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Abstract A bivariate spline method is developed to numerically solve second order elliptic
partial differential equations in non-divergence form. The existence, uniqueness, stability
as well as approximation properties of the discretized solution will be established by using
the well-known Ladyzhenskaya–Babuska–Brezzi condition. Bivariate splines, discontinu-
ous splines with smoothness constraints are used to implement the method. Computational
results based on splines of various degrees are presented to demonstrate the effectiveness and
efficiency of our method.
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1 Introduction

Weare interested in developing an efficient numericalmethod for solving second order elliptic
equations in non-divergence form. To this end, consider the model problem: Find u = u(x)
satisfying
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2∑

i, j=1

ai j∂
2
i j u + cu = f, in �, (1.1)

u = 0, on ∂�, (1.2)

where � is an open bounded domain in R
2 with a Lipschitz continuous boundary ∂�, ∂2i j

is the second order partial derivative operator with respect to xi and x j for i, j = 1, 2, and
the function f ∈ L2(�). Assume that the tensor a(x) = {ai j (x)}2×2 is symmetric positive
definite and uniformly bounded over �, the coefficient c(x) is non-positive and uniformly
bounded over �. In addition, we assume that the coefficients ai j (x) are essentially bounded
so that the second order model problem (1.1) cannot be rewritten in a divergence form. Thus,
the problem of designing stable and convergent numerical methods for (1.1) is subtle and
currently an active area of research. See [23–26,29], and references therein.

For convenience,we shall assume that themodel problem (1.1) has a unique strong solution
u ∈ H2(�) satisfying the H2 regularity:

‖u‖H2(�) ≤ C‖ f ‖L2(�) (1.3)

for a positive constant C . For example, when � is bounded with C1,1 smoothness boundary,
the Calderon–Zygmund theory (see e.g. [14, Theorem 9.15]) ensures that the solution to (1.1)
has a unique solution and satisfies (1.3) if a(x) is continuous over �̄ and c ∈ L∞(�). For
another example, when a(x) is only L∞(�), the Cordes condition can ensure the existence
and uniqueness of strong solution if the domain � is convex with C2 boundary (cf. Theorem
1.2.1 in [20]), where the coefficient tensor a(x) is said to satisfy the Cordes condition if

∑2
i, j=1 a

2
i j

(∑2
i=1 aii

)2 ≤ 1

n − 1 + ε
, in � ⊂ R

n (1.4)

for a positive number ε ∈ (0, 1]. This Cordes condition is reasonable in R2 in the sense that
when the coefficient tensor a(x) satisfies the standard uniform ellipticity condition, i.e., there
exist two positive numbers λ1 and λ2 such that

λ1ξ
�ξ ≤ ξ�a(x)ξ ≤ λ2ξ

�ξ, ∀ξ ∈ R
2, x ∈ �, (1.5)

then the Cordes condition holds true in R2 (cf. [20]).
Furthermore, the assumption that the underlying domain � is convex is not necessary to

ensure the H2 regularity of the solution to the Dirichlet problem of Poisson equations. Based
on the main result in [1], a bounded Lipschitz domain � satisfying an uniform outerball
condition implies the H2 regularity. Here, a domain satisfies an uniform outerball condition
if there exists a positive number r > 0 such that every point x on the boundary ∂�, there
exists a ball of radius r touched at x which lies outside of �. Clearly, any convex domain
satisfies an uniform outerball condition with the radius r = ∞. Also, any convex domain
is a Lipschitz domain (cf. Corollary 9.1.2 in [2]). Thus, the result in [1] includes convex
domains as a special case. The uniform outerball condition is also called semi-convex in
[21]. Thus, when � is Lipschitz and semi-convex, there exists a strong solution u ∈ H2(�)

of (1.1) satisfying the H2 regularity (1.3) if the PDE coefficient tensor a(x) satisfies the
Cordes condition.

Next as each function ai j in the coefficient tensor a(x) is in L∞(�), we assume in this
paper that ai j can be decomposed into finitely many pieces such that over each piece ai j is a
continuous function. Such an assumption is reasonable as often seen in practice. Under this
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assumption, although using a polygonal partition may find the decomposition of ai j more
conveniently, we shall use a triangulation to decompose � in this paper to demonstrate the
numerical performance. If a polygonalmesh is indeed used, the polygonal splines constructed
in [12] should be used.

Recently, Smears and Süli [24] used the well-known Lax–Milgram theorem to establish
the weak solution to (1.1) with c ≡ 0. They employed the Cordes condition to define a
nonsymmetric bilinear form for their weak solution. By testing the Laplace of piecewise
polynomials of degree k over a triangulation or polygonal partition, they compute their
numerical solution. In fact, the solution is a strong solution due to the regularity (1.3). In [29],
C. Wang and J. Wang used a primal-dual weak Galerkin finite element method to convert
(1.1) with c ≡ 0 into a constrained minimization problem. The bilinear form associated
with (1.1) was shown to satisfy the Ladyzhenskaya–Babuska–Brezzi condition by using the
regularity assumption (1.3). Thus, the weak formulation associated with (1.1) is well-posed.
The convergence and convergence rates of these two numerical methods were established in
[24] and [29] together with numerical evidence of convergence over non-convex domains.

In this paper, we provide another efficient computational method for numerical solution
of (1.1). More precisely, we propose a bivariate spline method based on the minimization
of the jumps of functions across edges and the boundary condition to solve the constrained
minimization similar to the one in [29]. Bivariate splines in Srk (
) of smoothness r ≥ 0
and degree k > r over triangulation 
 can be written in terms of S−1

k (
), the space of
discontinuous piecewise polynomial functions. Each polynomial over a triangle in 
 is
written in Bernstein–Bézier polynomial form (cf. [18]). The smoothness constraints across
an interior edge e of triangulation 
 are written in terms of the coefficients of polynomials
over the two triangles sharing the common edge e. In particular, smoothness conditions of any
order across interior edges have been implemented in MATLAB which can be simply used.
This is an improvement over the internal penalties in the DGmethod in [24] and stabilizers in
the weak Galerkin method in [29]. Bivariate splines have been used for numerical solutions
of various types of PDE. See [4,5,15,16,19,22], and etc. They can be very convenient for
numerical solutions of this type of PDE. See an extensive numerical evidence in §6.

Note that in [24], an hp-version discontinuous Galerkin finite element method was used.
The method yielded an optimal order of convergence regarding to the mesh size h, i.e. k − 1
for polynomial degree k = 2, 3, 4, 5. We use the C1 spline function for the same PDE with
discontinuous coefficients as in [24] and provide an evidence that the convergence rate of
the root mean square error (RMSE) of |u − Su |H2(�) using bivariate spline method is also
k − 1 for k = 2, 3, 4, 5 when c ≡ 0. In fact, our spline method produces more accurate
results than that in [24] and [29]. One of the reasons is that our spline method more flexible
in the sense that we can employ various spline spaces for primal and dual variables. That
is, in the primal and dual formulation, when using Xh = S1k (
) for the primal variable, we
can use Mh = S−1

k (
) for the dual variable instead of S−1
k−2(
) and S−1

k−1(
) as in [29].
Such a choice can produce more accurate results although not for all the cases. (See Sect.
6 for detail.) In addition, we can use higher degree splines very easily by inputting a large
degree in our MATLAB code. The flexibility of using bivariate splines of various degrees
make our method more convenient to increase the accuracy of solutions. When c �= 0, we
have the similar convergence behavior. In particular, the convergence rate of u−Su in H2(�)

semi-norm is still k − 1.
The paper is organized as follows: We first start with an explanation of the primal-dual

discontinuous Galerkin method to solve (1.1) in the next section. Mainly, we establish some
basic properties such as the existence, uniqueness, stability of the method in Sect. 3. Then
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in Sect. 4 we present an error analysis of the numerical solution. Next we reformulate the
primal-dual discontinuous Galerkin algorithm based on the bivariate spline functions which
were implemented in [5]. Extensive numerical results are reported in Sect. 6. We start with a
PDE with smooth coefficients and test on a smooth solution to demonstrate that the bivariate
splinemethodworks very well. Thenwe solve some PDEwith discontinuous coefficients and
nonsmooth solutions. For comparison purpose, we use the PDE in (1.1) with c ≡ 0 in [24]
and [29]. Although these PDEs have discontinuous coefficients and non-smooth solutions,
our spline method is able to approximate the solution very well. Therefore, the bivariate
spline method is effective and efficient.

2 A Primal-Dual Discontinuous Galerkin Scheme

Our model problem seeks for a function u ∈ H2(�) satisfying u|∂� = 0 and
⎛

⎝
2∑

i, j=1

ai j∂
2
i j u + cu, w

⎞

⎠ = ( f, w), ∀w ∈ L2(�), (2.1)

where (·, ·) is the standard L2 projection defined on the domain �.
Let T h be a polygonal finite element partition of the domain � ⊂ R

2. Denote by Eh the
set of all edges in Th and E0

h = Eh \ ∂� the set of all interior edges. Assume that Th satisfies
the shape regularity conditions described in [7,30]. Denote by hT the diameter of T ∈ Th
and h = maxT∈Th hT the mesh size of the partition Th . Let k ≥ 0 be an integer. Let Pk(T )

be the space of polynomials of degree no more than k on the element T ∈ Th .
For any given integer k ≥ 2, we define the finite element spaces composed of piecewise

polynomials of degree k and k − 2, respectively; i.e.,

Xh = {u : u|T ∈ Pk(T ), ∀T ∈ Th},
Mh = {u : u|T ∈ Pk−2(T ), ∀T ∈ Th}.

Denote by [[v]] the jump of v on an edge e ∈ Eh ; i.e.,

[[v]] =
{

v|T1 − v|T2 , e = (∂T1 ∩ ∂T2) ⊂ E0
h ,

v, e ⊂ ∂�,
(2.2)

where v|Ti denotes the value of v as seen from the element Ti , i = 1, 2. The order of T1
and T2 is non-essential in (2.2) as long as the difference is taken in a consistent way in all
the formulas. Analogously, one may define the jump of the gradient of u on an edge e ∈ Eh ,
denoted by [[∇u]].

For any v ∈ Xh , the quadratic functional J (v) is given by

J (v) = 1
2

∑
e∈Eh

h−3
T 〈[[v]], [[v]]〉e + 1

2

∑
e∈E0

h
h−1
T 〈[[∇v]], [[∇v]]〉e. (2.3)

It is clear that J (v) = 0 if and only if v ∈ C1(�) ∩ Xh with the homogeneous Dirichlet
boundary data v = 0 on ∂�.

We introduce a bilinear form

bh(v, q) =
∑

T∈Th

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv, q

⎞

⎠

T

, ∀v ∈ Xh, ∀q ∈ Mh . (2.4)
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The numerical solution of the model problem (1.1) and (1.2) can be characterized a
constrained minimization problem as follows: Find uh ∈ Xh such that

uh = argminv∈Xh , bh(v,q)=( f,q), ∀q∈Mh
J (v). (2.5)

By introducing the following bilinear form

sh(u, v) =
∑

e∈Eh
h−3
T 〈[[u]], [[v]]〉e +

∑

e∈E0
h

h−1
T 〈[[∇v]], [[∇v]]〉e, ∀u, v ∈ Xh, (2.6)

the constrained minimization problem (2.5) has an Euler–Lagrange formulation that gives
rise to a system of linear equations by taking the Fréchet derivative. The Euler–Lagrange
formulation for the constrained minimization algorithm (2.5) gives the following numerical
scheme.

Algorithm 2.1 (Primal-Dual Discontinuous Galerkin FEM)A numerical approximation of
the second order elliptic problem (1.1) and (1.2) seeks to find (uh; λh) ∈ Xh ×Mh satisfying

sh(uh, v) + bh(v, λh) = 0, ∀v ∈ Xh, (2.7)

bh(uh, q) = ( f, q), ∀q ∈ Mh . (2.8)

3 Existence, Uniqueness and Stability

In this section, wewill derive the existence, uniqueness, and stability for the solution (uh; λh)

of the primal-dual discontinuous Galerkin scheme (2.7) and (2.8).
For each element T ∈ Th , let BT be the largest disk inside of T centered at c0 with radius

r and Fk,BT ( f ) be the averaged Taylor polynomial of degree k for f ∈ L1(T ) (see page 4
of [18] for details). Note that the averaged Taylor polynomial Fk,BT ( f ) satisfies (cf. Lemma
1.5 in [18])

∂2i j Fk,BT ( f ) = Fk−2,BT (∂2i j f ) (3.1)

if ∂2i j f ∈ L1(T ). Let PXh ( f ) and PMh ( f ) be interpolations/projections of f onto the spaces
Xh andMh defined by PXh ( f )|T = Fk,BT ( f ) and PMh ( f )|T = Fk−2,BT ( f ) on each element
T ∈ Th , respectively. Using (3.1) gives rise to

∂2i j PXh ( f ) = PMh (∂
2
i j f ), (3.2)

on each element T ∈ Th ,

Lemma 3.1 [18] The interpolant operators PXh and PMh are bounded in L2(�). In other
words, for any f ∈ L2(�) we have

‖PXh ( f )‖ ≤ C‖ f ‖, (3.3)

‖PMh ( f )‖ ≤ C‖ f ‖, (3.4)

where ‖ · ‖ denotes the L2 norm defined on the domain �, C is a constant depending only
on the shape parameter θTh = maxT∈Th

hT
ρT

, ρT is the radius of the largest inscribed circle
of T .

Recall that Th is a shape-regular finite element partition of the domain �. For any T ∈ Th
and φ ∈ H1(T ), the following trace inequality holds true:

‖φ‖2∂T ≤ C
(
h−1
T ‖φ‖2T + hT ‖∇φ‖2T

)
. (3.5)
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Deonte by Qk−2 the L2 projection onto the finite element space Mh . We introduce a
semi-norm in the finite element space Xh , denoted by ||| · |||; i.e.,

|||v||| =
⎛

⎝
∑

T∈Th

‖Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv

⎞

⎠ ‖2T + sh(v, v)

⎞

⎠

1
2

, v ∈ Xh . (3.6)

The following result shows that ||| · ||| defined in (3.6) is indeed a norm on Xh when the
meshsize h is sufficiently small.

Lemma 3.2 Assume that the H2 regularity (1.3) holds true for the model problem (1.1) and
(1.2), and that the coefficient tensor a(x) = {ai j (x)}2×2 and c(x) are uniformly piecewise
continuous in � with respect to the finite element partition Th. Then, there exists an h0 > 0
such that ||| · ||| in (3.6) defines a norm on Xh when the meshsize h is sufficiently small such
that h ≤ h0.

Proof It suffices to verify the positivity property for ||| · |||. To this end, note that for any
v ∈ Xh satisfying |||v||| = 0 we have sh(v, v) = 0. It follows that [[v]] = 0 on each edge
e ∈ Eh and [[∇u]] = 0 on each interior edge e ∈ E0

h . Hence, v ∈ C1(�) and v = 0 on ∂�. In
addition, on each element T ∈ Th , we have

Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv

⎞

⎠ = 0.

Thus,

2∑

i, j=1

ai j∂
2
i jv + cv = (I − Qk−2)

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv

⎞

⎠ := F.

Using the H2-regularity assumption (1.3), there exists a constant C such that

‖v‖2 ≤ C‖F‖. (3.7)

Note that ai j (x) and c(x) are uniformly piecewise continuous in � with respect to the finite
element partition Th . Let āi j and c̄ be the average of ai j and c on each element T ∈ Th . Then,
for any ε > 0, there exists a h0 > 0 such that

‖ai j − āi j‖L∞(�) ≤ ε, ‖c − c̄‖L∞(�) ≤ ε,

if the meshsize h is sufficiently small such that h ≤ h0. Denote by c̄ and v̄ the average of c
and v on each element T ∈ Th , respectively. It follows from the linearity of the projection
Qk−2 that

‖F‖ ≤
2∑

i, j=1

|ai j − āi j |‖∂2i jv‖ +
2∑

i, j=1

∥∥∥Qk−2((ai j − āi j )∂
2
i jv)

∥∥∥

+‖(I − Qk−2)(cv − c̄v̄)‖
≤ Cε‖v‖2 + ‖cv − c̄v̄‖ ≤ Cε‖v‖2 + ‖(c − c̄)v + c̄(v − v̄)‖
≤ Cε‖v‖2 + Cε‖v‖ + Ch‖v‖1 ≤ Cε‖v‖2 + Ch‖v‖2,

where ‖ · ‖2 is the H2 norm defined on the domain �, and we have used the boundedness of
the L2 projection Qk−2, which, combined with (3.7), gives

‖v‖2 ≤ C(ε + h)‖v‖2.

123

Author's personal copy



J Sci Comput

This yields that v = 0 as long as ε is sufficiently small such that Cε < 1, which can be easily
achieved by adjusting the parameter h0. This completes the proof of the lemma. ��

We are now in a position to establish an inf-sup condition for the bilinear form bh(·, ·).

Lemma 3.3 (inf-sup condition)Under the assumptions of Lemma 3.2, for any q ∈ Mh, there
exists a vq ∈ Xh such that

bh(vq , q) ≥ β‖q‖2, (3.8)

|||vq ||| ≤ C‖q‖, (3.9)

provided that the meshsize h is sufficiently small.

Proof Consider an auxiliary problem that seeks w ∈ H2(�) ∩ H1
0 (�) satisfying

2∑

i, j=1

ai j∂
2
i jw + cw = q, in �. (3.10)

From the regularity assumption (1.3), it is easy to know that the problem (3.10) has one and
only one solution, and furthermore, the solution satisfies the H2 regularity property; i.e.,

‖w‖2 ≤ C‖q‖. (3.11)

By letting vq = PXh (w), from (3.2) we obtain

∂2i jvq = ∂2i j PXh (w) = PMh (∂
2
i jw).

Letting āi j be the average of ai j over T ∈ Th , we arrive at

2∑

i, j=1

ai j∂
2
i jvq + cvq

=
2∑

i, j=1

{
(ai j − āi j )PMh (∂

2
i jw) + PMh (āi j∂

2
i jw)

}
+ (c − c̄)PXh (w) + PXh (c̄w)

=
2∑

i, j=1

{
(ai j − āi j )PMh (∂

2
i jw) + PMh ((āi j − ai j )∂

2
i jw) + PMh (ai j∂

2
i jw)

}

+ (c − c̄)PXh (w) + PXh ((c̄ − c)w) + PXh (cw)

=
2∑

i, j=1

{
(ai j − āi j )PMh (∂

2
i jw) + PMh ((āi j − ai j )∂

2
i jw)

}
+ (c − c̄)PXh (w)

+ PXh ((c̄ − c)w) + PMh

⎛

⎝
2∑

i, j=1

ai j∂
2
i jw + cw

⎞

⎠ + PXh (cw) − PMh (cw)

= ET + q + PXh (cw) − PMh (cw).

where we have used (3.10) and PMhq = q . Here, ET = ∑2
i, j=1{(ai j − āi j )PMh (∂

2
i jw) +

PMh ((āi j − ai j )∂2i jw)} + (c − c̄)PXh (w) + PXh ((c̄ − c)w).
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With the above chosen vq as PXh (w), we have

bh(vq , q) =
∑

T∈Th

⎛

⎝
2∑

i, j=1

ai j∂
2
i j PXh (w) + cPXh (w), q

⎞

⎠

T

=
∑

T∈Th

(ET , q)T + ‖q‖2 +
∑

T∈Th

(PXh (cw) − PMh (cw), q)T . (3.12)

Note that the coefficient tensor a(x) = {ai j }2×2 and c(x) are uniformly piecewise continuous
over Th . Thus, for any given sufficiently small ε > 0, we have ‖ai j − āi j‖L∞(�) ≤ ε and
‖c−c̄‖L∞(�) ≤ ε for sufficiently smallmeshsize h. It then follows from theCauchy–Schwarz
inequality, (3.3) and (3.4), and the H2 regularity property (3.11) that

∣∣∣∣∣∣

∑

T∈Th

(ET , q)T

∣∣∣∣∣∣

≤ Cε

⎛

⎝
∑

T∈Th

2∑

i, j=1

‖PMh (∂
2
i jw)‖2T

⎞

⎠

1
2

⎛

⎝
∑

T∈Th

‖q‖2T
⎞

⎠

1
2

+ Cε

⎛

⎝
∑

T∈Th

2∑

i, j=1

‖∂2i jw‖2T
⎞

⎠

1
2

⎛

⎝
∑

T∈Th

‖q‖2T
⎞

⎠

1
2

+ Cε

⎛

⎝
∑

T∈Th

‖PXh w‖2T
⎞

⎠

1
2

⎛

⎝
∑

T∈Th

‖q‖2T
⎞

⎠

1
2

+ Cε

⎛

⎝
∑

T∈Th

‖w‖2T
⎞

⎠

1
2

⎛

⎝
∑

T∈Th

‖q‖2T
⎞

⎠

1
2

≤ Cε

⎛

⎝
∑

T∈Th

2∑

i, j=1

‖∂2i jw‖2T
⎞

⎠

1
2

‖q‖ + Cε

⎛

⎝
∑

T∈Th

‖w‖2T
⎞

⎠

1
2

‖q‖

≤ Cε‖w‖2‖q‖ ≤ Cε‖q‖2,

and
∣∣∣∣∣∣

∑

T∈Th

(PXh (cw) − PMh (cw), q)T

∣∣∣∣∣∣

≤
⎛

⎝
∑

T∈Th

‖PXh (cw − c̄w̄) − PMh (cw − c̄w̄)‖2T
⎞

⎠

1
2
⎛

⎝
∑

T∈Th

‖q‖2T
⎞

⎠

1
2

≤
⎛

⎝
∑

T∈Th

‖cw − c̄w̄‖2T
⎞

⎠

1
2
⎛

⎝
∑

T∈Th

‖q‖2T
⎞

⎠

1
2

≤
⎛

⎝
∑

T∈Th

‖(c − c̄)w + c̄(w − w̄)‖2T
⎞

⎠

1
2

‖q‖

≤ (Cε‖w‖ + Ch‖w‖1)‖q‖ ≤ C(ε + h)‖w‖2‖q‖ ≤ C(ε + h)‖q‖2,
where c̄ and w̄ are the average of c and w on each element T ∈ Th , respectively, C is a
generic constant independent of Th . Substituting the above estimate into (3.12) yields

bh(vq , q) ≥ (1 − C(2ε + h))‖q‖2,
which leads to the estimate (3.8) when the meshsize h is sufficiently small.
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It remains to derive the estimate (3.9). To this end, recall that

|||vq |||2 =
∑

T∈Th

∥∥∥∥∥∥
Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i jvq + cvq

⎞

⎠

∥∥∥∥∥∥

2

T

+ sh(vq , vq). (3.13)

Letting vq = PXh (w), the first term on the right-hand side of (3.13) can be bounded by using
(3.2), (3.3) and (3.11) as follows:

∑

T∈Th

∥∥∥∥∥∥
Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i jvq + cvq

⎞

⎠

∥∥∥∥∥∥

2

T

=
∑

T∈Th

∥∥∥∥∥∥
Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i j PXh (w) + cPXh (w)

⎞

⎠

∥∥∥∥∥∥

2

T

≤
∑

T∈Th

2∑

i, j=1

‖ai j PMh (∂
2
i jw)‖T + ‖cPXh (w)‖2T

≤ C
2∑

i, j=1

‖ai j‖2L∞(�)

∑

T∈Th

‖∂2i jw‖2T + C‖c‖2L∞(�)

∑

T∈Th

‖w‖2T

≤ C‖q‖2. (3.14)

As to the term sh(vq , vq) in (3.13), note that it is defined by (2.6) using the jump of vq on
each edge e ∈ Eh plus the jump of ∇vq on each interior edge e ∈ E0

h . For an interior edge
e ∈ E0

h shared by two elements T1 and T2, we have

[[vq ]]|e = vq |T1∩e − vq |T2∩e
= PXh (w)|T1∩e − PXh (w)|T2∩e
= (PXh (w)|T1∩e − w|e) + (w|e − PXh (w)|T2∩e).

It follows that

〈[[vq ]], [[vq ]]〉e ≤ 2‖PXh (w)|T1∩e − w|e‖2e + 2‖PXh (w)|T2∩e − w|e‖2e . (3.15)

Using the trace inequality (3.5), we have

‖PXh (w)|T1∩e − w|e‖2e ≤ Ch−1
T ‖PXh (w) − w‖2T1 + ChT ‖∇(PXh (w) − w)‖2T1 .

Analogously, the following holds true

‖PXh (w)|T2∩e − w|e‖2e ≤ Ch−1
T ‖PXh (w) − w‖2T2 + ChT ‖∇(PXh (w) − w)‖2T2 .

Substituting the last two inequalities into (3.15) yields

〈[[vq ]], [[vq ]]〉e ≤ C
2∑

i=1

(
h−1
T ‖PXh (w) − w‖2Ti + ChT ‖∇(PXh (w) − w)‖2Ti

)
. (3.16)

For boundary edge e ⊂ ∂�, from w|e⊂∂� = 0 we have

[[vq ]]|e = vq |e = PXh (w)|e − w|e.
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Thus, the estimate (3.16) remains to hold true. Summing (3.16) over all the edges yields

∑

e∈Eh
h−3
T 〈[[vq ]], [[vq ]]〉e ≤ C

∑

T∈Th

(
h−4
T ‖PXh (w) − w‖2T + Ch−2

T ‖∇(PXh (w) − w)‖2T
)

≤ C‖w‖22 (3.17)

where we have used the estimate (4.3) with m = 1 and s = 0, 1 in the last inequality.
Combining (3.17) with the regularity estimate (3.11) gives rise to

∑

e∈Eh
h−3
T 〈[[vq ]], [[vq ]]〉e ≤ C‖q‖2. (3.18)

A similar argument can be applied to yield the following estimate

∑

e∈E0
h

h−1
T 〈[[∇vq ]], [[∇vq ]]〉e ≤ C‖q‖2. (3.19)

We emphasize that the summation in (3.19) is taken over all the interior edges so that no
boundary value for ∇w is needed in the derivation of the estimate (3.19). Combining (3.18)
and (3.19) with sh(vq , vq) yields

sh(vq , vq) ≤ C‖q‖2,
which, together with (3.14), completes the derivation of the estimate (3.9). ��

Lemma 3.4 (Boundedness) The following inequalities hold true:

|sh(u, v)| ≤ |||u||||||v|||, ∀u, v ∈ Xh,

|bh(v, q)| ≤ C |||v|||‖q‖, ∀v ∈ Xh, q ∈ Mh .

Proof It follows from the definition of sh(·, ·), ||| · ||| and Cauchy–Schwarz inequality that for
any u, v ∈ Xh , we have

|sh(u, v)| =

∣∣∣∣∣∣∣

∑

e∈Eh
h−3
T 〈[[u]], [[v]]〉e +

∑

e∈E0
h

h−1
T 〈[[∇u]], [[∇v]]〉e

∣∣∣∣∣∣∣

≤
⎛

⎝
∑

e∈Eh
h−3
T 〈[[u]], [[u]]〉e

⎞

⎠

1
2
⎛

⎝
∑

e∈Eh
h−3
T 〈[[v]], [[v]]〉e

⎞

⎠

1
2

+
⎛

⎜⎝
∑

e∈E0
h

h−1
T 〈[[∇u]], [[∇u]]〉e

⎞

⎟⎠

1
2
⎛

⎜⎝
∑

e∈E0
h

h−1
T 〈[[∇v]], [[∇v]]〉e

⎞

⎟⎠

1
2

≤ sh(u, u)
1
2 sh(v, v)

1
2 ≤ |||u||||||v|||.

Next from the definition of bh(·, ·), ||| · |||, and Cauchy–Schwarz inequality that for any
v ∈ Xh , q ∈ Mh , we have
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|bh(v, q)| =
∣∣∣∣∣∣

∑

T∈Th

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv, q

⎞

⎠

T

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

T∈Th

(Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv

⎞

⎠ , q)T

∣∣∣∣∣∣

≤
⎛

⎜⎝
∑

T∈Th

∥∥∥∥∥∥
Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv

⎞

⎠

∥∥∥∥∥∥

2

T

⎞

⎟⎠

1
2 ⎛

⎝
∑

T∈Th

‖q‖2T
⎞

⎠

1
2

≤ |||v|||‖q‖.

These complete the proof. ��
Define the subspace of Xh as follows:

�h = {v ∈ Xh : bh(v, q) = 0, ∀q ∈ Mh}.
Lemma 3.5 (Coercivity on the Kernel) There exists a constant α, such that

sh(v, v) ≥ α|||v|||2, ∀v ∈ �h .

Proof For any v ∈ �h , we have

bh(v, q) = 0, ∀q ∈ Mh .

It follows from the definition of b(·, ·) in (2.4) that

0 = bh(v, q) =
∑

T∈Th

⎛

⎝
2∑

i, j=1

ai j ∂
2
i jv + cv, q

⎞

⎠

T

=
∑

T∈Th

⎛

⎝Qk−2

⎛

⎝
2∑

i, j=1

ai j ∂
2
i jv + cv

⎞

⎠ , q

⎞

⎠

T

,

which yields

Qk−2

⎛

⎝
2∑

i, j=1

ai j∂
2
i jv + cv

⎞

⎠ = 0,

on each T ∈ Th by letting q = Qk−2(
∑2

i, j=1 ai j∂
2
i jv + cv). This implies sh(v, v) = |||v|||2,

which completes the proof with α = 1. ��
Using the abstract theory for the saddle-point problem developed by Babuska [6] and

Brezzi [8], we arrive at the following theorem based on Lemmas 3.3–3.5.

Theorem 3.6 The primal-dual discontinuous Galerkin finite element method (2.7)–(2.8) has
a unique solution (uh; λh) ∈ Xh × Mh, provided that the meshsize h < h0 holds true for a
sufficiently small but fixed parameter h0 > 0. Moreover, there exists a constant C such that
the solution (uh; λh) satisfies

|||uh ||| + ‖λh‖ ≤ C‖ f ‖. (3.20)

4 Error Estimates

Let (uh; λh) ∈ Xh ×Mh be the approximate solution of the model problem (1.1) arsing from
primal-dual discontinuous Galerkin finite element method (2.7) and (2.8). Note that λ = 0
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is the exact solution of the trival dual problem bh(v, λ) = 0 for all v ∈ H2(�). Define the
errors functions by

eh = uh − PXhu, εh = λh − PMhλ.

Lemma 4.1 The error functions eh and εh satisfy the following equations:

sh(eh, v) + bh(v, εh) = −sh(PXhu, v), ∀v ∈ Xh, (4.1)

bh(eh, p) = lu(p), ∀p ∈ Mh, (4.2)

where lu(p) = ∑
T∈Th

∑2
i, j=1(ai j (I − PMh )∂

2
i j u, p)T + ∑

T∈Th
(c(I − PXh )u, p)T .

Proof By subtracting sh(PXhu, v) from both sides of (2.7), we obtain

sh(uh − PXhu, v) + bh(v, λh − 0) = −sh(PXhu, v), ∀v ∈ Xh,

which completes the proof of (4.1).
Substracting bh(PXhu, p) from both sides of (2.8), it follows from (3.2) and (1.1) that

bh(uh, p) − bh(PXhu, p)

= ( f, p) − bh(PXhu, p)

= ( f, p) −
∑

T∈Th

2∑

i, j=1

(
ai j∂

2
i j (PXhu) + cPXh u, p

)

T

= ( f, p) −
∑

T∈Th

2∑

i, j=1

(
ai j PMh (∂

2
i j u) + cPXh u, p

)

T

= ( f, p) −
∑

T∈Th

⎛

⎝
2∑

i, j=1

ai j∂
2
i j u + cu, p

⎞

⎠

T

−
∑

T∈Th

2∑

i, j=1

(
ai j (PMh − I )∂2i j u, p

)

T

−
∑

T∈Th

(c(PXh − I )u, p)T

= ( f, p) − ( f, p) −
∑

T∈Th

2∑

i, j=1

(
ai j (PMh − I )∂2i j u, p

)

T
−

∑

T∈Th

(c(PXh − I )u, p)T

=
∑

T∈Th

2∑

i, j=1

(
ai j (I − PMh )∂

2
i j u, p

)

T
+

∑

T∈Th

(c(I − PXh )u, p)T ,

which completes the proof of (4.2). ��
The Eqs. (4.1) and (4.2) are called error equations for the primal-dual discontinuous

Galerkin finite element scheme. This is a saddle point system for which Brezzi’s Theorem
can be employed for the analysis of stability.

Lemma 4.2 [7,30] Let Th be a finite element partition of � satisfying the shape regular
assumption given in [7,30]. Then, for any 0 ≤ s ≤ 2 and 1 ≤ m ≤ k, one has

∑

T∈Th

h2sT ‖u − PXhu‖2s,T ≤ Ch2(m+1)‖u‖2m+1, (4.3)

∑

T∈Th

h2sT ‖u − PMhu‖2s,T ≤ Ch2(m−1)‖u‖2m−1. (4.4)
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Theorem 4.3 Assume that the coefficient tensor a(x) = {ai j (x)}2×2 and c(x) are uniformly
piecewise continuous in�with respect to the finite element partition Th. Let u and (uh; λh) ∈
Xh × Mh be the solutions of (1.1) and (2.7) and (2.8), respectively. Assume that the exact
solution u of (1.1) is sufficiently regular such that u ∈ Hk+1(�). There exists a constant C
such that

|||uh − PXhu||| + ‖λh − PMhλ‖ ≤ Chk−1‖u‖k+1,

provided that the meshsize h < h0 holds true for a sufficiently small, but fixed h0 > 0.

Proof It follows from Lemmas 3.3–3.5 that the Brezzi’s stability conditions are satisfied for
the saddle point problem (4.1) and (4.2). Thus, there exists a constant C such that

|||eh ||| + ‖εh‖ ≤ C

(
sup

v∈Xh ,v �=0

| − sh(PXhu, v)|
|||v||| + sup

p∈Mh ,p �=0

|lu(p)|
‖p‖

)
. (4.5)

Recall that

sup
v∈Xh ,v �=0

| − sh(PXhu, v)|
|||v|||

≤ sup
v∈Xh ,v �=0

| ∑e∈Eh h
−3
T 〈[[PXhu]], [[v]]〉e| + | ∑e∈E0

h
h−1
T 〈[[∇PXhu]], [[∇v]]〉e|

|||v||| (4.6)

As to the first term of the right-hand side of (4.6), from Cauchy–Schwarz inequality, trace
inequality (3.5) and (4.3), we have

∣∣∣∣∣∣

∑

e∈Eh
h−3
T 〈[[PXhu]], [[v]]〉e

∣∣∣∣∣∣
≤ C

⎛

⎝
∑

e∈Eh
h−3
T ‖[[PXhu]]‖2e

⎞

⎠

1
2
⎛

⎝
∑

e∈Eh
h−3
T ‖[[v]]‖2e

⎞

⎠

1
2

≤ C

⎛

⎝
∑

e∈Eh
h−3
T (‖[[PXhu]] − [[u]]‖2e + ‖[[u]]‖2e)

⎞

⎠

1
2

|||v|||

≤ C

⎛

⎝
∑

T∈Th

h−4
T ‖[[PXhu − u]]‖2T + h−2

T ‖[[PXhu − u]]‖21,T
⎞

⎠

1
2

|||v|||

≤ Chk−1‖u‖k+1|||v|||, (4.7)

where we used [[u]] = 0 as u ∈ H2(�) ∩ H1
0 (�). Similarly, we have

∣∣∣∣∣∣∣

∑

e∈E0
h

h−1
T 〈[[∇PXhu]], [[∇v]]〉e

∣∣∣∣∣∣∣
≤ Chk−1‖u‖k+1|||v|||. (4.8)

Substituting (4.7) and (4.8) into (4.6), we have

sup
v∈Xh ,v �=0

| − sh(PXhu, v)|
|||v||| ≤ Chk−1‖u‖k+1. (4.9)
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From Cauchy–Schwarz inequality and (4.4), we obtain

sup
p∈Mh ,p �=0

|lu(p)|
‖p‖

= sup
p∈Mh ,p �=0

∣∣∣
∑

T∈Th
∑2

i, j=1(ai j (I − PMh )∂2i j u, p)T
∣∣∣

‖p‖ + sup
p∈Mh ,p �=0

∣∣∣
∑

T∈Th (c(I − PXh )u, p)T
∣∣∣

‖p‖

≤ sup
p∈Mh ,p �=0

∣∣∣‖ai j‖L∞(�)

(∑
T∈Th

∑2
i, j=1 ‖(I − PMh )∂2i j u‖2T

) 1
2
(∑

T∈Th ‖p‖2T
) 1
2
∣∣∣

‖p‖

+ sup
p∈Mh ,p �=0

∣∣∣‖c‖L∞(�)

(∑
T∈Th ‖(I − PXh )u‖2T

) 1
2
(∑

T∈Th ‖p‖2T
) 1
2
∣∣∣

‖p‖
≤ Chk−1‖u‖k+1 + Chk+1‖u‖k+1

≤ Chk−1‖u‖k+1. (4.10)

Substituting (4.9) and (4.10) into (4.5) completes the proof. ��

5 Bivariate Spline Implementation of Algorithm 2.1

We shall use a discontinuous spline space Xh of degree k over a finite element partition
Th for the primal variable and use another discontinuous spline space Mh of degree k1,
e.g. k1 = k − 2 over Th for dual variable. When Th is a triangulation, these are spline
spaces which have been thoroughly studied in [5] and [18]. In this paper, let us explain
how to use these spline functions for numerical solution of the second order elliptic PDE
(1.1). When Th is a triangulation, spline functions use the Bernstein–Bézier representation as
explained in [18]. That is, the prime-dual discontinuous Galerkin FEM method discussed in
the previous sections can be reformulated by using the Bernstein–Bézier representation. The
representation has several nice properties (cf. [18]): (1) the basis functions form a partition
of unity, (2) the basis functions are nonnegative, and (3) the basis functions have explicit
formulas for their derivatives, integration, their inner product, and triple product integration.

In the remaining of the paper, we use both u ∈ Xh and its coefficient vector u in terms
of Bernstein–Bézier representation to write a discontinuous spline function u. Similarly, we
use both q ∈ Mh and its coefficient vector q. Most importantly, for any function u ∈ Xh , u is
a piecewise polynomial function of degree k over Th , the jump function [[u]] over an interior
edge e of Th can be rewritten by using the smoothness conditions between the coefficients of
two polynomial pieces u|T1 and u|T2 on their common edge e for triangles T1, T2 ∈ Th which
share e. See [11] and [18]. The smoothness conditions are linear and all these conditions over
each interior edge can be expressed together by using Hu = 0 as explained in [5], where H
is a rectangular and sparse matrix and u is the coefficient vector of u.

On the boundary of �, u has to satisfy the Dirichlet boundary condition which can be
approximated by using a standard polynomial interpolation method, i.e., u(x)|e = g(x) for
k + 1 distinct points x ∈ e, where e is a boundary edge of Th . As u is a polynomial on e, the
interpolation condition u(x)|e = g(x) can be expressed by linear equations in terms of its
coefficients. We put these linear equations for all boundary edges together and express them
by Bu = g, where B is a rectangular and sparse matrix and g is a vector consisting of the
values of g at the k + 1 equally-spaced points over e for all boundary edges e ∈ 
.
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The PDE equation in (2.1) can be discretized by using Bernstein–Bézier representation
as follows. We first approximate the right-hand side f by discontinuous spline functions in
S f ∈ Mh . For example, we may choose S f to be the piecewise polynomial function which
interpolates f at the domain points on T of degree k1 for all triangle T ∈ Th , under the
assumption that f is a continuous function. For another example, we choose S f ∈ Mh such
that for each triangle T ∈ Th ,

∫

T
f qdxdy =

∫

T
S f qdxdy, ∀q ∈ Pk1 , (5.1)

where Pk1 is the standard polynomial space of total degree k1. It is easy to know that the
problem (5.1) has a unique solution of S f |T . Thus, S f ∈ Mh is well-defined. In fact, we
have the following properties

‖S f ‖ ≤ ‖ f ‖ and ‖S f − f ‖ = min
s∈Mh

‖s − f ‖. (5.2)

Indeed, we have
∫
T |S f |2dxdy = ∫

T f S f dxdy for all T ∈ Th and use Cauchy–Schwarz
inequality to have the inequality in (5.2). The equality in (5.2) can be seen from the solution
of the least squares problem in (5.1).

We compute the inner product integration on the right-hand of (2.1) exactly by using
Theorem 2.34 in [18] and a triple inner product formula. That is, we have

∫

�

f qdxdy =
∫

�

S f qdxdy = 〈Mf,q〉,

where f is the coefficient vector of S f ,M is called themassmatrixwhich is a blockly diagonal
matrix and q is the coefficient vector of q .

Similarly, we approximate the coefficients ai j by discontinuous spline functions in another
discontinuous spline space Si j ∈ Lh = S−1

1 (Th) of degree 1, say piecewise linear interpola-
tion of ai j .

∫

T
ai j∂

2
i j uqdxdy ≈

∫

T
Si, j∂

2
i j uqdxdy, ∀u ∈ Pk, q ∈ Pk−2. (5.3)

Once we have Si j , we compute triple product integration on the left-hand side of (2.1). That
is,

∫
T Si j∂2i j uqdxdy has an exact formula in terms of the coefficients of Si j , u, and q . Thus

we have

∫

�

2∑

i, j=1

ai j∂
2
i j uqdxdy ≈

∫

�

2∑

i, j=1

Si j∂
2
i j uqdxdy = 〈Ku,q〉,

where K is the stiffness matrix related to the PDE (1.1).
In order to have an equality in the above formula, we now use the standard L2 projection

PMh which is defined by PMh (v) ∈ Mh such that

〈PMh (v), q〉 = 〈v, q〉,∀q ∈ Mh . (5.4)

Thus, we have

∫

�

2∑

i, j=1

ai j∂
2
i j uqdxdy =

〈
P

⎛

⎝
2∑

i, j=1

ai j∂
2
i j u

⎞

⎠ , q

〉
=

∫

�

2∑

i, j=1

PMh (ai j∂
2
i j u)qdxdy.
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Since the the projection is linear, we can write

∫

�

2∑

i, j=1

PMh (ai j∂
2
i j u)qdxdy = 〈Ku,q〉,

for a blockly diagonal matrix K and for all q ∈ Mh . In this way, we obtain a discretized PDE
equation: 〈Ku,q〉 = 〈Mf,q〉 for all q ∈ R

d(Mh ) or a linear system:

Ku = Mf . (5.5)

Note that both M and K can be computed in parallel.
In terms of the Berstein-Bézier representation, the bilinear forms in (2.6) and (2.4) can be

rewritten as
s(u, v) = h2〈Hu, Hv〉 + h2〈Bu, Bv〉, ∀u, v ∈ Xh, (5.6)

and
b(u, q) = 〈Ku,q〉, ∀u ∈ Xh, q ∈ Mh . (5.7)

With the above preparation, Algorithm 2.1 can be recast as follows.
Let us consider the following minimization problem for (2.1): Find u satisfying

min
h2

2
(‖Hu‖2 + ‖Bu − g‖2), subject to Ku = Mf . (5.8)

Note that the boundary condition is imposed by minimizing the error in an least-squares
sense so that the boundary conditions do not need to be strictly enforced.

Thisminimization problem (5.8) can be reformulated byusingLagrangemultipliermethod
as follows: let

L(u, λ) = h2

2
(‖Hu‖2 + ‖Bu − g‖2) + λ�(Ku − Mf), (5.9)

where λ is a Lagrange multiplier. Thus, the minimizer u∗ of (5.8) satisfies (5.10). Hence, we
have

Algorithm 5.1 (The Primal-Dual Bivariate Spline Method) Find a vector pair (u∗, λ∗) ∈
R
d(Xh) × R

d(Mh) satisfying

{
h2〈Hu∗, Hd〉 + h2〈Bu, Bd〉 + 〈λ∗, Kd〉 = h2〈g, Bd〉, ∀d ∈ R

d(Xh ),

〈q, Ku∗〉 = 〈q, Mf〉, ∀q ∈ R
d(Mh),

(5.10)

where d(Xh) is the dimension of Xh and d(Mh) is the dimension of Mh . In fact, d(Xh) =
(k+1)(k+2)N (Th)/2 and d(Mh) = (k1+1)(k1+2)N (Th)/2 with N (Th) being the number
of triangles in Th . We shall denote by uh ∈ Xh the spline solution with coefficient vector u∗
and similarly, λh ∈ Mh with coefficient vector λ∗.

This Algorithm 5.1 will be implemented and numerically experimented in this paper. We
will have a flexibility to choose Xh and Mh . In [29], the researchers used k1 = k − 2 and
k1 = k − 1. We shall experiment various choices of k1 and report our numerical results in
the next section.
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6 Numerical Results Based on Minimization (5.8)

We have implemented Algorithm 5.1 in MATLAB based on the spline function imple-
mentation method discussed in [5] which is completely different from the spline functions
implemented in [22].

We shall use S−1
d (
) for d ≥ 1 over a triangulation 
 and let Su ∈ S−1

d (
) be the
spline solution with the coefficient vector c(u) which is the minimizer of (5.8) and report

the root mean squared error (RMSE) of u − Su , ∇(u − Su) = (
∂

∂x
(u − Su),

∂

∂y
(u − Su))

and ∇2(u − Su) = (
∂2

∂x2
(u − Su),

∂2

∂x∂y
(u − Su),

∂2

∂y2
(u − Su)) based on their values over

equally-spaced points, e.g. 1001×1001 grid points located over�. More precisely, we report

the RMSE of ∇(u − Su) which is the average of the RMSE of
∂

∂x
(u − Su) and the RMSE

of
∂

∂y
(u − Su). Similar for the RMSE of ∇2(u − Su). We shall also present the rates of

convergence of RMSE between refinement levels.
The remaining of this section is divided into three subsections. In the first subsection, we

present numerical results based on the PDE with smooth coefficients and c ≡ 0. We also
use smooth solutions to test our spline method. One of purposes is to demonstrate that our
MATLAB implementation is correct and is able to produce excellent numerical solution.
Another purpose is to compare with the numerical results in [29]. We shall show that the
higher order splines produce a much better approximation than using the lower order weak-
Galerkin method in [29].

In the next two subsections, we mainly present numerical results from the second order
elliptic PDE with discontinuous coefficients and nonsmooth solution which were studied
in [24]). Our numerical experiments show that by choosing Xh = Mh , the bivariate spline
method, i.e. Algorithm 5.1 give a better approximation than the numerical results in [24].

Finallywe show some spline solutions for PDE in (1.1) with nonzero function c for smooth
and nonsmooth exact solutions. Numerical results are similar to the case when c ≡ 0.

6.1 The Case with Smooth Coefficients

In the following examples, we shall use spline spaces S−1
d (
�) of various degrees d =

2, 3, 4, 5, 6, 7, 8 . . . to solve the PDE of interest, where 
0 is a standard triangulation of �

and 
� is the uniform refinement of 
�−1 for � = 1, 2, 3, 4.

Example 6.1 We begin with a 2nd order elliptic equation with constant coefficients and
smooth solution u = sin(x) sin(y) which satisfies the following partial differential equation:

3
∂2

∂x2
u + 2

∂2

∂x∂y
u + 2

∂2

∂y2
u = f (x, y), (x, y) ∈ � ⊂ R

2, (6.1)

where � is a standard square domain [0, 1]2 (cf. [29]). We use Xh = S−1
d (
�) and Mh =

S−1
d−2(
�) with h = |
�|. We use a triangulation 
0 which consists of 2 triangles and then

uniformly refine 
0 repeatedly to obtain 
�, � = 1, 2, 3, 4, 5.
Table 1 may be compared with Table 8.1 in [29]. First of all, we recall that there is a

superconvergence in L2 norm approximation in Table 8.1 in [29]. That is, the convergence
rate in [29] is about 4 although they only use piecewise polynomials of degree 2. So far there
is no mathematical theory to guarantee this superconvergence. Note that the computation of
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Table 1 The RMSE of spline solutions using Xh = S−1
2 (
�) and Mh = S−1

0 (
�) for � = 1, 2, 3, 4, 5 of
PDE (6.1)

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 2.052453e−03 0.00 1.564506e−02 0.00 1.163198e−01 0.00

0.3536 7.574788e−04 1.44 4.728042e−03 1.72 6.078911e−02 0.94

0.1768 2.779251e−04 1.45 1.397469e−03 1.76 3.022752e−02 1.01

0.0884 8.156301e−05 1.77 3.809472e−04 1.88 1.489634e−02 1.03

0.0442 2.161249e−05 1.92 9.836874e−05 1.95 7.401834e−03 1.01

their convergence is based on node points of the underlying triangulation, that is, 6 points per
triangle for all triangles in Th for each h > 0. In our Table 1, the convergence is measured in
the RMSE based on 1001 × 1001 equally-spaced points over � and our convergence rate is
about 2 for Mh = S−1

0 (
�). Nevertheless, our convergence of∇(uh −u) is better than that in
Table 8.1 in [29]. Also, we are able to show the convergence in the second order derivatives
of u − uh , i.e. the semi-norm |u − uh |H2(�).

In the next few tables, we use Xh = S−1
k (
�) and Mh = S−1

k1
(
�) with k1 ≥ 1. Then the

order of convergence will increase if k1 = k. This is an advantage of our numerical algorithm
over the numericalmethod in [29]. For k = 3 and k1 = 1,wehave numerical results inTable 2.

To increase the convergence rates for u − uh and ∇(u − uh), we use k1 = k which can
be easily adjusted in our MATLAB code. As we can see from Table 3. The convergence and
convergence rates are much better than Tables 1 and 2.

Similarly, we can use k = 4 and k1 = 4. The numerical results are given in Tables 4, 5
and show that the convergence rate is more than k = 4.

Note that in the last row of Table 5, the rate of convergence in L2 norm is 5.02 which is
lower than5.92.This is because the iterative solution of the linear systemachieves themachine
precision for this test function using MATLAB. Indeed, if we use u = sin(2πx) sin(2πy)
which is slightly harder to approximate than u = sin(x) sin(y), the rate of convergence will
be around 6. See the rates of convergence in the RMSEof the spline solution shown in Table 6,
where the rate is 5.74.

We have tested other solutions (e.g. u = 1/(1 + x2 + y2), u = sin(πx) sin(πy), u =
sin(π(x2 + y2)) and etc.. Numerical results are similar to Tables 6, 7, and 8. We can see
that the rate of convergence in L2 norm is optimal for d ≥ 5 and for sufficiently smooth
solutions. That is, the optimal convergence rate is reached when using splines in S1d (
) with
d ≥ 5.

Finally, our algorithm is efficient in the following sense: each table above (Tables 5, 6,
7, 8) is generated within 180 seconds based on a desktop computer of 16GB in RAM with
Intel Processor i7-3770CPU@3.4GHz speed. For Tables 1, 2, 3, and 4, it takes 550 seconds
to generate. Major time is spent on the evaluation of 1001 × 1001 spline values.

6.2 The Case with Discontinuous Coefficients and Nonsmooth Solution

In this subsection, we shall demonstrate that our method works well for those PDE with
discontinuous coefficients which can not be converted into its divergence form. Higher order
splines can produce very accurate solutions even the solution is only C1(�). We shall use
two examples studied in [24] each of which has discontinuous PDE coefficients and compare
with their results to demonstrate the advantage of our bivariate spline method.
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Table 2 The RMSE of spline solutions using Xh = S−1
3 (
�) and Mh = S−1

1 (
�) for � = 1, 2, 3, 4, 5 of
PDE (6.1)

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 1.549234e−03 0.00 5.551342e−03 0.00 2.571257e−02 0.00

0.3536 3.614335e−04 2.10 1.266889e−03 2.13 6.506533e−03 1.99

0.1768 8.995656e−05 2.01 3.098134e−04 2.03 1.627964e−03 2.00

0.0884 2.255287e−05 2.00 7.741892e−05 2.00 4.087224e−04 1.99

0.0442 5.639105e−06 2.00 1.935553e−05 2.00 1.026039e−04 1.99

Table 3 The RMSE of spline solutions using Xh = S−1
3 (
�) and Mh = S−1

3 (
�) for � = 1, 2, 3, 4, 5 of
PDE (6.1)

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 1.544907e−04 0.00 1.004675e−03 0.00 9.443382e−03 0.00

0.3536 1.044383e−05 3.89 1.351050e−04 2.89 2.474539e−03 1.94

0.1768 8.189057e−07 3.67 1.757983e−05 2.94 6.360542e−04 1.97

0.0884 8.172475e−08 3.32 2.226705e−06 2.98 1.612220e−04 1.98

0.0442 8.968295e−09 3.19 2.803368e−07 2.99 4.053880e−05 1.99

Table 4 The RMSE of spline solutions using Xh = S−1
4 (
�) and Mh = S−1

4 (
�) for � = 1, 2, 3, 4, 5 of
PDE (6.1)

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 7.146215e−06 0.00 8.190007e−05 0.00 1.185424e−03 0.00

0.3536 2.645725e−07 4.76 5.224157e−06 3.97 1.449168e−04 3.03

0.1768 1.316127e−08 4.33 3.160371e−07 4.05 1.685747e−05 3.10

0.0884 6.399775e−10 4.36 1.937981e−08 4.03 1.987492e−06 3.08

0.0442 2.456211e−11 4.70 1.200460e−09 4.01 2.409873e−07 3.04

Table 5 The RMSE of spline solutions using Xh = S−1
5 (
�) and Mh = S−1

5 (
�) for � = 1, 2, 3, 4, 5 of
PDE (6.1)

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 2.760695e−07 0.00 3.427271e−06 0.00 5.952484e−05 0.00

0.3536 4.721134e−09 5.87 1.113495e−07 4.94 3.938359e−06 3.92

0.1768 7.777767e−11 5.92 3.351050e−09 5.05 2.373035e−07 4.05

0.0884 2.394043e−12 5.02 1.026261e−10 5.03 1.447321e−08 4.04

Example 6.2 We show the performance of our bivariate spline solutions for a PDE with
discontinuous coefficients and nonsmooth exact solution u = xy(e1−|x | − 1)(e1−|y| − 1)
which satisfies

2
∂2

∂x2
u + 2sign(x)sign(y)

∂2

∂x∂y
u + 2

∂2

∂y2
u = f (x, y), (x, y) ∈ � ⊂ R

2 (6.2)
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Table 6 The RMSE of spline solutions using Xh = Mh = S−1
5 (
�) for � = 1, 2, 3, 4 of PDE (6.1) with

u = sin(2πx) sin(2πy).

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 2.390050e−02 0.00 2.699640e−01 0.00 4.628174e+00 0.00

0.3536 4.997698e−04 5.58 1.076435e−02 4.66 3.787099e−01 3.63

0.1768 8.812568e−06 5.83 3.225226e−04 5.06 2.356171e−02 3.99

0.0884 1.648941e−07 5.74 8.620885e−06 5.22 1.260638e−03 4.20

Table 7 The RMSE of spline solutions using Xh = Mh = S−1
6 (
�) for � = 1, 2, 3, 4 of PDE (6.1) with

u = sin(2πx) sin(2πy).

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 1.862502e−03 0.00 2.436280e−02 0.00 4.404080e−01 0.00

0.3536 5.460275e−05 5.09 1.350238e−03 4.18 5.202210e−02 3.08

0.1768 5.354973e−07 6.67 2.432368e−05 5.79 1.842914e−03 4.80

0.0884 3.836807e−09 7.12 4.105804e−07 5.89 6.417771e−05 4.84

Table 8 The RMSE of spline solutions using Xh = Mh = S−1
7 (
�) for � = 1, 2, 3, 4 of PDE (6.1) with

u = sin(2πx) sin(2πy).

|
| u − Su Rate ∇(u − Su) Rate ∇2(u − Su) Rate

0.7071 1.167121e−03 0.00 2.022185e−02 0.00 5.174476e−01 0.00

0.3536 4.520586e−06 8.01 1.575837e−04 7.01 8.136845e−03 6.00

0.1768 2.063180e−08 7.78 1.352130e−06 6.87 1.347347e−04 5.92

0.0884 9.814292e−11 7.72 1.032652e−08 7.03 1.947362e−06 6.10

where u = 0 on the boundary of � = [−1, 1] × [−1, 1] as in [24]. As the discontinuity of
one of the PDE coefficients are straight lines, we took these lines into consideration when
partitioning the underlying domain as seen in Fig. 1. Note that the solution is in H2(�), but
not continuously twice differentiable. We shall use Xh = S−1

d (
�) and Mh = S−1
d (
�) with


� shown in Fig. 1.
Instead of showing the convergence rates of |u − uh |H2(�) in a loglog graph for various

d = 2, 3, 4, 5 as in [24], we present a loglog graph of the root mean squared error (RMSE)
of (|D2

x (u − uh)| + |Dx Dy(u − uh)| + |D2
y(u − uh)|)/3 based on 333× 333 equally-spaced

points over � = [−1, 1] × [−1, 1].
The graph in Fig. 2 can be compared with the one in Fig. 2 in [24]. The comparison shows

that the accuracy of our spline method is much better. One of the advantages of our method is
to be able to use Mh = S−1

k (
�) for various k > 0. Our experiments show that the accuracy
are getting better from k = k−2, k−1, k, but not significantly better for k = k+1 or larger.

In order to compare with the numerical method in [29], i.e. to compare Tables 8.5 and
8.6 in [29], we present a similar Table 9 which contains the root mean square error of
|u − uh |, (|Dx (u − uh)| + |Dy(u − uh)|)/2, as well as (|D2

x (u − uh)| + |Dx Dy(u − uh)| +
|D2

y(u−uh)|)/3 which are based on 333×333 equally-spaced points over [−1, 1]×[−1, 1].
We can see that the accuracy of our spline solution in L2 norm in Table 9 are better than those
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Fig. 1 Triangulations 
�, � = 0, 1, 2, 3

in Table 8.5 and are similar to those in Table 8.6 in [29]. The accuracy of our spline solution
in H1 semi-norm is much better than those in Tables 8.5 and 8.6 in [29]. Higher accurate
solutions are obtained when splines of higher degrees are used which can be conveniently
realized by simply adjusting the degree input parameter in our MATLAB code (Tables 10,
11).

In Table 12, we note that the RMSE(u− Su) gets deteriorated in the last refinement which
indicates that themachine accuracy is achieved and the result could not be improved although
the RMSE(∇2(u − Su)) still improves at the expected convergence rate.

Furthermore, when using the degree of splines d ≥ 6, such a deterioration of iterations
continues as the accuracy of the spline coefficient vectors could not be achieved less than
1e-15 and thus, the RMSE(u − Su) could not be better than 1e-12. In order to show the rate
of convergence when d ≥ 6, the computation needs a triple or quadruple precision which
will be left for a future study.

Example 6.3 In this example, we study the numerical solution to the following
(
1 + x2

x2 + y2

)
∂2

∂x2
u + 2xy

x2 + y2
∂2

∂x∂y
u +

(
1 + y2

x2 + y2

)
∂2

∂y2
u

= f (x, y), (x, y) ∈ � ⊂ R
2 (6.3)
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Fig. 2 loglog graph ofRMSE (|D2
x (u−uh)|+|Dx Dy(u−uh)|+|D2

y(u−uh)|)/3 vs the sizes of triangulations
0.5, 0.25, 0.125, 0.0625, 0.03125 for degree d = 2, 3, 4, 5 (from the top to the bottom)

Table 9 The RMSE of spline solutions using the pair Xh = S−1
2 (
�), Mh = S−1

2 (
�) of spline spaces for
� = 0, 1, 2, 3, 4 of PDE (6.2) based on uniform triangulations in Fig. 1

h = |
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate EMSE(∇2(u − Su)) Rate

0.5000 2.613916e−02 0.00 5.752513e−02 0.00 2.904282e−01 0.00

0.2500 7.300841e−03 1.84 1.676006e−02 1.78 1.428850e−01 1.02

0.1250 1.818047e−03 2.01 4.506334e−03 1.89 6.909645e−02 1.05

0.0625 4.456150e−04 2.03 1.167414e−03 1.95 3.315449e−02 1.06

0.0313 1.099735e−04 2.02 3.004970e−04 1.96 1.585805e−02 1.06

Table 10 The RMSE of spline solutions using the pair Xh = S−1
3 (
�), Mh = S−1

3 (
�) of spline spaces for
� = 0, 1, 2, 3, 4 of PDE (6.2) based on uniform triangulations in Fig. 1

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate EMSE(∇2(u − Su)) Rate

0.5000 1.449887e−03 0.00 6.243927e−03 0.00 6.723271e−02 0.00

0.2500 9.612402e−05 3.91 7.599219e−04 3.04 1.805996e−02 1.90

0.1250 1.862840e−05 2.37 8.851518e−05 3.10 4.242236e−03 2.09

0.0625 3.991714e−06 2.22 1.242605e−05 2.83 9.748695e−04 2.13

0.0313 7.386041e−07 2.43 2.046330e−06 2.60 2.276661e−04 2.10

where � = (0, 1)2, u = (x2 + y2)α/2. Note that the middle coefficient 2xy
x2+y2

fails to be
continuous at one corner of �. This PDE has been studied in [14] and [20] to explain the
possibility of ill-posedness of the problem. In [24] and [29], two numerical methods find a
good approximation of the solution.We shall apply our spline method to find approximations
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Table 11 The RMSE of spline solutions using the pair Xh = S−1
4 (
�), Mh = S−1

4 (
�) of spline spaces for
� = 0, 1, 2, 3, 4 of PDE (6.2) based on uniform triangulations in Fig. 1

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate EMSE(∇2(u − Su)) Rate

0.5000 2.009743e−05 0.00 2.523989e−04 0.00 5.413090e−03 0.00

0.2500 8.960082e−07 4.49 1.869987e−05 3.75 7.291647e−04 2.89

0.1250 7.946654e−08 3.50 1.149021e−06 4.02 8.933381e−05 3.03

0.0625 6.918610e−09 3.52 6.792969e−08 4.08 1.026479e−05 3.12

0.0313 7.869320e−10 3.14 4.272762e−09 3.99 1.257353e−06 3.04

Table 12 The RMSE of spline solutions using the pair Xh = S−1
5 (
�), Mh = S−1

5 (
�) of spline spaces for
� = 0, 1, 2, 3, 4 of PDE (6.2) based on uniform triangulations in Fig. 1

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate EMSE(∇2(u − Su)) Rate

0.5000 5.917644e−07 0.00 1.033305e−05 0.00 2.729830e−04 0.00

0.2500 1.359283e−08 5.44 3.622443e−07 4.83 1.821993e−05 3.90

0.1250 5.050760e−10 4.75 1.146421e−08 4.98 1.140314e−06 4.00

0.0625 3.618925e−11 3.80 3.519986e−10 5.03 6.848577e−08 4.06

0.0313 1.530946e−10 −2.08 2.946980e−10 0.26 4.240589e−09 4.01

Table 13 The RMSE of spline solutions using the pair Xh = S−1
2 (
�), Mh = S−1

0 (
�) of spline spaces for
� = 0, 1, 2, 3, 4 of PDE (6.3) based on uniform refinements of a simple triangulation

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate EMSE(∇2(u − Su)) Rate

0.5000 4.800003e−03 0.00 2.362686e−02 0.00 2.256637e−01 0.00

0.2500 1.883197e−03 1.35 9.919694e−03 1.25 1.497819e−01 0.58

0.1250 6.785580e−04 1.47 3.798937e−03 1.38 9.673684e−02 0.62

0.0625 2.521239e−04 1.43 1.426283e−03 1.41 6.021246e−02 0.67

0.0313 1.018909e−04 1.31 5.472435e−04 1.38 3.582212e−02 0.74

of the exact solutionwhenα = 1.6 as in the previous literature. First, we use standard uniform
refinements of a simple triangulation of � by adding two diagonals.

We can see that although the accuracy of our spline solution in L2 norm in Table 13 are
not as good as those in Tables 8.7 and 8.8 in [29], the accuracy of our spline solutions in H1

semi-norm is better.
In [24], Smears andSüli provided a numericalmethod to be able to achieve the convergence

in an exponential decay fashion by designing a sequence of quadrilateral partitions. In this
paper, we provide a simple approach to improve the numerical solution of the PDE (6.3) by
starting with a special triangulation in Fig. 3 since the solution at one of the corners of �

is singular and then uniformly refine it to obtain a sequence of triangulations. Over such a
sequence of triangulation, numerical results from our spline method in Table 14 are much
better than those in [29], and better than the one [24] in H2 semi-norm although we use much
more elements and degrees of freedom.
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Fig. 3 A fixed triangulation 


Table 14 The RMSE of spline solutions using the pair Xh = S−1
2 (
�) and Mh = S−1

0 (
�) of spline spaces
for � = 1, 2, 3, 4, 5, 6 of PDE (6.3) based on uniform refinements of a fixed triangulation

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate EMSE(∇2(u − Su)) Rate

0.3536 2.808940e−03 0.00 1.135469e−02 0.00 1.353720e−01 0.00

0.1768 1.263526e−03 1.15 5.183195e−03 1.13 8.234064e−02 0.72

0.0884 4.402893e−04 1.52 1.882706e−03 1.46 4.780946e−02 0.80

0.0442 1.280195e−04 1.78 5.703663e−04 1.72 2.661356e−02 0.85

0.0221 3.452513e−05 1.89 1.573659e−04 1.86 1.317950e−02 1.00

0.0110 9.078391e−06 1.93 4.181275e−05 1.91 6.370552e−03 1.04

We have tested our spline method for numerical solution of (6.3) for various degrees of
splines for primal and/or dual variables. We do not report the results here due to the space
limitation.

6.3 Numerical Results of PDE in (1.1) with Nonzero c

In this subsection, we present some numerical results from our bivariate spline method for
numerical solution of the PDE in (1.1) with nonzero c. We use three examples to demonstrate
that our method is effective and efficient no matter the PDE coefficients are smooth or not
smooth and the solutions are smooth or not so smooth.

Example 6.4 Webeginwith a 2ndorder elliptic equationwith smooth coefficients and smooth
solution u = sin(πx) sin(πy) which satisfies the following partial differential equation:

3
∂2

∂x2
u + 2

∂2

∂x∂y
u + 2

∂2

∂y2
u − (1 + x2 + y2)u = f (x, y), (x, y) ∈ � ⊂ R

2, (6.4)
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Table 15 The RMSE of spline solutions using the pair Xh = S−1
5 (
�), Mh = S−1

3 (
�) of spline spaces for
� = 1, 2, 3, 4 of PDE (6.4)

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate RMSE(∇2(u − Su)) Rate

0.7071 7.148997e−04 0.00 5.688698e−03 0.00 7.513832e−02 0.00

0.3536 2.651667e−05 4.75 1.861396e−04 4.93 4.596716e−03 3.99

0.1768 1.257317e−06 4.40 6.093065e−06 4.93 2.814578e−04 4.03

0.0884 7.088746e−08 4.15 2.550376e−07 4.58 1.753997e−05 4.00

Table 16 The RMSE of spline solutions using the pair Xh = S−1
5 (
�), Mh = S−1

5 (
�) of spline spaces for
� = 1, 2, 3, 4 of PDE (6.5)

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate RMSE(∇2(u − Su)) Rate

0.7071 5.906274e−04 0.00 5.894580e−03 0.00 9.080845e−02 0.00

0.3536 1.155544e−05 5.68 1.785330e−04 5.05 5.673534e−03 3.97

0.1768 3.265019e−07 5.15 4.834318e−06 5.21 3.150799e−04 4.15

0.0884 1.568269e−08 4.38 1.463029e−07 5.05 1.866297e−05 4.07

Table 17 The RMSE of spline solutions using the pair Xh = S−1
5 (
�), Mh = S−1

5 (
�) of spline spaces for
� = 1, 2, 3, 4 of PDE (6.6)

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate RMSE(∇2(u − Su)) Rate

0.7071 2.914706e−02 0.00 2.813852e−01 0.00 4.122223e+00 0.00

0.3536 8.047145e−04 5.18 1.287751e−02 4.46 3.279903e−01 3.63

0.1768 2.963898e−05 4.76 3.942771e−04 5.02 1.893540e−02 4.06

0.0884 1.403774e−06 4.40 1.307268e−05 4.91 1.139668e−03 4.05

where � is a standard square domain [−1, 1]2 which is split into 4 equal sub-squares and
each sub-square is split into 2 triangles to form an initial triangulation 
0. Let 
� be the �th
uniform refinement of 
0. See numerical results in Table 15.

Example 6.5 In this example, we use our spline method to solve the following PDE with
discontinuous coefficients, but smooth solution.

a(x, y)
∂2

∂x2
u+b(x, y)

∂2

∂x∂y
u+c(x, y)

∂2

∂y2
u−(1+x2+y2)u = f (x, y), (x, y) ∈ � ⊂ R

2

(6.5)
where a(x, y) = 1 + |x |, b(x, y) = (xy)1/3, c(x, y) = 1 + |y| and � is a standard domain
[−1, 1]2. We use u = sin(πx) sin(πy) as the exact solution. The same triangulations 
� as
in Example 6.4 will be used. See Table 16 for numerical results.

Example 6.6 In this example, we show the performance of our spline solutions for a PDE
with discontinuous coefficients and nonsmooth exact solution u = xy(e1−|x | −1)(e1−|y| −1)
which satisfies
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Table 18 The RMSE of spline solutions using the pair Xh = S−1
6 (
�), Mh = S−1

6 (
�) of spline spaces for
� = 1, 2, 3, 4 of PDE (6.6)

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate RMSE(∇2(u − Su)) Rate

0.7071 3.494139e−06 0.00 1.538901e−05 0.00 2.054258e−04 0.00

0.3536 7.686885e−08 5.51 3.531160e−07 5.45 7.914461e−06 4.70

0.1768 1.370000e−09 5.81 6.565436e−09 5.75 2.731226e−07 4.86

0.0884 1.598556e−11 6.42 7.840289e−11 6.39 8.199009e−09 5.06

Table 19 The RMSE of spline solutions using the pair Xh = S−1
7 (
�), Mh = S−1

7 (
�) of spline spaces for
� = 1, 2, 3, 4 of PDE (6.6)

|
| RMSE(u − Su ) Rate RMSE(∇(u − Su)) Rate RMSE(∇2(u − Su)) Rate

0.7071 6.099647e−08 0.00 4.914744e−07 0.00 1.004845e−05 0.00

0.3536 9.745659e−10 5.97 4.297639e−09 6.84 1.659379e−07 5.92

0.1768 9.091448e−12 6.74 5.183151e−11 6.37 3.038997e−09 5.78

2
∂2

∂x2
u+2sign(x)sign(y)

∂2

∂x∂y
u+2

∂2

∂y2
u− (1+ x2 + y2)u = f (x, y), (x, y) ∈ � ⊂ R

2

(6.6)
where u = 0 on the boundary of � = [−1, 1] × [−1, 1] as in [24]. Note that the solution
is in H2(�), but not continuously twice differentiable. The same triangulations 
� as in
Example 6.4 were used and S15(
�) were used to solve the PDE in (6.6). The RMSE for
spline approximation to the exact solution is shown in Tables 17, 18, and 19.
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