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Abstract

The convergence of the bivariate spline solution to the solution of the second order elliptic PDE
in non-divergence form in the maximum norm is presented in this paper. Mainly, the L∞ norm
of the spline projection in the Sobolev space H2

0 (Ω) ∩H1
0 (Ω) is shown to be bounded, where Ω is

a polygonal domain. With the boundedness of the projection, one can establish the error of the
spline solution to the weak solution in the L∞ norm. The ideas of the proof can be extended to
deal with other linear elliptic PDEs.
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1 Introduction

We are interested in L∞ estimate of the error from a bivariate spline solution to the second elliptic
partial differential equations in non-divergence form:

2∑
i,j=1

aij∂
2
iju = f in Ω,

u = g, on ∂Ω,

(1)

where Ω is an open bounded domain in R2 with a Lipschitz continuous boundary ∂Ω, ∂2
ij =

∂2

∂xi∂xj
is

the second order partial derivative operator with respect to xi and xj for i, j = 1, 2. Assume that the
tensor a(x) = {aij(x1, x2)}2×2 is symmetric positive definite and uniformly bounded over Ω. Note that
the tensor a(x) is essentially bounded and hence, the PDE in (1) cannot be rewritten in a divergence
form.

Numerical solutions to (1) have been studied recently in [28] and [29] under the assumptions that
Ω is a convex domain. In this setting, the PDE (1) has a strong solution u ∈ H2(Ω). See [24] for a
contraction mapping approach under an assumption that Ω has the C2 smooth boundary. This C2

requirement was later removed in [28]. Indeed, this is possible as commented in Chapter 3 in [15].
In addition, in [28], the researchers introduced a new bilinear form A(u, v) and showed that the PDE
in (1) has a weak solution in H2(Ω) ∩ H1

0 (Ω) by using the well-known Lax-Milgram theorem. More
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precisely, they first showed that ‖u‖∆ = (
∫

Ω |∆u|
2dxdy)1/2 is a norm, where ∆ is the standard Laplace

operator and then define a new non-symmetric bilinear form

A(u, v) =

∫
Ω
γL(u)∆vdxdy, (2)

where γ = (
∑2

i,j=1 |aij |2)/(a11 + a22)2 and

L(u) =

2∑
i,j=1

aij∂
2
ij(u).

The bilinear form is associated with the following PDE which is equivalent to the one in (1):

γL(u) = γf, in Ω (3)

and u = 0 on ∂Ω. The researchers in [28] showed

Lemma 1 Suppose that Ω is a convex domain. Then there exist two positive constants K1 and K2

such that
K1|u|22,2,Ω ≤ A(u, u) ≤ K2|u|22,2,Ω (4)

for all u ∈ H2(Ω) ∩H1
0 (Ω).

Using the well-known Lax-Milgram theorem, we can establish the existence of a unique weak solution
u satisfying A(u, v) =

∫
Ω γf∆v for all v ∈ H1

0 (Ω) ∩ H2(Ω). Furthermore, the researchers in [28]
concluded that the weak solution u is in fact a strong solution in H2(Ω).

In this paper we consider to use bivariate spline functions for numerical solution of (1). Let us
introduce the bivariate spline spaces. Let 4 be a triangulation of Ω and

Srd(4) = {s ∈ Cr(Ω), s|t ∈ Pd,∀t ∈ 4} (5)

be the spline space of degree d and smoothness r ≥ −1 with d > r, where Pd is the space of polynomials
of total degree ≤ d and t ∈ 4 stands for a triangle and Cr(Ω) is the space of all r ≥ 0 times continuous
functions over the closure of Ω. When r = −1, the spline space Srd(4) is the discontinuous finite
element space. When r = 0, bivariate splines are simply standard finite elements. When r ≥ 1, there
are many bivariate spline spaces available for various degree d ≥ 2. See [20] for detail. These spline
functions have been used to solve linear and many other nonlinear partial differential equation(PDE).
See, e.g. [2], [23], [17], [1], [16], [27] and etc.. We can use these spline functions, in particular, splines
in S1

d(4) with d ≥ 5 to numerically solve (1) as the solution in H2(Ω).
Indeed, similar to the discussion in [28], the Lax-Milgram theorem implies that there exists a

unique spline solution Su ∈ Sd(4) = S1
d(4)∩H1

0 (Ω) ⊂ H2(Ω)∩H1
0 (Ω) satisfying A(Su, v) =

∫
Ω γf∆v

for all v ∈ Sd(4), where d ≥ 5. Thus, we have

A(u− Su, v) = 0, ∀v ∈ Sd(4). (6)

Then it follows from (4) that letting Qu ∈ Sd(4) be a good approximation of u in H2(Ω), we use (6)
to have

K1|u− Su|2,2,Ω ≤ A(u− Su, u− Su) = A(u− Su, u−Qu) ≤ K2|u− Su|2,2,Ω|u−Qu|2,2,Ω.

That is, we have

|u− Su|2,2,Ω ≤
K2

K1
|u−Qu|2,2,Ω. (7)
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Furthermore, since

‖∇(u− Su)‖2L2(Ω) = |
∫

Ω
(u− Su)∆(u− Su)| ≤ |u− Su|2,2,Ω‖u− Su‖L2(Ω),

we use the well-known Poincaré inequality to conclude that

‖∇(u− Su)‖L2(Ω) ≤ K3|u− Su|2,2,Ω ≤
K3K2

K1
|u−Qu|2,2,Ω (8)

and

‖u− Su‖L2(Ω) ≤
K2

3K2

K1
|u−Qu|2,2,Ω. (9)

Thus, using our spline space to numerically solve (1) has a much simpler error analysis than the
numerical methods based on discontinuous Galerkin finite elements in [28] and the weak Galerkin
method in [29]. See our numerical results in §5 based on bivariate spline functions which provide more
accurate solutions when using large degree d of spline functions even the testing function is only C1

and in H2(Ω). See [22] for root mean squared errors (RMSE) of spline functions for this type of PDE.
These demonstrate that our spline function methods are efficient and effective.

The purpose of this paper is to present a maximum norm estimate: |u − Su|2,∞,Ω if u ∈ H2(Ω)
and |u− Su|1,∞,Ω and |u− Su|∞,Ω if u is more smooth, say u ∈ Hm+1(Ω) for m ≥ 2. For convenience,
we shall write PE(u) = Su, the projection of u in Sd(4). To state our main result, we need more
notation. For each triangulation 4, let β4 be the shape parameter of 4 defined by

β4 :=
|4|
ρ4

, (10)

where |4| is the length of the longest edge of 4 and ρ4 is the smallest of the radius of the in-circle of
triangle t ∈ 4. Next a triangulation 4 is said to be β-quasi-uniform if β4 ≤ β <∞. In finite element
literature, such a triangulation is called shape-regular (cf. [5]) with regularity parameter β. We shall
establish the following

Theorem 1 Suppose that Ω ⊂ R2 is a convex domain. Suppose that 4 is a β-quasi-uniform triangu-
lation of Ω. Then there exists a constant D8 > 0 such that for every u ∈ H2(Ω) ∩H1

0 (Ω)

|PE(u)|2,∞,Ω ≤ D8|u|2,∞,Ω. (11)

With the result above we will be able to show that for u ∈Wm+1
∞ (Ω) with m ≥ 2,

|u− Su|k,∞,Ω ≤ C|4|m−1|u|m+1,∞,Ω, k = 0, 1, 2 (12)

for a positive constant C. See details in Theorem 3 in a later section.
Our major effort in this paper is to establish (11) for the bivariate spline solution to (1). Our

proof is based on the ideas in [14], [13] and [21] for the L∞ norm estimation of the projections in
constructing scattered data fitting and interpolation using a spline space which possesses a stable
local basis. It is known many spline spaces possess a stable local basis (cf. [20]). For example, for the
space of continuous linear finite elements over a triangulation 4, the standard hat functions at each
vertex form a stable local basis. For another example, C1 quintic Argyris elements form a stable local
basis in a superspline subspace in S1

d(4). For convenience, the concept of a stable local basis will be
reviewed in the next section.

Next we shall remark that our proof can be extended to deal with some general second order
elliptic PDE in divergence form as well as some PDE of higher order, e.g. a standard biharmonic
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equation. Mainly we are able to obtain the maximum norm estimates for bivariate spline solutions to
these elliptic PDEs. See details in the Remark Section §4. Finally, we present numerical results in the
maximum norm estimate for a PDE with non-differentiable coefficients which were used for testing in
[28] and [29].

The rest of the paper is devoted to establish the proof of Theorem 1. As mentioned above, the
proofs are motivated by the work in [14], [13], and [21] for scattered data fitting. To present the ideas
in the setting of numerical solution of PDE, we include all basic properties and steps. We shall review
the concept of stable local basis in the next section. Then we prove the main results in §3, present
some remarks in §4 and numerical results in §5.

2 Preliminary on Stable Local Basis of Bivariate Splines

Recall bivariate splines over triangulation 4 are represented by using Bernstein-Bézier representation.
That is, for s ∈ S−1

d (4), the space of all discontinuous spline functions over 4,

s =
∑
T∈4

∑
i+j+k=d

cTijkB
T
ijk (13)

where BT
ijk =

d!

i!j!k!
bi1b

j
2b
k
3 with b1, b2, b3 being barycentric coordinates of (x, y) with respect to T (cf.

[20]).
We now describe a stable local bases for spline space S ⊂ Srd(4). Let

Dd,4 := ∪T∈4{ξTijk, i+ j + k = d}, (14)

with ξTijk := iu+jv+kw
d for T = 〈u,v,w〉 be the set of domain points associated with 4 and d. It is well

known that each spline in S−1
d (4) is uniquely determined by the Bézier coefficient cTij associated with

each domain point ξTijk. A subset M ⊂ Dd,4 is called a minimal determining set (MDS) for Srd(4)
for r ≥ 0 if the values of the coefficients of s ∈ Srd(4) associated with domain points in M uniquely
determine all remaining coefficients of s. In the following we shall use clusters of triangles in 4. For
each T ∈ 4, let star(T ) = {t ∈ 4 : T ∩ t 6= ∅} and for k ≥ 2,

stark(T ) = {t ∈ 4 : t ∩ stark−1(T ) 6= ∅} (15)

with star1(T ) = star(T ). It is known that the number of triangles in stark(T ) is bounded by

#{t ∈ stark(T )} ≤ π((k + 1)|4|)2

πρ2
4

=
|4|2

ρ2
4

(k + 1)2 ≤ β2(k + 1)2. (16)

Definition 1 A basis {Bξ}ξ∈M for a space S ⊂ Srd(4) on a triangulation 4 is a stable local basis, if
there exists an integer ` ≥ 1 and constants 0 < C1 < C2 < ∞ depending only on d and the smallest
angle θ4 of triangulation 4 such that

1) for each ξ ∈M, supp(Bξ) ⊆ star`(Tξ) for some triangle Tξ ∈ 4,

2) for all {cξ}ξ∈M,

C1 max
ξ∈M

|cξ| ≤ ‖
∑
ξ∈M

cξBξ||∞,Ω ≤ C2 max
ξ∈M

|cξ|, (17)

where ‖ · ‖∞,Ω = ‖ · ‖0,∞,Ω just for convenience.
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For r = 0 and any d ≥ 1, we may choose ` = 1. Also for r = 1 and d ≥ 5, we choose ` = 1. For
r ≥ 2 and d ≥ 3r + 2, we can choose ` = 3 as explained in [20]. A construction of a stable local basis
using the Bernstein-Bézier representation of splines in Srd(4) when d ≥ 3r + 2 is outlined in [20]. For
d < 3r + 2 over special triangulation, see many constructions in [20]. Next we also need

Lemma 2 (Theorem 5.22 in [20]) Suppose d ≥ 1 for r = 0 or d ≥ 3r + 2 for r ≥ 1. Let 4 be
a quasi-uniform triangulation of Ω. Then Srd(4) has a a stable local basis {Bξ}ξ∈M. Furthermore
the {Bξ}ξ∈M is a Riesz basis (with respect to the L2-norm). That is, there exist constants C3, C4

depending on d, β such that

C3

∑
ξ∈M
|cξ|2 ≤ |4|−2||

∑
ξ∈M

cξBξ||20,2,Ω ≤ C4

∑
ξ∈M
|cξ|2 (18)

for all {cξ}ξ∈M.

3 Main Results and Proofs

In the following we shall assume that our spline space has a stable local support basis {Bξ, ξ ∈ M}
with support size ` ≥ 1. We shall begin with several preparatory lemmas. The first one is well-known
in the literature as the Markov Inequality.

Lemma 3 (Markov inequality [20, Theorem 2.32]) Let T be a triangle. Let p ∈ [1,∞) and
d ∈ N be fixed. There exists a constant D1 depending only on d and p such that for all nonnegative
integers α and β with 0 ≤ α+ β ≤ d, we have

‖Dα
xD

β
y s‖Lp(T ) ≤

D1

ρα+β
T

‖s‖Lp(T ), ∀s ∈ Pd, (19)

where ρT is the in-radius of the triangle T .

This inequality is called the inverse inequality in the finite element literature. However, Markov
brothers studied this inequality in the univariate setting in 1889 and 1916. Kellogg extended (cf. [18])
this inequality to the spherical setting in 1928. Hille, Szegö and Tamarkin generalized the inequality
in 1937 further. More historical notes can be found in [20] and [30].

Next we need the following lemma whose proof can be found in [3].

Lemma 4 If a sequence {ai}∞i=1 satisfies |am| ≥ γ
∑
j≥m
|aj | for all m ≥ 0 and some γ ∈ (0, 1), then

|am| ≤ a0
(1− γ)m

γ
.

We are now ready to discuss some basic properties of bivariate splines.

Lemma 5 Let 4 be a β-quasi-uniform triangulation. Let Sd(4) be the subspace defined by

Sd(4) := {s ∈ Srd(4), such that s|∂Ω = 0}, (20)

for r ≥ 1 and d ≥ 3r + 2 or r = 0 for all d ≥ 1. Let {Bξ, ξ ∈ M} be a stable local basis for Sd(4).
Then there exist constants 0 < D2 ≤ D3 <∞ depending only on β and d such that

D2

∑
ξ∈M

c2
ξ ≤ |

∑
ξ∈M

cξBξ|21,2,Ω ≤ D3

∑
ξ∈M

c2
ξ , (21)

for all u ∈ Sd(4), where D2 and D3 are two positive constants dependent on d and the shape parameter
β of 4. In fact, D3 = C4D1.
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Proof. The second inequality of (21) can be obtained by using the well-known Markov inequality, i.e.
Lemma 3 together with Lemma 2. To prove the first inequality, we may assume |4| = 1 first. Let

D′2 := inf
s∈Sd(4)

{|s|21,2,Ω such that

∫
Ω
s2dxdy = 1}. (22)

There exists a sequence of splines sk ∈ Sd(4) and s∗ ∈ Sd(4) such that sk → s∗ in H1
0 (Ω) norm.

Let D′2 = |s∗|21,2,Ω since Sd(4) is a finite dimensional space. We claim D′2 > 0. Otherwise, we have

0 = D′2 = |s∗|21,2,Ω. Since s∗ ∈ Sd(4), D2 = 0 implies that s∗ is a piecewise constant function.

Using s∗|∂Ω = 0, we conclude that s∗ ≡ 0 since s∗ ∈ C0(Ω) which contradicts to the fact that∫
Ω(s∗)2dxdy = 1.

Now for a general triangulation 4, say it is the nth uniform refinement of an original triangulation
40 with |40| = 1. Without loss of generality, we may assume that Ω contains the origin (0, 0). We

use the substitutions x =
1

2n
x̃ and y =

1

2n
ỹ to see that∫

Ω
u2(x, y)dxdy =

1

22n

∫
Ωn

u2(
1

2n
x̃,

1

2n
ỹ)dx̃dỹ,

where Ωn = {(2nx, 2ny), (x, y) ∈ Ω}. As the new triangulation 4n whose vertices are 2nV , where V
is the collection of all vertices of 4, we have the size |4n| = 2n|4| = |40| = 1 and hence, we use (22)
to have

D′2

∫
Ωn

u2(
1

2n
x̃,

1

2n
ỹ)dx̃dỹ ≤

∫
Ωn

[(Dx̃u(
1

2n
x̃,

1

2n
ỹ))2 + (Dỹu(

1

2n
x̃,

1

2n
ỹ))2]dx̃dỹ

=
1

22n

∫
Ωn

[(Dxu(
1

2n
x̃,

1

2n
ỹ))2 + (Dyu(

1

2n
x̃,

1

2n
ỹ))2]dx̃dỹ

=

∫
Ω

[(Dxu(x, y))2 + (Dyu(x, y))2]dxdy = |u|21,2,Ω.

Now combining the above results together, we have

D′2

∫
Ω
u2(x, y)dxdy =

D′2
22n

∫
Ωn

u2(
1

2n
x̃,

1

2n
ỹ)dx̃dỹ ≤ 1

22n
|u|21,2,Ω = |4|2|u|21,2,Ω.

We now use Lemma 2 to obtain

C3D
′
2

∑
ξ∈M

c2
ξ ≤ D′2|4|−2

∫
Ω
|
∑
ξ∈M

cξBξ|2dxdy ≤ |
∑
ξ∈M

cξBξ|21,2,Ω

which is the desired inequality with D2 = C3D
′
2. This completes the proof. 2

Similar to the proof above, we can have the following

Lemma 6 Let 4 be a β-quasi-uniform triangulation. Let Sd(4) = Srd(4) ∩ H2(Ω) ∩ H1
0 (Ω) be the

subspace for r ≥ 1 and d ≥ 3r + 2. Suppose that {Bξ, ξ ∈ M} is a stable local basis for Sd(4). Then
there exist constants 0 < D4 ≤ D5 <∞ depending only on β and d such that

D4

∑
ξ∈M

c2
ξ ≤ |4|2|

∑
ξ∈M

cξBξ|22,2,Ω ≤ D5

∑
ξ∈M

c2
ξ , (23)

for all u =
∑

ξ∈M cξBξ ∈ Sd(4) ∈ Sd(4), where D4 and D5 are two positive constants dependent on
d and the shape parameter β of 4. Furthermore, combing the equivalent relations in (4), we have

D4K1

∑
ξ∈M

c2
ξ ≤ |4|2A(

∑
ξ∈M

cξBξ,
∑
ξ∈M

cξBξ) ≤ D5K2

∑
ξ∈M

c2
ξ , (24)
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Proof. The proof is similar to the one of Lemma 5. The detail is left to the interested reader. 2

Recall A(u − Su, v) = 0 for all v ∈ Sd(4). This is why we use Su = PE(u), a projection of u in
Sd(4). It is easy to see PE(u) has the following projection property:

|PE(u)|2,2,Ω ≤
K2

K1
|u|2,2,Ω (25)

for all u ∈ H2(Ω) ∩ H1
0 (Ω). Indeed, we simply use the equivalent relations in (4), (6), and Cauchy-

Schwarz inequality to obtain (25). That is,

K1|PE(u)|22,2,Ω ≤ A(PE(u), PE(u)) = A(u, PE(u)) ≤ K2|u|2,2,Ω|PE(u)|2,2,Ω.

Furthermore let us show that the spline projection PE(u) of function u geometrically decays away
from the support of u.

Lemma 7 There exist constants 0 ≤ σ < 1 and D7, depending only on D5/D4, K2/K1, such that for
any vertex v ∈ 4 and any function u ∈ H2(Ω) ∩H1

0 (Ω) with supp(u) ⊆ star(v)

|PE(u)|2,2,τ ≤ D7σ
k|u|2,2,Ω, (26)

whenever τ 6∈ stark`(v) for some k ≥ 1, where ` > 0 is the size of support of the stable local basis of
Sd(4).

Proof. Recall that ` ≥ 1 is the size of support of Bξ ⊂ Sd(4). For v ∈ 4, we let

Mv
k : = {ξ ∈M : supp(Bξ) ∩ stark`(v) 6= ∅},∀k ≥ 1;
N v

1 : = Mv
1,

N v
k : = Mv

k\Mv
k−1, ∀k ≥ 2.

Note that these clusters of domain points are defined differently from those in [14]. The following
augments are a modification of the ones in [13] and [14] with some improvement.

Write PE(u) =
∑

ξ∈M cξBξ as explained in the previous section, and let

uk :=
∑
ξ∈Mv

k

cξBξ, wk := PE(u)− uk, ak :=
∑
ξ∈N vk

c2
ξ ,

for k ≥ 0. Since PE(u) ∈ Sd(4), we have∑
j≥k+1

aj =
∑
ξ 6∈Mv

k

c2
ξ ≤
|4|2

D4
|wk|22,2,Ω (27)

by using Lemma 6. Since wk ∈ Sd(4), by using (6) we have∫
Ω
γL(u− PE(u))∆wkdxdy = 0. (28)

Moreover,
∫

Ω γLu∆wkdxdy = 0 since supp(u) ⊆ star(v) and supp(wk) lies outside stark`(v) for k ≥ 1.
It follows that

K1|wk|22,2,Ω ≤ A(wk, wk) =

∫
Ω
γL(PE(u)− uk)∆wkdxdy =

∫
Ω
γL(u− uk) ·∆wkdxdy
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= −
∫

Ω
γL(uk) ·∆wkdxdy

= −
∫

Ω
γL(

∑
ξ∈N vk

cξBξ)∆wkdxdy ≤ K2|
∑
ξ∈N vk

cξBξ|2,2,Ω |wk|2,2,Ω, (29)

where we have used Lemma 1, (28) and the fact that supp(wk)∩Bξ = ∅ for all ξ ∈ Nv
j , j = 0, 1, · · · , k−

1. Based on the above discussion, we further conclude

|wk|22,2,Ω ≤
K2

2

K2
1

|
∑
ξ∈N vk

cξBξ|22,2,Ω ≤
K2

2

K2
1

D5

|4|2
∑
ξ∈N vk

c2
ξ =

K2
2

K2
1

D5

|4|2
ak

by using (23). Hence by (27), ∑
j≥k+1

aj ≤
K2

2

K2
1

D5

D4
ak =: D6ak, (30)

where D6 =
K2

2D5

K2
1D4

> 1. Let γ := 1
D6

< 1. Then we use Lemma 4 to have

ak ≤ a0
(1− γ)k

γ
=
a0

γ
σ2k = D6a0σ

2k (31)

with σ :=
√

1− γ. Furthermore, by using (23),

a0 ≤
∑
j≥0

aj =
∑
ξ∈M

c2
ξ ≤
|4|2

D4
|PE(u)|22,2,Ω ≤

|4|2

D4

K2
2

K2
1

|u|22,2,Ω, (32)

where we have used a property (25) of PE in the last inequality.
For τ 6∈ stark`(v) for some k ≥ 1, let us say τ ∈ star(k+1)`(v)\stark`(v). If ξ ∈ Mv

k−1, then

supp(Bξ) ⊆ stark`(v), and therefore τ ∩ supp(Bξ) = ∅. If ξ ∈ N v
k+j , j ≥ 2, we also have τ ∩ supp(Bξ) =

∅. Letting χτ be the characteristic function of triangle τ , we further have

|PE(u)|22,2,τ = |PE(u)χτ |22,2,Ω = |
∑

ξ∈N vk∪N
v
k+1

cξBξχτ |22,2,Ω

≤ D5

|4|2
∑

ξ∈N vk∪N
T
k+1

c2
ξ =

D5

|4|2
(ak + ak+1) ≤ D5

D4
D6

K2
2

K2
1

σ2k(1 + σ2)|u|22,2,Ω

by using (31) and (32). These complete the proof with D7 = 2D5
D4
D6

K2
2

K2
1
. 2

Finally we need a result on the spline partition of unity.

Lemma 8 Suppose that 4 is a β-quasi-uniform triangulation of Ω with vertices V. For d ≥ 5, there
exists a collection of φv ∈ S1

d(4), v ∈ V which form a partition of unity:∑
v∈V

φv ≡ 1. (33)
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Figure 1: A Construction of partition of unity

Proof. We only need to construct such a collection in S1
5(4) as for d > 5, the degree raising technique

(cf. [20]) can be used to convert such a collection in S1
5(4) to a collection in S1

d(4). In addition to
the vertices set V = {v1, v2, · · · , vm}, we let T = {T1, T2, · · · , Tn} be the set of all triangles in 4.

We simply present the Bernstein-Bézier representation of φv which is supported on star1(v), the
union of all triangles in 4 which has the vertex v. Let T = 〈v, w, u〉 be a triangle in star1(v). For each
interior edge e in 4 which is shared by Ti and Tj . We assign Ti to e if the number i is smaller than
the number of j. We use Figure 1 to explain our construction.

The way to choose a1, a
′
1 and a2, a

′
2 is as follows. As e = 〈v, w〉 is shared by two triangles Ti =

〈v, w′, w〉 and Tj = 〈v, w, u〉, if i < j, we choose a′1 = 1/2 and then use the C1 smoothness to determine
a1. Otherwise we choose a1 = 1/2 and use the C1 smoothness condition to determine a′1. Similar for
a2 and a′2. Finally, if e = 〈v, w〉 is a boundary edge, we choose a1 = 1/2.

The Bernstein-Bézier representation of φv on triangle 〈v, w′, w〉 can be given similarly. For conve-
nience, we simply use • to omit the details. The similar for 〈v, u, u′〉. Then we can see the Bernstein-
Bézier coefficients of the summation of φv, v ∈ V over each triangle are all 1 and hence,

∑
v∈V φv ≡ 1.

2

We are now ready to prove the main result in this section.

Theorem 2 Suppose that Ω ⊂ R2 is a polygonal domain. There exists a constant D8 > 0 depending
only on d, `, β, K2/K1, and D5/D4, such that for every u ∈ H2(Ω) ∩H1

0 (Ω)

|PE(u)|2,∞,Ω ≤ D8|u|2,∞,Ω. (34)

Proof. Let τ be a fixed triangle in 4. For simplicity, we may assume that ` = 1. We define a new set
by

Rτ0 = τ,Rτ1 := star(τ), Rτk := stark(τ)\stark−2(τ),∀k ≥ 2.

9



Let nk denote the number of triangles in Rτk, k ≥ 0. As explained in (16), nk ≤ C(k + 1)2 for a
positive constant dependent on β4. Since star(v) ⊂ Rτk contains at least one triangle T , the number
of such star-shaped sets star(v) ⊂ Rτk is bounded by nk.

Let V be the collection of all vertices of 4. We write u =
∑

v∈V uv with uv = uφv ∈ H2(Ω) and
supp(uv) ⊆ star(v) by using Lemma 8. Since PE is a linear operator, we use Lemma 7 to have

|PE(u)|2,2,τ ≤
∑
v∈V
|PE(uv)|2,2,τ =

∑
star(v)⊂Rτ0∪Rτ1

|PE(uv)|2,2,τ +
∑
k≥2

∑
star(v)∈Rτk

|PE(uv)|2,2,τ

≤
∑

star(v)∈Rτ0∪Rτ1

K2

K1
|uv|2,2,Ω +

∑
k≥2

∑
star(v)∈Rτk

2
D5K

2
2

D4K2
1

σk|uv|2,2,Ω

≤ D5K
2
2

D2K2
1

(max
T∈4

A
1/2
T )(n0 + n1 +

∑
k≥2

σknk)|u|2,∞,Ω

≤ D5K
2
2

D2K2
1

|4|(n0 + n1 +
∑
k≥2

σknk)|u|2,∞,Ω = D7|4||u|2,∞,Ω,

where we have used the projection property (25) of PE and AT stands for the area of triangle T . Since

σ < 1 and nk ≤ C(k + 1)2 as in the previous section, we know D7 :=
D5K2

2

D2K2
1

∑
k≥0 σ

knk <∞.

Next since PE(u)χτ is a polynomial of degree over τ , we have

|PE(uT )|21,2,τ ≥ CAτ |P1(uT )|21,∞,τ . (35)

for a positive constant C dependent only on d (cf. Theorem 1.1 in [20]). It follows that

|PE(u)|2,∞,τ ≤
1

CA
1/2
τ

|PE(u)|2,2,τ ≤
D7|4|
CA

1/2
τ

|u|2,∞,Ω.

Therefore, (34) follows by taking the supremum over all τ ∈ 4 with D8 dependent on D7/C and the
shape-parameter β4. 2

We are now ready to prove the following main results in this section:

Theorem 3 Suppose that the bilinear form A(u, v) is continuous and satisfies (4). Let u be the weak
solution of (1) in H2(Ω) ∩H1

0 (Ω), where Ω is a convex domain. Let Su = PE(u) be the weak solution
in the spline space Sd(4) which has a stable local basis. Suppose that u ∈Wm+1

∞ (Ω). Then

|u− Su|2,∞,Ω ≤ C|4|m−1|u|m+1,∞,Ω (36)

for a positive constant C in (36). If m ≥ 2, we also have

|u− Su|1,∞,Ω ≤ C|4|m−1|u|m+1,∞,Ω and |u− Su|∞,Ω ≤ C|4|m−1|u|m+1,∞,Ω (37)

for another positive constants C in (37).

Proof. For u ∈Wm+1
∞ (Ω), we let Qu ∈ Sd(4) be the quasi-uniform interpolatory spline satisfying

‖u−Qu‖2,∞,Ω ≤ K0|4|m−1|u|m+1,∞,Ω.

(cf. [20]). It is clear that we have PE(Qu) = Qu. Then

|u− Su|2,∞,Ω ≤ |u−Qu|2,∞,Ω + |PE(Qu − u)|2,∞,Ω ≤ (1 +D8)|u−Qu|2,∞,Ω.

10



Combining the above two estimates completes the proof of the estimate in (36).
When m ≥ 2, u ∈ Wm+1

∞ (Ω) implies that u is continuously differentiable by Sobolev imbedding
theorem. For any (x, y) ∈ Ω, the horizontal line passing (x, y) will intersect the ∂Ω at two points due
to the boundedness of Ω. Since (u− Su)|∂Ω = 0, we use Roll’s theorem to see that ∂

∂x(u− Su) = 0 at
some point (x0, y) on the line segment within Ω. Then

∂

∂x
(u− Su)(x, y) =

∫ x

x0

∂2

∂x2
(u− Su)(s, y)ds

and hence, | ∂∂x(u − Su)(x, y)| ≤ C|u − Su|2,∞,Ω, where C = |Ω|, the size of Ω. Similar for | ∂∂y (u −
Su)(x, y)| ≤ C|u− Su|2,∞,Ω. It follows that

|∇(u− Su)|∞,Ω ≤ C|u− Su|2,∞,Ω.

That is, we have the first inequality in (37). The second inequality in (37) follows by using Poincaré’s
inequality. 2

We remark that we are not able to obtain the maximum norm estimate for∇(u−Su) when m = 2 as
we can not apply Poincaré’s inequality as in the setting of second order elliptic PDE in non-divergence
form.

4 Remarks

We have the following three remarks in order.

• 1) The proof in the previous section can be modified to establish the maximum norm estimate
for the Poisson equation. That is, let Sd(4) = Srd(4)∩H1

0 (Ω) for r = 0 and d ≥ 1 or r ≥ 1 and
d ≥ 3r + 2. Let u ∈ H1

0 (Ω) be the weak solution of the Poisson equation satisfying

a(u, v) = 〈f, v〉, v ∈ H1
0 (Ω)

with a(u, v) =
∫

Ω∇u∇vdxdy and 〈f, v〉 =
∫

Ω fvdxdy. Let P1(u) ∈ Sd(4) be the spline solution
satisfying a(P1(u), v) = 〈f, v〉 for all v ∈ Sd(4). Then we have

Theorem 4 There exists a constant D9 > 0 depending only on d, `, β and D3/D2, such that
for every u ∈ H1

0 (Ω)
|P1(u)|1,∞,Ω ≤ D9|u|1,∞,Ω. (38)

as well as the following maximum norm estimate:

Corollary 1 Suppose that the weak solution u ∈Wm+1
∞ (Ω) with 1 ≤ m ≤ d. Then

|u− Su|1,∞,Ω ≤ Chm|u|m+1,∞,Ω, (39)

Furthermore,
‖u− Su‖∞,Ω ≤ Chm (40)

for a positive constant C dependent only on the shape parameter β4.

Proof. We first recall a spline approximation result from [20].

11



Theorem 5 (Theorem 10.10 of [20]) Let p ∈ [1,∞] and d ∈ N be given. Suppose that 4 is
a quasi-uniform triangulation of Ω and d ≥ 3r + 2 for r ≥ 1. Then for every u ∈ W d+1

p (Ω),
there exists a spline function Su ∈ Srd(4) such that

‖Dα
1D

β
2 (u− Su)‖Lp(Ω) ≤ K0|4|d+1−α−β|u|d+1,p,Ω ∀ 0 ≤ α+ β ≤ d, (41)

where K0 is a positive constant depends only on d and the smallest angle of 4,

Note that when u = 0 on ∂Ω, so is Su based on the constructive proof in [20]. We use (41) with
p =∞ to have

|u− P1(u)|1,∞,Ω ≤ |u− Su|1,∞,Ω + |Su − P1(u)|1,∞,Ω
= |u− Su|1,∞,Ω + |P1(Su)− P1(u)|1,∞,Ω
≤ (1 +D9)|u− Su|1,∞,Ω
≤ (1 +D9)K0|4|d|u|d+1,∞,Ω

if u ∈W d+1
∞ (Ω). When u ∈Wm+1

∞ (Ω) with 1 ≤ m < d, we simply use the theory of K-functional
(cf. [26] for the univariate setting which can be easily extended to the bivariate setting) to
conclude the proof of (39).

Because u − Su is zero on the boundary ∂Ω of Ω, we have ‖u − Su‖∞,Ω ≤ C|u − uh|1,∞,Ω by
Poincaré inequality. Thus, we complete the proof of Corollary 1. 2

Note that the above result on the maximum norm estimate for the Poisson equation is a classic
result which can be found in books on finite elements, e.g. [6] and [5]. The proof is based
on weighted norm estimates and ”index engineering” (according to [5]). It is one of the most
nontrivial and complicated proofs in the literature of finite elements. Nevertheless, the method
of proof has been extended to establish the maximum norm estimates for Stokes equation in [11],
[8], and even nonlinear PDE such as Navier-Stokes equations in [12]. See next remark for using
our method to establish the maximum norm estimate of the solution of biharmonic equation.

• 2) We can also use the arguments in the previous section to establish the boundedness of the
spline solution to the biharmonic equation in the maximum norm:

∆2u = f, x ∈ Ω

u = g, x ∈ ∂Ω

n · ∇u = h, x ∈ ∂Ω

(42)

for any given continuous functions g and h, where ∆ =
∂2

∂x2
+

∂2

∂y2
is the standard Laplace

operator and n stands for the outward normal vector along ∂Ω. The existence and uniqueness
of the solution of (42) as well as regularity of the solution can be found in [15]. Bivariate splines
have been used to solve (42) numerically. See [2]. For simplicity, we consider g = 0 and h = 0.
Let H2

0 (Ω) = {u ∈ H2(Ω) : u|∂Ω = 0,n · ∇u|∂Ω = 0} be another standard Sobolev space. The
exact solution u ∈ H2

0 satisfies∫
Ω

∆u∆vdxdy =

∫
Ω
fvdxdy, v ∈ H2

0 (Ω). (43)
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Let Sd(4) = Srd(4) ∩ H2
0 (Ω) with d ≥ 3r + 2 with r ≥ 1 (cf. [4] and [20]). Bivariate spline

solution to (42) is the spline Su ∈ Sd(4) which satisfies∫
Ω

∆Su∆vdxdy =

∫
Ω
fvdxdy, v ∈ Sd(Ω). (44)

It follows that ∫
Ω

∆(u− Su)∆vdxdy = 0, v ∈ Sd(Ω). (45)

That is, Su is the unique minimizer of the following minimization problem:

Su := arg min
s∈Sd(4)

‖∆(u− s)‖L2(Ω). (46)

In this sense, we can denote it by
P2(u) := uh. (47)

Similarly, we can establish the following

Theorem 6 Suppose that the shape parameter of the underlying triangulation 4 satisfies (10).
Then

‖P2‖ := max
u∈W 2

∞(Ω)
{|P2(u)|2,∞,Ω, |u|2,∞,Ω = 1} ≤ D10 <∞ (48)

for a positive constant D10 dependent only on d and β.

With the bound above, we can prove

Corollary 2 Suppose that the weak solution u ∈Wm+1
∞ (Ω) with 1 ≤ m ≤ d. Let uh ∈ Sd(4) be

the weak solution of biharmonic equation (42). Then we have

‖∆(u− uh)‖∞,Ω ≤ C|4|m−1‖u‖m+1,∞,Ω. (49)

Using Poincaré inequality, we have

‖∇(u− uh)‖∞,Ω ≤ C|4|m−1‖u‖m+1,∞,Ω. (50)

and
‖u− uh‖∞,Ω ≤ C|4|m−1‖u‖m+1,∞,Ω. (51)

for different positive constants C in different inequalities in (49), (50), and (51).

Proof. We leave the proof to the interested reader as the proof is similar to that of Corollary 1.
2

Note that the Stokes equations in the 2D setting can be converted into a biharmonic equation
based on the stream function formulation (cf. [23]). The bound of the projection of the Stokes
equation was derived with log factor and a quasi-optimal rate of convergence was obtained in [8].
Based on the discussion above, the log factor can be removed without introducing the regularized
green function.
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• 3) We can continue to use the arguments in the previous section to study the maximum norm
estimate for a general second order elliptic PDE in divergence form which can be described as
follows. {

D(u) = f, x ∈ Ω ⊂ R2

u = g, x ∈ ∂Ω,
(52)

where x = (x1, x2) ∈ R2 and D is a partial differential operator in divergence form:

D(u) := −
2∑

i,j=1

∂

∂xj

(
Aij

∂

∂xi
u

)
+

2∑
k=1

Bk
∂

∂xk
u+ Cu,

with Aij ∈ L∞(Ω), Bk ∈ L∞(Ω), C ∈ L∞(Ω), and f is a function in L2(Ω). We shall assume
that the coefficient matrix A = [Aij ]1≤i,j≤2 is symmetric and uniformly positive definite over Ω.
In this sense, the PDE in (52) is said to be uniform elliptic. Let

a(u, v) =

2∑
i,j=1

∫
Ω
Aij

∂

∂xi
u
∂

∂xj
v +

2∑
k=1

∫
Ω

[Bk
∂

∂xk
u]v +

∫
Ω
Cuv (53)

be the bilinear form associated with (52). If u ∈ H1(Ω) with u|∂Ω = g satisfies a(u, v) = 〈f, v〉
for all v ∈ H1

0 (Ω), u is called a weak solution to (52).

Without loss of generality, we may assume that g = 0. To numerically solve (52), we use bivariate
spline functions in Sd(4) = S0

d(4)∩H1
0 (Ω) for d ≥ 1 or Sd(4) = S1

d(4)∩H1
0 (Ω) for d ≥ 3r+ 2

when r ≥ 1(cf. [4] and [20]). We mainly solve a(Su, v) = 〈f, v〉 for all v ∈ Sd(4). When the PDE
(52) is elliptic and C(x, y) ≥ C0 > 0 is sufficiently large, it is known that there exists a unique
weak solution u ∈ H1

0 (Ω) satisfying a(u, v) = 〈f, v〉 for all v ∈ H1
0 (Ω) by using the well-known

Lax-Milgram theorem. Similarly, there exists a unique spline solution Su ∈ Sd(4) satisfying
the weak formulation a(Su, v) = 〈f, v〉 for all v ∈ Sd(4). We mainly solve this equation. See a
numerical implementation and numerical results in [2]. We now estimate the error u− Su. It is
easy to see

a(u− Su, v) = 0,∀v ∈ Sd(4). (54)

We again let Pe(u) = Su, a projection of u in Sd(4). Another result can be established is

Theorem 7 Let 4 be a β-quasi-uniform triangulation with β4 ≤ β <∞. Then

‖Pe‖ := max
f∈W 1

∞(Ω)
{|Pe(f)|E , |u|1,∞,Ω = 1} ≤ D11 <∞ (55)

for a positive D11 dependent only on d, β, λ and Λ, the smallest and largest eigenvalue of the
elliptic operator D.

With this bound, we can prove the following

Corollary 3 Suppose that the bilinear form a(u, v) is bounded below. Let u be the weak solution
of (52) and Su = Pe(u) be the weak solution of the general elliptic PDE using a spline space
Sd(4) which has a stable local basis. Suppose that u ∈Wm+1

∞ (Ω) for m ≥ 1. Then

‖∇(u− uh)‖∞,Ω ≤ Chm|u|m+1,∞,Ω (56)

and
‖u− uh‖∞,Ω ≤ Chm|u|m+1,∞,Ω, (57)

for two positive constants C in (56) and (57).
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Proof. The proof is left to the interested reader. 2

• 4) Finally, the analysis in this paper can be extended to the 3D and multi-dimensional setting.
Many trivariate spline spaces have a stable local basis (cf. [20]). They can be used to solve 3D
version PDE discussed in the previous section as well as Remarks above. We leave these study
to the interested reader.

5 Numerical Approximation of the PDE in (1)

In this section, we present some numerical results on the maximum norm estimates of bivariate spline
solutions to the PDE in (1). Mainly, we solve u ∈ S1

d(4) satisfying∫
Ω
γL(u)∆vdxdy =

∫
Ω
γf∆vdxdy, ∀v ∈ S1

d(4), (58)

or simply ∫
Ω
γL(u)wdxdy =

∫
Ω
γfwdxdy, ∀w ∈ S−1

d−2(4), (59)

where γ = (
∑2

i,j=1 |aij |2)/(a11 + a22)2 and

L(u) =
2∑

i,j=1

aij∂
2
ij(u)

as in a previous section. Let T be a triangle in 4 and

S|T =
∑

i+j+k=d

cTijkB
T
ijk(x, y),

where BT
ijk are Bernstein-Bézier polynomials of degree d. We use s = (cTijk, i + j + k = d, T ∈ 4)

to represent the coefficient vector for spline function S ∈ S−1
d (4). In order to make S ∈ Srd(4), we

construct a smoothness matrix H = H(r) such that Hs = 0 ensures that S is a function in Srd(4).
Such a smoothness matrix H has been known for many years (cf. [10]) and MATLAB implementation
is realized as explained in [23] and [2]. Also we simply express the boundary condition by Bs ≈ g as
in [2].

We let Su be the spline solution with the coefficient vector s which is the minimizer of (60) Find
u satisfying

min
h2

2
(‖Hs‖2 + ‖Bs− g‖2), subject to Kγu = Mγf , (60)

where Kγ and Mγ are the matrices associated with the integrals in (59) and report the maximum

norm error (RMSE) of u − Su, |∇(u − Su)| = (| ∂
∂x

(u − Su)| + | ∂
∂y

(u − Su)|)/2 and |∇2(u − Su)| =

(| ∂
2

∂x2
(u−Su)|+2| ∂

2

∂x∂y
(u−Su)|+| ∂

2

∂y2
(u−Su)|)/4 based on their values over 333×333 equally-spaced

points over Ω.

Example 1 In this example, we show the performance of our spline solutions for a PDE with non-
differentiable coefficients and nonsmooth exact solution u = xy(e1−|x| − 1)(e1−|y| − 1) which satisfies

2
∂2

∂x2
u+ 2sign(x)sign(y)

∂2

∂x∂y
u+ 2

∂2

∂y2
u = f(x, y), (x, y) ∈ Ω ⊂ R2 (61)
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where u = 0 on the boundary of Ω = [−1, 1] × [−1, 1] as in [28]. Note that the coefficients of the
PDE above are not differentiable and hence, the PDE can not be written in a divergence form. Also
note that the solution is in H2(Ω), but not continuously twice differentiable. We shall use S1

d(4`) to
construct the numerical solution and use S−1

d−2(4`) in (59) for the testing spline space for d ≥ 5 with
4` shown in Figure 2.

Figure 2: A triangulation (top-left) and its uniform refinements

In all numerical experiments reported above, the smoothness conditions and the boundary conditions
of Su for various degree d are satisfied within 1e − 10 or less. However, in Tables 3 and 4, we have
seen the convergence rates decrease at the last refinement of triangulation. This is probably due to the
accuracy of MATLAB. Thatis, the error between two consecutive iterative spline coefficient vectors is
within tolerance 1e− 15 although the maximum norm error u− Su is still not within 1e− 12.
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