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Abstract

As a generalized wavelet function, a wavelet frame gives more rooms for different construc-

tion methods. In this dissertation, first we study two constructive methods for the locally

supported tight wavelet frame for any given refinable function whose Laurent polynomial

satisfies the QMF or the sub-QMF conditions in Rd. Those methods were introduced by

Lai and Stöckler. However, to apply the constructive method under the sub-QMF condition

we need to factorize a nonnegative Laurent polynomial in the multivariate setting into an

expression of a finite square sums of Laurent polynomials. We find an explicit finite square

sum of Laurent polynomials that expresses the nonnegative Laurent polynomial associated

with a 3-direction or 4-direction box spline for various degrees and smoothness. To facilitate

the description of the construction of box spline tight wavelet frames, we start with B-spline

tight wavelet frame construction. For B-splines we find the sum of squares form by using

Fejér-Riesz factorization theorem and construct tight wavelet frames. We also use the tensor

product of B-splines to construct locally supported bivariate tight wavelet frames. Then we

explain how to construct box spline tight wavelet frames using Lai and Stöckler’s method.

In the second part of dissertation, we apply some of our box spline tight wavelet frames for

edge detection and image de-noising. We present a lot of images to compare favorably with

other edge detection methods including orthonormal wavelet methods and six engineering



methods from MATLAB Image Processing Toolbox. For image de-noising we provide with

PSNR numbers for the comparison.

Finally we study the construction of locally supported tight wavelet frame over bounded

domains. The situation of the construction of locally supported tight wavelet frames over

bounded domains is quite different from the construction we explained above. We introduce

a simple approach and obtain B-spline tight wavelet frames and box spline tight wavelet

frames over finite intervals and bounded domains.

Index words: B-splines, Box splines,Tight wavelet frames, Refinable function,
Laurent polynomial, Edge detection, Image de-noising, MRA,
Sub-QMF condition
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Chapter 1

Introduction

A wavelet frame is a generalized wavelet function whose binary dilations and integer trans-

lations span L2(Rd), but are not necessarily orthonormal among its translates and dilations.

Because of the self duality and the ability of redundant representation, tight wavelet frames

have a lot of potential applications. Many results about frames and wavelet frames are

available in the literature. The general notion of frames was introduced first by Duffin and

Schaeffer in 1952 (see [DS]). In [BL], a multiresolution analysis (MRA) is extended to a frame

multiresolution analysis (FMRA). The authors developed the FMRA theory and applied the

constructed frames based on FMRA to signal processing. Chui and Shi showed that affine

frames can be obtained by oversampling of well-known wavelets in [CS]. In [D1], various

aspects of frames and wavelet frames are discussed. In [FGWW] and [HW], authors com-

pletely characterized univariate orthonormal wavelet bases. The characterization of tight

wavelet frames appears in their work implicitly. Ron and Shen in their paper [RS1] derived

the characterization of tight frames and gave sufficient conditions for the construction of tight

wavelet frames from the multiresolution analysis. In the paper [DHRS], a general theory of

wavelet frames is given via multiresolution analysis over unbounded intervals. In [CH1],

Chui and He gave an existence criterion of the locally supported tight wavelet frames for

some refinable functions whose associated Laurent polynomial satisfying sub-QMF condition

in univariate settings. The maximum vanishing moment for the compactly supported tight

wavelet frame construction is introduced in [CHS1]. In this paper sibling frames are also

introduced as an extended notion of tight wavelet frames. Recently, by the same authors,
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a general theory of non-stationary B-spline tight wavelet frame over bounded domains has

been developed (see [CHS2]).

In [RS3], authors constructed compactly supported tight affine frames (wavelets) in

L2(Rd) from 4-directional box splines that are refinable with respect to the special dila-

tion matrix A =

 1 1

1 −1

. The construction method is based on the theory of so-called

’fiberization’ which is developed in [RS4]. In [GR], Gröchenig and Ron showed that for any

integer dilation matrix A and smoothness, they can construct compactly supported tight

wavelet frames in the multivariate setting. In [CH2], a Kronecker product method is intro-

duced for obtaining box spline tight wavelet frames.

In this dissertation, we construct many tight wavelet frames by using bivariate 3-direction,

4-direction and 8-direction meshes box spline functions and apply some of them for edge

detection and image de-noising. In [LS], Lai and Stöckler showed how to construct tight

wavelet frame for the Laurent polynomial associated with the refinable function satisfying

either the QMF(Quadrature Mirror Filter) condition or the sub-QMF condition. These con-

struction methods are simple and can be applied to any dimensional settings. However, we

can use the construction method under sub-QMF condition in [LS] only if we can find a

finite number of Laurent polynomials P̃1, · · · , P̃N for the Laurent polynomial P in e−
√
−1ω

associated with a refinable function satisfying

1−
∑

ν∈{0,π}d

|P (ω + ν)|2 =
N∑

j=1

∣∣∣P̃j(2ω)
∣∣∣2 , whereω ∈ Rd. (1.1)

For the univariate setting, we can find a Laurent polynomial satisfying the condition (1.1)

by the Fejér and Riesz in [F] and [Ri]. But in the multivariate setting it is not an easy

question. Bivariate box splines are important class of a refinable function whose associated

Laurent polynomial satisfies the sub-QMF condition. One of the main contributions of this

dissertaion is to find explicit Laurent polynomials satisfying condition (1.1) for the low orders

of box splines on 3, 4 and 8-direction meshes. Therefore we can apply the Lai and Stöckler’s

construction method to construct tight wavelet frames using various order of bivariate box
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splines on 3, 4, and 8-direction meshes. For the further results on factorizaion of multivariate

nonnegative Laurent polynomials, see [GL]. One advantage of our box spline tight wavelet

frames in this dissertation is that our method gives smaller numbers of multivariate tight

wavelet frame generators than the bivariate tight wavelet framelets using the Kronecker-

product method in [CH2].

Similar to wavelets, wavelet frames are efficient basis for separating several high-pass

frequency parts from the low-pass frequency part. In addition to this aspect, the redundant

property of wavelet frames is know to be useful for recovering information from the corrupted

one. Thus it is interesting to replace wavelets in applications by wavelet frames and compare

the efficiencies. We first apply our bivariate box spline tight wavelet frames to the edge

detection for images. After a lot of experiments we find that the best results among our

box spline tight frames. We then compare the edge detected images by our box spline tight

frame with many other edge detected images using the tensor product of Haar, Daubechies,

biorthogonal 9/7 wavelets. We also provide more experimental data using six different edge

detection methods, Sobel, Prewitt, Roberts, Laplacian, Zero-crossing and Canny methods,

provided by the MATLAB Image Processing Toolbox. The edge detection method by using

wavelets or wavelet frames can be described as follows. First we decompose an image by

wavelet filters or wavelet frame filters into several levels of sub-images. Then we have a

low-pass sub-image and many high-pass sub-images. When we reconstruct the image, we

only use high-pass parts at all levels without the low-pass sub-image. The reconstructed

image shows mostly the edge part of the original image. We provide nine images and their

edge detected images by using all the above methods. We have much better results of edge

detections by our box spline wavelet frame than the edge detections by tensor products of

traditional wavelets and as good results as those of engineering edge detection methods from

the MATLAB Image Processing Toolbox.

In [DJ], the wavelet method for de-noising is introduced as a near-optimal method among

all the linear and nonlinear methods for de-noising. Image de-noising using wavelets or
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wavelet frames can be described as follows. We first add a Gaussian noise to the image

to get a noisy image. We then decompose the noise added image into one low-pass sub-image

and many high-pass sub-images by using wavelets or wavelet frames. We apply the soft-

thresholding method to all the high-pass sub-images. In this step by shrinking the wavelet

coefficients of high-pass parts of images we remove most part of noise in the image. Then we

reconstruct the image using the low-pass parts of image and the thresholded high-pass parts

of images. The reconstructed image is the image removed noise. For comparison, we report

PSNR numbers of different images reconstructed by using the tensor products of traditional

univariate wavelets and box spline tight wavelet frames. After de-noising seven images with

different levels of noises, we have higher PSNR numbers for the de-noised images by our box

spline tight wavelet frame than that of tensor products of traditional wavelets.

In addition to the tight wavelet frame construction over unbounded domains, we introduce

a simple construction method for tight wavelet frames over bounded domains. We then

construct B-spline tight wavelet frames and box spline tight wavelet frames over bounded

domains. Tight wavelet frame construction over bounded domains is quite different than tight

wavelet frame construction over unbounded domains. Concrete examples in [CHS2] show that

it is impossible to construct tight wavelet frames over bounded domains by modifying tight

wavelet frames over unbounded domains. In their paper, Chui, He and Stöckler developed

a general theory of non-stationary tight wavelet frame construction over a bounded interval

using univariate splines over non-equally spaced knots. Our method for tight wavelet frame

construction is an independent work of theirs. One of the advantages of our method is that

our method works in the multivariable settings.

This dissertation is organized as follows. In Chapter 2, we first review the concept of tight

wavelet frames in the multivariate setting. In Section 2.2, two easy constructive methods are

presented to compute tight wavelet frames for any given refinable function whose Laurent

polynomial satisfies the QMF or the sub-QMF condition in the multivariate setting. Chapter

3 contains five sections. The first two sections are overviews of B-splines and box splines
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respectively. We show the construction of B-spine tight wavelet frames, tensor product of

B-spline tight wavelet frames in Section 3.3 and in Section 3.4. Our main construction is in

Section 3.5. We construct tight wavelet frames for box splines by using Lai and Stöckler’s

method under the sub-QMF condition in this chapter. The explicit Laurent polynomials

satisfying condition (1.1) for various orders of bivariate box splines are given. In Chapter

4, in Section 4.1, we briefly explain the wavelet frame decomposition and reconstruction. In

Section 4.2, we present numerical experiments for edge detection using one of the box spline

tight wavelet frames we constructed. For effectiveness comparison, we also show edge detected

images by the tensor products of traditional wavelets and engineering edge detections. Image

de-noising is presented in Section 4.3. We use one of the box spline tight wavelet frame we

constructed for image de-noising. The effectiveness of de-noising by using a box spline tight

wavelet frame and the tensor product of wavelets will be measured by PSNR numbers.

In Chapter 5, in Section 5.1 and Section 5.2 we introduce a simple tight wavelet frame

construction. According to the construction scheme, B-spline tight wavelet frames and box

spline tight wavelet frames over bounded domains are constructed in Section 5.3 and Section

5.4.



Chapter 2

Tight Wavelet Frames over Rd

2.1 Preliminary

We use the standard inner product and L2-norm in L2(Rd), i.e.,

〈 f, g 〉 =

∫
Rd

f(y)g(y) dy,

‖f‖2 := 〈 f, f 〉.

The Fourier transform of f is defined by

f̂(ω) := 〈 f(·), eiω· 〉 =

∫
Rd

f(y) eiωy dy, i =
√
−1.

Definition 2.1.1 A family of functions {fj}j∈J in a Hilbert space H is called a frame,

if there exist constants A,B > 0 such that

A‖f‖2 ≤
∑
j∈J

|〈f, fj〉|2 ≤ B‖f‖2 , ∀f ∈ H.

If A = B = 1 we call {fj}j∈J a tight frame. Thus for the tight frame we have

‖f‖2 =
∑
j∈Z

| 〈f, fj〉 |2, ∀f ∈ H.

The multiresolution analysis(MRA) was introduced by Stéphan Mallar [Ma] and Yves Meyer

[Me] for the orthonormal wavelet construction. This definition gave a mathematical proper-

ties of multiresolution space that was used to analyze an image from the lower resolution to

the higher resolution in the image processing.

Definition 2.1.2 We call a sequence of subspaces {Vj}j∈Z a multiresolution analysis (MRA)

of L2(Rd) if it is satisfying

6
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(1) 0 ⊂ · · · ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ L2

(2) ∪j∈ZVj = L2 and ∩j∈ZVj = 0

(3) f ∈ Vj ⇔ f(2·) ∈ Vj+1

(4) If f ∈ Vj then f(· − 2jk) ∈ Vj for all k ∈ Z

(5) There exists φ ∈ V0 such that {φ0,k : k ∈ Z} is an orthonormal basis of V0

The MRA notion for wavelet frames in this dissertation is following the one in [RS1]

which is slightly modified version of Definition 2.1.2. Consider compactly supported function

φ ∈ L2(Rd) satisfying the following conditions :

(i) There exists a Laurent polynomial P such that

φ̂(ω) = P (ω/2)φ̂(ω/2).

If we denote P (ω) := 2−d
∑
pke

iω·k, for a sequence {pk} ∈ `2(Rd) then

φ(x) =
∑
k∈Zd

pk φ(2x− k), ∀x ∈ Rd. (2.1)

(ii) limω→0 φ̂(ω) = 1.

Let us denote

Vj := span{2 j
2φ(2j · −k) : k ∈ Zd}.

Then Vj satisfies all the conditions (1)-(4). We call function φ a refinable function and

{Vj}j∈Z an MRA generated by a refinable function φ.

The following condition called Unitary Extension Principle (UEP) was developed by Ron

and Shen in [RS1].

P (ω)P (ω + ν) +
N∑

`=1

Q`(ω)Q`(ω + ν) =


1 if ν = 0 ,

0 if ν ∈ {0, π}d\{0}
(2.2)
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This condition gives sufficient condition to have a tight wavelet frame in L2(Rd). For a given

Laurent polynomial P associated with a refinable function φ such that

φ̂(ω) = P (ω/2)φ̂(ω/2),

we define functions ψ1, · · · , ψN in subspace V1 by

ψ̂`(ω) = Q`(ω/2) φ̂(ω/2), ` = 1, . . . , N, (2.3)

with Laurent polynomial Q`’s in eiω satisfying the Unitary Extension Principle (UEP) con-

dition. If we denote Q`(ω) := 2−d
∑
q`
ke

iω·k, for some sequence {q`
k} ∈ `2(Rd) for each

` = 1, · · · , N, then

ψ`(x) =
∑
k∈Zd

q`
k φ(2x− k), ∀x ∈ Rd. (2.4)

Let us denote ψ`
j,k := 2

j
2ψ`(2j · −k). Then for all f ∈ L2(Rd),

‖f‖2 =
N∑

`=1

∑
j∈Z

∑
k∈Zd

|〈f, ψ`
j,k〉|2. (2.5)

We call the collection of functions Λ(Ψ) := {ψ`
j,k : ` = 1, · · · , N, j ∈ Z;k ∈ Zd} constructed

in an MRA generated by a refinable function φ ∈ L2(Rd) an MRA-tight wavelet frame

and each ψ` a tight framelet (or a tight wavelet frame genetrator).

Let us revisit (2.5). For a fixed f and for all g in L2(Rd), we have

‖f + g‖2 =
N∑

`=1

∑
j∈Z

∑
k∈Zd

|〈f + g, ψk,j〉|2, (2.6)

‖f − g‖2 =
N∑

`=1

∑
j∈Z

∑
k∈Zd

|〈f − g, ψk,j〉|2. (2.7)

If we subtract the equation (2.7) from (2.6), by the polarization identity, we have

4〈f, g〉 = 4〈
N∑

`=1

∑
j∈Z

∑
k∈Zd

〈f, ψk,j〉ψk,j , g 〉.

Then

f =
N∑

`=1

∑
j∈Z

∑
k∈Zd

〈f, ψ`
j,k〉ψ`

j,k , weakly ∀f ∈ L2(Rd). (2.8)
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That is, a tight wavelet frame Λ(Ψ) can represent any f ∈ L2(Rd). Compared to the

orthonormal wavelet basis representation of a function in L2(Rd), the tight frame expression

of a function f ∈ L2(R) allows redundancy. Also relaxing the orthonormal condition on a

family of integer translations of a refinable function {φ0,k : k ∈ Zd} and wavelet functions

{ψ`
0,k : k ∈ Zd, ` = 1, · · · , N} gives room for different possibilities of construction methods.

The following three lemmas are adapted from [LS] and their proofs are different from the

ones in [RS1].

Lemma 2.1.1 Let φ ∈ L2(Rd). Suppose that limω→0 φ̂(ω) = 1 and that for some constant

B > 0 ∑
m∈2πZd

|φ̂(ω +m)|2 ≤ B < +∞, a.e., ω ∈ Rd

Define

βj(f, ω) = 2
dj
2

∑
m∈2πZd

f̂(2j(ω +m))φ̂(ω +m)

for any fixed f ∈ L2(Rd) and j ∈ Z. Then

lim
j→+∞

∫
[0,2π]d

|βj(f, ω)|2 dω =‖ f ‖2 and

lim
j→−∞

∫
[0,2π]d

|βj(f, ω)|2 dω = 0

Proof By the definition of βj(f, ω),∫
[0,2π]d

|βj(f, ω)|2 dω

= 2dj
∑

m,n∈2πZd

∫
[0,2π]d

f̂(2j(ω +m))f̂(2j(ω + n)) φ̂(ω +m)φ̂(ω + n) dω

= 2dj
∑

n∈2πZd

∫
Rd

f̂(2jω)f̂(2j(ω + n)) φ̂(ω)φ̂(ω + n) dω

=

∫
Rd

|f̂(ω)|2 |φ̂(2−jω)|2 dω + 2dj
∑
n6=0

n∈2πZd

∫
Rd

f̂(2jω)f̂(2j(ω + n)) φ̂(ω)φ̂(ω + n) dω.

(2.9)

We want to show that (2.9) converges to ‖ f ‖2 as j →∞. Since the first term of the third

equality in (2.9) ∫
Rd

|f̂(ω)| 2 | φ̂(2−jω) | 2 dω →‖ f ‖2, as j →∞,
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we only need to show that the absolute value of the second term in (2.9)

|Rest(f)| := 2dj

∣∣∣∣∣∣∣∣
∑
n6=0

n∈2πZd

∫
Rd

f̂(2jω)f̂(2j(ω + n)) φ̂(ω)φ̂(ω + n)dω

∣∣∣∣∣∣∣∣→ 0, as j →∞. (2.10)

Since |φ̂(ω)|2 ≤ B, for the function f ∈ L2(Rd) and f̂ ∈ C∞(Rd),

|Rest(f)| ≤ B
∑
n6=0

n∈2πZd

∫
Rd

∣∣∣f̂(ω)f̂(ω + 2jn)
∣∣∣ dω → 0, as j →∞,

see [D, p.143] for detail. Since these functions f in L2(Rd) and whose Fourier Transformation

is in C∞(Rd) are dense in L2(Rd), we have

lim
j→+∞

∫
[0,2π]d

|βj(f, ω)|2 dω =‖ f ‖2 and

For j → −∞ we consider characteristic function χR of domain [−R R ]d and fR = fχR.

For any given ε > 0, we can find Rε > 0 such that

‖f − fRε‖L2(Rd) ≤ ε, for f ∈ L2(Rd).

Then ∫
[0,2π]d

|βj(f, ω)|2 dω ≤ 2dj

∫
[0,2π]d

∣∣∣∣∣ ∑
m∈2πZd

f̂Rε(2
j(ω +m))φ̂(ω +m)

∣∣∣∣∣
2

dω

+ 2dj

∫
[0,2π]d

∣∣∣ ∑
m∈2πZd

(f̂ − f̂Rε(2
j(ω +m)))φ̂(ω +m)

∣∣∣2dω
≤
∫

[0,2π]d
|βj(fRε , ω)|2dω

+B2dj

∫
[0,2π]d

∑
m∈2πZd

|f̂ − f̂Rε(2
j(ω +m))|2dω

=

∫
[0,2π]d

|βj(fRε , ω)|2dω +B

∫
Rd

|f̂ − f̂Rε |2dω

≤
∫

[0,2π]d
|βj(fRε , ω)|2dω +Bε2.

Now we need to show that∫
[0,2π]d

|βj(fRε , ω)|2 dω → 0, as j → −∞.
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By Parseval’s equality,∫
[0,2π]d

∣∣∣βj(fRε , ω)
∣∣∣2dω = (2π)−d

∑
k∈Zd

∣∣∣ ∫
[0,2π]d

βj(fRε , ω) eikω dω
∣∣∣2

= (2π)−d2dj
∑
k∈Zd

∣∣∣ ∫
Rd

f̂Rε(2
jω) φ̂(ω) eikω dω

∣∣∣2
= (2π)−d2−dj

∑
k∈Zd

∣∣∣ ∫
Rd

f̂Rε(ω) φ̂(2−jω) ei2−jkω dω
∣∣∣2

= (2π)−d2dj
∑
k∈Zd

∣∣∣ ∫
Rd

fRε(x)φ(2jx− k) dx
∣∣∣2

≤ (2π)−d‖fRε‖22
∑
k∈Zd

∫
|y|≤2jRε

|φ(y − k)|2 dy→ 0 as j → −∞,

by the same reason on [D, p. 141]. �

Lemma 2.1.2 For the refinable function φ satisfying the same condition in Lemma 2.1.1

and ψ` defined in (2.3) in terms of Fourier transform, we have the following equations:

∑
k∈Zd

| 〈f, φj,k〉 |2 =

∫
[0,2π]d

|βj(f, ω)|2dω (2.11)

∑
k∈Zd

| 〈f, φj−1,k〉 |2 =
1

2d

∫
[0,2π]d

∣∣∣∣∣∣
∑

ν∈{0,1}dπ

P
(ω

2
+ ν
)
βj

(
f,
ω

2
+ ν
) ∣∣∣∣∣∣

2

dω (2.12)

∑
k∈Zd

| 〈f, ψ`
j,k 〉 |2 =

1

2d

∫
[0,2π]d

∣∣∣∣∣∣
∑

ν∈{0,1}dπ

Q`
(ω

2
+ ν
)
βj

(
f,
ω

2
+ ν
) ∣∣∣∣∣∣

2

, dω (2.13)

where φj,k(·) = 2
dj
2 φ(2j · −k), ψ`

j,k(·) = 2
dj
2 ψ`(2j · −k), and βj is given by the same formula

defined in Lemma 2.1.1.
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Proof Note that φ̂j,k(ω) = 2−
dj
2 φ̂(2−jω)e−i ωk

2j . The equation in (2.11) can be proved by the

Parseval Identity.∑
k∈Zd

| 〈f, φj,k〉 |2 =
1

(2π)d

∑
k∈Zd

∣∣∣ ∫
Rd

f̂(ω)φ̂jk(ω) dω
∣∣∣2

=
2−dj

(2π)d

∑
k∈Zd

∣∣∣ ∫
Rd

f̂(ω)e−ik·ω
2j φ̂(2−jω) dω

∣∣∣2
=

2−dj

(2π)d

∑
k∈Zd

∣∣∣ ∫
Rd

f̂(ω)φ̂(2−jω) eik·ω
2j dω

∣∣∣2
=

2dj

(2π)d

∑
k∈Zd

∣∣∣ ∫
Rd

f̂(2jω)φ̂(ω) eik·ω dω
∣∣∣2

=
1

(2π)d

∑
k∈Zd

∣∣∣ ∫
[0, 2π]d

∑
n∈2πZ

2
dj
2 f̂(2j(ω + n))φ̂(ω + n) eik·ω dω

∣∣∣2
=

1

(2π)d

∑
k∈Zd

∣∣∣ ∫
[0, 2π]d

βj(f, ω) eik·ω dω
∣∣∣2

=

∫
[0, 2π]d

|βj(f, ω) |2 dω

From the previous argument,∑
k∈Zd

| 〈f, φj−1,k〉 |2

=

∫
[0, 2π]d

|βj−1(f, ω)|2 dω

= 2(j−1)d

∫
[0,2π]d

∣∣∣∣∣ ∑
m∈2πZd

f̂(2j−1 (ω +m)) P
(ω

2
+
m

2

)
φ̂
(ω

2
+
m

2

) ∣∣∣∣∣
2

dω

= 2(j−1)d

∫
[0,2π]d

∣∣∣∣∣ ∑
m∈2πZd

P

(
ω +m

2

)
f̂

(
2j

(
ω +m

2

))
φ̂

(
ω +m

2

) ∣∣∣∣∣
2

dω

= 2−d

∫
[0,2π]d

∣∣∣∣∣∣
∑

ν∈{0,π}d

P
(ω

2
+ ν
)
βj

(
f,
ω

2
+ ν
) ∣∣∣∣∣∣

2

dω

Similarly, we can prove the equation (2.13). �

The following Lemma 2.1.3 says that if we find Laurent polynomial Q`’s satisfying the

Unitary Extension Principle (UEP) in (2.2) for the Laurent polynomial P associated with

the refinable function φ, then the ψ`’s defined in (2.3) in terms of Fourier transform are tight

wavelet frame generators (cf. [DHRS] ).
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Lemma 2.1.3 Suppose that we can find Q`, ` = 1, . . . , N satisfying (2.2). Let ψ` be the

function defined by its Fourier transform in (2.3). Then the collection of functions Λ(Ψ) =

{ψ`
j,k : ` = 1, . . . , N, j ∈ Z and k ∈ Zd} is a tight wavelet frame.

Proof We need to show that

N∑
`=1

∑
j∈Z

∑
k∈Zd

| 〈f, ψ`
j,k 〉 |2 = ‖f‖22, ∀f ∈ L2(Rd).

By (2.11) and (2.13), for fixed j

N∑
`=1

∑
k

| 〈f, ψ`
j,k〉 |2 =

1

2d

∫
[0,2π]d

N∑
`=1

∣∣∣ ∑
ν∈{0,π}d

Q`
(ω

2
+ ν
)
βj

(
f,
ω

2
+ ν
) ∣∣∣2 dω

=
1

2d

∫
[0,2π]d

∑
ν,m∈{0,π}d

βj

(
f,
ω

2
+ ν
)
βj

(
f,
ω

2
+m

)
N∑

`=1

Q`
(ω

2
+ ν
)
Q`
(ω

2
+m

)
dω

=
1

2d

∫
[0,2π]d

∑
ν∈{0,π}d

|βj

(
f,
ω

2
+ ν
)
|2

N∑
`=1

|Q`
(ω

2
+ ν
)
|2 dω

−
∑
ν 6=m

βj

(
f,
ω

2
+ ν
)
βj

(
f,
ω

2
+m

)
P
(ω

2
+ ν
)
P
(ω

2
+m

)
] dω

=
1

2d

∫
[0,2π]d

∑
ν∈{0,π}d

|βj

(
f,
ω

2
+ ν
)
|2
(
1− |P

(ω
2

+ ν
)
|2
)

− 1

2d

∑
ν 6=m

βj

(
f,
ω

2
+ ν
)
βj

(
f,
ω

2
+m

)
P
(ω

2
+ ν
)
P
(ω

2
+m

)
dω

=
1

2d

∫
[0,π]d

∑
ν∈{0,π}d

|βj (f, ω + ν) |2 dω

− 1

2d

∫
[0,2π]d

∑
ν∈{0,π}d

∣∣∣βj

(
f,
ω

2
+ ν
) ∣∣∣2 dω

=

∫
[0,2π]d

|βj(f, ω) |2 dω −
∫

[0,2π]d
|βj−1(f, ω)|2 dω.

If we sum for j from 1 to ∞, by Lemma 2.1.1,

N∑
`=1

∑
j∈Z

∑
k∈Zd

| 〈f, ψi; j,k〉 |2 = lim
j→+∞

∫
[0,2π]d

|βj(f, ω) |2 dω − lim
j→−∞

∫
[0,2π]d

|βj−1(f, ω)|2 dω

= ‖f‖22
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�

2.2 Construction Scheme

In this section we consider the tight wavelet frame construction on MRA generated by a

refinable function whose Laurent polynomial satisfies either the QMF condition or the sub-

QMF condition. By Lemma 2.1.3, if we find Laurent polynomials Q` satisfying the UEP

condition for the given Laurent polynomial P , we can construct a tight wavelet frame. First

we consider the following equivalent condition (2.14) to the UEP condition as a construction

tool.

Lemma 2.2.1 Let P = (P (ω+ν))ν∈{0,π}d a vector of size 2d×1 and Q = (Q`(ω+ν)) `=1,...,N
ν∈{0,π}d

be a matrix of size N × 2d. Then the UEP condition in (2.2) is equivalent to

Q∗Q = I − PPT . (2.14)

Proof This can be verified by direct calculation. �

2.2.1 Under the QMF Condition

In signal and image processing, engineers call the Laurent polynomial P associated with a

refinable function φ a low-pass filter and each Q` associated with ψ` a high-pass filter. The

Quadrature Mirror Filter was constructed coefficients of a high-pass filter by alternating

signs of the low-pass filter coefficients by Croisier-Estaban-Galand in 1976. Since then the

following condition for a low-pass filter P

∑
ν∈{0,π}d

|P (ω + ν)|2 = 1 (2.15)

is called the QMF condition. Let

M :=
1

2d/2
(eim·(ω+ν))m∈{0,1}d

ν∈{0,π}d

. (2.16)

Where let m be the row index and ν be the column index. Note thatM∗M = I.



15

Theorem 2.2.1 (Lai& Stöckler’04) Suppose that Laurent polynomial P satisfies the

QMF condition (2.15). Define Q1, . . . , Q2d
by

Q := (Q`(ω + ν)) `=1,...,2d

ν∈{0,π}d

=M(I2d×2d − PPT ), (2.17)

where P = (P (ω+ ν))ν∈{0,π}d is a vector of size 2d× 1 andM is the matrix in (2.16). Then

P and Q`, ` = 1, · · · , 2d satisfy (2.2) .

Proof It is trivial to verify that

Q∗Q = I2d×2d − PPT

which is (2.14). Thus Q`’s in the first column of the matrix Q are the desired Laurent

polynomials. �

Using the Laurent polynomials Q` given in Theorem 2.2.1, we construct tight framelets

ψ` corresponding to a refinable function φ whose Laurent polynomial P satisfying the QMF

condition. There are many construction methods for a refinable function whose Laurent

polynomial satisfies the QMF condition (cf. [L2] ).

2.2.2 Under The Sub-QMF Condition

In general the filter P of a refinable function does not satisfy the QMF condition. Instead,

it may satisfy the following condition (2.18) which is called sub-QMF condition :∑
ν∈{0,π}d

|P (ω + ν)|2 ≤ 1. (2.18)

We now explain how to construct tight wavelet frames associated with the standard dilation

matrix 2Id×d using the refinable function φ whose Laurent polynomial P satisfies (2.18). Let

P̂ := (P̂n(2ω))n∈{0,1}d :=M(P (ω + ν))ν∈{0,π}d , (2.19)

whereM is the polyphase matrix given in (2.16). That is, the P̂n’s are polyphase components

of P . Then (2.18) implies that ∑
n∈{0,1}d

|P̂n(2ω)|2 ≤ 1.
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Theorem 2.2.2 (Lai& Stöckler’04) Suppose that the Laurent polynomial P satisfies the

sub-QMF condition (2.18). Suppose that there exist Laurent polynomials P̃1, . . . , P̃N such

that ∑
m∈{0,1}d

|P̂n(2ω)|2 +
N∑

i=1

|P̃i(2ω)|2 = 1, (2.20)

where P̂n’s are defined in (2.19). Then there exist 2d + N locally supported tight framelets

with Laurent polynomials Q`, ` = 1, . . . , 2d +N such that P and Q`, ` = 1, . . . , 2d +N satisfy

UEP condition in (2.2).

Proof Let P̃ = (P̂n(2ω), P̃1(2ω), . . . P̃N(2ω))T
n∈{0,1}d be a vector of size (2d + N) × 1.

Define

Q̃ := I(2d+N)×(2d+N) − P̃P̃∗.

Clearly Q̃∗Q̃ = Q̃. In particular, we have

P̃P̃∗ + Q̃∗Q̃ = I(2d+N)×(2d+N).

Restricting to the principle 2d × 2d blocks in the above matrices, we have

P̂P̂∗ + Q̂∗Q̂ = I2d×2d , (2.21)

where P̂ = (P̂n(2ω))T
n∈{0,1}d and

Q̂ = (Q̃n,`)1≤`≤2d+N
n∈{0,1}d

with the Q̃n,k’s being entries of Q̃.

Multiplying a polyphase matrixM andM∗ defined in (2.16) to both sides of the above

equation, we have

M∗P̂(M∗P̂)∗ + (Q̂M)∗Q̂M = I2d×2d .

Then P =M∗P̂ and

(Q̂M)∗Q̂M = I2d×2d − PPT

If we let Q = Q̂M then Q satisfies condition (2.14). Thus the first column (Q1, . . . , Q2d+N)T

of Q gives the desirable Laurent polynomials for locally supported tight framelets. �
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We shall use the constructive scheme in Theorem 2.2.2 to find locally supported tight

wavelet frames based on multivariate box splines, in particular, bivariate box splines on

three, four and eight direction meshes in Section 3.5 and univariate cardinal B-splines in

Section 3.3.



Chapter 3

Classes of B-spline and Box Spline Tight Wavelet Frames

3.1 B-splines

The name spline function was introduced by Schönberg in 1946. A spline function is a piece-

wise polynomial with a certain degree of smoothness. Because of easy computer implementa-

tion and some flexibility, spline functions are used in many applications such as interpolation,

data fitting, numerical solution of ordinary and partial differential equations (finite element

method), and in curve and surface fitting.

A (cardinal) B-spline function of order m is a spline function with equally spaced simple

knot sequence Z. We define the B-spline of order φm for an integer m ≥ 2, inductively by

φm(x) := φm−1 ∗ φ1(x) =

∫ 1

0

φm−1(x− t) dt, (3.1)

where φ1 is the characteristic function of the interval [0, 1).

Let {V m
j }j∈Z be the subspace generated by B-spline φm(2j·) and its translations, i.e.,

V m
j := span {φm(2j · −k) : k ∈ Z}. (3.2)

Then {V m
j }j∈Z is nested subspace sequence, (see[C2, p. 85]) , i.e. ,

← · · · ⊂ V m
−1 ⊂ V m

0 ⊂ V m
1 ⊂ · · · → . (3.3)

Moreover, it satisfies for some constants A,B > 0

A ≤
∑
k∈Z

∣∣∣φ̂m(ω + 2πk)
∣∣∣2 ≤ B <∞

18
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which is equivalent to saying that {φm(2j · −k) : k ∈ Z} is a Riesz basis (or unconditional)

of V m
j in the sense that for each m, there exist constants Am, Bm > 0 for any {ck} ∈ `2,

Am‖{ck}‖2 ≤

∥∥∥∥∥
∞∑

k=−∞

ckφm(· − k)

∥∥∥∥∥
2

≤ Bm‖{ck}‖2 (3.4)

(see [C2, p. 90]). Then {V m
j } satisfies the following conditions (see [D, p. 141- p. 143]) :

∪j∈ZV m
j = L2(R),

∩j∈ZV
m
j = {0}.

(3.5)

We state the basic and important properties of B-splines in the following Theorem. These

properties are useful to evaluate B-spline function values, derivatives and integrals of B-

splines. Theorem can be proved mostly by induction and definition of B-splines. We prove

only condition (10) which will be used later. See other proofs in [C2, p. 92].

Theorem 3.1.1 (1) For every f ∈ C(R),∫ ∞

−∞
f(x)φm dx =

∫ 1

0

· · ·
∫ 1

0

f(x1 + · · ·+ xm) dx1 · · · dxm.

(2) For every g ∈ Cm(R),∫ ∞

−∞
g(m)(x)φm(x) dx = (−1)m−k

m∑
k=0

(
m

k

)
g(k).

(3) φm(x) = 1
(m−1)!

∑m
k=0 (−1)k

(
m
k

)
(x − k)m−1

+ , where x+ := max (0,m) and xm−1
+ =

(x+)m−1.

(4) supp φm = [0,m].

(5) φm(x) ≥ 0, for 0 < x < m.

(6)
∑∞

k=−∞ φm(x− k) = 1, for all x.

(7) The derivative of B-spline φm is

φ′m(x) = φm−1(x) + φm−1(x− 1).



20

(8) The B-spline φm and φm−1 are related as follows

φm(x) =
x

m− 1
φm−1(x) +

m− x
m− 1

φm−1(x− 1).

(9) The B-spline φm is symmetric with respect to the center of its support .

φm

(m
2

+ x
)

= φm

(m
2
− x
)
, x ∈ R.

(10) φm has the following dyadic dilation relation

φm(x) =
m∑

k=0

2−m+1

(
m

k

)
φm(2x− k).

Proof of (10) Since V0 ⊂ V1, for some sequence {pm,k} ∈ `2,

φm(x) =
∞∑

k=−∞

pm,kφm(2x− k) (3.6)

We take the Fourier transform on both sides of (3.6),

φ̂m(ω) =
1

2

∞∑
k=−∞

pm,ke
−ikω/2φ̂m

(ω
2

)
, i =

√
−1.

Denote Pm(ω) by the trigonometric function of the form 1
2

∑∞
k=−∞ pm,ke

−ikω. By using

φ̂m(ω) = φ̂1(ω)m =
(

1−e−iω

iω

)m

, we have

φ̂m(2ω) = Pm(ω)φ̂m(ω) (3.7)

where

Pm(ω) =
1

2

∞∑
k=−∞

pm,ke
−ikω =

(
1 + e−iω

2

)m

=
1

2m

m∑
k=0

(
m

k

)
e−ikω. (3.8)

This gives the explicit form

pm,k =
1

2m−1

(
m

k

)
,

where 0 ≤ k ≤ m and pm,k is zero otherwise. �

Lemma 3.1.1 For any m ≥ 1, the trigonometric polynomial Pm associated with B-spline

φm in (3.7) satisfies sub-QMF condition in (2.18).

Proof From the second equality of the equations in (3.8), we have

|Pm(ω)|2 + |Pm(ω + π)|2 = | cos2(ω/2)|m + | sin2(ω/2)|m ≤ 1.

�
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3.2 Box Splines

Multivariate box splines can be interpreted as a multivariate extension of univariate B-

splines. Because of their useful geometric interpolation, multivariate box splines have been

used for surface design. Thus multivariate box splines are very important class of refinable

functions .

Let us assume that s ≥ d and that v1, · · · ,vd are linearly independent vectors in Rd. We

define multivariate box spline φY (x) determined by a directional set Y := {v1, · · · ,vs} as

follows inductively (cf. [BHR] and [C1] ).

φY (x) :=




1/det[v1 · · ·vd] if x ∈ [v1 · · ·vd][0, 1)d

0 otherwise ,

for Y = {v1, · · · ,vd}

∫ 1

0
φ(x− tvs|Y ∗) dt, for Y ∗ = {v1, · · · ,vd+1, · · · ,vs−1}

Then multivariate box spline φY (x) is a piecewise polynomial of degree ≤ s−d. Let {V Y
j }j∈Z

be a subspace generated by box spline φY (2j·) and its translations, i.e.,

V Y
j := span {φY (2j · −η) : η ∈ Zd}. (3.9)

Then {V Y
j }j∈Z satisfies the following conditions (see[BHR, p. 125]) .

← · · · ⊂ V Y
−1 ⊂V Y

0 ⊂ V Y
1 ⊂ · · · →,

∪j∈ZV Y
j = L2(Rd),

∩j∈ZV
Y
j = {0}.

(3.10)

We recall the directional derivative with respect to u as

Du :=
d∑

j=1

uj
∂

∂xj

, where (x1, · · · , xd) ∈ Rd

Similar to B-splines, we summarize some properties of multivariable box splines φY (x)(see

[C1] for proof). For more properties of multivariate box splines, see [C1] and [BHR].
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Theorem 3.2.1 (1)
∫

Rd φY (x) dx = 1.

(2) For all f ∈ C(Rd) ∫
Rd

φY (x)f(x) dx =

∫
[0,1)s

f([v1 · · ·vs]t) dt.

(3) φY (x) > 0, for x ∈ [v1 · · ·vs][0, 1)s,

(4) supp φY (·) = [v1 · · ·vs][0, 1]s.

(5) The Fourier transform of φY (·) is

φ̂Y (ω) =
∏
vj∈Y

1− e−iω·vj

iω · vj

, i =
√
−1

(6) Dvj
φY (·) = −φY \{vj}(· − vj) + φY \{vj}(·)

(7) For s > d, and f ∈ C1(Rd),∫
Rd

φY (x)Dvj
f(x) dx = −

∫
[0,1)s

Dvj
φY (x)f(x) dx.

(8) There exists a finite sequence {cη}η∈Zd such that

φY (x) =
∑
η∈Zd

cηφY (2x− η).

From (5) and (8) in Theorem 3.2.1 we have

φ̂Y (ω) =
∏
ξ∈Y

1 + e−iξ·ω

2
φ̂Y (ω/2) (3.11)

for a directional set Y. We denote

PY (ω) :=
∏
ξ∈Y

1 + e−iξ·ω

2
, i =

√
−1.

Then we have the equivalent form of (8) in terms of Fourier transform.

φ̂Y (2ω) = PY (ω)φ̂Y (ω) (3.12)

We have the following Lemma for the property of the trigonometric polynomial PY .
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Lemma 3.2.1 Suppose that a given direction set Y contains standard unit vectors ej in Rd,

j = 1, . . . , d. Then PY associated with the multivariate box spline φY (·) satisfies sub-QMF

condition in (2.18).

Proof Since |PY (ω)|2 ≤
∏d

j=1 cos2 ωj

2
with ω = (ω1, . . . , ωd)

T ∈ Rd, we have

∑
ν∈{0,π}d

|PY (ω + ν)|2 ≤
d∏

j=1

(cos2 ωj

2
+ sin2 ωj

2
) = 1.

�

3.3 B-spline Tight Wavelet Frames

In this section, we construct a tight wavelet frame based on MRA generated by a B-spline. By

Lemma 3.1.1, we know that a B-spline φm is a refinable function whose associated Laurent

polynomial Pm satisfying the sub-QMF condition. Therefore, if we find Laurent polynomials

P̃j satisfying

1− |Pm(ω)|2 − |Pm(ω + π)|2 =
∑

j

|P̃j(2ω)|2, ω ∈ R (3.13)

then we can construct a tight wavelet frame for a B-spline by using the constructive method

in the proof of Theorem 2.2.2.

Lemma 3.3.1 Let A be a nonnegative trigonometric polynomial invariant under the substi-

tution ξ → −ξ. A is the form

A(ξ) =
M∑

m=0

am cos (mξ), am ∈ R.

Then there exists a trigonometric polynomial B of order M, i.e,,

B(ξ) =
M∑

m=0

bme
imξ, bm ∈ R,

such that |B(ξ)|2 = A(ξ).

Proof See in [D]. �
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The above lemma by Fejér and Riesz provides the existence of a Laurent polynomial

satisfying the condition in (3.13) for the Laurent polynomial Pm associated with B-spline

φm. Let P̃m be the trigonometric polynomial satisfying

|Pm(ω)|2 + |Pm(ω + π)|2 + |P̃m(2ω)|2 = 1 (3.14)

for the Laurnet polynomial Pm associated with B-spline φm. We now follow each step from

the constructive method in the proof of Theorem 2.2.2 for the B-spline tight wavelet frame

construction.

Let P := [Pm(ω) Pm(ω + π)]T . We multiply the matrix M in (2.16) on the left side of

the matrix P . That is,

MP =
1√
2

 1 1

eiω −eiω

 Pm(ω)

Pm(ω + π)

 =
1√
2

 Pm(ω) + Pm(ω + π)

eiω(Pm(ω)− Pm(ω + π))


Then the Laurent polynomial Pm(ω) + Pm(ω + π) has only odd powers of Pm(ω) and the

Laurent polynomial Pm(ω) − Pm(ω + π) has all even powers of Pm(ω). We denote this odd

polynomial be P1,m(2ω) and the even polynomial be P2,m(2ω). We call this process polyphase

decomposition(see [D p. 318]) . It is easy to check

|P1,m(2ω)|2 + |P2,m(2ω)|2 + |P̃m(2ω)|2 = 1.

Thus we do not need to deal with translated versions in ω of the Laurent polynomial Pm(ω).

Let P̃ be a column vector [P1,m(2ω) P2,m(2ω) P̃m(2ω)]T . Define

Q̃ := I−P̃P̃∗ =


1− |P1,m(2ω)|2 −P1,m(2ω)P2,m(2ω) −P1,m(2ω)P̃m(2ω)

−P2,m(2ω)P1,m(2ω) 1− |P2,m(2ω)|2 −P2,m(2ω)P̃m(2ω)

−P̃m(2ω)P1,m(2ω) −P̃m(2ω)P2,m(2ω) 1− |P̃m(2ω)|2

 . (3.15)

Straight forward calculation verifies Q̃∗Q̃ = I − P̃P̃∗. Let Q̂ be the first 3× 2 block matrix

in Q̃

Q̂ :=


1− |P1,m(2ω)|2 −P1,m(2ω)P2,m(2ω)

−P2,m(2ω)P1,m(2ω) 1− |P2,m(2ω)|2

−P̃m(2ω)P1,m(2ω) −P̃m(2ω)P2,m(2ω)

 (3.16)
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and multiplyM in (2.16) on the right side of matrix Q̂

Q := Q̂M =
1√
2


1− |P1,m(2ω)|2 −P1,m(2ω)P2,m(2ω)

−P2,m(2ω)P1,m(2ω) 1− |P2,m(2ω)|2

−P̃m(2ω)P1,m(2ω) −P̃m(2ω)P2,m(2ω)


 1 1

eiω −eiω

 (3.17)

Then by straight forward calculation we haveQ∗Q = I−PPT . That is,Q satisfies the matrix

form of UEP condition. The second column of matrix Q is the shift of the first column of

matrix Q. We denote each component of the first column of matrix Q by Q1
m(ω), Q2

m(ω), and

Q3
m(ω) respectively. They are the desirable Laurent polynomials associated with the tight

framelets ψ1
m, ψ

2
m and ψ3

m based on B-spline φm. That is, with these Q1
m, Q

2
m and Q2

m we

define ψ1
m, ψ

2
m, and ψ3

m in terms of the Fourier transform such as

ψ̂`
m(ω) = Q`

m(ω/2)φ̂`
m(ω/2), for ` = 1, 2, 3.

The following examples give the extra Laurent polynomial P̃m satisfying the condition in

(3.14) and Laurent polynomial Q1
m, Q

2
m, and Q3

m associated with tight wavelet frame gener-

ators for mth order B-spline, where m = 2, 3 and 4. For any B-splines of order m we have

three tight wavelet frame generators.

Example 3.3.1 For the Laurent polynomial P2(ω) =
(

1+eiω

2

)2

associated with the linear

B-spline φ2 we have

P̃2(2ω) =

√
2

4

(
1− e2iω

)
, i =

√
−1

satisfying

1− |P2(ω)|2 − |P2(ω + π)|2 = |P̃2(2ω)|2.

Then with the polyphase forms P1,2 and P2,2 of Laurent polynomial P2

P1,2(2ω) =

√
2

4
(e−2iω + 1), and P2,2(2ω) =

√
2

4
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we set the column vector P̃ := [P1,2(2ω) P1,2(2ω) P̃2(2ω)]T . First we calculate

Q̃ = I − P̃P̃∗ = −1

8


e2ω − 6 + e−2ω 2(1 + e−2ω) 1 + e−4ω

2(1 + e−2ω) 1
2

−4(1− e−2ω)

−(e4ω − 1) −2(e2ω − 1) −(e2ω + 6 + e−2ω)

 .
Then we restrict Q̃ to the first 3× 2 block matrix

Q̂ = −1

8


e2ω − 6 + e−2ω 2(1 + e−2ω)

2(1 + e−2ω) 1
2

−(e4ω − 1) −2(e2ω − 1)

 .
By multiplying M in (2.16), we have

Q =
−

√
2

16
e−2iω −

√
2

8
e−iω + 3

√
2

8
−

√
2

8
eiω −

√
2

16
e2iω −

√
2

16
e−2iω +

√
2

8
e−iω + 3

√
2

8
+

√
2

8
eiω −

√
2

16
e2iω

−
√

2
8

+
√

2
4
eiω −

√
2

8
e2iω −

√
2

8
−

√
2

4
eiω −

√
2

8
e2iω

−
√

2
16
−

√
2

8
eiω +

√
2

8
e3iω +

√
2

16
e4iω −

√
2

16
+

√
2

8
eiω −

√
2

8
e3iω +

√
2

16
e4iω

 .
We obtained three Laurent polynomials associated with B-spline tight framelets from the first

column of the matrix Q.

Q1
2(ω) = −

√
2

16
e−2iω −

√
2

8
e−iω +

3
√

2

8
−
√

2

8
eiω −

√
2

16
e2iω,

Q2
2(ω) = −

√
2

8
+

√
2

4
eiω −

√
2

8
e2iω,

Q3
2(ω) = −

√
2

16
−
√

2

8
eiω +

√
2

8
e3iω +

√
2

16
e4iω.

The each element of the second column of the matrix Q is Q1
2(ω+π), Q2

2(ω+π) and Q3
2(ω+π).

Therefore we have the following B-spline tight framelets {ψ1
2, ψ

2
2, ψ

3
2} for linear B-spline φ2

ψ1
2(x) = −

√
2

8
φ2(2x+ 2)−

√
2

4
φ2(2x+ 1) +

3
√

2

4
φ2(2x)−

√
2

4
φ2(2x− 1)−

√
2

8
φ2(2x− 2),

ψ2
2(x) = −

√
2

4
−
√

2

2
φ2(2x− 1) +

√
2

4
φ2(2x− 2),

ψ3
2(x) = −

√
2

8
−
√

2

4
φ2(2x− 1) +

√
2

4
φ2(2x− 3) +

√
2

8
φ2(2x− 4).

We illustrate the linear B-spline φ2 and its tight wavelet frameletes ψ1
2, ψ

2
2, and ψ3

2 in Figure

3.3. �
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Linear B-spline φ2 Tight Framelet ψ1
2

Tight Framelet ψ2
2 Tight Framelet ψ3

2

Figure 3.1: Linear B-spline and its Tight Framelets in Example 3.3.1

Example 3.3.2 For the Laurent polynomial P3(ω) =
(

1+eiω

2

)3

associated with the quadratic

B-spline φ3 we have

P̃3(2ω) =

√
3

4

(
1− e2iω

)
, i =

√
−1

satisfying

1− |P3(ω)|2 − |P3(ω + π)|2 = |P̃3(2ω)|2.

Then with the polyphase forms P1,3 and P2,3 of Laurent polynomial P3

P1,3(2ω) =
3
√

2

8
(e−2iω + 1) and P2,3(2ω) =

√
2

8
(e−2iω + 3)

we set the column vector P̃ := [P1,3(2ω) P1,3(2ω) P̃3(2ω)]T . Following the construction steps

(3.15)-(3.17) we obtained three Laurent polynomials associated with B-spline tight framelets.
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Since the detail steps are similar to Example 3.3.1, we omit the detail steps.

Q1
3(ω) = −3

√
2

64
e−2iω − 9

√
2

64
e−iω +

11
√

2

32
− 3
√

2

32
eiω − 3

√
2

64
e2iω −

√
2

64
e3iω

Q2
3(ω) = −

√
2

64
e−2iω − 3

√
2

64
e−iω − 3

√
2

32
+

11
√

2

32
eiω − 9

√
2

64
e2iω − 3

√
2

64
e3iω

Q3
3(ω) = −

√
3

32
− 3
√

3

32
eiω −

√
3

16
e2iω +

√
3

16
e3iω +

3
√

3

32
e4iω +

√
3

32
e5iω

Therefore we have the following B-spline tight framelets {ψ1
3, ψ

2
3, ψ

3
3} for quadratic B-spline

φ3

ψ1
3(x) = −3

√
2

32
φ3(2x+ 2)− 9

√
2

32
φ3(2x+ 1) +

11
√

2

16
φ3(2x)

− 3
√

2

16
φ3(2x− 1)− 3

√
2

32
φ3(2x− 2)−

√
2

32
φ3(2x− 3)

ψ2
3(x) = −

√
2

32
φ3(2x+ 2)− 3

√
2

32
φ3(2x+ 1)− 3

√
2

16
φ3(2x)

+
11
√

2

16
φ3(2x− 1)− 9

√
2

32
φ3(2x− 2)− 3

√
2

32
φ3(2x− 3)

ψ3
3(x) = −

√
3

16
φ3(2x)−

3
√

3

16
φ3(2x− 1)−

√
3

8
φ3(2x− 2)

+

√
3

8
φ3(2x− 3) +

3
√

3

16
φ3(2x− 4) +

√
3

16
φ3(2x− 5)

We illustrate the quadratic B-spline φ3 and its tight wavelet frameletes ψ1
3, ψ

2
3, and ψ3

3 in

Figure 3.3. �

Example 3.3.3 For the Laurent polynomial P4(ω) =
(

1+eiω

2

)4

associated with the cubic

B-spline φ4 we have

P̃4(2ω) = −

(
1

4
+

√
14

16

)
+

√
14

8
e2iω +

(
1

4
−
√

14

16

)
e8iω, i =

√
−1

satisfying

1− |P4(ω)|2 − |P4(ω + π)|2 = |P̃4(2ω)|2.

Then with the polyphase forms P1,4 and P2,4 of Laurent polynomial P4

P1,4(2ω) =

√
2

16
(e−8iω + 6e−4iω + 1) and P2,4(2ω) =

√
2

4
(e−4iω + 1)
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Quadratic B-spline φ3 Tight Framelet ψ1
3

Tight Framelet ψ2
3 Tight Framelet ψ3

3

Figure 3.2: Quadratic B-spline and its Tight Framelets in Example 3.3.2

we set the column vector P̃ := [P1,4(2ω) P1,4(2ω) P̃4(2ω)]T . Following the construction steps

(3.15)-(3.17) we obtained three Laurent polynomials associated with B-spline tight framelets:

Q1
4(ω) = −

√
2

256
e−4iω −

√
2

64
e−3iω − 3

√
2

64
e−2iω − 7

√
2

64
e−iω +

45
√

2

128

− 7
√

2

64
eiω − 3

√
2

64
e2iω −

√
2

64
e3iω −

√
2

256
e4iω,

Q2
4(ω) = −

√
2

64
e−2iω −

√
2

16
e−iω − 7

√
2

64
− 3
√

2

8
eiω − 7

√
2

64
e2iω −

√
2

16
e3iω −

√
2

64
e4iω,

Q3
4(ω) =

(
1

64
+

√
14

256

)
+

(
1

16
+

√
14

64

)
eiω +

(
3

32
+

√
14

64

)
e2iω

+

(
1

16
−
√

14

64

)
e3iω − 5

√
14

128
e4iω −

(
1

16
+

√
14

64

)
e5iω

−

(
3

32
−
√

14

64

)
e6iω −

(
1

16
−
√

14

64

)
e7iω −

(
1

64
−
√

14

256

)
e8iω.
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Therefore we have the following B-spline tight framelets {ψ1
4, ψ

2
4, ψ

3
4} for cubic B-spline φ4

ψ1
4(x) = −

√
2

128
φ4(2x+ 4)−

√
2

32
φ4(2x+ 3)− 3

√
2

32
φ4(2x+ 2)− 7

√
2

32
φ4(2x+ 1) +

45
√

2

64
φ4(2x)

− 7
√

2

32
φ4(2x− 1)− 3

√
2

32
φ4(2x− 2)−

√
2

32
φ4(2x− 3)−

√
2

128
φ4(2x− 4),

ψ2
4(x) = −

√
2

32
φ4(2x+ 2)−

√
2

8
φ4(2x+ 1)− 7

√
2

32
φ4(2x)−

3
√

2

4
φ4(2x− 1)

− 7
√

2

32
φ4(2x− 2)−

√
2

8
φ4(2x− 3)−

√
2

32
φ4(2x− 4),

ψ3
4(x) =

(
1

32
+

√
14

128

)
φ4(2x) +

(
1

8
+

√
14

32

)
φ4(2x− 1) +

(
3

16
+

√
14

32

)
φ4(2x− 2)

+

(
1

8
−
√

14

32

)
φ4(2x− 3)− 5

√
14

64
φ4(2x− 4)−

(
1

8
+

√
14

32

)
φ4(2x− 5)

−

(
3

16
−
√

14

32

)
φ4(2x− 6)−

(
1

8
−
√

14

32

)
φ4(2x− 7)−

(
1

32
−
√

14

128

)
φ4(2x− 8).

We illustrate the Quadratic B-spline φ4 and its tight wavelet frameletes ψ1
4, ψ

2
4, and ψ3

4 in

Figure 3.3. �

It is interesting to know how to construct locally supported tight frames based on multi-

variate box splines. We first study two dimensional tensor product in the following section.

The tensor product is a simple extension tool of univariate functions to multivariate func-

tions.

3.4 Tensor Products of Univariate Tight Wavelet Frames

In this section we consider the multivariate tight wavelet frame construction using a tensor

product. We only consider the bivariate tight wavelet frame construction using tensor product

of two univariate multiresolution analyses. Higher variable settings are similar to the bivariate

setting.

We consider the tensor product of two Multiresolution analyses {V m
j }j∈Z generated by

mth order B-spline functions. Denote Vm
j , for j ∈ Z, by

Vm
j := V m

j ⊗ V m
j = span{φ(2jx− k)φ(2jy − `) : φ(2j·) ∈ V m

j } (3.18)
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Cubic B-spline φ4 Tight Framelet ψ1
4

Tight Framelet ψ2
4 Tight Framelet ψ3

4

Figure 3.3: Cubic B-spline and its Tight Framelets in Example 3.3.3

The same level of MRA is used when we do tensor product. Then {Vm
j } satisfies the following

conditions by (3.2)-(3.5) and (3.18) ,

← · · · ⊂ Vm
−1 ⊂ Vm

0 ⊂ Vm
1 ⊂ · · · →

∪j∈ZVm
j = L2(R2)

∩j∈ZV
m
j = {0}.

(3.19)

We denote Wm
j be a subset of V m

j+1 such that Vm
j+1 := Vm

j + Wm
j . Since we consider the

subspace Vm
j+1 = V m

j+1 ⊗ V m
j+1 where V m

j+1 = V m
j +Wm

j ,

Vm
j+1 =(V m

j +Wm
j )⊗ (V m

j +Wm
j )

=Vm
j + Wm

j .

(3.20)
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We notice that Wm
j can be expressed by the generators of (V m

j ⊗Wm
j ), (Wm

j ⊗ V m
j ), and

(Wm
j ⊗ Wm

j ). Let us define bivariate functions using B-spline φm and three tight wavelet

frame generators {ψ1
m, ψ

2
m, ψ

3
m} as follows. For k, ` = 1, 2, and 3,

Φ0,0
m (x, y) = φm(x)φm(y), for V m

0 ⊗Wm
0 ,

Ψ0,`
m (x, y) = φm(x)ψ`

m(y), for V m
0 ⊗Wm

0 ,

Ψk,0
m (x, y) = ψk

m(x)φm(y), for Wm
0 ⊗ V m

0 ,

Ψk,`
m (x, y) = ψk

m(x)ψ`
m(y), for Wm

0 ⊗Wm
0 .

(3.21)

Then

{Ψ0,`
m (2jx− n1, 2

jy − n2),Ψ
k,0
m (2jx− n1, 2

jy − n2),Ψ
k,`
m (2jx− n1, 2

jy − n2) :

n1, n2 ∈ Z and k, ` = 1, 2 or 3}

generates Wm
j and there are fifteen generators in Wm

j .

We show the tensor product of quadratic B-spline tight wavelet frame genertators in the

following example. For the linear and cubic B-spline tight wavelet frames are similar to the

quadratic B-splines tight wavelet frames.

Example 3.4.1 In Exampe 3.3.2, we have the quadratic B-spline φ2 and the following three

tight wavelet framelets

ψ1
3(x) = −3

√
2

64
φ3(2x+ 2)− 9

√
2

64
φ3(2x+ 1) +

11
√

2

32
φ3(2x)

− 3
√

2

32
φ3(2x− 1)− 3

√
2

64
φ3(2x− 2)−

√
2

64
φ3(2x− 3),

ψ2
3(x) = −

√
2

32
φ3(2x+ 2)− 3

√
2

32
φ3(2x+ 1)− 3

√
2

16
φ3(2x)

+
11
√

2

16
φ3(2x− 1)− 9

√
2

32
φ3(2x− 2)− 3

√
2

32
φ3(2x− 3),

ψ3
3(x) = −

√
3

16
φ3(2x)−

3
√

3

16
φ3(2x− 1)−

√
3

8
φ3(2x− 2)

+

√
3

8
φ3(2x− 3) +

3
√

3

16
φ3(2x− 4) +

√
3

16
φ3(2x− 5).
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Thus we have a refinable function Φ0,0
2 (x, y) = 4

3∑
j=0

3∑
k=0

pjkΦ
0,0
2 (2x− j, 2y − k) with

(pj+1k+1) 0≤j≤3
0≤k≤3

=
1

64



1 3 3 1

3 9 9 3

3 9 9 3

1 3 3 1


.

The following fifteen tight wavelet frame generators of the form Ψ0,`
2 ,Ψn,0

2 , and Ψn,`
2 where

n, ` = 1, 2, and 3 :

Ψ0,1
2 (x, y) = 4

3∑
j=0

3∑
k=−2

qjkΨ
0,1
2 (2x− j, 2y − k) with

(qjk) 0≤j≤3
−2≤k≤3

=

√
2

128



−1 −2 6 −2 −1

−3 −6 18 −6 −3

−3 −6 18 −6 −3

−1 −2 6 −2 −1


,

Ψ0,2
2 (x, y) = 4

3∑
j=0

2∑
k=0

qjkΨ
0,2
2 (2x− j, 2y − k) with

(qjk) 0≤j≤3
0≤k≤2

=

√
2

64



−1 2 −1

−3 6 −3

−3 6 −3

−1 2 −1


,

Ψ0,3
2 (x, y) = 4

3∑
j=0

4∑
k=0

qjkΨ
0,3
2 (2x− j, 2y − k) with

(qjk) 0≤j≤3
0≤k≤4

=

√
2

128



1 2 0 −2 −1

3 6 0 −6 −3

3 6 0 −6 −3

1 2 0 −2 −1


,
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Ψ1,0
2 (x, y) = 4

4∑
j=0

3∑
k=0

qjkΨ
0,3
2 (2x− j, 2y − k) with

(qjk) 0≤j≤4
0≤k≤3

=

√
2

128



−1 −3 −3 −1

−2 −6 −6 −2

6 18 18 6

−2 −6 −6 −2

−1 −3 −3 −1


,

Ψ1,1
2 (x, y) = 4

4∑
j=0

4∑
k=0

qjkΨ
1,1
2 (2x− j, 2y − k) with

(qjk) 0≤j≤4
0≤k≤4

=
1

128



1 2 −6 2 1

2 4 −12 4 2

−6 −12 36 −12 −6

2 4 −12 4 2

1 2 −6 2 1


,

Ψ1,2
2 (x, y) = 4

4∑
j=0

2∑
k=0

qjkΨ
1,2
2 (2x− j, 2y − k) with

(qjk) 0≤j≤4
0≤k≤2

=
1

64



1 −2 1

2 −4 2

−6 12 −6

2 −4 2

1 −2 1


,
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Ψ1,3
2 (x, y) = 4

3∑
j=−2

5∑
k=0

qjkΨ
1,3
2 (2x− j, 2y − k) with

(qjk)−2≤j≤3
0≤k≤5

=
1

128



−1 −2 0 2 1

−2 −4 0 4 2

6 12 0 −12 −6

−2 −4 0 4 2

−1 −2 0 2 1


,

Ψ2,0
2 (x, y) = 4

3∑
j=−2

3∑
k=0

qjkΨ
2,0
2 (2x− j, 2y − k) with

(qjk)−2≤j≤3
0≤k≤3

=

√
2

64


−1 −3 −3 −1

2 6 6 2

−1 −3 −3 −1

 ,

Ψ2,1
2 (x, y) = 4

3∑
j=−2

3∑
k=−2

qjkΨ
2,1
2 (2x− j, 2y − k) with

(qjk)−2≤j≤3
−2≤k≤3

=
1

64


1 2 −6 2 1

−2 −4 12 −4 −2

1 2 −6 2 1

 ,

Ψ2,2
2 (x, y) = 4

2∑
j=0

2∑
k=0

qjkΨ
2,2
2 (2x− j, 2y − k) with

(qjk) 0≤j≤4
0≤k≤4

=
1

32


1 −2 1

−2 4 −2

1 −2 1

 ,

Ψ2,3
2 (x, y) = 4

3∑
j=−2

5∑
k=0

qjkΨ
2,3
2 (x− j, 2y − k) with

(qjk)−2≤j≤3
0≤k≤5

=
1

64


−1 −2 0 2 1

2 4 0 −4 −2

−1 −2 0 2 1

 ,
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Ψ3,0
2 (x, y) = 4

4∑
j=0

3∑
k=0

qjkΨ
3,0
2 (2x− j, 2y − k) with

(qjk) 0≤j≤4
0≤k≤3

=

√
2

128



−1 −3 −3 −1

−2 −6 −6 −2

0 0 0 0

2 6 6 2

1 3 3 1


,

Ψ3,1
2 (x, y) = 4

5∑
j=0

3∑
k=−2

qjkΨ
3,1
2 (2x− j, 2y − k) with

(qjk) 0≤j≤5
−2≤k≤3

=
1

128



1 2 −6 2 1

2 4 −12 4 2

0 0 0 0 0

−2 −4 12 −4 −2

−1 −2 6 −2 −1


,

Ψ3,2
2 (x, y) = 4

5∑
j=0

3∑
k=−2

qjkΨ
3,2
2 (2x− j, 2y − k) with

(qjk) 0≤j≤5
−2≤k≤3

=
1

64



1 −2 1

2 −4 2

0 0 0

−2 4 −2

−1 2 −1


,



37

Ψ3,3
2 (x, y) = 4

5∑
j=0

5∑
k=0

qjkΨ
3,3
2 (2x− j, 2y − k) with

(qjk) 0≤j≤5
0≤k≤5

=
1

128



−1 −2 0 2 1

−2 −4 0 4 2

0 0 0 0 0

2 4 0 −4 −2

1 2 0 −2 −1


.

�

3.5 Box spline tight wavelet frames

In this section, we consider tight wavelet construction for the bivariate box spline over

3-direction, 4-direction and 8-direction meshes. By using standard unit vectors e1 =

(1, 0)T , e2 = (0, 1)T in R2 , we define a 3-direction mesh bivariate box spline φ`mn(x, y)

in terms of Fourier transform as follows :

φ̂`mn(ξ, η) =

(
1− e−iξ

iξ

)`(
1− e−iη

iη

)m(
1− e−i(ξ+η)

i(ξ + η)

)n

, i =
√
−1

on the set of direction Y such that

Y = {e1, . . . , e1︸ ︷︷ ︸
`

, e2, . . . , e2︸ ︷︷ ︸
m

, e1 + e2, . . . , e1 + e2︸ ︷︷ ︸
n

}.

Similarly, a bivariate box spline φ`mnk(x, y) based on a 4-direction mesh is defined in terms

of Fourier transform by

φ̂`mnk(ξ, η) = φ̂`mn(ξ, η)

(
1− e−i(ξ−η)

i(ξ − η)

)k

, i =
√
−1.

on the direction set

Y = {e1, . . . , e1︸ ︷︷ ︸
`

, e2, . . . , e2︸ ︷︷ ︸
m

, e1 + e2, . . . , e1 + e2︸ ︷︷ ︸
n

, e1 − e2, . . . , e1 − e2︸ ︷︷ ︸
k

}.

(For computation of 3-direction and 4-direction meshes box splines, see [L].)
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If we consider four more directions such as e1 + 2e2, 2e1 + e2, e1 − 2e2 and −2e1 + e2 in

addition to the four directions e1, e2, e1 + e2 and e1 − e2 of 4-direction mesh box spline , we

have 8-direction mesh box spline. To avoid complicated indexes, we give the formula for the

smallest order of 8-direction mesh box spline 8φ, i.e. ,

8̂φ(ξ, η) =

(
1− e−iξ

iξ

)(
1− e−iη

iη

)(
1− e−i(ξ+η)

i(ξ + η)

)(
1− e−i(ξ−η)

i(ξ − η)

)
×
(

1− e−i(ξ+2η)

i(ξ + 2η)

)(
1− e−i(2ξ+η)

i(2ξ + η)

)(
1− e−i(ξ−2η)

i(ξ − 2η)

)(
1− e−i(−2ξ+η)

i(−2ξ + η)

)
, i =

√
−1.

(3.22)

on the direction set Y = {e1, e2, e1 + e2, e1 − e2, e1 + 2e2, 2e1 + e2, e1 − 2e2,−2e1 + e2}.

Lemma 3.2.1 says that a Laurent polynomial PY associated with a box spline φY on any

direction set Y containing standard unit vectors e1 = (1, 0) and e2 = (0, 1) in R2 satisfies sub-

QMF condition. Therefore, to use the constructive method in Theorem 2.2.2 for a box spline

tight wavelet frame construction, we need to find a finite number of Laurent polynomials P̃j

for a given Laurent polynomial PY such that

1−
∑

ν∈{0,π}2
|PY (ω + ν)|2 =

∑
j

|P̃j(2ω)|2 whereω = (ξ, η). (3.23)

For a univariate setting, a nonnegative Laurent polynomial can be factored by a square root

of a Laurent polynomial by Fejér and Riesz Lemma. However, it is not easy to generalize

Fejér and Riesz Lemma to multivariate settings. We do not know the answer for the question

whether any nonnegative Laurent polynomial can be expressed by a finite sum of squares

of Laurent polynimials for multivariate settings. It is related to the 17th of Hilbert’s 23

problems : Find a representation of definite form by squares. Further results on factorization

of a multivariate nonnegative Laurent polynomial, see [LS] and [GL]. We found P̃j’s for

specific box splines such as 3-direction mesh box splines φ111, φ221 and φ222, 4-direction mesh

box splines φ1111 and φ2211 and a 8-direction mesh box spline 8φ by solving corresponding

systems of non linear equations with a help by using MAPLE software. We will give the

explicit Laurent polynomials satisfying (3.23) for each box spline we mentioned above at the
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end of this section. Unfortunately, so far we do not have an algorithm to find the Laurent

polynomial P̃j’s systematically.

Now we are ready to describe the tight wavelet frame construction step by step. We take a

bivariate 3-direction mesh box spline φ111 as an example. There are two Laurent polynomials

P̃1(ξ, η) =

√
6

8
(1− eiξ),

P̃2(ξ, η) =

√
2

8
(2− eiξ − ei(ξ+η)), i =

√
−1.

such that

1−
∑

ν∈{0,π}2
|P111(ω + ν)|2 =

2∑
j=1

|P̃j(2ω)|2, ω = (ξ, η). (3.24)

for the Laurent polynomial P111 associated with box spline of order φ111. Thus 3-direction

mesh box spline φ111 satisfies the hypothesis of Theorem 2.2.2.

We first multiply the matrixM in (2.16) on the left side of the matrix P . That is,

MP =
1√
2



1 1 1 1

eiξ eiξ −eiξ −eiξ

eiη −eiη eiη −eiη

ei(ξ+η) −ei(ξ+η) −ei(ξ+η) ei(ξ+η)





P111(ξ, η)

P111(ξ + π, η)

P111(ξ, η + π)

P111(ξ + π, η + π)


, i =

√
−1. (3.25)

We denote the first polynomial of the column vector MP to be P̂1(2ξ, 2η) , the second one

to be P̂2(2ξ, 2η)), the third one P̂3(2ξ, 2η), and P̂4(2ξ, 2η). It is easy to check

4∑
n=1

|P̂n(2ξ, 2η)|2 +
2∑

j=1

|P̃j(2ξ, 2η)|2 = 1.

Thus we do not need to deal with translated versions in ξ or η of the Laurent polynomial

P111(2ξ, 2η).

Let P̃ be a column vector[
P̂1(2ξ, 2η) P̂2(2ξ, 2η) P̂3(2ξ2η) P̂4(2ξ, 2η) P̃1(2ξ, 2η) P̃2(2ξ, 2η)

]T
. (3.26)

Define

Q̃ := I − P̃P̃∗ (3.27)
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Straight forward calculation verifies Q̃∗Q̃ = I − P̃P̃∗.

Let Q̂ be the first 6× 4 block matrix in Q̃ and multiplyM in (2.16) on the right side of

matrix Q̂

Q := Q̂M =
1√
2
Q̂



1 1 1 1

eiξ eiξ −eiξ −eiξ

eiη −eiη eiη −eiη

ei(ξ+η) −ei(ξ+η) −ei(ξ+η) ei(ξ+η)


, i =

√
−1. (3.28)

Then by straight forward calculation we have Q∗Q = I − PPT . That is, Q satisfies the

matrix form of UEP condition. We denote each component of the first column of matrix

Q by Q1
111(ξ, η), · · · , Q6

111(ξ, η), respectively. They are the desirable Laurent polynomials

associated with the tight framelets ψ1
111, · · · , ψ6

111 based on B-spline φ111. That is, with these

Q1
111, · · · , Q6

111, we define ψ1
111, · · · , ψ6

111 in terms of the Fourier transform such as

ψ̂j
111(ξ, η) = Qj

111(ξ/2, η/2)φ̂111(ξ/2, η/2), for j = 1, · · · , 6.

In the following examples, we show the extra Laurent polynomials satisfying the condition

in (3.23) for the Laurent polynomial P111, P221, P222, P1111 ,P2211 and 8P. associated with box

splines φ111, φ221, φ222, φ1111 ,φ2211 and 8φ, respectively.

Example 3.5.1 Consider box spline φ111 on a three direction mesh. The Laurent polynomial

associated with φ111 is

P111(ξ, η) =

(
1 + eiξ

2

)(
1 + eiη

2

)(
1 + ei(ξ+η)

2

)
, i =

√
−1.

It is easy to see that

1−
∑

ν∈{0,π}2
|P111(ω + ν)|2 =

3

8
− 1

8
cos(ξ)− 1

8
cos(η)− 1

8
cos(ξ + η), where ω = (ξ, η).

Thus, we let

P̃1(ξ, η) =

√
6

8
(1− eiξ),

P̃2(ξ, η) =

√
2

8
(2− eiξ − ei(ξ+η)), i =

√
−1.
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Then we can check

|P111(ξ, ν)|2 + |P111(ξ + π, ν)|2 + |P111(ξ, ν + π)|2 + |P111(ξ + π, ν + π)|2

+ |P̃2(2ξ, 2ν)|2 + |P̃2(2ξ, 2ν)|2 = 1.

Thus, we can apply the constructive steps (3.25) - (3.28) to get 6 tight frame high-pass filters

Q`, ` = 1, · · · , 6. We write the constructive steps in MAPLE code and found these Q`’s. We

note that the constructive procedure in [CH2] yields 7 tight frame generators.

Q1(ξ, η) =
2∑

j=−2

2∑
k=−2

c1jke
−
√
−1jξe−

√
−1kη with

(c1jk)−2≤j≤2
−2≤k≤2

=
1

32



−1 −1 0 0 0

−1 −2 −1 0 0

0 −1 14 −1 0

0 0 −1 −2 −1

0 0 0 −1 −1


,

Q2(ξ, η) =
2∑

j=0

2∑
k=−2

c2jke
−
√
−1jξe−

√
−1kη with

(c2jk) 0≤j≤2
−2≤k≤2

=
1

32


−1 −1 −1 −1 0

−1 −2 14 −2 −1

0 −1 −1 −1 −1

 ,

Q3(ξ, η) =
2∑

j=−2

2∑
k=0

c3jke
−
√
−1jξe−

√
−1kη with

(c3jk)−2≤j≤2
0≤k≤2

=
1

32



−1 −1 0

−1 −2 −1

−1 14 −1

−1 −2 −1

0 −1 −1


,
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Q4(ξ, η) =
2∑

j=0

2∑
k=0

c4jke
−
√
−1jξe−

√
−1kη with

(c4jk) 0≤j≤2
0≤k≤2

=
1

16


−1 −1 0

−1 6 −1

0 −1 −1

 ,

Q5(ξ, η) =
2∑

j=0

4∑
k=0

c5jke
−
√
−1jξe−

√
−1kη with

(c5jk) 0≤j≤2
0≤k≤4

=

√
6

64


−1 −1 1 1 0

−1 −2 0 2 1

0 −1 −1 1 1

 ,

Q6(ξ, η) =
4∑

j=0

4∑
k=0

c6jke
−
√
−1jξe−

√
−1kη with

(c6jk) 0≤j≤4
0≤k≤4

=

√
6

64



2 2 0 0 0

2 4 2 0 0

−1 1 1 −1 0

−1 −2 −2 −2 −1

0 −1 −1 −1 −1


.

Then our box spline tight wavelet framelets ψ1
111, · · · , ψ6

111 on 3-direction mesh are defined as

follows :

ψ1
111(x, y) = 4

2∑
j=−2

2∑
k=−2

c1j,kφ
1
111(2x− j, 2y − k),

ψ2
111(x, y) = 4

2∑
j=0

2∑
k=−2

c2j,kφ
2
111(2x− j, 2y − k),

ψ3
111(x, y) = 4

2∑
j=−2

2∑
k=0

c3j,kφ
3
111(2x− j, 2y − k),

ψ4
111(x, y) = 4

2∑
j=0

2∑
k=0

c4j,kφ
4
111(2x− j, 2y − k),
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ψ5
111(x, y) = 4

2∑
j=0

4∑
k=0

c5j,kφ
5
111(2x− j, 2y − k),

ψ6
111(x, y) = 4

4∑
j=0

4∑
k=0

c6j,kφ
6
111(2x− j, 2y − k).

�

Example 3.5.2 Consider box spline φ221. The Laurent polynomial associated with φ221 is

P221(ξ, η) =

(
1 + eiξ

2

)2(
1 + eiη

2

)2(
1 + ei(ξ+η)

2

)
, i =

√
−1.

We find that

1−
∑

ν∈{0,π}2
|P221(ω + ν)|2 =

19

32
− 7

32
cos(ξ)− 7

32
cos(η)− 1

64
cos(ξ − η)− 9

64
cos(ξ + η), where ω = (ξ, η).

Let

P̃1(ξ, η) =

√
21

12
−
√

102 + 2
√

21

48
eiξ +

√
102− 2

√
21

48
eiη

P̃2(ξ, η) = −
√

42 + 2
√

51

48
+

√
42

24
eiη −

√
42− 2

√
51

48
ei(ξ+η)

It is easy to check that

|P221(ξ, ν)|2 + |P221(ξ + π, ν)|2 + |P221(ξ, ν + π)|2 + |P221(ξ + π, ν + π)|2

+ |P̃2(2ξ, 2ν)|2 + |P̃2(2ξ, 2ν)|2 = 1.

Hence, the constructive steps (3.25) - (3.28) yield 6 tight wavelet frame high-pass filters

and thus, 6 tight wavelet frame generators. We note that using the constructive procedure in

[CH2], one will get 7 tight wavelet frame generators. generators.
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Q1(ξ, η) =
3∑

j=−2

3∑
k=−2

c1jke
−
√
−1jξe−

√
−1kη with

(c1jk)−2≤j≤3
−2≤k≤3

=
1

512



−5 −10 −6 −2 −1 0

−10 −25 −22 −10 −4 −1

−6 −22 228 −16 −6 −2

−2 −10 −16 −12 −6 −2

−1 −4 −6 −6 −5 −2

0 −1 −2 −2 −2 −1


,

Q2(ξ, η) =
3∑

j=−2

3∑
k=−2

c2jke
−
√
−1jξe−

√
−1kη with

(c2jk)−2≤j≤3
−2≤k≤3

=
1

256



−1 −2 −1 0 0 0

−2 −5 −4 −1 0 0

−3 −8 −8 −4 −1 0

−4 −11 116 −8 −4 −1

−2 −8 −11 −8 −5 −2

0 −2 −4 −3 −2 −1


,

Q3(ξ, η) =
3∑

j=−2

3∑
k=−2

c3jke
−
√
−1jξe−

√
−1kη with

(c3jk) 0≤j≤5
0≤k≤5

=
1

256



−1 −2 −3 −4 −2 0

−2 −5 −8 −11 −8 −2

−1 −4 −8 116 −11 −4

0 −1 −4 −8 −8 −3

0 0 −1 −4 −5 −2

0 0 0 −1 −2 −1


,
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Q4(ξ, η) =
5∑

j=0

5∑
k=0

c4jke
−
√
−1jξe−

√
−1kη with

(c4jk) 0≤j≤5
0≤k≤5

=
1

512



−1 −2 −2 −2 −1 0

−2 −5 −6 −6 −4 −1

−2 −6 −12 −16 −10 −2

−2 −6 −16 228 −22 −6

−1 −4 −10 −22 −25 −10

0 −1 −2 −6 −10 −5


,

We provide decimal expression of Q5 and Q6 because of its complicated expression. (We are

willing to provide its exact values upon request.)

Q5(ξ, η) =
5∑

j=0

5∑
k=0

c5jke
−
√
−1jξe−

√
−1kη with

(c5jk) 0≤j≤5
0≤k≤5

=



−0.01193 −0.02387 −0.01254 −0.00122 −0.000608 0.0

−0.02387 −0.05967 −0.04895 −0.01498 −0.00243 −0.000608

0.000608 −0.02265 −0.04775 −0.02630 −0.00304 −0.00122

0.02508 0.05078 0.02630 0.0 −0.00122 −0.000608

0.01254 0.05017 0.06272 0.02508 0.0 0.0

0.0 0.01254 0.02508 0.01254 0.0 0.0


,

Q6(ξ, η) =
5∑

j=0

5∑
k=0

c6jke
−
√
−1jξe−

√
−1kη with

(c6jk) 0≤j≤5
0≤k≤5

=



0.01352 0.02704 0.005079 −0.01688 −0.008438 0.0

0.02704 0.06759 0.03719 −0.02867 −0.03375 −0.008438

0.01352 0.05407 0.05407 −0.01688 −0.04727 −0.01688

0.0 0.01352 0.01688 −0.02031 −0.03719 −0.01352

0.0 0.0 −0.005079 −0.02031 −0.02539 −0.01016

0.0 0.0 0.0 −0.005079 −0.01016 −0.005079


.
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Then our box spline tight wavelet framelets ψ1
221, · · · , ψ6

221 on 3-direction mesh are defined as

follows :

ψ1
221(x, y) = 4

3∑
j=−2

3∑
k=−2

c1j,kφ
1
221(2x− j, 2y − k),

ψ2
221(x, y) = 4

3∑
j=−2

3∑
k=−2

c2j,kφ
2
221(2x− j, 2y − k),

ψ3
221(x, y) = 4

3∑
j=−2

3∑
k=−2

c3j,kφ
3
221(2x− j, 2y − k),

ψ4
221(x, y) = 4

3∑
j=−2

3∑
k=−2

c4j,kφ
4
221(2x− j, 2y − k),

ψ5
221(x, y) = 4

5∑
j=0

5∑
k=0

c5j,kφ
5
221(2x− j, 2y − k),

ψ6
221(x, y) = 4

5∑
j=0

5∑
k=0

c6j,kφ
6
221(2x− j, 2y − k).

�

Example 3.5.3 For box spline φ222, the Laurent polynomial associated with φ222 is

P222(ξ, η) =

(
1 + eiξ

2

)2(
1 + eiη

2

)2(
1 + ei(ξ+η)

2

)2

, i =
√
−1.

Then we have

1−
∑

ν∈{0,π}2
|P222(ω + ν)|2

=
1

512
(339− 106(cos(ξ) + cos(η) + cos(ξ + η))

− (cos(2ξ) + cos(2η) + cos(2(ξ + η))

− 6(cos(2ξ + η) + cos(ξ + 2η) + cos(ξ − η))

=
3∑

j=1

|P̃j(2ω)|2, where ω = (ξ, η).
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where

P̃1(ξ, η) =

√
14

96
+

√
14

16
eiξ +

√
14

16
eiη − 173

1344

√
14 ei(ξ+η) − 3

448

√
14 e2i(ξ+η),

P̃2(ξ, η) =
1

5376

(√
713608 + 42

√
178402 +

√
713608− 42

√
178402

)
−
√

178402

2854432

(√
713608 + 42

√
178402−

√
713608− 42

√
178402

)
e2iη

−
√

178402

40281744384

(
14112

(√
713608− 42

√
178402−

√
713608 + 42

√
178402

)
+ 42
√

178402

(√
713608− 42

√
178402 +

√
713608 + 42

√
178402

))
ei(ξ+η)

P̃3(ξ, η) =
1

5376

(√
713608 + 42

√
178402−

√
713608− 42

√
178402

)
−
√

178402

2854432

(√
713608 + 42

√
178402 +

√
713608− 42

√
178402

)
e2iξ

+

√
178402

40281744384

(
14112

(√
713608− 42

√
178402 +

√
713608 + 42

√
178402

)
+ 42
√

178402

(√
713608− 42

√
178402−

√
713608 + 42

√
178402

))
ei(ξ+η).

Thus, we need 7 wavelet frame generators for φ222. The explicit Leurent polynomials Q`

are following. We note that the number of framelets in [CH2] for φ222 is also seven. φ222

Q1(ξ, η) =
4∑

j=−4

4∑
k=−4

c1jke
−
√
−1jξe−

√
−1kη with

(c1jk)−4≤j≤4
−4≤k≤4

=
1

2048



−1 −2 −2 −2 −1 0 0 0 0

−2 −6 −8 −8 −6 −2 0 0 0

−2 −8 −22 −32 −22 −8 −2 0 0

−2 −8 −32 −70 −70 −32 −8 −2 0

−1 −6 −22 −70 918 −70 −22 −6 −1

0 −2 −8 −32 −70 −70 −32 −8 −2

0 0 −2 −8 −22 −32 −22 −8 −2

0 0 0 −2 −6 −8 −8 −6 −2

0 0 0 0 −1 −2 −2 −2 −1
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Q2(ξ, η) =
4∑

j=−2

4∑
k=−4

c2jke
−
√
−1jξe−

√
−1kη with

(c2jk)−2≤j≤4
−4≤k≤4

=
1

2048



−1 −2 −4 −6 −3 0 0 0 0

−2 −6 −12 −20 −18 −6 0 0 0

−1 −6 −16 −30 −35 −20 −4 0 0

0 −2 −12 −30 472 −30 −12 −2 0

0 0 −4 −20 −35 −30 −16 −6 −1

0 0 0 −6 −18 −20 −12 −6 −2

0 0 0 0 −3 −6 −4 −2 −1



Q3(ξ, η) =
4∑

j=−4

4∑
k=−2

c3jke
−
√
−1jξe−

√
−1kη with

(c3jk)−4≤j≤4
−2≤k≤4

=
1

2048



−1 −2 −1 0 0 0 0

−2 −6 −6 −2 0 0 0

−4 −12 −16 −12 −4 0 0

−6 −20 −30 −30 −20 −6 0

−3 −18 −35 472 −35 −18 −3

0 −6 −20 −30 −30 −20 −6

0 0 −4 −12 −16 −12 −4

0 0 0 −2 −6 −6 −2

0 0 0 0 −1 −2 −1
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Q4(ξ, η) =
4∑

j=−2

4∑
k=−2

c4jke
−
√
−1jξe−

√
−1kη with

(c4jk)−2≤j≤4
−2≤k≤4

=
1

2048



−3 −6 −4 −2 −1 0 0

−6 −18 −20 −12 −6 −2 0

−4 −20 −35 −30 −16 −6 −1

−2 −12 −30 472 −30 −12 −2

−1 −6 −16 −30 −35 −20 −4

0 −2 −6 −12 −20 −18 −6

0 0 −1 −2 −4 −6 −3


We provide decimal expression of Q5 and Q6 because of its complicated expression. (We are

willing to provide its exact values upon request.)

Q5(ξ, η) =
8∑

j=0

6∑
k=0

c5jke
−
√
−1jξe−

√
−1kη with

(c5jk) 0≤j≤8
0≤k≤6

=

−0.000061 −0.000122 −0.000061 0.0 0.0 0.0 0.0

−0.000122 −0.00036 −0.00036 −0.000122 0.0 0.0 0.0

−0.000061 −0.00036 −0.004456 −0.008058 −0.003906 0.0 0.0

0.0 −0.000122 −0.008058 −0.02343 −0.02319 −0.007692 0.0

0.003906 0.007814 0.0 −0.02319 −0.03851 −0.02307 −0.003845

0.007814 0.02343 0.02343 0.000122 −0.02307 −0.02307 −0.007692

0.003906 0.02343 0.03906 0.02343 0.000061 −0.007692 −0.003845

0.0 0.007814 0.02343 0.02343 0.007814 0.0 0.0

0.0 0.0 0.003906 0.007814 0.003906 0.0 0.0
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Q6(ξ, η) =
6∑

j=0

8∑
k=0

c6jke
−
√
−1jξe−

√
−1kη with

(c6jk) 0≤j≤6
0≤k≤8

=

10−3



−4.909 −9.820 −4.909 0.0 0.048 0.096 0.048 0.0 0.0

−9.820 −29.46 −29.46 −9.820 0.096 0.29 0.29 0.096 0.0

−4.909 −029.46 −44.24 −19.74 0.0 0.29 0.48 0.29 0.048

0.0 −9.820 −19.74 −0.29 19.36 9.820 0.29 0.29 0.096

0.0 0.0 −0.048 0.19.36 43.71 29.17 4.909 0.096 0.048

0.0 0.0 0.0 9.725 29.17 29.17 9.725 0.0 0.0

0.0 0.0 0.0 0.0 4.861 9.725 4.861 0.0 0.0


Q7(ξ, η) =

8∑
j=0

8∑
k=0

c7jke
−
√
−1jξe−

√
−1kη with

(c7jk) 0≤j≤8
0≤k≤8

=

√
14

86016



−14 −28 −98 −168 −84 0 0 0 0

−28 −84 −252 −532 −504 −168 0 0 0

−98 −252 −135 −242 −681 −504 −84 0 0

−168 −532 −242 618 506 −158 −168 0 0

−84 −504 −681 506 1557 888 98 0 0

0 −168 −504 −158 888 1092 400 18 0

0 0 −84 −168 98 400 263 54 9

0 0 0 0 0 18 54 54 18

0 0 0 0 0 0 9 18 9


Then our box spline tight wavelet framelets ψ1

222, · · · , ψ7
222 on 3-direction mesh are defined as

follows :

ψ1
222(x, y) = 4

4∑
j=4

4∑
k=−4

c1j,kφ
1
222(2x− j, 2y − k),

ψ2
222(x, y) = 4

4∑
j=−2

4∑
k=−4

c2j,kφ
2
222(2x− j, 2y − k),
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ψ3
222(x, y) = 4

4∑
j=−4

4∑
k=−2

c3j,kφ
3
222(2x− j, 2y − k),

ψ4
222(x, y) = 4

4∑
j=−2

4∑
k=−2

c4j,kφ
4
222(2x− j, 2y − k),

ψ5
222(x, y) = 4

8∑
j=0

6∑
k=0

c5j,kφ
5
222(2x− j, 2y − k),

ψ6
222(x, y) = 4

6∑
j=0

8∑
k=0

c6j,kφ
6
222(2x− j, 2y − k).

ψ7
222(x, y) = 4

8∑
j=0

8∑
k=0

c7j,kφ
7
222(2x− j, 2y − k).

�

Example 3.5.4 For box spline φ1111, the Laurent polynomial associated with φ1111 is

P1111(ξ, η) =

(
1 + eiξ

2

)(
1 + eiη

2

)(
1 + ei(ξ+η)

2

)(
1 + ei(ξ−η)

2

)
, i =

√
−1.

Then we have

1−
∑

ν∈{0,π}2
|P1111(ω + ν)|2

=
5

8
− 1

8
cos(ξ)− 1

8
cos(η)− 1

32
cos (ξ + η)− 1

32
cos(ξ − η)

=
2∑

j=1

|P̃j(2ω)|2, ω = (ξ, η).

where

P̃1(ξ, η) =

√
6

8
(1− ei(ξ−η)),

P̃2(ξ, η) = −1

4
+

√
6

8
+

1

4
eiξ +

1

4
eiη − 2 +

√
6

8
ei(ξ+η), i =

√
−1.

Hence, the constructive steps (3.25) - (3.28) yields 6 tight frame filters and hence, 6 tight

frame generators which is less than a half of the number of tight framelets in [CH2].
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Q1(ξ, η) =
3∑

j=−2

2∑
k=−3

c1jke
−
√
−1jξe−

√
−1kη with

(c1jk)−2≤j≤3
−3≤k≤2

=
1

128



0 −1 −1 −2 −2 0

−1 −2 −4 −5 −4 −2

−1 −2 −4 58 −5 −2

0 −1 −2 −4 −4 −1

0 0 −1 −2 −2 −1

0 0 0 −1 −1 0


Q2(ξ, η) =

3∑
j=−2

2∑
k=−3

c2jke
−
√
−1jξe−

√
−1kη with

(c2jk)−2≤j≤3
−3≤k≤2

=
1

128



0 0 0 −1 −1 0

0 0 −1 −2 −2 −1

0 −1 −2 −4 −4 −1

−1 −2 −4 58 −5 −2

−1 −2 −4 −5 −4 −2

0 −1 −1 −2 −2 0


Q3(ξ, η) =

3∑
j=−2

4∑
k=−1

c3jke
−
√
−1jξe−

√
−1kη with

(c3jk)−2≤j≤3
−1≤k≤4

=
1

128



0 −2 −2 −1 −1 0

−2 −4 −5 −4 −2 −1

−2 −5 58 −4 −2 −1

−1 −4 −4 −2 −1 0

−1 −2 −2 −1 0 0

0 −1 −1 0 0 0
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Q4(ξ, η) =
3∑

j=−2

4∑
k=−1

c4jke
−
√
−1jξe−

√
−1kη with

(c4jk)−2≤j≤3
−1≤k≤4

=
1

128



0 −1 −1 0 0 0

−1 −2 −2 −1 0 0

−1 −4 −4 −2 −1 0

−2 −5 58 −4 −2 −1

−2 −4 −5 −4 −2 −1

0 −2 −2 −1 −1 0


Q5(ξ, η) =

5∑
j=0

4∑
k=−1

c5jke
−
√
−1jξe−

√
−1kη with

(c5jk) 0≤j≤5
−1≤k≤4

=
1

128



0 2−
√

6 2−
√

6 −2 −2 0

2−
√

6 4− 2
√

6 2− 2
√

6 −2−
√

6 −4 −2

2−
√

6 2− 2
√

6 −2
√

6 0
√

6− 2 −2

−2 −2−
√

6 0 2
√

6 2 + 2
√

6 2 +
√

6

−2 −4
√

6− 2 2 + 2
√

6 2
√

6 + 4 2 +
√

6

0 −2 −2 2 +
√

6 2 +
√

6 0


Q6(ξ, η) =

5∑
j=0

2∑
k=−3

c6jke
−
√
−1jωe−

√
−1kξ with

(c6jk) 0≤j≤5
−3≤k≤2

=

√
6

128



0 0 0 −1 −1 0

0 0 −1 −2 −2 −1

0 1 0 −2 −2 −1

1 2 2 0 −1 0

1 2 2 1 0 0

0 1 1 0 0 0


Then our box spline tight wavelet framelets ψ1

1111, · · · , ψ6
1111 on 4-direction mesh are defined

as follows :

ψ1
1111(x, y) = 4

3∑
j=−2

2∑
k=−3

c1j,kφ
1
1111(2x− j, 2y − k),
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ψ2
1111(x, y) = 4

3∑
j=−2

2∑
k=−3

c2j,kφ
2
1111(2x− j, 2y − k),

ψ3
1111(x, y) = 4

3∑
j=−2

4∑
k=−1

c3j,kφ
3
1111(2x− j, 2y − k),

ψ4
1111(x, y) = 4

3∑
j=−2

4∑
k=−1

c4j,kφ
4
1111(2x− j, 2y − k),

ψ5
1111(x, y) = 4

5∑
j=0

4∑
k=−1

c5j,kφ
5
1111(2x− j, 2y − k),

ψ6
1111(x, y) = 4

5∑
j=0

2∑
k=−3

c6j,kφ
6
1111(2x− j, 2y − k).

�

Example 3.5.5 For box spline φ2211, the Laurent polynomial associated with φ2211 is

P2211(ξ, η) =

(
1 + eiξ

2

)2(
1 + eiη

2

)2(
1 + ei(ξ+η)

2

)(
1 + ei(ξ−η)

2

)
, i =

√
−1.

Then we have

1−
∑

ν∈{0,π}2
|P2211(ω + ν)|2 =

4∑
j=1

|P̃j(2ω)|2, where ω ∈ R2

where

P̃1(ξ, η) =

√
1886

224
(1− e2iξ),

P̃2(ξ, η) = −3
√

14

64
+

√
40531922

25472
+

3
√

14

32
eiη −

(
3
√

14

64
+

√
40531922

25472

)
e2iη,

P̃3(ξ, η) =
7
√

2

64
+

7
√

2

64
e2iη −

√
2

224
ei(2ξ+η) − 3

√
2

14
ei(ξ+η),

P̃4(ξ, η) =

√
398

112
+

√
398

112
e2iξ − 3135

√
398

178304
eiξ − 7

√
398

25472
ei(ξ+2η), i =

√
−1.

Hence, we will have 8 tight frame generators using the constructive steps (3.25) - (3.28).

These 8 tight frames ψm which can be expressed in terms of Fourier transform by

ψ̂`(ξ, η) = Q`(ξ/2, η/2)φ̂2211(ξ/2, η/2), ` = 1, · · · , 8
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are given in terms of coefficient matrix as follows:

Q1(ξ, η) =
4∑

j=−4

3∑
k=−3

c1jke
−
√
−1jωe−

√
−1kξ with

(c1jk)−4≤j≤4
−3≤k≤3

= − 1

2048



0 1 2 2 2 1 0

1 4 7 8 7 4 1

2 12 22 24 22 12 2

7 28 49 56 49 28 7

12 38 64 −948 64 38 12

7 28 49 56 49 28 7

2 12 22 24 22 12 2

1 4 7 8 7 4 1

0 1 2 2 2 1 0



,

Q2(ξ, η) =
4∑

j=−2

3∑
k=−3

c2jke
−
√
−1jξe−

√
−1kη with

(c2jk)−2≤j≤4
−3≤k≤3

= − 1

512



0 1 2 2 2 1 0

1 4 7 8 7 4 1

2 7 12 14 12 7 2

2 8 14 −240 14 8 2

2 7 12 14 12 7 2

1 4 7 8 7 4 1

0 1 2 2 2 1 0



,
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Q3(ξ, η) =
4∑

j=−4

5∑
k=−3

c3jke
−
√
−1jξe−

√
−1kη with

(c3jk)−4≤j≤4
−3≤k≤5

= − 1

1024



0 0 0 1 2 1 0 0 0

0 0 1 4 6 4 1 0 0

0 1 4 11 16 11 4 1 0

1 4 11 24 32 24 11 4 1

2 6 16 32 −472 32 16 6 2

1 4 11 24 32 24 11 4 1

0 1 4 11 16 11 4 1 0

0 0 1 4 6 4 1 0 0

0 0 0 1 2 1 0 0 0



,

Q4(ξ, η) =
4∑

j=−2

5∑
k=−3

c4jke
−
√
−1jξe−

√
−1kη with

(c4jk)−2≤j≤4
−3≤k≤5

= − 1

2048



0 1 2 7 12 7 2 1 0

1 4 12 28 38 28 12 4 1

2 7 22 49 64 49 22 7 2

2 8 24 56 −948 56 24 8 2

2 7 22 49 64 49 22 7 2

1 4 12 28 38 28 12 4 1

0 1 2 7 12 7 2 1 0



,
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Q5(ξ, η) =
8∑

j=0

7∑
k=−1

c5jke
−
√
−1jξe−

√
−1kη with

(c5jk) 0≤j≤8
−1≤k≤7

= −
√

2

28672



0 49 98 49 0 49 98 49 0

49 196 294 196 98 196 294 196 49

98 294 392 198 4 198 392 294 98

49 196 198 −188 −478 −188 198 196 49

0 49 −94 −529 −772 −529 −94 49 0

0 0 −98 −392 −588 −392 −98 0 0

0 0 −4 −108 −208 −108 −4 0 0

0 0 −2 −8 −12 −8 −2 0 0

0 0 0 −2 −4 −2 0 0 0



,

and Q6(ξ, η) =
8∑

j=0

7∑
k=−1

c6jke
−
√
−1jξe−

√
−1kη with

(c6jk) 0≤j≤8
−1≤k≤7

=

−
√

398

11411456



0 1592 3184 1592 0 0 0 0 0

1592 6368 9552 6368 1592 0 0 0 0

3184 6417 6466 6417 3184 −49 −98 −49 0

−1543 −6172 −9258 −6172 −1592 −196 −294 −196 −49

−6270 −15626 −18712 −15626 −6368 −294 −392 −294 −98

−1543 −6172 −9258 −6172 −1592 −196 −294 −196 −49

3184 6417 6466 6417 3184 −49 −98 −49 0

1592 6368 9552 6368 1592 0 0 0 0

0 1592 3184 1592 0 0 0 0 0



.
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Q7(ξ, η) =
4∑

j=0

7∑
k=−1

c7jke
−
√
−1jξe−

√
−1kη with

(c7jk) 0≤j≤4
−1≤k≤7

=

10−3



0.0 −1.165 −2.330 −6.645 −10.96 1.165 13.29 6.645 0.0

−1.165 −4.66 −12.47 −26.58 −27.40 4.66 34.39 26.58 6.645

−2.330 −6.99 −20.28 −39.87 −32.88 6.99 42.20 39.87 13.29

−1.165 −4.66 −12.47 −26.58 −27.40 4.66 34.39 26.58 6.645

0.0 −1.165 −2.330 −6.645 −10.96 1.165 13.29 6.645 0.0


We provide decimal expression of Q7 because of its complicated expression. (We are willing

to provide its exact values upon request.) Finally, we have

Q8(ξ, η) =
8∑

j=0

3∑
k=−1

c8jke
−
√
−1jξe−

√
−1kη with

(c8jk) 0≤j≤8
−1≤k≤3

= −
√

1886

14336



0 1 2 1 0

1 4 6 4 1

2 6 8 6 2

1 4 6 4 1

0 0 0 0 0

−1 −4 −6 −4 −1

−2 −6 −8 −6 −2

−1 −4 −6 −4 −1

0 −1 −2 −1 0



.

These coefficient matrices are high-pass filters associated with low-pass filter P2211. Then our

box spline tight wavelet framelets ψ1
2211, · · · , ψ8

2211 on 4-direction mesh are defined as follows

:

ψ1
2211(x, y) = 4

4∑
j=−4

3∑
k=−3

c1j,kφ
1
2211(2x− j, 2y − k),

ψ2
2211(x, y) = 4

4∑
j=−2

3∑
k=−3

c2j,kφ
2
2211(2x− j, 2y − k),
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ψ3
2211(x, y) = 4

4∑
j=−4

5∑
k=−3

c3j,kφ
3
2211(2x− j, 2y − k),

ψ4
2211(x, y) = 4

4∑
j=−2

5∑
k=−3

c4j,kφ
4
2211(2x− j, 2y − k),

ψ5
2211(x, y) = 4

8∑
j=0

7∑
k=−1

c5j,kφ
5
2211(2x− j, 2y − k),

ψ6
2211(x, y) = 4

8∑
j=0

7∑
k=−1

c6j,kφ
6
2211(2x− j, 2y − k).

ψ7
2211(x, y) = 4

4∑
j=0

7∑
k=−1

c7j,kφ
7
2211(2x− j, 2y − k),

ψ8
2211(x, y) = 4

8∑
j=0

3∑
k=−1

c8j,kφ
8
2211(2x− j, 2y − k).

We note that we have 15 tight wavelet frame generators by using method in [CH2] . �

Example 3.5.6 For box spline 8φ, the Laurent polynomial associated with 8φ is

8P (ξ, η) =

(
1 + eiξ

2

)(
1 + eiη

2

)(
1 + ei(ξ+η)

2

)(
1 + ei(ξ−η)

2

)
(

1 + ei(ξ+2η)

2

)(
1 + ei(2ξ+η)

2

)(
1 + ei(ξ−2η)

2

)(
1 + ei(−2ξ+η)

2

)
, i =

√
−1.

(3.29)

Then we have

1−
∑

ν∈{0,π}2
|8P (ω + ν)|2 =

10∑
j=1

|P̃j(2ω)|2, where ω = (ξ, η)
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where

P̃1(ξ, η) = 0.002884417323− 0.1269618424 ei(ξ+4η) + 0.002884417323 e2iξ + 0.1211930077 eiξ,

P̃2(ξ, η) = 0.1903794360− 0.001923584528 ei(4ξ+η) + 0.1903794360 e2iη − 0.3788352874 ei(ξ+η),

P̃3(ξ, η) = 0.005208333333− 0.2812500000 ei(2ξ+3η) + 0.005208333333 e4iξ

+ 0.2456597222 e2i(ξ+η) + 0.02517361111 e2iξ,

P̃4(ξ, η) = 0.1220598471− 0.01200102887 ei(3ξ+2η) + 0.1220598471 e4iη − 0.2321186655 e2iη,

P̃5(ξ, η) = 0.04878904686− 0.09757809372 ei(ξ+3η) + 0.04878904686 e2iξ,

P̃6(ξ, η) = 0.01811679804− 0.2627805518 ei(3ξ+η)0.01811679804 e2iη + 0.2265469557 ei(ξ+η),

P̃7(ξ, η) = 0.1467758481− 0.1546921950 ei(ξ+2η) + 0.1467758481 e2iξ

− 0.06942975059 e2i(ξ+η) − 0.06942975059 e2iη,

P̃8(ξ, η) = 0.06141408852− 0.3697047155 e2i(ξ+η)0.06141408852 e2iη + 0.2468765383 ei(ξ+η),

P̃9(ξ, η) = 0.00119995051− 0.1017294555 e3i(ξ+η) − 0.00119995051 e3iξ + 0.1017294555 e3iη,

P̃10(ξ, η) = 0.02270259867− 0.02270259867 e3iξ.

Hence, we will have 14 tight wavelet frame generators using the constructive steps (3.25)-

(3.28). These 14 tight frames ψ` in terms of Fourier transform can be expressed by

8ψ̂`(ξ, η) = Q`(ξ/2, η/2) 8̂φ(ξ/2, η/2), ` = 1, · · · , 14.

where Q`(ξ, η) =
∑

j

∑
k

c`jke
−
√
−1jξe−

√
−1kη. We do not show c`jk’s for each ` = 1, · · · , 14

because of limited space in this dissertation. Each tight wavelet frame generator is the fol-

lowing form

8ψ
`(ξ, η) = 4

∑
j

∑
k

c`jk 8φ(2ξ, 2η), ` = 1, · · · , 14.

We note that if we use the Kronecker product method in [CH2], we have 28− 1 tight wavelet

framelets. �
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Box Spline φ221

Box Spline Framelet ψ1
221 Box Spline Framelet ψ2

221

Box Spline Framelet ψ3
221 Box Spline Framelet ψ4

221

Box Spline Framelet ψ5
221 Box Spline Framelet ψ6

221

Figure 3.4: Box Spline φ221 and its Tight Framelets
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Box Spline φ1111 φ1111

Box Spline Framelet ψ1
1111 Box Spline Framelet ψ2

1111

Box Spline Framelet ψ3
1111 Box Spline Framelet ψ4

1111

Box Spline Framelet ψ5
1111 Box Spline Framelet ψ6

1111

Figure 3.5: Box Spline φ1111 and its Tight Framelets
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Box Spline φ2211

Box Spline Framelet ψ1
2211 Box Spline Framelet ψ2

2211

Box Spline Framelet ψ3
2211 Box Spline Framelet ψ4

2211

Box Spline Framelet ψ5
2211 Box Spline Framelet ψ6

2211

Box Spline Framelet ψ7
2211 Box Spline Framelet ψ8

2211

Figure 3.6: Box Spline φ2211 and its Tight Framelets



Chapter 4

Image Processing

Wavelet Transforms have played an important role in analyzing digital images. Wavelet

methods have some advantages for edge detection and de-noising (or noise removing) com-

pared to other traditional methods. This is because wavelets decomposition separates the

high frequency (detail) parts from the low frequency (smooth) parts of images effectively.

All the edges and noise are related to the high frequency parts of images. Usually the

high frequency (detail) parts of images consists of a lot of small values. Thus ignoring

many of the small numbers by thresholding does not effect much for the visual quality

of images. In this aspect, wavelet methods can be used for data compression. For example,

the biorthogonal 9/7 wavelet is famous for its application in FBI finger print compression.

In this chapter we report numerical experiments for edge detection and denosing using non-

separable(non tensor product structure) box spline tight wavelet frames constructed in the

previous chapter. For comparison, we also include edge detection and de-noising by tensor

products of Haar, Daubechies, biorthgonal 9/7 wavelets and six different edge detection

methods from MATLAB Image Processing Toolbox. Numerical evidence provided by edge

detection and de-noising on several images shows that box spline tight wavelet frames have

definite advantages for image processing.

Before we go further into the numerical experiments, we briefly describe the algorithm

of tight wavelet frame decomposition and reconstruction for images in the following section.

64
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4.1 Tight Wavelet Frame Decompositions and Reconstructions

Suppose we have the multivariate tight wavelet frame Λ(Ψ) := {ψ1, · · · , ψN} based on MRA

generated by a refinable function φ. For f ∈ L2(Rd), let cj,k be the inner product of f with

the refinable function φj,k(·) := 2
j
2φ(2j · −k) and let d`

j,k be the inner product of f with

wavelet frames ψ`
j,k(·) := ψ`(2j · −k)’s, i.e., for all j ∈ Z,k ∈ Zd and ` = 1, · · · , N,

cj,k = 〈f, φj,k(·)〉 and d`
j,k = 〈f, ψ`

j,k(·)〉.

For all j ∈ Z,m ∈ Zd and ` = 1, · · · , N, we have

φj,m(·) = 2−d/2
∑
k∈Zd

pk−2mφj+1,k(·) and ψ`
j,m(·) = 2−d/2

∑
k∈Zd

q`
k−2mφj+1,k(·),

by (2.1) and (2.4). Then we have the following tight wavelet frame decomposition algorithm

by taking the inner products on both sides of the above two equations.

cj,m = 2−d/2
∑
k∈Zd

pk−2mcj+1,k and d`
j,m = 2−d/2

∑
k∈Zd

q`
k−2mcj+1,k, (4.1)

for all j ∈ Z,m ∈ Zd and ` = 1, · · · , N. We also have

φj+1,m(·) = 2−d/2
∑
k∈Zd

{pm−2kφj,k(·) +
N∑

`=1

q`
m−2kψ

`
j,k(·)}. (4.2)

By taking inner products on both sides of the above equation we have the tight wavelet

frame reconstruction algorithm

cj+1,m = 2−d/2
∑
k∈Zd

{pm−2kcj,k +
N∑

`=1

q`
m−2kd

`
j,k}. (4.3)

See more detail derivation of this algorithm in [CH1] for example. Note that if the refinable

function φ and tight wavelet frames ψ1, · · · , ψN are locally supported then {pk−2m} and

{q`
k−2m} are finite sequences for all ` = 1, · · · , N.

The digital image with a gray level intensity can be considered as a matrix whose each

component varies from 0 to 255 and where 0 is black 255 is white. Let Xj := [xj
k1,x2

] be a

sub image of size I/2j × J/2j, where I and J are usually some power of 2 and j ∈ Z+. We
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consider X0 as the original image and Xj as the image at the jth level decomposition. We

call each value xj
k1,x2

a pixel value at each jth level. Let P be the matrix whose components

are obtained by the finite sequence {pk1,k2} satisfying scaling relation of the locally supported

refinable function φ(x, y).

φ(x, y) =
∑
k1,k2

pk1,k2φ(2x− k1, 2y − k2).

We call the matrix P a low-pass filter which extracts the smooth parts of the image. Similarly,

let Q` be the high-pass filter for ` = 1, · · · , N which contains the detail parts of the image.

Each component of the matrix Q` is from the scaling relation of the tight wavelet frame ψ`

such that

ψ`(x, y) =
∑
k1,k2

d`
k1,k2

φ(2x− k1, 2y − k2), ` = 1, · · · , N.

Then the image decomposition is that the the matrix convolution of each P and Q` with

the matrix Xj and deleting all the even number of rows and columns. We call the procedure

deleting even number of rows and columns down sampling. Let Xj+1 be the down sampled

matrix after we take convolution of P with Xj. and Y `
j+1 be the down sampled matrix after

the convolution of Q` with Xj. Then the size of matrices Xj+1, Y
1
j+1, · · · , and Y N

j+1 is half of

the size of the matrix Xj for each j ∈ Z. We call Xj+1 a low-pass sub-image and the Y `
j+1’s

high-pass sub-images . The low-pass sub-image has low-pass(smooth) parts of the image and

the high-pass sub-images have high frequency(detail) parts of the image. We summarize and

illustrate this in the Figure 4.1. We can repeat the decomposition process several times by

convoluting low-pass filter P and high-pass filters Q`’s with the low-pass sub-image Xj+1.

The reconstruction process is the reverse process of decomposition. We insert zero rows and

columns to the even number of rows and columns of matrices Xj+1, Y
1
j+1, · · · , and Y N

j+1 before

we take convolutions of P and Q`’s to the matrices Xj+1, Y
1
j+1, · · · , and Y N

j+1 respectively.
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∗P −→ 2 ↓ −→ Xj+1 −→ 2 ↑ −→ P∗
↗ ↘

Xj −→ ∗Q1 −→ 2 ↓ −→ Y 1
j+1 −→ 2 ↑ −→ Q1∗ −→ ⊕Xj

↘ ...
...

...
...

... ↗
∗QN −→ 2 ↓ −→ Y N

j+1 −→ 2 ↑ −→ QN∗

Tight wavelet frame decomposition ⇐ | ⇒ Tight wavelet frame reconstruction

Figure 4.1: Tight Wavelet Frame Reconstruction and Decomposition ; 2 ↓ is the symbol of
deleting odd number of rows and columns from the matrix. 2 ↑ is the symbol of adding
0’s to the odd number of rows and columns in the matrix. ⊕ is the symbol of adding all
matrices

4.2 Numerical Experiments : Edge Detection

The wavelet method for edge detection can be described as follows. We first use a wavelet or

wavelet frame to decompose an image into one low-pass sub image and several high-pass sub

images and then reconstruct the image without the low-pass component. Like we mentioned

at the beginning of this chapter, since the abrupt changes and detail parts of the images

are located in high-pass components, the reconstructed image without low-pass component

shows edges with noise. This is the noise contained in the original image. We need to remove

this noise after we reconstruct the image to have clear edges. We normalize the reconstructed

image into the standard grey level between 0 to 255 and use one threshold to divide the pixel

values into two major groups. That is, if a pixel value is bigger than the threshold, it is set

to be 255. If a pixel value is less than the threshold, it is set to be zero. Finally we remove

any isolated pixel values.

We use the tight wavelet frames based on the box spline φ2211 in Example 3.5.5 for edge

detection in the following experiments. Many other box spline tight wavelet frames have sim-
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ilar effectiveness. The box spline φ2211 is defined on 4-direction vectors {e1, e1, e2, e2, e3, e4}.

It has one lowpass filter and 8 highpass filters.

To compare the visual effectiveness of edge detection, we also use wavelet method edge

detection by using tensor products of Haar wavelet, Daubechies wavelet, and biorthogonal

9/7 wavelet. In addition, we use commercial edge detection methods from MATLAB Image

processing toolbox. There are six different edge detection methods in this toolbox, namely

Sobel, Prewitt, Roberts, Laplacian, Zero-crossing and Canny methods. The basic idea of these

edge detection methods is that edges can be defined as the pixel where the color intensity

changes rapidly, thus one uses the difference operators to approximate the intensity changes.

The gradient operator and Laplacian operator are the most commonly used operators. The

first three methods detect edges by using gradient operators. Laplacian and Zero-crossing

methods detect edges by looking at zero-crossing numbers of the Laplacian operator after

smoothing noise by a Gaussian operator. The Canny method is based on several ideas to

improve current methods of edge detection. It is known that the Canny method is the optimal

method for the step edges of the image corrupted by white noise. The first step is to smooth

the image by a Gaussian operator. Next one calculates the gradient to find the regions with

high spatial derivatives. Then suppresses any pixel that is not at the maximum in these

region. By using two thresholds either remove or make more edges.

The experiments consist of nine different images. The results are shown in Figures. For

each image, we use 3 standard wavelets, one box spline tight wavelet frame, and edge detec-

tion methods from the MATLAB Image Processing Toolbox. For box spline tight wavelet

frame, we only do one level of decomposition. For other standard wavelets (Haar, Daubechies,

biorthogonal 9/7 wavelets), we do 1, 2, 3 levels of decomposition dependent on the images.

For some images, e.g. the finger image, we must do 3 levels of decomposition while for many

other images, two levels of decomposition are enough. We choose the best edge representation

among three levels of decompositions to present here. Tensor products of Haar, Daubechies

, and biorthogonal 9/7 wavelets have three high-pass filters each of which detect edges of
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horizontal, vertical, and diagonal direction respectively. Thus they have already had a disad-

vantage of detecting curvy edges. Among the images, box spline tight wavelet frame detects

edge more effectively in all images. Especially, it detects edge better than the MATLAB

commercial edge detection methods in many images.
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Clock

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.2: Edge detections for Image Clock by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.3: Edge detections for Image Clock by the methods from MATLAB Image processing
toolbox
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F16

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.4: Edge detections for Image F16 by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.5: Edge detections for Image F16 by the methods from MATLAB Image processing
toolbox
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Partition

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.6: Edge detections for Image Partition by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.7: Edge detections for Image Partition by the methods from MATLAB Image pro-
cessing toolbox
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Bank

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.8: Edge detections for Image Bank by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.9: Edge detections for Image Bank by the methods from MATLAB Image processing
toolbox
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Brain MRI

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.10: Edge detections for Image Brain MRI by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.11: Edge detections for Image Brain MRI by the methods from MATLAB Image
processing toolbox
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Head MRI

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.12: Edge detections for Image Head MRI by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.13: Edge detections for Image Head MRI by the methods from MATLAB Image
processing toolbox
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Finger Print

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.14: Edge detections for Image Finger Print by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.15: Edge detections for Image Finger Print by the methods from MATLAB Image
processing toolbox
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Lena

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.16: Edge detections for Image Lena by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.17: Edge detections for Image Lena by the methods from MATLAB Image processing
toolbox
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Saturn

Haar Wavelet Daubechies Length 6

Biorthogonal Wavelet Tight Wavelet Frame

Figure 4.18: Edge detections for Image Saturn by wavelets and a tight wavelet frame
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Sobel Prewitt

Roberts Laplacian

Zero-Crossing Canny

Figure 4.19: Edge detections for Image Saturn by the methods from MATLAB Image pro-
cessing toolbox
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4.3 Numerical Experiments : De-noising

In our numerical experiment, to make noisy image we first add a white noise to the pixel

values xi,j of the image. The white noise has a Gaussian distribution δi,j with mean zero and

variance σ. Then the pixel values yi,j of noisy image can be presented following

yi,j = xi,j + σδi,j

with δi,j ∼ N(0, 1) where σ is chosen from values 5, 10, 15 and 20. We then decompose the

image into a low-pass part and several high-pass parts of the image by using wavelets or

tight wavelet frames.

Next, we apply the soft-thresholding to each high-pass part of the image. Finally, we

reconstruct the image after we use noise softening. In 1993, Donoho in [Do] proved the-

oretically the superiority of using wavelet for image de-noising. He showed that the soft-

thresholding provide smoothness and better edge preservation for image de-noising. The

soft-thresholding method is to set each pixel value zi,j of image to a new pixel value z′i,j

according to the following.

z′i,j =


0 if |zi,j| ≤ ε

sign(zi,j) (|zi,j| − ε) if |zi,j| > ε

(4.4)

where ε is a thresholding value. The main idea of the soft-thresholding method is to reduce

the high frequency contents which has the noise of the image by ε value.

To measure the quality of the reconstructed image after noise is removed, we use peak

signal to noise ratio (PSNR). PSNR in decibels(dB) is computed by the following formula.

For given an image xi,j of N by N pixels and a reconstructed image x′i,j, where 0 ≤ xi,j ≤ 255,

PSNR = 10 log10

255N2∑N
i,j=1 (x′i,j − xi,j)2

The PSNR value itself is not meaningful but the relative comparison among the values from

the reconstructed images using different methods gives a quality measurement. Informally,

0.5 dB PSNR improvement is considered to be visible.
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We use the box spline φ1111 constructed in Example 3.5.4 for image de-noising. The other

box spline tight wavelet frames that we constructed give similar results. Comparing wavelets

for de-noising, tight wavelet frames give better results in the set of pictures we tested.

Since the most of the noise appears in the high-pass parts of the first level of decompo-

sition, we consider only the first level of decomposition. In this case, for each given image

and fixed noise we are able to find the optimal threshold values of soft-thresholding for the

sub-images decomposed by Haar, Daubechies, or biorthogonal 9/7 wavelets and box spline

tight frame φ1111.

We present four tables of PSNR values according to different σ values. Each table contains

PSNR values of noisy images called Bank, Brain MRI, F-16, Finger, Head MRI, Lena, and

Saturn and their denosied images reconstructed by tensor products of Haar, Daubechies,

biorthogonal 9/7 wavelets and box spline φ1111 tight wavelet frame. We also show a set of

figures of noisy Clock image and its de-noised images by a Haar wavelet, a biorthogonal

wavelet and the tight wavelet frame associated with box spline φ1111.

Image Noise(dB) Haar Daubechies Biorthogonal Tight wavelet frame

Bank 34.27 36.12 36.06 36.06 35.97

Brain MRI 35.80 37.77 38.52 40.19 39.07

F-16 34.16 36.09 36.45 36.49 36.50

Finger 34.16 35.30 36.20 36.39 35.32

Head MRI 35.29 37.89 38.47 38.78 38.45

Lena 34.16 36.06 36.55 36.63 36.67

Saturn 36.33 40.00 41.40 31.40 43.14

The PSNR comparison with σ =5
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Image Noise(dB) Haar Daubechies Biorthogonal Tight wavelet frame

Bank 28.31 31.16 31.15 31.16 31.32

Brain MRI 29.81 32.70 33.7 35.15 34.98

F-16 28.16 31.20 31.69 31.76 32.05

Finger 28.16 30.72 32.01 32.27 31.47

Head MRI 29.31 32.91 33.56 33.84 34.17

Lena 28.15 31.43 32.07 32.18 32.78

Saturn 30.33 35.02 35.92 36.01 39.31

The PSNR comparison with σ =10

Image Noise(dB) Haar Daubechies Biorthogonal Tight wavelet frame

Bank 24.64 28.26 28.32 28.33 28.80

Brain MRI 26.32 29.85 30.90 31.96 32.85

F-16 24.66 28.35 28.89 28.96 29.74

Finger 24.69 28.34 29.45 29.62 29.93

Head MRI 25.82 30.03 30.56 30.77 31.84

Lena 24.63 28.75 29.33 29.41 30.82

Saturn 26.82 32.03 32.62 32.66 37.16

The PSNR comparison with σ =15



91

Image Noise(dB) Haar Daubechies Biorthogonal Tight wavelet frame

Bank 22.38 26.20 26.31 26.31 27.18

Brain MRI 23.85 27.88 28.87 29.61 31.47

F-16 22.24 26.32 26.87 26.90 28.23

Finger 22.25 26.62 27.43 27.53 28.93

Head MRI 23.36 27.96 28.35 28.50 30.15

Lena 22.14 26.80 27.27 27.34 29.55

Saturn 24.35 29.82 30.22 30.22 35.54

The PSNR comparison with σ =20

Noisy image-Clock, PSNR=14.84(dB) Haar wavelet, PSNR=19.28(dB)

Biorthogonal wavelet, PSNR=19.46(dB) Tight wavelet frame, PSNR=22.85(dB)



Chapter 5

Tight Wavelet Frames over Bounded Domain

5.1 Construction Idea

The tight wavelet frame construction in this paper is based on a half infinite sequence of

nested subspaces over a bounded domain Ω in L2. That is, a sequence of nested subspaces

{Vk}k∈Z+ in L2(Ω) satisfies

V1 ⊂ V2 ⊂ · · · ⊂ Vk ⊂ · · · → L2(Ω)

and
⋃
k=1

Vk = L2(Ω).

Let Φk := (φk,1, · · · , φk,mk
)T be a column vector of locally supported functions in Vk which

generate Vk, i.e., Vk = span{φk,1, · · · , φk,mk
}. Though this sequence of subspaces {Vk}k∈Z+

does not have both translation and dilation invariant properties, we say {Φk}k∈Z+ generates

a multiresolution analysis(MRA) over bounded domains.

We work with the vector Φk in Vk ⊂ L2(Ω). Because Vk is a subspacce of Vk+1, there

exists a matrix of size mk ×mk+1 (mk ≤ mk+1) , namely Pk, such that

Φk = PkΦk+1. (5.1)

We call the matrix Pk a refinement matrix.

We want to find a matrix Qk of size nk ×mk+1 satisfying

Ψk := QkΦk+1. (5.2)

Let each component of the vector Ψk be ψk,1, · · · , ψk,nk
. Based on the above notation, we

give the definition of a tight wavelet frame over bounded domains.

92
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Definition 5.1.1 We say the family of vectors {Ψk}k∈Z+ defined in (5.2) is a (MRA) tight

wavelet frame associated with {Φk}k∈Z+ in L2(Ω) if

‖f‖2 =

m∑̀
j=1

|〈f, φ`,j〉|2 +
∞∑

k=`

nk∑
j=1

|〈f, ψk,j〉|2, ∀f ∈ L2(Ω),

for each component φk,1, · · · , φk,mk
of the column vector Φk and ψk,1, · · · , ψk,nk

of Ψk. We

call each function ψk,j for j = 1, · · · , nk and k ∈ Z+ a tight framelet (or a tight wavelet

frame generator).

For any f ∈ L2(Ω), let ck,i := 〈f, φk,i〉 for all i = 1, · · · ,mk and Ck := (ck,1, · · · , ck,mk
)T

be a column vector of size mk for any k ∈ Z+. In this way, let dk,j := 〈f, ψk,j〉 for all

j = 1, · · · , nk and Dk := (dk,1, · · · , dk,nk
)T . Then we know

Ck = 〈f,Φk〉 = 〈f, PkΦk+1〉 = PkCk+1,

Dk = 〈f,Ψk〉 = 〈f,QkΦk+1〉 = QkCk+1.

For a given vector of functions Φk suppose we can find a vector of functions Ψk satisfying

< f,Φk+1 >
T Φk+1 = < f,Φk >

T Φk +< f,Ψk >
T Ψk, ∀f ∈ L2(Ω). (5.3)

The condition in (5.3) can be expressed the following form according to our notations,

CT
k+1Φk+1 = CT

k PkΦk+1 +DT
kQkΦk+1.

Furthermore we have

CT
k+1Ck+1 = CT

k+1(P
T
k Pk +QT

kQk)Ck+1.

Thus if we find Qk for all k ∈ Z+ satisfying

Imk+1
= P T

k Pk +Q T
kQk, (5.4)

then we have

CT
k+1Ck+1 = CT

k Ck +DT
kDk. (5.5)

Furthermore by the recursive condition in (5.5), for any ` ∈ Z+,

CT
k+1Ck+1 = CT

` C` +
k∑

j=`

DT
j Dj
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and

CT
k+1Φk+1 = CT

` Φ` +
k∑

j=`

DT
j Ψj.

If CT
k+1Φk+1 converges to f in L2(Ω), for any ` ∈ Z+, we have

‖f‖2 =〈f, lim
k→+∞

CT
k+1Φk+1〉

= lim
k→+∞

〈f, CT
k+1Φk+1〉

= lim
k→+∞

〈f, CT
` Φ` +

k∑
j=`

DT
j Ψj〉

=CT
` C` +

∞∑
j=`

DT
j Dj

=

m∑̀
j=1

|〈f, φ`,j〉|2 +
∞∑

k=`

nk∑
j=1

|〈f, ψk,j〉|2

(5.6)

If we apply (5.6) for a fixed f and for all g in L2(Ω), then

‖f + g‖2 =

m∑̀
j=1

|〈f + g, φ`,j〉|2 +
∞∑

k=`

nk∑
j=1

|〈f + g, ψk,j〉|2, (5.7)

‖f − g‖2 =

m∑̀
j=1

|〈f − g, φ`,j〉|2 +
∞∑

k=`

nk∑
j=1

|〈f − g, ψk,j〉|2. (5.8)

If we subtract the equation (5.8) from (5.7), we have

4〈f, g〉 = 4(〈
m∑̀
j=1

〈f, φ`,j〉φ`,j +
∞∑

k=`

nk∑
j=1

〈f, ψk,j〉ψk,j , g 〉)

Thus for all f ∈ L2(Ω) and for all ` ∈ Z+,

f =

m∑̀
j=1

〈f, φ`,j〉φ`,j +
∞∑

k=`

nk∑
j=1

〈f, ψk,j〉ψk,j, weakly.

Therefore any function in L2(Ω) can be analyzed by any level of refinable functions and of

tight framelets associated with these refinable functions.

5.2 Construction Method

According to the construction idea from the the previous section, once we have the matrix

Qk associated with the refinement matrix Pk satisfying the condition in (5.4) for all k ∈ Z+,
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we have a tight wavelet frame {Ψk}k∈Z+ associated with {Φk}k∈Z+ . Thus the condition in

(5.4) will be the key identity to construct a tight wavelet frame over bounded domains. We

summarize this as follows.

Theorem 5.2.1 Let {Vk} be a MRA generated by a family of functions Φk = PkΦk+1,

where Pk is a banded matrix for each k ∈ Z+. If Imk
− Pk · P T

k is positive semi-definite for

the identity matrix Imk
of size mk ×mk, then there exists a tight wavelet frame {Ψk}k∈Z+ of

L2(Ω) defined such a way in (5.2). Moreover, if each component function φk,j of a vector Φk

is locally supported then each component function ψk,j of a vector Ψk is locally supported.

Proof Since the symmetric matrix Imk
− Pk · P T

k is positive semi-definite, there exists a

unique lower triangular matrix Lk such that

Imk
= Pk · P T

k + Lk · LT
k . (5.9)

Using this lower triangular matrix Lk we let

Rk = Imk+1+mk
−

 Pk
T

LT
k

[ Pk Lk

]
. (5.10)

Note that the matrix Rk is symmetric and RT
kRk = Rk. Writing Rk =

[
Q̃k Wc

]
with matrix

Q̃k of size (mk+1 +mk)×mk+1 and Wc being the term who cares, we observe

Q̃T
k Q̃k = Imk+1

− P T
k Pk.

It is clear that the rank of Q̃k is less than or equal to mk+1. Write

Q̃k =

 Jk

Ĵk


with Jk being of size mk+1 × mk+1 and Ĵk of size mk × mk+1. Then we multiply mk+1

Householder transformations Hmk
Hmk−1 · · ·H2H1 of size (mk +mk+1)× (mk +mk+1) on the

left side of matrix Q̃k. That is,

Hmk
Hmk−1 · · ·H2H1Q̃k =

 Qk

0

 , (5.11)
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where Qk is a upper triangular matrix of size mk+1 × mk+1. Let us denote Uk :=

Hmk
Hmk−1 · · ·H2H1. Then Uk is a unitary matrix and we have

QT
kQk = (UkQ̃k)

T (UkQ̃k) = Q̃T
k Q̃k = Imk+1

− P T
k Pk,

The matrix Qk in (5.11) is the matrix we want to have with full rank mk. If Pk is a banded

matrix, so is Pk ·P T
k . It follows that Lk is banded. Thus, it is easy to see from the definition of

Qk that Qk is banded. Thus, ψk,j are locally supported for each k ∈ Z+ and j = 1, · · · ,mk+1.

�

5.3 B-spline Tight Wavelet Frames

In this section, we apply the construction method from the proof in Theorem 5.2.1 to con-

struct tight wavelet frames over a bounded domain associated with B-spline functions defined

in equally spaced simple knots. Because of the efficiency and simplicity of computation, B-

splines often have been used for constructing wavelet functions.

Let us recall the scaling relation of B-spline φm for m ≥ 2 from the Section 3.1.

φm(x) =
∑
j∈Z

cmj φ
m(2x− j),

where

cmj =


2−m+1

(
m
j

)
for 0 ≤ j ≤ m

0 otherwise

(5.12)

Consider B-spline function φm of order m whose dyadic translations are restricted into

domain [0, b] , i.e., φm(2k · −i)| [0,b]. Let us denote φm
k,j(·) be all translations of 2k−1φm(2k−1·)

restricted over domain [0, b] and

V m
k := {φm

k,j : 1 ≤ j ≤ mk}.

Then the family of nested sequence of subspaces {V m
k : k ∈ Z+} is a MRA generated by

{φm
k,1, · · · , φm

k,mk
}. Thus if we denote

Φm
k := (φm

k,1, · · · , φm
k,mk

)T ,
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we can find a refinement matrix Pm
k of size mk×mk+1 of a vector satisfying Φm

k = Pm
k Φm

k+1 for

each k ∈ Z+. First, we check the positive semi-definite property of the matrix Imk
−Pm

k ·Pm
k

T

for the identity matrix Imk
.

Lemma 5.3.1 The symmetric matrix Imk
− Pm

k · Pm
k

T of size mk ×mk for the refinement

matrix Pm
k of Φm

k is positive semi-definite for each k ∈ Z and m ≥ 2.

Proof Let us denote (pm,k
i,j ) := Pm

k . Then for each i = 1, · · · ,mk

0 ≤
mk+1∑
j=1

pm,k
i,j ≤

1

2

m∑
j=0

cmj = 1, (5.13)

where cmj is in (5.12) . Let us denote Gm
k := (gm,k

i,j ) = Pm
k ·Pm

k
T . To show that matrix Imk

−Gm
k

is positive semi-definite, we use diagonal dominance of matrix Imk
− Gm

k . Since matrix Gm
k

is symmetry, it is sufficient to check |1− gm,k
i,i | ≥

∑
i6=j | g

m,k
i,j | for i ≤ bmk

2
c+ 1. Notice that

gm,k
i,j =

mk+1∑
`=1

pm,k
i,` p

m,k
`,j .

Then for each k ∈ Z+,

1− |gm,k
i,i | −

∑
j 6=i

| gm,k
i,j | = 1−

mk+1∑
j=1

mk+1∑
`=1

pm,k
i,` p

m,k
j,`

= 1−

(
mk+1∑
`=1

pm,k
i,`

)(
mk+1∑
`=1

pm,k
j,`

)
.

Since (5.13), 1− |gm,k
i,i | ≥

∑
j 6=i | g

m,k
i,j | for all i = 1, · · · ,mk. Therefore the symmetry matrix

Imk
− Pm

k · Pm
k

T is positive semi-definite. �

By the above lemma, we know that for the refinement matrix Pm
k of a vector Φm

k whose

component B-spline functions generate subspace V m
k in L2([0, b]) is satisfying the sufficient

condition in Theorem 5.2.1. That is, we can construct B-spline tight wavelet frame over a

bounded domain by using the constructive scheme in the proof of Theorem 5.2.1.

We now follow the construction steps in the proof of Theorem 5.2.1. We find the lower

triangular matrix Lk such that Imk
−Pm

k ·Pm
k

T = Lk ·Lk by using cholesky factorization. Set

Rk = Imk+1+mk
−

 Pm
k

T

LT
k

[ Pm
k Lk

]
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Let Q̃k be the first left side block matrix of the size (mk+1 +mk)×mk+1 of the matrix Rk.

Since RT
kRk = Rk, we observe that

Q̃T
k Q̃k = Imk+1

− Pm
k

TPm
k .

Write

Q̃k =

 Jk

Ĵk


with Jk being of size mk+1 ×mk+1 and Ĵk of size mk ×mk+1. We decompose the matrix Q̃k

by using QR-decomposition. Then we have the upper triangular matrix of size mk+1 on the

top and 0-block on the bottom such as

UkQ̃k =

 Qm
k

0

 , for some unitary matrix Uk.

Then

Qm
k

TQm
k = (UkQ̃k)

T (UkQ̃k) = Q̃kQ̃k = Imk+1
− Pm

k
TPm

k ,

the matrixQm
k is the matrix we want to have. Therefore, by setting Ψm

k = Qm
k Φm

k+1 for Φm
k+1 =

{φm
k+1,1, · · · , φm

k+1,mk+1
}, we have the collection of tight framelets Ψm

k = {ψm
k,1, · · · , ψm

k,mk+1
}

for k ∈ Z+.

In the following examples, we give the explicit form of matrix Qm
1 associated with B-spline

tight framelets Ψm
1 of order m = 2, 3, 4 for the given matrix Pm

1 associated with Φm
1 . We

can compute Pm
k and Qm

k for any k ∈ Z+ and for arbitrary integer order m ≥ 2 of B-spline

functions.

Example 5.3.1 For the linear B-spline φm over the interval [0, 2], where m = 2, we have

the column vectors Φ2
1 = [ φ2(x + 1)|[0,2] φ

2(x)|[0,2] φ
2(x − 1)|[0,2] ]T := [φ2

1,1 φ
2
1,2 φ

2
1,3]

T and

Φ2
2 = [ 2φ2(2x+ 2)|[0,2] 2φ2(2x+ 1)|[0,2] 2φ2(2x)|[0,2] 2φ2(2x− 1)|[0,2] 2φ2(2x− 2)|[0,2] ]T . Then
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from the relation Φ2
1 = P 2

1 · Φ2
2, we have the refinement matrix P 2

1 as follows

P 2
1 =
√

2


1
2

1
4

0 0 0

0 1
4

1
2

1
4

0

0 0 0 1
4

1
2

 .
Then the vector of tight wavelet frame generators is Ψ2

1 = Q2
1 ·Φ2

2 := [ψ2
1,1 ψ

2
1,2 ψ

2
1,3 ψ

2
1,4 ψ

2
1,5]

T

, where

Q2
1 =



√
2

2
−

√
10
4

0 0 0

0
√

10
4

−
√

10
10

−
√

10
20

0

0 0
√

10
5

−3
√

10
20

0

0 0 0
√

2
2

−
√

2
4

0 0 0 0
√

6
4


.

We illustrate the linear B-spine and its tight wavelet frame generators of the level 1 in the

Figure 5.1. �

Example 5.3.2 For the quadratic B-spline φm over the interval [0, 3], where m = 3, we

have the column vectors

Φ3
1 = [ φ3(x+2)|[0,3] φ

3(x+1)|[0,3] φ
3(x)|[0,3] φ

3(x− 1)|[0,3] φ
3(x− 2)|[0,3] ]T := [φ3

1,1 · · · φ3
1,5]

T

and Φ3
2 = [ 2φ3(2x+ 4)|[0,3] · · · 2φ3(2x− 4)|[0,3] ]T . Then from the relation Φ3

1 = P 3
1 ·Φ3

2, we

have the refinement matrix P 3
1 as follows

P 3
1 =
√

2



3
8

1
8

0 0 0 0 0 0

1
8

3
8

3
8

1
8

0 0 0 0

0 0 1
8

3
8

3
8

1
8

0 0

0 0 0 0 1
8

3
8

3
8

1
8

0 0 0 0 0 0 1
8

3
8


.
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Linear B-spline {φ2
1,1, φ

2
1,2, φ

2
1,3}

Linear Framelets ψ2
1,1 and ψ2

1,5 Linear Framelets ψ2
1,2, ψ

2
1,3, ψ

2
1,4

Figure 5.1: Linear B-splines {φ2
1,1, φ

2
1,2, φ

2
1,3} and its tight framelets {ψ2

1,1, · · · , ψ2
1,5} of the

ground level over a bounded domain in Example 5.3.1.
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Then the vector of tight wavelet frame generators is Ψ3
1 = Q3

1 ·Φ3
2 := [ψ3

1,1 · · · ψ3
1,8]

T , where

Q3
1 =



√
11
4
−3

√
11

44
−3

√
11

88
−

√
11

88
0 0 0 0

0
√

77
11

−27
√

77
616

−9
√

77
616

0 0 0 0

0 0
√

413
28

−27
√

413
1652

−3
√

413
472

−
√

413
472

0 0

0 0 0
√

1947
59

−51
√

1947
5192

−17
√

1947
5192

0 0

0 0 0 0
√

935
44

−9
√

935
748

−3
√

935
680

−
√

935
680

0 0 0 0 0 3
√

17
17

−15
√

17
136

−5
√

17
136

0 0 0 0 0 0
√

185
20

−21
√

185
740

0 0 0 0 0 0 0
√

703
37



.

We illustrate the quadratic B-spine and its tight wavelet frame generators of the level 1 in

the Figure 5.2. �

Example 5.3.3 For the cubic B-spline φm over the interval [0, 4], where m = 4, we have

the column vectors

Φ4
1 = [ φ4(x+ 3)|[0,4] · · · φ4(x)|[0,4] · · · φ4(x− 3)|[0,4] ]T := [φ4

1,1 · · · φ4
1,4 · · · φ4

1,7]
T

and Φ4
2 = [ 2φ4(2x+ 5)|[0,4] · · · 2φ4(2x− 5)|[0,4] ]T . Then from the relation Φ4

1 = P 4
1 ·Φ4

2, we

have the refinement matrix P 4
1 as follows

P 4
1 =
√

2



1
4

1
16

0 0 0 0 0 0 0 0 0

1
4

3
8

1
4

1
16

0 0 0 0 0 0 0

0 1
16

1
4

3
8

1
4

1
16

0 0 0 0 0

0 0 0 1
16

1
4

3
8

1
4

1
16

0 0 0

0 0 0 0 0 1
16

1
4

3
8

1
4

1
16

0

0 0 0 0 0 0 0 1
16

1
4

3
8

1
4

0 0 0 0 0 0 0 0 0 1
16

1
4



.

Then the vector of tight wavelet frame generators is Ψ4
1 = Q4

1 ·Φ4
2 := [ψ4

1,1 · · · ψ4
1,11]

T , where

Q4
1 = [V1 ; V2], where
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Quadratic B-spline {φ3
1,1, · · · , φ3

1,5} Quadratic Framelets ψ3
1,1 and ψ3

1,2

Quadratic Framelets ψ3
1,3 and ψ3

1,4 Quadratic Framelets ψ3
1,5, ψ

3
1,6, ψ

3
1,7, ψ

3
1,8

Figure 5.2: Quadratic B-splines {φ3
1,1, · · · , φ3

1,5} and Quadratic B-spline tight framelets
{ψ3

1,1, · · · , ψ3
1,8} of the ground level over a bounded domain in Example 5.3.2.
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V1 =



−866.0 252.6 144.3 36.08 0.00

0.0 −799.6 −319.2 128.6 39.08

0.0 0.0 −792.0 334.6 173.6

0.0 0.0 0.0 −757.2 372.3

0.0 0.0 0.0 0.0 −761.4

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0



,

and

V2 =



0.008 0.00 0.00 0.00 0.00 0.00

9.771 0.00 0.00 0.00 0.00 0.00

43.39 0.00 0.00 0.00 0.00 0.00

144.7 41.27 10.32 0.00 0.00 0.00

368.4 184.3 46.09 0.00 0.00 0.00

−737.9 396.6 152.1 42.35 10.59 0.00

0.0 −746.4 385.9 190.0 47.50 0.00

0.0 0.0 −727.2 410.4 156.3 42.97

0.0 0.0 0.0 −737.3 396.5 193.5

0.0 0.0 0.0 0.0 −720.5 419.4

0.0 0.0 0.0 0.0 0.0 −731.3


We illustrate the cubic B-spine and its tight wavelet frame generators of the level 1 in

the Figure 5.3. �
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Cubic B-splines {φ4
1,1, · · · , φ4

1,7}

Cubic Framelets {ψ4
1,1, ψ

4
1,2, ψ

4
1,3} Cubic Framelets ψ4

1,4 and ψ4
1,5

Cubic Framelets ψ4
1,6 and ψ4

1,7 Cubic Framelets {ψ4
1,8, ψ

4
1,9, ψ

4
1,10, ψ

4
1,11}

Figure 5.3: Cubic B-splines {φ4
1,1, · · · , φ4

1,7} and cubic B-spline tight framelets
{ψ4

1,1, · · · , ψ4
1,11} of the ground level over bounded domain [0, 4] in Example 5.3.3.
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(a) (b)

(c) (d)

Figure 5.4: (1) Approximation of f(x) = sin(3x) by using Quadratic B-spline tight framelets
over bounded domain [0, 1]. (2) ,(3) and (4) are the difference of f(x) and the approximation
by the 3rd, 4th and 5th level of tight wavelet frame generators respectively.
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5.4 Box Spline Tight Wavelet Frames

Our tight wavelet frame construction method can be applied multivariate settings. In this

section we apply the tight wavelet frame construction scheme on Theorem 5.2.1 to 3-direction

mesh Box spline functions.

Let us recall a 3-direction mesh box spline φ`mn(x, y) whose Fourier transform is defined

as follows for `, n,m ∈ Z+,

φ̂`mn(ξ, η) =

(
1− e−

√
−1ξ

√
−1ξ

)`(
1− e−

√
−1η

√
−1η

)m(
1− e−

√
−1(ξ+η)

√
−1(ξ + η)

)n

.

To make our notations simple, let us denote φν := φ`mn. The two-scale relation of 3-direction

mesh box splines is

φν(x, y) =
∑
i,j∈Z

ci,jφ
ν(2x− i, 2y − j),

and its Fourier transformation is

φ̂ν(2ξ, 2η) = C(ξ, η) φ̂ν(ξ, η),

where C(ξ, η) =
1

4

∑
i,j∈Z

ci,je
√
−1(iξ+jη)

and |C(0, 0) | = 4.

(5.14)

Consider a 3-direction mesh box spline φν whose dyadic translations are restricted into the

domain [0, a]× [0, b], i.e., φν(2kx− i, 2ky − j)|[0,a]×[0,b]. Let us denote φν
k,q be all translations

of 22kφν(2kx, 2ky)
∣∣
[0,a]×[0,b]

and

V ν
k := {φν

k,q : 1 ≤ q ≤ mk}.

Then the family of nested sequence of subspaces {V ν
k : k ∈ Z+} is a MRA generated by

{φν
k,1, · · · , φν

k,mk
}. Thus if we denote

Φν
k := (φν

k,1, · · · , φν
k,mk

)T ,

we can find a refinement matrix P ν
k of size mk ×mk+1 of a vector satisfying Φν

k = P ν
k Φν

k+1

for each k ∈ Z+.
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The following lemma says the refinement matrix P ν
k of a vector Φν

k whose component

functions generate subspace V ν
k in L2([0, a] × [0, b]) is satisfying the sufficient condition in

Theorem 5.2.1.

Lemma 5.4.1 If P ν
k is a matrix of size mk ×mk+1 generated by a collection of box spline

functions Φν
k over bounded domain, i.e. Φν

k = P ν
k Φν

k+1, then

Imk
− P ν

k · P ν
k

T , for each k ∈ Z+

is positive semi-definite.

Proof Let us denote (pν,k
i,j ) := P ν

k and (gν,k
i,j ) := Gν

k = P ν
k · P ν

k
T . Because of (5.14) ,

0 ≤
mk+1∑
j=0

pν,k
i,j ≤

1

4

mk+1∑
`=1

ci,`c`,j = 1. (5.15)

To show that matrix Imk
−Gν

k is positive semi-definite, we use diagonal dominance of matrix

Imk
−Gν

k. Since the matrix Gν
k is symmetry, it is sufficient to check |1− gν,k

i,i | ≥
∑

i6=j | g
ν,k
i,j |

for i ≤ bmk

2
c+ 1.

0 ≤ gν,k
i,j =

mk+1∑
`=1

pν,k
i,` p

ν,k
`,j = 1.

Because of (5.15),

1− |gν,k
i,i | −

∑
j 6=i

| gν,k
i,j | = 1−

mk+1∑
j=1

mk+1∑
`=1

pν,k
i,` p

ν,k
j,`

= 1−

(
mk+1∑
`=1

pν,k
i,`

)(
mk+1∑
`=1

pν,k
j,`

)
≥ 0 .

Therefore the symmetry matrix Imk
− P ν

k · P ν
k

T is positive semi-definite. �

Thus we can construct box spline tight wavelet frame over the bounded domain [0, a]×

[0, b]. by using the constructive scheme in the proof of Theorem 5.2.1. Each construction

steps are the same as we described for the B-spline tight wavelet frame construction over

the bounded interval in the previous section. In the following examples we illustrate the

refinement matrix P ν
1 associated with the vector Φν

1 of refinable functions φν
1,1, · · · , φν

1,m1
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over the bounded domain [0, a] × [0, b] and Qν
1 associated with the vector Ψν

1 of the tight

wavelet frame generators obtained by setting Ψν
1 = Qν

1Φ
ν
1.

Example 5.4.1 111 Box spline Tight Framelets ψ111 over [0, 2]× [0, 2]. We set the column

vector Φ111
1 with all the integer translations of φ111 over the domain [0, 2]× [0, 2] as follows

Φ111
1 = [ φ111(x+ 1, y + 1)|[0,2]×[0,2] · · · φ111(x− 1, y − 1)|[0,2]×[0,2] ]T := [φ111

1,1 · · · φ111
1,9 ]T .

Similarly, set the column vector Φ111
2 as follows Φ111

2 = [ 2φ111(2x+2, 2y+2)|[0,4] · · · 2φ111(2x−

2, 2y − 2)|[0,4] ]T . Then from the relation Φ111
1 = P 111

1 · Φ111
2 , we have the refinement matrix

P 111
1 as follows

P 111
1 =

1

2



1 1
2

0 0 0 1
2

1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1
2

1 1
2

0 0 0 1
2

1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1
2

1 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

0 0 0 0 1 1
2

0 0 0 1
2

1
2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 1
2

1
2

0 0 0 1
2

1 1
2

0 0 0 1
2

1
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 1
2

1 0 0 0 0 1
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 1 1
2

0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 1
2

1 1
2

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

1
2

0 0 0 1
2

1


Then the vector of tight wavelet frame generators constructed by our method is Ψ111

1 =

Q111
1 · Φ111

2 := [ψ111
1,1 · · · ψ111

1,25]
T , where

Q111
1 =



V11; V12; Z; Z; Z

Z; V22; V23; V24; Z

Z; Z; V33; V34; Z

Z; Z; Z; V44; V45

Z; Z; Z; Z; V55


, and where Z =



0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


We omit the explicit expression of each block matrix Vi,j.

�



109

Box Spline φ111

The Box Spline Tight Framelet located on the center of the domain

Box Spline Tight Framelets located on the boundary of the domain

Figure 5.5: Box Spline φ111 and its some of Tight Framelets over the bounded domain
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Figure 5.6: Box Spline Tight Framelets located at the four conners of the domain
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