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Abstract

Tadmor, Nezzar and Vese [Eitan Tadmor, Suzanne Nezzar, and Luminita Vese. A

multiscale image representation using hierarchical (BV, L2) decompositions. Multi-

scale Model. Simul., 2(4):554–579, 2004.] developed a total variation based mul-

tiscale method for decomposing a function f ∈ BV into a countable set of features

{uk : k = 0, 1, 2 . . .} associated to a sequence of dyadic scales {λk = λ02−k : k =

0, 1, 2, . . .} such that for each k, [uk+1, vk+1] = arg min{λk|Du| + ‖v‖L2 : u + v = f }.

They showed that f =
∑∞

k=0 uk in L2(Ω) and strongly in W−1,∞(Ω). In this paper, we

study the convergence of the series
∞∑

k=0
uk in the weak*, strict and normed topologies

of the space of functions with bounded variation. We show that in general, the conver-

gence of the series f =
∞∑

k=0
uk in any of the three topologies of BV is conditioned by

its rate of convergence in L2, and prove that the convergence in L2 is geometric.

1 Introduction

The pixel values of a digital image are samples of an intensity field F(x) defined on a planar
domain Ω, however, pixel values systematically confound the various scales represented
in the original intensity field. Nonetheless, the more noticeable features of the intensity
field are preserved to some extent, and readily identified by human subjects. For example,
edges and textures are well preserved by most sampling processes and humans use that
information to classify and identify objects in a digital image.
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Intensity fields could be realized as square integrable functions. A central question in
digital image processing is then to identify appropriate subsets of the class of L2 intensity
fields that encode the most noticeable features of a digital image. A typical digital represen-
tation of a natural scene contains flat regions of varying intensities; the interface between
these regions is made edges, thus the intensity field from which the image was sampled is
presumably with bounded variation on Ω. Indeed, many digital image enhancement meth-
ods modeled on BV have been proposed since the seminal work of Rudin, Osher and Fatemi
[5]. The explosion of total variation based techniques in the mathematical image analysis
community has led Gousseau and Morel [3] to question the universality of the total varia-
tion model for natural images; thus concluding that natural images are overwhelming not
of bounded variation and providing a plausible argument for why these methods are unable
to perform adequately on natural images that are rich on textures.

The Rudin-Osher-Fatemi (ROF) total variation approach to image denoising consist in
extracting the critical features of an image f at a scale λ > 0 by decomposing f = uλ + vλ
such that

[uλ, vλ] = arg inf
f =u+v

{
λ|Du| + ‖v‖22 : u ∈ BV(Ω), v ∈ L2(Ω)

}
.

For a good choice of scale λ, the features function uλ represents the cleaned image and
vλ the noise. The ROF model seeks to achieve reasonable fidelity to the image f while
capturing enough of the features to the extent that they are measured by a total variation
proportionally to 1/λ. We observe that if λ is too small, then ‖vλ‖L2 is small and uλ captures
most of the features in f including those encoding noise. However, if λ is chosen too big,
then the model leads to a decomposition in which the total variation of uλ is too small
and only a cartoon version of f is recovered in uλ with most of edges blurred away. So
for adequate performance, one should choose a consensus value of λ, hence the practical
challenge in using the ROF model in practice.

To lessen the impact of choosing the consensus λ, Tadmor, Nezzar and Vese [6] pro-
posed a hierarchical multiscale decomposition procedure based on the ROF decomposition.
The starting point is Meyer’s interpretation [4] of the ROF model as a decomposition of f

into edges uλ and textures vλ. These scholars intuit that the concepts of edge and texture
are scale dependent. For instance at scale λ0, the ROF model yields the decomposition
f = u0 + v0 of f into edges u0 and textures v0; the textures v0 at the scale λ0 consists of
edges and textures at a finer scale, say λ0/2. One can then repeat the ROF decomposition
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on v0 at scale λ0/2 to get

[u1, v1] = arg inf
v0=u+v

{
λ0

2
|Du| + ‖v‖22 : u ∈ BV(Ω), v ∈ L2(Ω)

}
,

and we now have an improved two-scale reconstruction of f defined by f = u0 + u1 + v1,
with textures below scale λ0/2 now captured in v1. By iterating the dyadic refinement
above, one generates a (BV, L2) multiscale approximation of f over a dyadic cascade of
scales

f ≈ u0 + u1 + . . . + uk + . . . ,

where for any nonnegative integer i ≥ 0

[ui+1, vi+1] = arg inf
vi=u+v

{
λ0

2i |Du| + ‖v‖22 : u ∈ BV(Ω), v ∈ L2(Ω)
}
. (1)

In this paper, we revisit the question of convergence of (BV, L2) hierarchical multiscale
decompositions in the space of functions with bounded variation. In section 2, we review
properties of the ROF model that are relevant to this work and recall the definition of the
three topologies on the space of functions with bounded variations that we seek conver-
gence in. Section 3 is devoted to an alternate proof of the convergence of the (BV, L2)
hierarchical approximation. We establish a new result on the convergence rate of the hi-
erarchical decomposition in L2(Ω) and give a necessary condition for the convergence in
BV(Ω).

2 Preliminaries

In this section, we review three topologies on the space BV(Ω) of functions with bounded
variation and a characterization of the ROF model of image decomposition. In the sequel
Ω is either a convex polygonal domain of R2 or Ω = R2, unless otherwise specified.

2.1 Functions with bounded variation

The total variation of a function u defined on Ω is defined by

|Du| := sup
{
−

∫
Ω

u div(ϕ)dx : ϕ ∈ C1
c (Ω,R2), |ϕ(x)| ≤ 1, ∀x ∈ Ω

}
. (2)
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A function is said to be with bounded variation on Ω if |Du| is finite. The space of functions
with bounded variation functions, BV(Ω), is the subspace of integrable functions on Ω with
finite total variation:

BV(Ω) :=
{
u ∈ L1(Ω) : |Du| < ∞

}
. (3)

The space BV(Ω) is a Banach space for the norm

‖u‖BV =

∫
Ω

|u|dx + |Du|; (4)

we will refer to the corresponding topology on BV(Ω) as the strong topology.

Definition 2.1 (Strong Convergence). A sequence {un} in BV(Ω) converges strongly to
u ∈ BV(Ω) if

lim
n→∞
‖un − u‖BV = 0.

Remark 2.2. The total variation defines a semi-norm on BV(Ω). In particular by the
Poincaré inequality, the total variation |Du| is a norm on

BV0(Ω) := {u ∈ BV(Ω) :
∫

Ω

udx = 0}

that is equivalent to the norm ‖u‖BV .

Alternatively, one could define the space BV(Ω) as the subspace to functions u ∈ L1(Ω)

such that the weak gradient Du =

(
∂u
∂x1

,
∂u
∂x2

)
is a vector valued Radon measure on Ω.

In this interpretation, BV(Ω) can be endowed with a topology that combines the strong
topology on L1(Ω) and the weak* topology on the space of vector valued Radon measures,
leading to the notion of weak* topology.

Definition 2.3 (weak* convergence). A sequence {un} in BV(Ω) weakly* converges to u ∈

BV(Ω) if un converges strongly to u in L1(Ω) and Dun converges weakly* to Du, i.e

lim
n→∞

∫
Ω

ϕ dDun =

∫
Ω

ϕ dDu, ∀ϕ ∈ C0
c (Ω,R2).

A simple criterion for proving weakly* convergence is as follows
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Proposition 2.4 ([1, Proposition 3.13]). A sequence {un} ⊂ BV(Ω) weakly* converges to

u ∈ BV(Ω) if and only if {|Dun|} is bounded as a sequence of numbers and
∫

Ω
|un−u|dx→ 0

as n→ ∞.

Finally, the space BV(Ω) can be endowed with a metric space structure where the dis-
tance is defined by

d(u, v) =

∫
Ω

|u − v|dx +
∣∣∣|Du| − |Dv|

∣∣∣ (5)

The metric space topology induced by the distance d above is called the strict topology.

Definition 2.5. A sequence {un} in BV(Ω) strictly converges to u ∈ BV(Ω) if

lim
n→∞

∫
Ω

|un − u|dx = 0 and lim
n→∞
|Dun| = |Du|. (6)

Remark 2.6. The three modes on convergence defined above are related as follows:

Strong Convergence ⇒ Strict Convergence ⇒ Weak* Convergence; (7)

all converses being false.

2.2 Relevant properties of the ROF decomposition model

The ROF image decomposition model consists in extracting the critical features of an image
f at a scale λ > 0 by decomposing f = uλ + vλ such that

[uλ, vλ] = arg inf
f =u+v

{
λ|Du| + ‖v‖22 : u ∈ BV(Ω), v ∈ L2(Ω)

}
. (ROF)

The existence and uniqueness of the pair [uλ, vλ] is an interesting exercise in convex anal-
ysis, see Chambolle et al. [2] and the references therein. In particular, the optimal pair
[uλ, vλ] is characterized as follows.

Theorem 2.7 ([2]). Let λ > 0 and f ∈ L2(Ω) be fixed. Then, the pair of functions f =

uλ + vλ is a solution of the convex optimization problem (ROF) if and only if there exists
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z ∈ L∞(Ω,R2) such that

−
λ

2
div(z(x)) + uλ(x) = f (x) a.e. x ∈ Ω,

|z(x)| ≤ 1 a.e. x ∈ Ω,

z · ν = 0 weakly on ∂Ω,∫
Ω

− div(z)uλ dx = |Duλ|.

(8)

Let Eλ(u) denote the objective functional of the ROF model, i.e.

Eλ(u) = λ|Du| +
∫

Ω

|u − f |2dx. (9)

We infer from the characterization of the optimal pair above the following extremal value
identity.

Corollary 2.8. Let f = uλ + vλ be the optimal decomposition of f per the ROF model.

Then, we have

Eλ(uλ) = ‖ f ‖22 − ‖uλ‖
2
2. (10)

Proof. By Theorem 2.7 above, we have

|Duλ| =
2
λ

∫
Ω

vλuλdx

and it follows that

Eλ(uλ) = 2
∫

vλuλdx +

∫
Ω

v2
λdx =

∫
Ω

(uλ + vλ)2 − u2
λ dx

= ‖ f ‖22 − ‖uλ‖
2
2 since f = uλ + vλ,

which is the desired result. �

We conclude the section by showing that the ROF model (for Ω bounded) preserves the
average value of functions with zero mean value.

Proposition 2.9. Suppose Ω is a bounded domain. Let f ∈ L2(Ω) and λ > 0 be fixed. If

f = uλ + vλ is the ROF decomposition of f at the scale λ, then
∫

Ω

uλ dx =

∫
Ω

f dx.
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Proof. Since uλ minimizes Eλ over BV(Ω), it follows that for any constant c ∈ R, we have

λ|Duλ| +
∫

Ω

| f − uλ|2 ≤ λ|D(uλ + c)| dx +

∫
Ω

| f − (uλ + c)|2 dx

≤ λ|D(uλ)| +
∫

Ω

| f − (uλ + c)|2 dx,

that is,

0 ≤ 2c
∫

Ω

( f − uλ)dx + |Ω| c2 ∀ c ∈ R

where |Ω| is the size of Ω. Consequently,
∫

Ω

( f − uλ) dx = 0 and the proof is complete. �

3 (BV, L2) hierarchical decomposition

Let λ0 > 0 and f ∈ L2(Ω) be fixed. The Tadmor-Nezzar-Vese (TNV) dyadic sequence
{un : n = 0, 1, 2, . . .} for f with base scale λ0 is given by the recurrence relation

u0 = arg inf
u∈BV(Ω)

{
E0(u) := λ0|Du| + ‖ f − u‖22

}
, (11)

and for any n ≥ 0

un+1 = arg inf
u∈BV(Ω)

En+1(u) :=
λ0

2n+1 |Du| +
∥∥∥ f −

n∑
i=0

ui

∥∥∥2

2

 . (12)

Let us quickly review some facts about the (BV, L2) hierarchical decomposition that are
readily obtained from the properties of the ROF model highlighted in the previous section.
Firstly, in view of Theorem 2.7, for all n = 0, 1, 2, . . ., f −

n∑
i=0

ui defines a bounded linear

functional on the Sobolev spaces W1,1
0 (Ω), as such f −

n∑
i=0

ui ∈ W−1,∞(Ω). It is readily

deduced from (8) and the definition of un that

∥∥∥ f −
n∑

i=0

ui

∥∥∥
W−1,∞ ≤ λ02−n−1, ∀n = 0, 1, 2 . . . . (13)

Thus, for any f ∈ L2(Ω) and λ0 > 0, the (BV, L2) dyadic multiscale series
∞∑

i=0
ui converges

to f in W−1,∞(Ω) with a rate of O(2−n).
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Secondly, thanks to the minimum value identity (10) applied to uk+1, we have

‖ f −
k+1∑
i=0

ui‖
2
2 ≤ Ek+1(uk+1) ≤ ‖ f −

k∑
i=0

ui‖
2
2. (14)

Thus, the sequence {‖ f −
∑k

i=0 ui‖2 : i = 0, 1, 2, . . .} is monotonically nonincreasing. This
suggests that the hierarchical decomposition may converge to f in L2(Ω) in some cases.
Indeed, Tadmor, Nezzar and Vese proved the following.

Theorem 3.1 ([6, Theorem 2.2]). Suppose that f ∈ BV(Ω). Then, the series
∑∞

k=0 uk con-

verges strongly to f in L2(Ω) and the energy of f in L2(Ω) satisfies

‖ f ‖22 =

∞∑
k=0

‖uk‖
2
2 + λ0

∞∑
k=0

2−k|Duk|. (15)

Proof. When studying the convergence rate of a TNV sequence below, we will give a new
proof of this theorem. �

The following result is an observation about the average values of the terms of TNV
sequences. Namely, we assert that when Ω is bounded all but the first term of a TNV
sequence must have zero as mean value.

Proposition 3.2. Suppose that Ω is bounded. Let f ∈ L2(Ω) and λ0 > 0 be fixed. If {un}n is

the TNV dyadic sequence for f with base scale λ0, then∫
Ω

u0dx =

∫
Ω

f dx and
∫

Ω

undx = 0 ∀n ≥ 1. (16)

Proof. Indeed by Proposition 2.9, we have

∫
Ω

u0dx =

∫
Ω

f dx and
∫

Ω

undx =

∫
Ω

f −
n−1∑
i=0

ui dx, n = 1, 2, . . . .

By induction on n = 1, 2, . . ., we get∫
Ω

undx =

∫
Ω

f − u0 dx = 0 ∀ n ∈ N,

and the proof is complete. �
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3.1 Convergence rate in the norm of L2

In this section, we establish a convergence rate to complement Theorem 3.1. Before prov-
ing our first contribution of this paper, let us first establish a lemma that is the cornerstone
of our result.

Lemma 3.3. Let a sequence {ak}k≥0 of nonnegative real numbers be fixed. Then, for any

δ ∈ (0, 1) and for all 0 ≤ ρ ≤ 1/δ − 1, there holds

n∑
k=0

δkak ≥ ρ

n∑
k=0

δk
k−1∑
j=0

a j, ∀ n ≥ 1. (17)

Proof. Let n ≥ 1 and δ ∈ [0, 1) be fixed. Then,

n∑
k=0

δk
k−1∑
j=0

a j =

n−1∑
k=0

ak

n∑
j=k+1

δ j

=

n−1∑
k=0

akδ
k

n−k∑
j=1

δ j =

n−1∑
k=0

akδ
k δ(1 − δ

n−k)
1 − δ

.

Consequently, for any ρ ≥ 0 we have

n∑
k=0

δkak − ρ

n∑
k=0

δk
k−1∑
j=0

a j =

n∑
k=0

δkak − ρ

n−1∑
k=0

akδ
k δ(1 − δ

n−k)
1 − δ

=

n∑
k=0

δkak −
ρδ

1 − δ

n−1∑
k=0

akδ
k +

ρδn

1 − δ

n−1∑
k=0

ak

≥ δnan + (1 −
ρδ

1 − δ
)

n−1∑
k=0

akδ
k (dropping the rightmost term).

In particular, if 0 ≤ ρ ≤ 1/δ − 1, then 1 − ρδ

1−δ ≥ 0 and it follows that

n∑
k=0

δkak − ρ

n∑
k=0

δk
k−1∑
j=0

a j ≥ δ
nan ≥ 0.

Since n was arbitrarily chosen, we get inequality (17) and the lemma is proved. �

We are now ready to state and prove our first result of this paper complementing Theo-
rem 3.1 with a geometric convergence rate.
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Theorem 3.4. Suppose that f ∈ BV(Ω) and let λ0 > 0 be fixed. Let {un} be the sequence

of functions defined by the recurrence relation (11)–(12). Then, for any η ∈
(

9−
√

17
8 , 1

]
, the

series
∞∑

k=0
η−k

∥∥∥ f −
k∑

i=0
ui

∥∥∥2

2
converges. Furthermore, there exists a positive constant C such

that

∥∥∥ f −
k∑

i=0

ui

∥∥∥2

2
≤ C

9 −
√

17
8

k+1

∀ k = 0, 1, 2, . . . . (18)

Proof. Let ρ ≥ 0 and η > 0 be fixed. By definition of uk and using the assumption that
f ∈ BV(Ω), we have

λ02−k|Duk| +
∥∥∥ f −

k∑
i=0

ui

∥∥∥2

2
≤ λ02−kρ

∣∣∣D( f −
k−1∑
i=0

ui)
∣∣∣ + (1 − ρ)2

∥∥∥ f −
k−1∑
i=0

ui

∥∥∥2

2
,

where we have used the convention that
−1∑
i=0

ui = 0. Dividing the latter inequality by ηk and

using the fact that
∣∣∣D( f −

k−1∑
i=0

ui)
∣∣∣ ≤ |D f | +

k−1∑
i=0
|Dui|, we obtain

λ0(2η)−k|Duk| + η−k
∥∥∥ f −

k∑
i=0

ui

∥∥∥2

2
≤ λ0(2η)−kρ|D f |

+ λ0(2η)−kρ

k−1∑
i=0

|Dui|︸                 ︷︷                 ︸
(A)

+(1 − ρ)2 η−k
∥∥∥ f −

k−1∑
i=0

ui

∥∥∥2

2
. (19)

Summing the latter inequality over k ranging from 0 to n, and moving the term (A) to the
left yields

λ0

 n∑
k=0

(2η)−k|Duk| − ρ

n∑
k=0

(2η)−k
k−1∑
i=0

|Dui|

︸                                              ︷︷                                              ︸
(B)

+

n∑
k=0

η−k
∥∥∥ f −

k∑
i=0

ui

∥∥∥2

2
≤

λ0ρ|D f |
n∑

k=0

(2η)−k + (1 − ρ)2
n∑

k=0

η−k
∥∥∥ f −

k−1∑
i=0

ui

∥∥∥2

2︸                              ︷︷                              ︸
(C)

. (20)
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Next, by Lemma 3.3 with δ =
1
2η

and 0 ≤ ρ ≤
1
δ
− 1 = 2η − 1, the term labeled (B)

above is nonnegative provided that η ≥ 1/2. Thus, dropping (B) and moving (C) to the left,
inequality (20) reduces to

η−n
∥∥∥ f −

n∑
i=0

ui

∥∥∥2

2
−

(
(1 − ρ)2

η
− 1

) n−1∑
k=0

η−k
∥∥∥ f −

k∑
i=0

ui

∥∥∥2

2
≤

2λ0η

2η − 1
|D f | +

(1 − ρ)2

η
‖ f ‖22,

where we used the convention that
∑−1

i=0 ui = 0. In particular for ρ = 2η − 1, we get

η−n
∥∥∥ f −

n∑
i=0

ui

∥∥∥2

2
−

4 − 9η + 4η2

η

n−1∑
k=0

η−k
∥∥∥ f −

k∑
i=0

ui

∥∥∥2

2
≤

2λ0η

2η − 1
|D f | +

4(1 − η)2

η
‖ f ‖22.

(21)

Consequently, for any η ≥ 1/2 such that 4 − 9η + 4η2 ≤ 0 and in particular for
9 −
√

17
8

≤

η ≤ 1, we have ∥∥∥ f −
n∑

i=0

ui

∥∥∥2

2
≤ C0(λ0|D f | + ‖ f ‖22) ηn+1,

where C is a positive universal constant.
Taking the infimum of the latter inequality with respect to η over the interval

[
9−
√

17
8 , 1

]
yields the geometric convergence (18) with C = C0(λ0|D f | + ‖ f ‖22). Furthermore, for any
η ∈

(
9−
√

17
8 , 1

]
, it follows from (21) that

n∑
k=0

η−k
∥∥∥ f −

k∑
i=0

ui

∥∥∥2

2
≤ max(2λ0|D f |, 4‖ f ‖22))Ψ(η),

where Ψ(η) is the rational function defined by

Ψ(η) =
η2 + (2η − 1)(1 − η)2

(2η − 1)(−4η2 + 9η − 4)
.

Consequently, the series
∞∑

k=0
η−k‖ f −

∑k
i=0 ui‖

2
2 converges and the proof is complete. �

Remark 3.5. Note the gap between the convergence rate in W−1,∞(Ω) and the convergence
rate in L2(Ω). Our argument above points to the fact that one cannot bridge this gap by
merely changing the scale refinement strategy. For example, if one adopts the following
sequence of scales, λk = λ0rk where 0 < r < 1, then the convergence rate in W−1,∞(Ω) is
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O(rk) while per our proof above the L2 convergence rate is O(ηk) with η > r. It would be

interesting to characterize the functions f ∈ BV(Ω) for which the two convergence rates

are identical.

Example 1: The set of functions for which the convergence rate is λk is nonempty. Let

Ω = R2 and for R > 0 fixed define the function f by f (x) =

1 |x| ≤ R,

0 |x| > R
. We would like

to compute TNV dyadic decompositions of f .
Firstly, by a result of Meyer [4, page 36], for any λ > 0 the optimal ROF decomposition

of f = uλ + vλ yields

uλ = max(1 − λ/R, 0) f and vλ = min(1, λ/R) f . (22)

Therefore, to obtain a decomposition of f , we have to repeatedly find the ROF decomposi-
tion of functions of the form g = β f where β is a constant factor. Secondly, for any β > 0
the ROF decomposition β f at the scale λ is

β f = β uλ/β + β vλ/β (23)

where f = uλ/β + vλ/β is ROF decomposition of f at the scale λ/β. Consequently, the
TNV sequence for f is completely determine by the ROF decomposition of f at the scales
{λk = λ02−k}∞k=0 with the appropriate corrections as indicated by equation (22).

It follows from above that for λ0 > 0 fixed, the TNV sequence of f with base scale λ0

is given by

uk =


0 if k ≤ blog2(λ0/R)c

(1 −
λk

R
) f if k = dlog2(λ0/R)e

λk

R
f if k > dlog2(λ0/R)e

(24)

Furthermore, for any n ∥∥∥ f −
n∑

k=0

uk

∥∥∥
2

=
∥∥∥λn

R
f
∥∥∥

2
=
√
πλn.

Thus the L2 convergence rate of any TNV dyadic decomposition of the indicator function of
a disc centered at the origin is λk which is better than the generic geometric rate established
in Theorem 3.4.

So far, we have given a convergence rate of a TNV dyadic decomposition which turned
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out to be suboptimal in the class of functions with bounded variation, see Example 1. We
now investigate the optimal convergence rate and show that in general the convergence rate
in L2(Ω) does not exceed λk.

Proposition 3.6. Suppose that Ω is convex. Let f ∈ BV(Ω) be fixed and f =
∞∑

k=0
uk a

hierarchical decomposition of f according the scales {λk ↘ 0: k = 0, 1, 2, . . .}. Then, there

exists C > 0 dependent on Ω such that

∥∥∥ f −
k∑

j=0

u j

∥∥∥
2
≥ Cλk ∀ k ≥ 1. (25)

Proof. Let k ≥ 1 be fixed. Recall from Theorem 2.7 that

λk|Duk| = 2
∫

Ω

uk
(
f −

k∑
i=0

ui
)
dx

and if Ω is bounded, then by Proposition 2.9∫
Ω

ukdx = 0 ∀ k ≥ 1.

Now, by Cauchy-Schwarz inequality and Poincaré-Wirtinger inequality, we infer from
above that

λk|Duk| ≤ 2 ‖uk‖2

∥∥∥ f −
k∑

i=0

ui

∥∥∥
2
≤ K |Duk|

∥∥∥ f −
k∑

i=0

ui

∥∥∥
2
,

where K > 0 is constant dependent on Ω if Ω is bounded and a universal constant if Ω = R2.
It then follows that

K−1λk ≤
∥∥∥ f −

k∑
i=0

u j

∥∥∥
2

for any k for which |Duk| , 0. (26)

Finally, since Ω is either convex or Ω = R2, it is easy to see using Poincaré - Wirtinger
inequality that for any k ≥ 1 |Duk| = 0 implies that uk = 0. Therefore since the sequence
of scales is decreasing, the inequality (26) actually holds for all k ≥ 1; hence (25) follows
with C = K−1 and the proof is complete. �

Remark 3.7. We infer from Theorem 3.4 and Proposition 3.6 that any TNV dyadic decom-
position of a function f ∈ BV(Ω) converges geometrically in the norm of L2(Ω) with rate

13



r ∈
[

1
2 ,

9−
√

17
8

]
.

3.2 Convergence in BV

We now investigate the convergence of a hierarchical decomposition in BV(Ω). We would

like to know under what conditions would the decomposition f =
∞∑

k=0
uk converges strongly,

strictly, or weakly* in BV(Ω).

Recall from remark 2.6 that for f =
∞∑

k=0
uk to holds in either of the three topologies, the

sequence
{∑n

k=0 uk : n = 0, 1, 2, . . .
}

must be bounded in BV(Ω). Also, by definition of the
functions {uk}k, we have

∥∥∥ f −
k∑

i=0

ui

∥∥∥2

2
≤ λk

∣∣∣D( f −
k−1∑
i=0

ui)
∣∣∣, ∀ k = 0, 1, 2, . . . . (27)

Consequently, the convergence of a hierarchical decomposition of f in BV(Ω) determine
its convergence rate in L2 as follows.

Proposition 3.8. Suppose f ∈ BV(Ω) and its TNV hierarchical decomposition with base

scale λ0 converges in BV(Ω). Then

∥∥∥ f −
k∑

j=0

u j

∥∥∥
2
≤ C

√
λk ∀ k = 0, 1, 2, . . . (28)

for some constant C > 0 independent of k. Furthermore, if f =
∞∑
j=0

u j strongly in BV, then

∥∥∥ f −
k∑

j=0

u j

∥∥∥
2

= o(
√
λk) as k → ∞. (29)

Proof. The two inequalities (28) and (29) are mere restatement of the inequality (27) under
the boundedness hypothesis and the strong convergence assumption, respectively. �

Remark 3.9. Proposition 3.8 implies that for a TNV hierarchical decomposition to converge
in BV(Ω), its convergence rate in L2(Ω) must be at least O(

√
λk).

We conclude the section with a sufficient condition for weakly* convergence of a de-
composition in BV(Ω).
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Proposition 3.10. Suppose that f ∈ BV(Ω) is such that the series
∞∑

k=0

∥∥∥ f −
k−1∑
i=0

ui

∥∥∥2

2
/λk

converges. Then, f =
∞∑

k=0
uk weakly* in BV.

Proof. Fix k ≥ 0. By the triangle inequality we have

∣∣∣D(
k∑

i=0

ui)
∣∣∣ ≤ k∑

i=0

∣∣∣Dui

∣∣∣ ≤ k∑
i=0

1
λi

Ei(0)

≤

k∑
i=0

1
λi

∥∥∥ f −
i−1∑
k=0

uk

∥∥∥2

2
<

∞∑
k=0

1
λk

∥∥∥ f −
k−1∑
i=0

ui

∥∥∥2

2
.

Since the rightmost term in the latter inequality is finite, it follows that the sequence{∣∣∣D(
n∑

i=0
ui)

∣∣∣}
n

is bounded. Thus, by Proposition 2.4 f =
∞∑

k=0
uk holds weakly* in BV(Ω). �

Example 2: The class of functions f for which the decomposition converges in BV is

nonempty. Continuing Example 1 above, we have for every n

∣∣∣D( f −
n∑

k=0

uk)
∣∣∣ =

λn

R
|D f | = 2πλn and

∥∥∥ f −
n∑

k=0

uk

∥∥∥2

2
/λn = πλn.

Thus, any dyadic decomposition f =
∞∑

k=0
uk of the indicator function of a disk centered at the

origin converges strongly in BV(R2) with rate λn. Moreover, our hypothesis in Proposition

3.10 holds for indicator functions of disks, since the series
∞∑

k=0
λk converges.

Remark 3.11. The geometric L2 convergence rate of a dyadic hierarchical decomposition
necessary for convergence in BV(Ω) is better than what we established in Theorem 3.4.

4 Conclusion

In this paper we addressed the convergence of a Tadmor-Nezzar-Vese hierarchical decom-
position of a function with bounded variation in BV(Ω) and the convergence rate in L2(Ω).
We derived a geometric rate of convergence of such a decomposition in L2(Ω), and proved
that for a TNV dyadic hierarchical decomposition to converge (strong/strict/weakly*) in
BV(Ω) its geometric convergence rate in L2(Ω) must be at least O(

(√
2
)−n). We offered a

sufficient condition for weakly* convergence in BV(Ω) and produced a class of functions
in BV(R2) on which our condition holds.
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