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD), 2008.

[19] Y. Koren, R. Bell, and C. Volinsky. Matrix factorization
techniques for recommender systems. Computer, 2009.

[20] M.-J. Lai, Y. Xu, and W. Yin. Improved iteratively
reweighted least squares for unconstrained smoothed `q
minimization,. SIAM Journal on Numerical Analysis, 2012.

[21] K. Lee and Y. Bresler. Admira: atomic decomposition for
minimum rank approximation. IEEE Transactions on
Information Theory, 56(9):4402–4416, 2010.

[22] E. Liu and T. N. Temlyakov. The orthogonal super greedy
algorithm and applications in compressed sensing. IEEE
Transactions on Information Theory, 58:2040–2047, 2012.

[23] Y.-J. Liu, D. Sun, and K.-C. Toh. An implementable
proximal point algorithmic framework for nuclear norm
minimization. Mathematical Programming,
133(1-2):399–436, 2012.

[24] Z. Lu and Y. Zhang. Penalty decomposition methods for
rank minimization. http://arxiv.org/abs/0910.5260, 2010.

[25] S. Ma, D. Goldfarb, and L. Chen. Fixed point and bregman
iterative methods for matrix rank minimization.
Mathematical Programming, 128(1-2):321–353, 2011.

[26] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral
regularization algorithms for learning large incomplete
matrices. Journal of Machine Learning Research,
99:2287–2322, August 2010.

[27] R. Meka, P. Jain, and I. S. Dhillon. Guaranteed rank
minimization via singular value projection. In Advances in
Neural Information Processing Systems (NIPS) 22, pages
937–945, 2010.

[28] B. N. Miller, I. Albert, S. K. Lam, J. A. Konstan, and
J. Riedl. Movielens unplugged: experiences with an
occasionally connected recommender system. In
Proceedings of the 8th international conference on
Intelligent user interfaces, pages 263–266, 2003.

[29] B. Mishra, G. Meyer, F. Bach, and R. Sepulchre. Low-rank
optimization with trace norm penalty.
http://arxiv.org/abs/1112.2318, 2011.

[30] D. Needell and J. A. Tropp. Cosamp: iterative signal
recovery from incomplete and inaccurate samples.
Communications of the ACM, 53(12):93–100, 2010.

[31] S. Negahban and M. Wainwright. Estimation of (near)
low-rank matrices with noise and high-dimensional scaling.
In Proceedings of the 27th International Conference on
Machine Learning (ICML), 2010.

[32] Y. C. Pati, R. Rezaiifar, Y. C. P. R. Rezaiifar, and P. S.
Krishnaprasad. Orthogonal matching pursuit: Recursive
function approximation with applications to wavelet
decomposition. In Proceedings of the 27th Annual Asilomar
Conference on Signals, Systems, and Computers, pages
40–44, 1993.

[33] S. Shalev-Shwartz, A. Gonen, and O. Shamir. Large-scale
convex minimization with a low-rank constraint. In
Proceedings of the 28th International Conference on
Machine Learning (ICML), pages 329–336, 2011.

[34] S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1
regularized loss minimization. In Proceedings of the 26th
International Conference on Machine Learning (ICML),
pages 929–936, 2009.

[35] N. Srebro, J. Rennie, and T. Jaakkola. Maximum margin
matrix factorizations. In Advances in Neural Information
Processing Systems (NIPS) 17, 2005.

[36] V. N. Temlyakov. Greedy approximation. Acta Numerica,
17:235–409, 2008.

[37] A. Tewari, P. Ravikumar, and I. S. Dhillon. Greedy
algorithms for structurally constrained high dimensional

problems. In Advances in Neural Information Processing
Systems (NIPS) 23, 2011.

[38] R. Tibshirani. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B,
58:267–288, 1994.

[39] K.-C. Toh and S. Yun. An accelerated proximal gradient
algorithm for nuclear norm regularized least squares
problems. Optimization Online, 2009.

[40] J. A. Tropp. Greed is good: algorithmic results for sparse
approximation. IEEE Trans. Inform. Theory,
50:2231–2242, 2004.

[41] T. T. Wu and K. Lange. Coordinate descent algorithms for
lasso penalized regression. Annals of Applied Statistics,
2(1):224–244, 2008.

[42] S. Yun and K.-C. Toh. A coordinate gradient descent
method for l1-regularized convex minimization.
Computational Optimization and Applications, 2011.

[43] W. Y. Zaiwen Wen and Y. Zhang. Low-rank factorization
model for matrix completion by a non-linear successive
over-relaxation algorithm. Rice CAAM Tech Report 10-07,
University of Rice, 2010.

[44] X. Zhang, Y. Yu, and D. Schuurmans. Accelerated training
for matrix-norm regularization: A boosting approach. In
Advances in Neural Information Processing Systems
(NIPS) 24, 2012.

APPENDIX
A. TOP SINGULAR VECTOR PAIR

In our algorithm we calculate the top singular vector pair
by the following problem:

min
||u||2=1,||v||2=1

||Rk − σuvT ||2,

where Rk is the residual and σ is the dominant singular
value. We use the first order condition to solve the problem.
With a initial vector u, we iteratively update v and u using
following steps,

v = uTRk/||u||2 and u = Rkv
T /||v||2.

These updates quickly converge. In large-scale problems,
we can calculate the approximated singular vector pair with
fixed number of iterations.

B. INVERSE MATRIX UPDATE
In our algorithm, we use least square solution to update

the weights for the rank-one matrix bases. In this step, we
need to calculate a inverse matrix (M̄kM̄k)−1. To directly
compute this inverse is computationally expensive, as the
matrix M̄k has large row size. We implement this efficiently
with an incremental method. As

M̄T
k M̄k = [M̄k−1, ṁk]T [M̄k−1, ṁk]

The inverse can be written in block matrix form

(M̄T
k M̄k)−1 =

[
M̄T

k−1M̄k−1 M̄T
k−1ṁk

ṁT
k M̄T

k−1 ṁT
k ṁk

]−1

Then it is calculated as[
A + dAbbTA −dAb
−dbTA d

]
where A = M̄T

k−1M̄k−1 is the corresponding inverse matrix

in the last step, b = M̄T
k−1ṁk is a vector with |Ω| elements,

and d = (bTb− bTAb)−1 = 1/(bTb− bTAb) is a scalar.
M̄T

k ẏ is also calculated incrementally by [M̄T
k−1ẏ, ṁT

k ẏ],
as ẏ is fixed.

