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Abstract

A least square based semi-supervised local clustering algorithm and its variants are pro-
posed to extract clusters from a graph with known adjacency matrix. The algorithms are
based on a two stage approaches similar to the ones proposed by Lai and Mckenzie (2020).
However, under a weaker assumption and with less computational complexity than the one
in Lai and Mckenzie (2020), the algorithm is shown to be able to find a desired cluster with
high probability. Several numerical experiments including the synthetic data and real data
such as MNIST, AT&T and YaleB human faces data sets are conducted to demonstrate
the performance of this approach. A comparison with several known algorithms are also
be given to show that our algorithm is very effective.

1. Introduction

Informally speaking, graph clustering is a problem of dividing the set of vertices of a graph
into subsets in a way which makes more edges within each subset, and fewer edges between
different subsets. When analyzing a graph, one of people’s primary interest is to find the
underlying clustered structure of the graph, as the vertices in the same cluster can reason-
ably be assumed to have some latent similarity. Even though for data set which are not
presented as graphs, it can be done by first creating a suitable auxiliary graph based on the
data, for example, the K-nearest-neighbors (K-NN) graph, and then apply graph clustering
techiques on this auxiliary graph.

Graph clustering problem has become prevalent recently in areas of social network study,
such as Fortunato (2010), Hric et al. (2014), Kossinets and Watts (2016), image classifica-
tion such as Camps-Valls et al. (2007), Chen et al. (2005), Shi and Malik (2000), natural
language processing such as Dhillon (2001), Mihalcea and Radev (2001). For example, sup-
pose a social network graph has vertices which represents users of a social network (e.g.
Facebook, Linkedln), then the edges could represent users which are connected to each
other. The sets of nodes with high inter-connectivity, which we call them communities or
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clusters, could represent friendship groups or co-workers. By identifying those communi-
ties we can suggest new connections to users. Note that some networks are directed (e.g.
Twitter, Citation Networks), which could make community detection more subtle. For the
scope of this paper, we will only focus on weighted undirect graphs. We leave the directed
graph case for future work.

The classical graph based clustering problem is a global clustering problem which assigns
every vertice a unique cluster, assuming there are no multi-class vertices. It is usually con-
sidered as an unsupervised learning problem which can be done by using method such as
spectral clustering, see Luxburg (2007), Ng et al. (2002), Zelnik-Manor and Perona (2004),
or ways of finding an optimal cut of the graph, see Dhillon et al. (2004), Ding et al. (2001).
These approaches are generally computational expensive and hard to implement for large
data sets. It can also be done semi-supervisely, such as Kulis et al. (2015), Jacobs et al.
(2018), Yin and Tai (2018). However, sometimes it is only of people’s interests in finding
one certain cluster which contains the target vertices, given some prior knowledge of a small
portion of labels for the entire true cluster, which is usually attainable for real data. This
type of problem is called local clustering, or local cluster extraction, which loosely speaking,
is defined to be the problem which takes a set of vertices Γ with known labels, called seed
vertices, as input, and returns a cluster C# such that Γ ⊂ C#. In this paper, we proposed
a new approach using the ideas of compressed sensing and method of least square together
to solve it effectively.

The local clustering problem haven’t been studied exhaustively, and many aspects of the
local clustering problem still remain open. Some recent related work are by Ha et al. (2020),
Yan et al. (2019), Yin et al. (2017), Veldt et al. (2019), Lai and Mckenzie (2020). Especially
for Lai and Mckenzie (2020), which is one of the recent works for the same setting as ours.
However, as we will see in the numerical experiments section, our approach outperforms
them both in terms of the accuracy and efficiency.

The main contribution of this paper is that it proposes a local cluster extraction algorithm
which improves the state-of-the-art results by Lai and Mckenzie (2020). The subsequent
sections in this paper are structured as follows. In Section 2, we give brief introductions to
the concept of in spectral clustering such as graph Laplacian and Theorem 2, we also make
the assumptions for the graph model which we will use later for theoretical analysis. In
Section 3, we introduce the main algorithms for solving the local cluster extraction problem
in two stages, namely RandomWalkThreshold and LeastSquareClusterPursuit, and we show
the correctness of our algorithms asymptotically. In Section 4, we analyze the asymptotic
complexity for our algorithms. In Section 5, several synthetic and real data sets are used
to evaluate the performance of the algorithms and we also compared the performance with
the state-of-the-art results.

2. Preliminaries and Models

In this section, we will give some preliminary definitions and our graph model assumptions
which will be used and analyzed in later sections.
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2.1 Notations and Definitions

We use standard notationG = (V,E) to denote the graphG with the set of vertices V and set
of edges E. For the case |V | = n, we identify V with the set of integers [n] := {1, 2, · · · , n}.
We use A to denote the adjacency matrix (possibly weighted but weights are non-negative)
of G, so in the undirected case, A is a symmetric matrix. Let D be the diagonal matrix
D = diag(d1, d2, · · · , dn), where each di is the degree of vertex i. We have the following
definition.

Definition 1. The unnormalized Graph Laplacian is defined as L = D − A. There
are also two other graph Laplacians which are symmetric graph Laplacian Lsym := I −
D−1/2AD−1/2, and the random walk graph Laplacian Lrw := I −D−1A.

The following theorem serves as the fundamental theorem for solving graph clustering in
our approach, we omit the proof here by directly referring to Chung (1997) and Luxburg
(2007) .

Theorem 2. Let G be an undirected graph with non-negative weights. Then the multi-
plicity k of the eigenvalue 0 of L (Lrw) equals to the number of connected components
C1, C2, · · · , Ck in G, and the indicator vectors 1C1 , · · · , 1Ck on these components span the
kernel of L (Lrw).

Let us further introduce some notations which we will use later. Suppose for the moment
we have information about structure of the underlying clusters for each vertex, then it
is useful to write G as a union of two edge-disjoint subgraphs G = Gin ∪ Gout where
Gin = (V,Ein) consists of only intra-connection edges, and Gout = (V,Eout) consists of only
inter-connection edges. We will use dini to denote the degree of vertex i in the subgraph
Gin, and douti to denote the degree of vertex i in the subgraph Gout. We will also use Ain

and Lin to denote the adjacency matrix and graph Laplacian associated with Gin, and Aout

and Lout to denote the adjacency matrix and graph Laplacian associated with Gout. Note
that these notations are just for convenience for the analysis in the next section, in reality
we will have no assurance about which cluster each individual vertex belongs to, so we will
have no access to Ain and Lin. It is also worthwhile to point out that A = Ain + Aout but
L 6= Lin + Lout in general. In addition, we will use |L| to denote the same matrix L with
the entries in absolute value instead of the original entries in L.

2.2 Graph Model Assumption

We make the following assumption for our analysis of graph model in the asymptotic per-
spective.

Assumption 1. Suppose G = (V,E) can be partitioned into k = O(1) connected compo-
nents such that V = C1 ∪ · · · ∪ Ck, where each Ci is the underlying vertex set for each
connected component of G.

(I): The degree of each vertex is asymptotically the same for vertices belong to the same
cluster Ci.

(II): The degree douti is small relative to degree dini asymptotically for each vertex i ∈ V .
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The random graphs which satisfies assumption (I) is not uncommon, for example, the Erdös-

Rényi (ER) modelG(n, p) with p ∼ ω(n) log(n)
n for any ω(n)→∞, see Erdős and Rényi (1959)

and Chung and Lu (2006). A natural generalization of the ER model is the stochastic block
model (SBM), see Holland et al. (1983), which is a generative model for random graphs with
certain edge densities within and between underlying clusters, such that the edges within
clusters are more dense than the edges between clusters. In the case of each cluster has
the same size and the intra- and inter-connection probability are the same among all the
vertices, we have the symmetric stochastic block model (SSBM). It is worthwhile to note
that the information theoretical bound for exact cluster recovery in SBM are given by Abbe
and Sandon (2015). It was also shown by Lai and Mckenzie (2020) that a general SBM
with certain choice of parameters can be clustered by using a compressed sensing approach.
Our model requires a weaker assumption than the one in Lai and Mckenzie (2020), indeed,
we remove the assumption about the eigenvalues of graph Laplacian L which is imposed on
in Lai and Mckenzie (2020). Therefore, our model will be applicable to a broader range of
random graphs.

3. Cluster Extraction Algorithms

For simplicity, we will use L and Lin to denote Lrw and Linrw respectively. Our analysis
is based on the following key observation. Suppose for the moment graph G has k con-
nected components C1, · · · , Ck, i.e., L = Lin. Suppose further that we have access to the
information about the structure of Lin, then we can write the graph Laplacian Lin into a
block diagonal form. Therefore to find all the clusters, it is equivalent to find the first k
eigenvectors of Lin.

L = Lin =


Lin1

Lin2
. . .

Link


Suppose now we are interested in finding the cluster with the smallest number of vertices,
say C1, which corresponds to Lin1 . By Theorem 2, {1C1 , · · · ,1Ck} forms a basis of the kernel
W0 of L. Note that all the 1Ci have disjoint supports, so for w ∈ W0 and w 6= 0, we can
write

w =
k∑
i=1

αi1Ci

with some αi 6= 0. Therefore, if 1C1 has the fewest non-zero entries among all elements of
W0 \ {0}, then we can find it by solving the following minimization problem:

min ||w||0 subject to Linw = 0 and w 6= 0. (1)

This problem can be solved using methods such as greedy algorithms in compressed sensing
as explained in Lai and Mckenzie (2020). However, we will propose a different approach to
tackle it in this paper and demonstrate that the new approach is more effective numerically
and require a fewer number of assumptions.
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3.1 Least Square Cluster Pursuit

We will use LC and LinC to denote the submatrices of L and Lin with column indices subset
C ⊂ V = [n] respectively. Now consider Problem (1) again, instead of finding C1 directly,
let us try to find what are not in C1. Suppose there is a superset Ω ⊂ V such that C1 ⊂ Ω,
and Ci 6⊂ Ω for all i = 2, · · · , n. Then we know

Lin1Ω = Lin(1Ω\C1
+ 1C1) = Lin1Ω\C1

+ Lin1C1 = Lin1Ω\C1
.

Letting y := Lin1Ω, we see that solving Problem (1) will be equivalent to solve the following
problem (2), but with some condition imposed.

arg min
w∈Rn

‖Linx− y‖2 (2)

Note that solving Problem (2) directly will give x∗ = 1Ω ∈ Rn and x∗ = 1Ω\C1
∈ Rn both

as solutions. By setting the columns LinV \Ω = 0, solving Problem (2) is equivalent to solving

arg min
x∈R|Ω|

‖LinΩ x− y‖2. (3)

Directly solving Problem (3) gives at least two solutions x∗ = 1 ∈ R|Ω| and x∗ = 1Cc
1
∈ R|Ω|,

where the latter one is much more informative for us to extract C1 from Ω than the for-
mer. So we need to find a way to avoid the non-informative solution x∗ = 1 but keep the
informative one x∗ = 1Cc

1
.

We can achieve this by removing a proportion of column indices set T from Ω. Let us
consider

arg min
x∈R|Ω|−|T |

‖LinΩ\Tx− y‖2, (4)

where now 1 ∈ R|Ω|−|T | is not a solution to (4) any more. However, if we can assure a
suitable subset T such that T ⊂ C1, then 1Cc

1
∈ R|Ω|−|T | is still a solution to it, since

LinΩ\T1Cc
1

= Lin1Ω\C1
= 0. Note that Problem (4) has a unique solution because it is a least

square problem with matrix LinΩ\T of full column rank. This idea leads to Algorithm 1.

Remark 3. Note that there are certainly some other heuristic ways to choose the indices
set T , based on different measures on LΩ and y. For example, we can choose a set of seeds
for T if we are given some seeds of the concerned cluster. But the way we choose T in this
paper is based on the following observation. Suppose L = Lin, Ω ⊃ C1 and Ω 6⊃ Ci for
i = 2, · · · k. Then |La| · |y| = 0 for all a ∈ C1, and |La| · |y| > 0 for all a ∈ Ω \ C1. We
impose the absolute value rather than direct dot product in order to have fewer cancellation
between vector components when summing over the entrywised products. In practice, the
size of γ will not matter too much as long as it is not being pushed too extreme.

Remark 4. As indicated by Lai and Mckenzie (2020), we can reformulate problem (1) as
solving

arg min
x∈Rn

{‖Lx− y‖2 : ‖x‖0 ≤ s} (6)
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Algorithm 1 LeastSquareClusterPursuit

Require: Adjacency matrix A, vertex subset Ω ⊂ V , least square threshold parameter
γ ∈ (0, 1), and rejection parameter R ∈ [0, 1).

• Compute L = I −D−1A and y = L1Ω.

• Let T be the set of column indices of γ · |Ω| smallest components of the vector
|LΩ|> ·|y| (Here the absolute value operation is entrywised).

• Let x# be the solution to

arg min
x∈R|Ω|−|T |

‖LΩ\Tx− y‖2 (5)

obtained by using an iterative least square solver.

• Let W# = {i : x#
i > R} .

Ensure: C#
1 = Ω \W#.

by applying the greedy algorithms such as subspace pursuit in Dai and Milenkovic (2009)
and compressed sensing matching pursuit (CoSaMP) in Needell and Tropp (2009). Or
alternatively, we can consider the LASSO (Santosa and Symes, 1986) (Tibshirani, 1996)
form of the problem

arg min
x∈Rn

{‖Lx− y‖22 + λ‖x‖1} = arg min
x∈Rn

{‖Lx− y‖22 + λ‖x‖0}. (7)

The reason that Lasso is a good way to interpret this problem is that the solution x∗ we
are trying to solve for is the sparse indicator vector which satisfies ‖x∗‖1 = ‖x∗‖0. We will
implement these two ideas in the numerical results section for the comparison.

However, in reality we have no access to Lin, what we know only is L, and in general L 6= Lin.
We hope the solution to the above problem associated with L will not be perturbed too
much from the solution 1Cc

1
associated with Lin if the difference between L and Lin is

relative small and the subset T ⊂ Ω is chosen to be appropriate. Let us make this precise
by first quoting the following standard result in numerical analysis.

Lemma 5. Let ‖ · ‖ be an operator norm, A ∈ Rn×n be a non-singular square matrix,
x ∈ Rn, y ∈ Rn. Let Ã, x̃, ỹ be perturbed measurements of A, x, y respectively. Suppose
Ax = y, Ãx̃ = ỹ, and suppose further cond(A) < ‖A‖

‖Ã−A‖ , then

‖x̃− x‖
‖x‖

≤ cond(A)

1− cond(A)‖Ã−A‖‖A‖

(‖Ã−A‖
‖A‖

+
‖ỹ − y‖
‖y‖

)
.

The above lemma tells us that the size of cond(A) is significant in determining the stability
of the solution x is with respect to small perturbations on A and y. For the discussion from
now on, we will use ‖ · ‖ to denote the standard vector or matrix induced two-norm ‖ · ‖2
unless state otherwise. The next lemma asserts the invertibility of (LinΩ\T )>LinΩ\T and gives
an estimation bound of its condition number.

6



A Semi-supervised Cluster Extraction

Lemma 6. Let V = ∪ki=1Ci be the disjoint union of k = O(1) underlying clusters with
size ni and assume (I). Let dj be the degree for vertex j ∈ V = [n], n1 = mini∈[k] ni, and
suppose Ω ⊂ V be such that Ω ⊃ C1 and Ω 6⊃ Ci for i = 2, · · · k. Then

(i). If T ⊂ C1, then (LinΩ\T )>LinΩ\T is invertible.

(ii). Suppose further d3n1
4 e ≤ |T | < n1 and |Ω| ≤ d5n1

4 e. Then cond
(
(LinΩ\T )>LinΩ\T

)
≤ 4

almost surely as n1 →∞, e.g. when n→∞.

Proof. The invertibility is straightforward since LinΩ\T is of full column rank, therefore

(LinΩ\T )>LinΩ\T is invertible. Without loss of generality, let us assume that the column

indices of LinΩ\T are already permuted such that the indices number is in the same or-

der relative to their underlying clusters. Now since (LinΩ\T )>LinΩ\T is in a block form, to
estimate the condition number, we only need to estimate the largest and smallest eigenval-
ues for each block. Writing LinΩ\T = [lij ] and (LinΩ\T )>LinΩ\T = [sij ], for each i ∈ C1 \ T ,

sii =
∑n

k=1 lkilki =
∑n

k=1 l
2
ki =

∑n1
k=1 l

2
ki = 1 + 1

dini
, and for i, j ∈ C1 \ T with i 6= j,

sij =
∑n

k=1 lkilkj =
∑n1

k=1 lkilkj . Note that the probability of having an edge between i

and j given degree sequences d1, · · · dn1 equals to
didj∑
i∈C1

di
, assuming that the existence of

an edge between two vertices is proportional to their degrees. So lij equals to − 1
di

with

probability
didj∑
i∈C1

di
, which implies E(lij) = − dj∑

i∈C1
di

; lji equals to − 1
dj

with probability

didj∑
i∈C1

di
, which implies E(lji) = − di∑

i∈C1
di

. Hence the expectation

E(sij) = E(

n∑
k=1

lkilkj) =

n∑
k=1

E(lki)E(lkj) =

n1∑
k=1

E(lki)E(lkj)

=
didj∑
i∈C1

di
· (− 1

di
) +

didj∑
i∈C1

di
· (− 1

dj
) +

dkdi∑
i∈C1

di
· dkdj∑

i∈C1
di
· ( 1

dk
)2

= − di + dj∑
i∈C1

di
+

didj
(
∑

i∈C1
di)2

= − 2

n1
+

1

n2
1

.

By the law of large numbers, sij → − 2
n1

+ 1
n2
1

almost surely as n1 → ∞. Therefore for

i ∈ C1 \ T , we have∑
j∈C1\T,j 6=i

|sij | → |C1 \ T | · (
2

n1
− 1

n2
1

) =
n1

4
· ( 2

n1
− 1

n2
1

) ≤ 1

2

almost surely as n1 →∞. Similarly, for each i ∈ Ck∩ (Ω \C1), k ≥ 2, we have sii = 1+ 1
dini

,

and
∑

j∈Ck∩(Ω\C1),j 6=i |sij | →
n1
4 · (

2
nk
− 1

n2
k
) ≤ 1

2 almost surely as n1 →∞.

Now we apply Gershgorin’s circle theorem to bound the spectrum of (LinΩ\T )>LinΩ\T . For

all i ∈ Ω \ T , the circles are centered at 1 + 1
di

, with radius less than or equal to 1
2 almost

surely, hence σmin((LinΩ\T )>LinΩ\T ) ≥ 1
2 and σmax((LinΩ\T )>LinΩ\T ) ≤ 3

2 + 1
di
≤ 2. almost surely.

Therefore we have

cond
(
(LinΩ\T )>LinΩ\T

)
=
σmax((LinΩ\T )>LinΩ\T )

σmin((LinΩ\T )>LinΩ\T )
≤ 4
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almost surely, as desired.

Remark 7. Note that there is a minor difficulty in estimating the expectation of inner
product between two different columns of LinΩ\T . The computation assumes the independence
of degree distribution of each individual vertex within each cluster, but this may not be true
in general for arbitrary graph. However, the independence will occur if the asymptotic
uniformity of the degree distribution within each cluster is assumed, that is why our model
needs this assumption.

Now the perturbed Problem (5) is equivalent to solving (L>Ω\TLΩ\T )x# = L>Ω\T ỹ = L>Ω\T (L1Ω),

while the unperturbed Problem (4) is to solve (LinΩ\T )>LinΩ\Tx∗ = (LinΩ\T )>y = (LinΩ\T )>(Lin1Ω).

Let M := L−Lin, MΩ := LΩ−LinΩ , and MΩ\T := LΩ\T−LinΩ\T . Now let us give an estimate
for M .

Lemma 8. Let L be the graph Laplacian of G and M := L − Lin. Let εi :=
douti
di

for all i
and εmax := maxi∈[n] εi. Then ‖M‖ ≤ 2εmax.

Proof. Let δij denote the Kronecker delta symbol, observe that

Lij := δij −
1

di
Aij = δij −

1

dini + douti

(Ainij +Aoutij ).

Since εi :=
douti
di

, we have 1
di

= 1
dini +douti

= 1
dini
− εi

dini
. So we have

Lij = δij −
( 1

dini
− εi
dini

)
(Ainij +Aoutij )

=
(
δij −

1

dini
Ainij

)
− 1

dini
Aoutij +

εi
dini

(Ainij +Aoutij )

= Linij −
1− εi
dini

Aoutij +
εi
dini

Ainij .

Therefore Mij = −1−εi
dini

Aoutij + εi
dini
Ainij . To bound the spectral norm we apply Gershgorin’s

circle theorem, noting that Mii = 0 for all i, hence

‖M‖2 = max{|λi| : λi eigenvalue of M} ≤ max
i

∑
j

|Mij |

= max
i

{1− εi
dini

∑
j

Aoutij +
εi
dini

∑
j

Ainij

}
= max

i

{1− εi
dini

douti +
εi
dini

dini

}
= 2 max

i
εi = 2εmax.

Next we will have the following result.

Lemma 9. ‖(LinΩ\T )>LinΩ 1Ω‖ ≥
√
|Ω\C1|

2 =
√
n1

4 almost surely.

8



A Semi-supervised Cluster Extraction

Proof. Note that ‖(LinΩ\T )>(Lin1Ω)‖ = ‖(LinΩ\T )>LinΩ 1‖. Let us estimate ‖(LinΩ\T )>LinΩ 1‖.
Similar to the computation we did in Lemma 6, for each i ∈ C1 \ T , we have sii = 1 + 1

dini
,∑

j∈C1
sij = 0, and

∑
j∈Ω\C1

sij = 0. For each i ∈ Ck∩(Ω\C1), k ≥ 2, we have sii = 1+ 1
dini

,∑
j∈C1

sij = 0, and
∑

j∈Ck∩(Ω\C1),j 6=i sij →
n1
4 · (−

2
nk

+ 1
n2
k
) ≥ −1

2 almost surely. Therefore,

the row sum of (LinΩ\T )>LinΩ for row i ∈ C1 \T equals to zero, and the row sum (LinΩ\T )>LinΩ

for row i ∈ Ω \ C1 larger than 1
2 almost surely. Hence ‖(LinΩ\T )>LinΩ 1‖ ≥

√
|Ω\C1|

2 =
√
n1

4
almost surely.

Now let us use previous results to establish the results that the difference between perturbed
solution and unperturbed solution is small in the order of εmax.

Theorem 10. Under the same assumptions as Lemma 6, let x# be the solution to the
perturbed problem (5), and x∗ = 1Cc

1
∈ R|Ω|−|T | which is the solution to the unperturbed

problem (4). Then

‖x# − x∗‖
‖x∗‖

= O(εmax).

almost surely for large n1.

Proof. By Lemma 8, we have ‖M‖ ≤ 2εmax. Therefore

‖Ã−A‖ =
∥∥(LΩ\T )>LΩ\T − (LinΩ\T )>LinΩ\T

∥∥ =
∥∥(LinΩ\T )>MΩ\T +M>Ω\TL

in
Ω\T +M>Ω\TMΩ\T

∥∥
≤
∥∥(LinΩ\T )>MΩ\T

∥∥+
∥∥M>Ω\TLinΩ\T∥∥+

∥∥M>Ω\TMΩ\T
∥∥

≤
(
2‖LinΩ\T ‖+ ‖MΩ\T ‖

)
· ‖MΩ\T ‖

≤
(
2‖LinΩ\T ‖+ ‖M‖

)
· ‖M‖ ≤ 4εmax ·

(
‖LinΩ\T ‖+ εmax

)
.

For each i ∈ Ω \ T , we have ‖Li‖ ≥ 1, and σmax((LinΩ\T )>LinΩ\T ) = ‖(LinΩ\T )>LinΩ\T ‖ =

σ2
max(LinΩ\T ) = ‖LinΩ\T ‖

2 ≥ maxi∈Ω\T ‖Li‖2 ≥ 1. Hence∥∥(LΩ\T )>LΩ\T − (LinΩ\T )>LinΩ\T
∥∥∥∥(LinΩ\T )>LinΩ\T

∥∥ ≤

(
2‖LinΩ\T ‖+ ‖M‖

)
· ‖M‖

‖LinΩ\T ‖2

≤ 4εmax

‖LinΩ\T ‖
+

4ε2max

‖LinΩ\T ‖2
≤ 4(εmax + ε2max). (8)

We also have

‖ỹ − y‖ = ‖(LΩ\T )>(L1Ω)− (LinΩ\T )>(Lin1Ω)‖ = ‖(LinΩ\T +MΩ\T )>(LΩ1Ω)− (LinΩ\T )>(LinΩ 1Ω)‖

= ‖
(
(LinΩ\T )>MΩ +M>Ω\TL

in
Ω +M>Ω\TMΩ

)
· 1Ω‖

≤
√
|Ω| ·

(
‖(LinΩ\T )>MΩ‖+ ‖M>Ω\TL

in
Ω ‖+ ‖M>Ω\TMΩ‖

)
≤
√
|Ω| ·

(
2‖LinΩ ‖+ ‖MΩ‖

)
· ‖MΩ‖

≤
√
|Ω| ·

(
2‖LinΩ ‖+ 2εmax

)
· 2εmax = 2

√
5n1 ·

(
‖LinΩ ‖+ εmax

)
· εmax.

9
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Next by Lemma 9, ‖(LinΩ\T )>LinΩ 1Ω‖ ≥
√
|Ω\C1|

2 =
√
n1

4 almost surely, therefore we have

‖(LΩ\T )>L1Ω − (LinΩ\T )>Lin1Ω‖
‖(LinΩ\T )>Lin1Ω‖

≤
2
√

5n1 ·
(
‖LinΩ ‖+ εmax

)
· εmax√

n1/4
= 8
√

5εmax ·
(
‖LinΩ ‖+ εmax

)
≤ 8
√

5εmax ·
(√

2 + εmax

)
= 8
√

10εmax + 8
√

5ε2max.

The second inequality holds because σmax((LinΩ )>LinΩ ) ≤ 2 for the similar reasoning in
Lemma 6 by using Gershgorin’s circle theorem, so ‖LinΩ ‖ ≤

√
2. Now applying Lemma 6

and Lemma 5 with A = (LinΩ\T )>LinΩ\T , Ã = (LΩ\T )>LΩ\T , y = Lin1Ω, ỹ = L1Ω, we have

‖x# − x∗‖
‖x∗‖

≤
cond

(
(LinΩ\T )>LinΩ\T

)
·
(
4εmax + 4ε2max + 8

√
10εmax + 8

√
5ε2max

)
1− cond

(
(LinΩ\T )>LinΩ\T

)
·
(
4εmax + 4ε2max

)
≤

16
(
(1 + 2

√
10)εmax + (1 + 2

√
5)ε2max

)
1− 16εmax(1 + εmax)

= O(εmax).

Next we can estimate the size of the symmetric difference between output C#
1 and the

true cluster C1 relative to the size of C1, the symmetric difference is defined as C#
1 4C1 :=

(C#
1 \ C1) ∪ (C1 \ C#

1 ). Let us state another lemma before we establish the final result.

Lemma 11. Let T ⊂ [n], v ∈ Rn, and W# = {i : vi > R}. Suppose ‖1T − v‖ ≤ D, then

|T4W#| ≤ D2

R2 .

Proof. Let U# = [n] \W# and write v = vU# + vW# , where vU# and vW# are the parts
of v supported on U# and W#. Then we can write

‖1T − v‖2 = ‖1T∩W# − (vW#)T∩W#‖2 + ‖(vW#)W#\T ‖2 + ‖1T\W# − vU#‖2.

Since ‖(vW#)W#\T ‖2 ≥ R2 · |W# \ T | and ‖1T\W# − vU#‖2 ≥ R2 · |T \W#|, we have

R2 ·|T4W#| = R2 ·(|T \W#|+|W#\T |) ≤ ‖(vW#)W#\T ‖2+‖1T\W#−vU#‖2 ≤ ‖1T−v‖2.

Hence |T4W#| ≤ ‖1T−v‖
2

R2 ≤ D2

R2 .

Theorem 12. Suppose 0.1 ≤ R ≤ 0.9. Under the same assumptions as Theorem 10, we
have

|C#
1 4C1|
|C1|

≤ O(ε2max).

In other words, the error rate of successfully recovering C1 is at most a constant multiple
of ε2max.

Proof. From Theorem 10, we have ‖x# − x∗‖ = ‖x# − 1Ω\C1
‖ ≤ O(εmax) · ‖x∗‖ ≤

O(εmax
√
n1). Then by Lemma 11, we get |W#4(Ω\C1)| ≤ O(ε2maxn1). Since C#

1 = Ω\W#,

it then follows |C#
1 4C1| ≤ O(ε2maxn1), hence

|C#
1 4C1|
|C1| = O(ε2max) as desired.

10
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3.2 Random Walk Threshold

In order to apply Algorithm 1, we have to have a ”good” superset which contains C1. The
task for this subsection is to find such a superset Ω from the given seed vertices Γ . We will
apply a simple diffusion based random walk algorithm on G to find such Ω. Note that there
are also other sophisticated algorithms such as Andersen et al. (2007), Kloster and Gleich
(2014), Wang et al. (2017) to achieve this goal, but we do not analyze them here as our
purpose is just to implement a fast way of obtaining a set Ω ⊃ C1. This leads to Algorithm
2, note that this algorithm is also described in Lai and Mckenzie (2020), but the difference
is that in implementation, we will allow a larger ε to decrease the chances of missing any
vertices in C1 based on the natural differences of our approaches.

Algorithm 2 RandomWalkThreshold

Require: Adjacency matrix A, a random walk threshold parameter ε ∈ (0, 1), a set of seed
vertices Γ ⊂ C1, estimated size n̂1 ≈ |C1|, and depth of random walk t ∈ Z+.

• Compute P = AD−1 and v0 = D1Γ .

• Compute v(t) = P tv(0).

• Define Ω = L(1+ε)n̂1
(v(t)).

Ensure: Ω = Ω ∪ Γ .

The thresholding operator Ls(·) is defined as

Ls(v) := {i ∈ [n] : vi among s largest entries in v}.

The motivation of RandomWalkThreshold is the following intuitive observation. Suppose
we are given seed vertices Γ ⊂ C1, then by starting from Γ , since the edges within each
cluster are more dense than those between different clusters, the probability of staying
within C1 will be much higher than entering other clusters Ci, for i 6= 1, in a short amount
of depth t. Therefore, by performing a random walk up to a certain depth, we will have a
well approximated set Ω such that C1 is almost surely contained in Ω. Let us make this
more precisely in Theorem 13.

Theorem 13. With the input from Algorithm 2, i.e. |Γ | = O(1) and t = O(1), the

probability P
(
C1 ⊂ Ω

)
= P

(∑
j∈C1

v
(t)
j = ‖v(t)‖1

)
≥ 1 − O(εmax). In other words, the

probability that the t-steps random walk with seed vertices Γ being not in C1 is at most a
constant multiple of εmax.

Proof. Let us first consider the case |Γ | = 1. Suppose Γ = {s}. Then we have P
(∑

j∈C1
v

(0)
j =

‖v(t)‖1
)

= P(v
(0)
s = ‖v(t)‖1) = 1. It is also direct to see that P

(∑
j∈C1

v
(1)
j = ‖v(t)‖1

)
=

dini /di = 1 − εi ≥ 1 − εmax. For t ≥ 2, we have P
(∑

j∈C1
v

(t)
j = ‖v(t)‖1

)
≥ (1 − εmax) ·

P
(∑

j∈C1
v

(t−1)
j = ‖v(t)‖1

)
. So by supposing P

(∑
j∈C1

v
(t−1)
j = ‖v(t)‖1

)
≥ (1− εmax)t−1 ≥

1− (t− 1)εmax, we have P
(∑

j∈C1
v

(t)
j = ‖v(t)‖1

)
≥ (1− εmax)t ≥ 1− tεmax = 1−O(εmax).

Suppose now |Γ | > 1, we can apply the above argument to each individual vertex in Γ ,

11
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where the random walk starting from each vertex can be considered independently, therefore

we have P
(∑

j∈C1
v

(t)
j = ‖v(t)‖1

)
≥ (1− tεmax)|Γ | ≥ 1− tεmax|Γ | = 1−O(εmax).

Remark 14. It is worthwhile to note that we do not want t to be too large, one reason is
that Theorem 13 tells us that the probability of staying within the target cluster C1 decreases
as t increases. An alternative interpretation is that we can treat our graph G, suppose con-
nected, as a time homogeneous finite state Markov chain with evenly distributed transition
probability determined by the vertex degree between adjacent vertices. Since G is connected,
then G is certainly irreducible and aperiodic. By Theorem 19 in the appendix, we get that
the limiting probability of finally being at each vertex will be the same, regardless of what the
seed set Γ is. We provide further details about finite state Markov chains in the appendix.
Meanwhile, we do not want t to be too small as well, otherwise the random walk will not be
able to explore all the reachable vertices. There is a trade-off between the size of Γ and the
random walk depth t, where a smaller size of Γ usually induces a larger t in order to fully
explore the target cluster.

3.3 Local Cluster Extraction

Let us now combine the previous two subroutines into our local clustering algorithm Least-
SqureClustering. In practice, we may want to vary the number of iterations MaxIter based
on the number of examples in the data set in order to achieve a better performance. For
the purpose theoretical analysis, let us fix MaxIter = 1.

Algorithm 3 LeastSqureClustering

Require: Adjacency matrix A, a random walk threshold parameter ε ∈ (0, 1), a set of seed
vertices Γ ⊂ C1, estimated size n̂1 ≈ |C1|, depth of random walk t ∈ Z+, least square
parameter γ ∈ (0, 0.8), and rejection parameter R ∈ [0, 1).

• for i = 1, · · · ,MaxIter

• Ω ←− RandomWalkThreshold(A, Γ , n̂1, ε, t).

• Γ ←− LeastSquareClusterPursuit(A, Ω, R, γ).

• end

• Let C#
1 = Γ .

Ensure: C#
1 .

Remark 15. The hyperparameter MaxIter in the algorithm is usually choosen based on
the size of initial seed vertices Γ relative to n, we do not have a formal way of choosing the
best MaxIter rather than choose it heuristically. In practice, we believe MaxIter ≤ 3 will
do a very good job mostly.

The analysis in previous two subsections give that the difference between true cluster C1

and the estimated C#
1 is relative small compared to the size of C1, this can be written more

formally using the asymptotic notation.

12
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Theorem 16. Suppose εmax = o(1) and MaxIter = 1, then under the assumptions of

Theorem 12 and 13, we have P
(
|C#

1 4C1|
|C1| ≤ o(1)

)
= 1− o(1).

Proof. By Theorem 13, we have that the probability of Ω ⊃ C1 after RandomWalkThreshold
is 1−O(εmax) = 1−o(1). Then by Theorem 12, the error rate is at most a constant multiple

of ε2max after LeastSquareClusterPursuit. Putting them together, we have P
(
|C#

1 4C1|
|C1| ≤

o(1)
)

= 1− o(1).

3.4 From Local to Global

We can then further apply LeastSquareClustering iteratively on the entire graph to extract
all the underlying clusters. That is, we remove C#

i each time after the algorithm finds it,

and updates the graph G by removing the subgraph spanned by vertices C#
i successively.

We summarize the algorithm as IterativeLeastSqureClustering. However, we will not analyze
further the theoretical guarantees of the iterative version the algorithm, but rather provide
with numerical examples in the later section to show its efficiency and accuracy.

Algorithm 4 IterativeLeastSqureClustering

Require: Adjacency matrix A, random walk threshold parameter ε ∈ (0, 1), least square
parameter γ ∈ (0, 0.8), rejection parameter R ∈ [0, 1), depth of random walk t ∈ Z+.
Seed vertices for each cluster Γi ⊂ Ci, estimated size n̂i ≈ |Ci| for i = 1, · · · k.

• for i = 1, · · · , k
• Let C#

i be the output of LeastSquareClustering.

• Let G(i) be the subgraph spanned by C#
i .

• Updates G← G \G(i).

• end

• Let C#
1 = Γ .

Ensure: C#
1 , · · · , C

#
k .

4. Computational Complexity

First, note that if A,D,P are stored as sparse matrices, then for each t in the second step
of Algorithm 2, the computation will have a complexity O(ndmax), where dmax is the maxi-
mal degrees among all the vertices. Then the algorithm RandomWalkThreshold has a time
complexity O(ndmaxt+ n log(n)), where the O(n log(n)) part comes from the third step of
sorting. If we take t to be a O(1) with respect to n, then we have the time complexity
O(ndmax + n log(n)).

For algorithm LeastSquareClusterPursuit, the first step takes time O(ndmax), second step
takes time O(ndmax + n log(n)), where the O(ndmax) part comes from matrix vector multi-
plication, and O(n log(n)) part comes from sorting.
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Note that the standard way of solving the least square problem in the third step by finding
the matrix inverse could cost a lot in computation. However, if an iterative method such as
conjugate gradient descent is used (during our implementation, we used the lsqr function in
Matlab) instead, given that the matrices are associated with well behaved condition num-
bers, then as pointed out by Needell and Tropp (2009), it requires only a constant number
of iterations to get a well approximated least square solution. In the implementation, we
apply ten iterations for lsqr. Since the cost for each iteration in conjugate gradient descent
equals to a few operations of matrix vector multiplication, which is O(ndmax), the total cost
for LeastSquareClusterPursuit is O(ndmax + n log(n)).

As a consequence, the total run time for LeastSquareClustering is O(ndmax + n log(n)),
and the total run time for IterativeLeastSquareClustering is O(kndmax + kn log(n)). There-
fore, in the case of k = O(1), the total run time are O(ndmax + n log(n)), whereas the run
time in Lai and Mckenzie (2020) is O(ndmax log(n)). For the regime dmax = O(ω(n) log n)
where ω(n)→∞, our algorithm is slightly favored in terms of efficiency, which can also be
seen from the numerical examples given in the next section.

5. Numerical Experiments

For single cluster extraction, we compare our algorithm LeastSquareClustering (LSC) with
its counterpart, the state-of-the-art algorithm CP+RWT in Lai and Mckenzie (2020) on the
synthetic SSBM model and the network data on political blogs, we also apply the baseline
Lasso method as a subroutine to replace the least square step in LSC for comparison as
well. For multiple cluster extractions, we compare IterativeLeastSquareClustering (ILSC)
with its counterpart, algorithm ICP+RWT in Lai and Mckenzie (2020) on the MNIST data,
AT&T human faces data and YaleB human faces data, we also apply the baseline Lasso
method as a subroutine to replace the least square step in ILSC and implement the standard
spectral clustering (SC) algorithm as another baseline method for comparison as well. For
the implementation of LSC (or ILSC), we use Matlab lsqr function as our iterative least
square solver to solve equation (5). For the implementation of CP+RWT (or ICP+RWT)
we replace (5) in step 3 of Algorithm 1 by solving (6) the same way as Lai and Mckenzie
(2020). For the implementation of Lasso method, we solve (7) using the standard Matlab
Lasso solver as a subroutine. We tune the rejection parameters R for all algorithms and
regularized parameter λ in Lasso appropriately to make the output C#

i of each algorithm
approximately the same size for comparison purpose. Further implementation details are
given in the appendix.

5.1 Synthetic Data

We first test our algorithms on the symmetric stochastic block model SSBM(n, k, p, q) with
different choices of parameters. The paramenter n indicates the total number of vertices,
k indicates the number of clusters, p is the probability of having an edge between any two
vertices within each cluster, and q is the probability of having an edge between any two
vertices from different clusters. Figure 1 gives an illustration of such a synthetic random
graph model with three underlying clusters. By tuning the parameters, we achieve the
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experimental results shown in Table 1. Meanwhile, we also run the experiments on non-
symmetric stochastic block model and obtained gaps in accuracy and run time for these
algorithms similar to Table 1. For the implementation of symmetric stochastic block model,
we use three vertices with given label as our seed vertices under 100 repetitions, and we
focus on only recovering the first cluster C1.

Figure 1: A Symmetric Stochastic Block Random Graph with Three Underlying Clusters.

n p q LSC Time CP+RWT Time LASSO Time

300 0.1 0.005 99.8% 4.7 ms 99.6% 17.7 ms 99.2% 13.7 ms
300 0.1 0.01 97.7% 4.6 ms 95.1% 13.5 ms 96.6% 14.7 ms

1200 0.1 0.01 100% 35.9 ms 99.9% 52.4 ms 99.9% 117.2 ms
1200 0.1 0.02 99.6% 37.6 ms 97.4% 42.9 ms 99.6% 126.8 ms

4800 0.1 0.01 100% 0.37 s 100% 0.43 s 100% 1.65 s
4800 0.1 0.03 99.9% 0.39 s 99.4% 0.50 s 99.9% 1.69 s
4800 0.1 0.035 98.6% 0.39 s 92.7% 0.44 s 98.6% 1.70 s

19200 0.1 0.01 100% 4.30 s 100% 9.12 s 100% 28.2 s
19200 0.1 0.04 99.9% 6.70 s 99.3% 11.35 s 99.9% 30.6 s
19200 0.1 0.045 99.0% 7.71 s 93.8% 12.40 s 99.0% 33.6 s

Table 1: Performance of finding C1 using LSC, CP+RWT and LASSO with k = 3.

5.2 Network Data

We test our algorithms on the data from ”The political blogosphere and the 2004 US Elec-
tion”Adamic and Glance (2005), which contains a list of political blogs that were classified
as liberal or conservative, and links between the blogs. As explained by Abbe and Sandon
(2015), the simplified version of thier algorithm gave a reasonably good classification 37
times out of 40 trials. Each of these trials classified all but 56 to 67 of the 1222 vertices in
the graph main component correctly. According to Abbe and Sandon (2015), the state-of-
the-art described in Zhang et al. (2015) before the work in Abbe and Sandon (2015) gives a
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lowest value at 58, with the best algorithms around 60 while algorithms regularized spectral
methods such as the one in Qin and Rohe (2013) obtain about 80 errors.

In our experiments, with 8 seeds and out of 40 trials, our algorithm LSC gave a good
classification 36 times using the cut-off upper bound 68 misclassified vertices. Each trial
classified all but 19 to 68 of the 1222 vertices in 36 trials while the other 4 trials found 74,
74, 79, and 110 misclassifed vertices. If a tolerance is set at at most misclassifed 74 out of
1220 vertices, our algorithm achieved successes 38 out of 40 trials. The accuracy of all 40
trials are also shown in Table 2.

# of Misclassified by LSC # of Misclassified by CP+RWT # of Misclassified by LASSO
19 147 73
21 150 73
24 162 79
27 163 80
28 166 81
29 167 85
29 167 88
30 167 97
30 169 98
31 171 99
31 174 100
33 174 101
34 175 102
35 177 102
35 180 103
35 180 104
36 181 109
36 184 116
36 188 116
38 190 121
39 191 121
40 191 122
44 193 122
45 197 124
45 201 125
46 201 126
48 201 126
49 202 133
53 214 142
53 226 156
55 233 158
56 235 162
61 236 164
61 236 165
63 236 167
68 248 183
74 254 188
74 255 189
79 275 199
110 289 207

Average Accuracy 91.2% Average Accuracy 68.2% Average Accuracy 79.0%

Table 2: Number of Misclassified Vertices and Overall Accuracy
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5.3 MNIST Data

We test our algorithms on the MNIST data, which is a famous machine learning benchmark
dataset in classification that consists of 70000 grayscale images of the handwritten digits
0-9 of size 28× 28 with approximately 7000 images of each digit. Figure 2 shows a sample
of the data set.

Figure 2: An Experiment on MNIST Data before (on the left) and after (on the right).

We used a certain percentage of vertices with given label as our seed vertices. The perfor-
mance ILSC and ICP+RWT are summarized in Tables 3 under 100 repetitions.

Labeled Data % ILSC Time ICP+RWT Time

0.5 97.30% 15.5 s 96.41% 18.1 s
1 97.73% 15.3 s 97.32% 19.1 s

1.5 98.03% 15.4 s 97.44% 19.8 s
2 98.17% 15.5 s 97.52% 21.4 s

2.5 98.27% 15.4 s 97.50% 22.1 s

Table 3: Performance of ILSC and ICP+RWT for Finding All Clusters in MNIST with
Labeled Data.

We also compare our algorithm with several other state-of-the-art semi-supervised methods
on MNIST. As we can see in Table 4, ILSC outperforms the other algorithms except for
the Ladder Networks which uses more information of labels and involved in a deep neural
network architecture that requires training on GPUs for hours.

5.4 Human Faces Data

The ability of being successfully make human faces images into clusters is also a good
measure to demonstrate the effectiveness of our algorithm. We implemented AT&T and
YaleB human faces images for the illustration.
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Methods Labeled Data Accuracy

LapRF (Yin and Tai, 2018) 600 95.6%
TVRF (Yin and Tai, 2018) 600 96.8%

ICP+RWT (Lai and Mckenzie, 2020) 700 97.3%
Multi-Class MBO with Auction Dynamics (Jacobs et al., 2018) 700 97.4%

ILSC (this paper) 700 97.7%
AtlasRBF (Pitelis et al., 2014) 1000 96.4%

Pseudo-label (Lee, 2013) 1000 96.6%
DGN (Kingma et al., 2014) 1000 97.6%

ILSC (this paper) 1000 98.0%
Ladder Networks (Rasmus et al., 2015) 1000 99.2%

Table 4: Comparing ILSC to other State-of-the-Art Semi-supervised Algorithms on MNIST.

5.4.1 AT&T Faces Data

The AT&T ”The Database of Faces1” human faces data, which contains gray scale images
for 40 different people of pixel size 56 × 46. The images of each person are taken under
10 different conditions, by varying the three perspectives of faces, lighting conditions, and
facial expressions. Figure 3 shows part of this data set.

Figure 3: An Experiment on the AT&T Faces (before (on the left) and after (on the right))

We use part of this data set by randomly selecting 10 people such that each individual has
10 images, then we randomly permute the images as shown in the left of Figure 3, compute
its adjacency matrix based on the preprocessing method summarized in the appendix. Then
we apply Algorithm 4 which tries to recover all the 10 images which belong to the same
individual in each row. The expected output after Algorithm 4 are shown on the right of the

1. ”The Database of Faces”, AT&T Laboratories Cambridge, (2002) Available: http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Figure 3. The performances of our algorithm compared with other methods are summarized
in Table 5 under 100 repetitions. Note that the spectral clustering method is unsupervised,
hence its accuracy does not affected by the percentage of labeled data.

Labeled Data % 10 20 30

ILSC 94.8% 97.7% 98.2%
ICP+RWT 94.3% 97.4% 98.7%

LASSO 94.2% 96.2% 96.6%
SC 95.8% 95.8% 95.8%

Table 5: Average Accuracy of Recovering All Clusters for AT&T Data.

5.4.2 Yale Faces Data

The ”Extended Yale Face Database B (YaleB)” data, refering to Georghiades et al. (2001),
contains 16128 gray scale images of 28 human subjects under 9 poses and 64 illumination
conditions. We use part of this data set by randomly selecting 20 images from each person
after some data preprocessing. We first randomly permute the images as shown in the
left side of Figure 4, then we aim to recover all the 20 images which belong to the same
individual into each row, as shown in the right side of Figure 4. The performances of our
algorithm compared with others are summarized in Table 6 under 100 repetitions.

Labeled Data % 10 20 30

ILSC 96.0% 96.2% 96.3%
ICP+RWT 94.4% 94.7% 94.9%

LASSO 93.4% 93.5% 93.5%
SC 93.8% 93.8% 93.8%

Table 6: Average Accuracy of Recovering All Clusters for YaleB Data.

To sum up, we proposed a semi-supervised local cluster extraction algorithm LeastSquareClus-
tering (LSC) and its iterative version IterativeLeastSquareClustering (ILSC). The LSC is
obtained through a two stages approach. In the first stage, we found a superset of the target
cluster which will almost certain to contain the seed vertices set by running RandomWalk-
Threshold on the seed vertices. In the second stage, we developed a least square based
approach LeastSquareClusterPuruist as our pursuit step to find the complement of target
cluster within the superset. Finally, we validate our model by testing it on SSBM, political
blog, MNIST, AT&T human faces data, and YaleB human faces data. Our algorithm LSC
and ILSC achieves a better performance than their counterparts CP+RWT and ICP+RWT
in Lai and Mckenzie (2020) both in accuracy and efficiency. It also achieves very competi-
tive results compared with other state-of-the-art semi-supervised clustering algorithms.
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Figure 4: An Experiment on the Extended YaleB Data (before (on the left) and after (on
the right))
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Appendix A.

For completeness, we briefly introduce the concept of Markov chains and state the funda-
mental theorem of Markov chains in this appendix.

For a finite state space Ω, we say a sequence of random variables Xt on Ω is a Markov
chain if for all t and all x0, · · · , xt, y ∈ Ω, we have

P(Xt+1 = y|X0 = x0, · · · , Xt = xt) = P(Xt+1 = y|Xt = xt).

In other words, the probability of being at the next state is only determined by the imme-
diate previous state. We consider time homogeneous one step transition matrix as

P (x, y) = P(Xt+1 = y|Xt = x).

The t-step transition matrix is naturally defined as

P t(x, y) =

{
P (x, y) t = 1,∑

z∈Ω P (x, z)P t−1(z, y) t > 1.

We say a distribution π over Ω is a stationary distribution if it is invariant with respect to
the transition matrix, i.e.,

π(y) =
∑
x∈Ω

π(x)P (x, y), for all y ∈ Ω.

Definition 17. A Markov chain is called irreducible if for all x, y ∈ Ω, there exists t such
that P t(x, y) > 0.

Definition 18. A Markov chain is called aperiodic if for all x ∈ Ω, gcd{t : P t(x, x) >
0} = 1.

The following theorem, originally proved in Doeblin (1938), details the essential property
of irreducible and aperiodic Markov chains.

Theorem 19. (Fundamental Theorem of Markov Chains) For a finite irreducible and ape-
riodic Markov Chain, there exists a unique stationary distribution π such that

lim
t→∞

P t(x, y) = π(y) for all x, y ∈ Ω.

Proof. We omit the proof here by referring to Doeblin (1938), Aldous (1983) and Lindvall
(1992) for interested readers.

Appendix B.

We provide with some more specific details in this appendix for implementing the numerical
experiments in the previous sections.
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Parameters Tuning

For each cluster to be recovered, we sampled the seed vertices Γi uniformly from Ci during
all implementations. We fix the random walk depth with t = 3 and we use random walk
threshold parameter ε = 0.8 for implementing MNIST data and political blogs data, and use
ε = 0.6 for implementing SSBM, ATT, and YaleB data. We vary the rejection parameters
R ∈ (0, 1) for each specific experiments based on the estimated sizes of clusters. In the
case of no knowledge of estimated sizes of clusters nor the number of clusters are given,
we may have to refer to the spectra of graph Laplacian and use the large gap between two
consecutive spectrum to estimate the number of clusters, and then use the average size to
estimate the size of each cluster.

We fix the least square threshold parameter with γ = |n̂1|/5, which is totally heuristic.
However, the performance of algorithms will not perturbed too much by varying γ ∈ (0, 0.5),
as long as we do not push γ too extremely. The hyperparameter MaxIter is choosen ac-
cording to the size of initial seed vertices relative to the total number of vertices in the
cluster. For purely comparison purpose, we keep MaxIter = 1 for MNIST data. By ex-
perimenting on different choices of MaxIter, we implement with MaxIter = 1 for AT&T
data and MaxIter = 2 for YaleB data which give the best results.

Image Data Preprocessing

We performed some data preprocessing techinuqes on YaleB data to avoid the poor quality
images. Specifically, we abandoned the pictures which are too dark, and we cropped each
image into size of 54 × 46 to reduce the effect of background noise. For the remaining
qualified pictures, we randomly selected 20 images for each person.

All the image data in MNIST, AT&T, YaleB needs to be firstly constructed into an auxiliary
graph before the implementation. Let xi ∈ Rn be the vectorization of each image image
from the original data set, we define the following affinity matrix of the K-NN auxiliary
graph Jacobs et al. (2018) Zelnik-Manor and Perona (2004) based on Gaussian kernel.

Aij =

{
e−‖xi−xj‖

2/σiσj if xj ∈ NN(xi,K)

0 otherwise

The notation NN(xi,K) is the set of K-nearest neighbours of xi, and σi = ‖xi−x
(r)
i ‖ where

x
(r)
i is the r-th closest point of xi. Note that the above Aij is not necessary symmetric, so

we consider Ãij = ATA for symmetrization. Alternatively, one may also want to consider
Ã = max{Aij , Aji} or Ã = (Aij +Aji)/2. We then use Ã as the input adjacency matrix for
our algorithms.

We fix the local scaling parameters K = 15, r = 10 for the MNIST data, K = 8, r = 5 for
the YaleB data, and K = 5, r = 3 for the AT&T data during implementation.
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