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Abstract

This paper study the convergence of the Alternating Projection algorithm for matrix completion and
compressed sensing problems and give sufficient condition under which it would converge. Numerical
evidence to demonstrate the efficacy and robustness of the algorithm is presented. In the final section,
using algebraic-geometric techniques, we prove that, fixing the known positions, if a rank-r matrix can
be completed only in finitely many ways with one set of known entries, then for almost all set of known
entries, the matrix can be completed into a rank-r matrix only in finitely many ways.
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1. Introduction

The last two decades have witnessed a resurgence of research in sparse solutions of underdetermined
linear systems and matrix completion and recovery. The matrix completion problem was inspired by
Netflix problem (cf. Bennett et al. (2007)) and was pioneered by Candès, Recht, 2010 [Candès and
Recht (2009)] and Candès and Tao, 2010 [Candès and Tao (2010)]. The problem can be explained as
follows. One would like to recovery a matrix M ∈ Rm,n from a given set of entries Mij , (i, j) ∈ Ω ⊂
{1, · · · ,m} × {1, · · · , n} by filling in the missing entries such that the resulting matrix has the lowest
possible rank. In other words, we solve the following rank minimization problem:

min
X∈Rm×n

rank (X) : such that AΩ(X) = AΩ(M), (1)

where AΩ(X) = AΩ(M) means the entries of the matrix X are the same entries of matrix M for
indices (i, j) ∈ Ω. Clearly, if we are only given a few entries, say one entry of matrix M of size 2× 2,
we are not able to recover M even assuming the rank of M is 1. There are necessary conditions on
how many entries one must know in order to be able to recover M . Information theoretic lower bound
can be found in Candès and Tao (2010).

There are many approaches to recovery such a matrix developed in the last ten years. One popular
approach is to find a matrix with minimal summation of its singular values. That is,

min
X∈Rm×n

{‖X‖∗, AΩ(X) = AΩ(M)}, (2)

1



Lai and Varghese

where ‖X‖∗ =
∑k

i=1 σi(X) is the nuclear norm of X with k = min{m,n} and σi(X) are singular
values of matrix X. It is known that f(X) = ‖X‖∗ is a convex function of X, the above problem (2) is

a convex minimization problem. By adding
1

λ
‖X‖F to the minimizing functional in (2), the resulting

minimization problem can be solved by using Uzawa type algorithms in [Cai, Candès, Shen, 2010Cai
et al. (2010)] or solved by using its dual formulation, e.g. in [Lai and Yin, 2013Lai and Yin (2013). The
minimization in (2) can also reformulated as a fixed point iteration and Nestrov’s acceleration technique
can be used. See [Ma, Goldfarb, Chen, 2011Ma et al. (2011)] and [Toh and Yun, 2010Toh and Yun
(2010)]. This constrained minimization (2) is usually converted into an unconstrained minimization
using Lagrange multiplier method or augmented Lagrange minimization method. The alternating
direction method of multiplier (ADMM) can be used to complete a matrix. See [Tao and Yuan,
2011Tao and Yuan (2011)], and [Yang and Yuan, 2012Yang and Yuan (2013)], Many researchers have
studied the matrix completion via variants of the constrained convex minimization approach.

Certainly, the rank completion is also studied by using other approaches. See [Jain, Meka and
Dhillon, 2010Jain et al. (2010)] for singular value projection method and [Wen, Yin, Zhang, 2012Wen
et al. (2012), [Tanner and Wei, 2016Tanner and Wei (2016)] for alternating least squares, the SOR
approaches, steepest descent minimization approaches. See [Lai, Xu, Yin, 2013Lai et al. (2013)] for `q
minimization approach for q ∈ (0, 1). In addition, a greedy approach, e.g. orthogonal matching pursuit
(OMP) and iterative hard thresholding approach can be used as well. See [Wang, Lai, Lu, and Ye, 2015
Wang et al. (2015)] and [Tanner and Wei, 2013Tanner and Wei (2013)]. Iteratively reweighted nuclean
norm minimization, Riemannian conjugated gradient method, and alternating projection algorithm
in [Mohan and Fazel, 2012Mohan and Fazel (2012)], [Vandereycken, 2013Vandereycken (2013)], [Cai,
Wang, and Wei, 2016Cai et al. (2017)], [Wei, Cai, Chan, and Leung, 2016Wei et al. (2016)], [Jiang,
Zhong, Liu, and Song, 2017Jiang et al. (2017), and etc.. Among all these algorithms, the computational
algorithm proposed in Wang et al. (2015) seems the most efficient one in completing an incomplete
matrix. However, the accuracy of the completed matrices is still a question. Usually, the researchers
use the relative Frobenius norm errors, i.e., ‖M −Mk‖F /‖M‖F to measure the accuracy for a given
matrix M of size m×n, where Mk is the kth iteration from a matrix completion algorithm. When the
size of M is very large and so is ‖M‖F and the missing rate 1 − |Ω|/(mn) << 1 small or |Ω| ≈ mn,
the relative Frobenous norm error will be very small anyway and hence will not be a good measure of
errors, where Ω is the set of the indices of known entries. It is better to use a true error such as the
maximum norm of all entries of the residual matrix M −Mk to check the accuracy of the completed
matrices. Then many of the existing algorithms mentioned above will fail to produce a good recovery.
Certainly, the main possible reason may be that the relaxation of rank minimization problem is used.
One of the mathematical problems is to find sufficient conditions which ensure the uniqueness of the
minimization. However, some sufficient conditions are unrealistic, e.g. only one entry is missing.
Another research problem is to design efficient matrix completion algorithms. It is interesting to have
an algorithm which is convergent fast, say in a linear fashion.

Recently, the authors just discovered the reference Jiang et al. (2017) which presents a numerical
study of a computational algorithm called Alternating Projection(AP) Algorithm which is exactly
the algorithm that the authors of this paper have studied for a year. Mainly, we also had the same
algorithm and was aware of the good numerical performance. However, we would like to know why the
algorithm is convergent, under what kind of conditions the algorithm is convergent, and under what
situation the convergence is linear. The study took many months and delayed our announcement
of the AP algorithm. Nevetheless, the purpose of this paper is to explain why and when the AP
Algorithm will converge and the convergence is linear. In addition, we shall explain the existence
of matrix completion and how many matrices can be completed to have the same given entries. In
general, for randomly chosen values for a fixed location set Ω to be known entries of a matrix, one will
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not be able to complete it by using a rank r matrix. Hence, we shall discuss the convergence of the AP
algorithm under the assumption that the given entries are from a matrix with rank r. Also, we will
provide an approach to choose a good initial guess such that the AP Algorithm will converge faster
than using the simple straightforward initial guess MΩ as used in Jiang et al. (2017). An application to
image process will be shown to demonstrate a nice performance of the AP algorithm. Finally, we shall
extend the ideas from the AP Algorithm to find sparse solution of under determined linear systems.

Indeed, the matrix completion problem is closely related to the sparse vector recovery problem.
Sparse solutions of underdetermined linear systems have been studied for last twenty years starting
from [Chen, Donoho, Saunders, 1998Chen et al. (2001)] and [Tibshirani, 1996Tibshirani (1996)] and
then became a major subject of research as a part of compressive sensing study since 2006 due to
[Donoho, 2006Donoho (2006)], [Candés, 2006Candès et al. (2006b)], [Candés and Tao, 2005Candes and
Tao (2005)], and [Candés, Romberg, and Tao, 2006Candès et al. (2006a)]. Many numerical algorithms
have been developed since then. Several algorithms are based on classic convex minimization approach
(cf. e.g. Hale et al. (2008), Beck and Teboulle (2009), Lai and Yin (2013), and etc.). Several
algorithms are based on iteratively reweighted `1 minimization or `2 minimizations (cf. [Candés,
Watkin, and Boyd, 2008Candes et al. (2008)], [Daubechies, DeVore, 2010,Daubechies et al. (2010)]
and [Lai, Xu, and Yin, 2013Lai et al. (2013)]). Several researchers started the `q minimization for
q ∈ (0, 1), e.g. in [Foucart and Lai, 2009Foucart and Lai (2009)] and [Lai and Wang, 2011Lai and
Wang (2011)]. Various other algorithms are based on greedy or orthogonal matching pursuit (cf.
e.g. [DeVore and Temlyakov, 1996DeVore and Temlyakov (1996)], [Tropp, 2004Tropp (2004)], and
[Kozlov and Petukhov, 2010Kozlov and Petukhov (2010)]). some algorithms are also based on the
hard thresholding technique such as in [Blumensath and Davies, 2009Blumensath and Davies (2009)],
[Blumensath and Davies, 2010Blumensath and Davies (2010)], [Foucart, 2011Foucart (2011)] and
etc.. Among the various other numerical methods were also proposed. See, e.g. [Dohono, Maleki,
and Montanari, 2009Donoho et al. (2009)], [Rangan, 2011Rangan (2011)], [Gong, Zhang, Lu, Huang,
and Ye,2013Gong et al. (2013)], [Wang and Ye, 2014Wang et al. (2013)] and etc.. To the best of our
knowledge, the method in Kozlov and Petukhov (2010) is the most effective in finding sparse solutions.
Thus, we shall extend the alternating projection method to the sparse recovery problem and establish
some sufficient conditions that our algorithm is convergent and its convergence is linear.

The paper is simply organized as follows. In the next section, we study the convergence of the AP
algorithm. The section is divided into three subsections. We first study the case that the guess rank
rg is the same as the rank of the matrix to be completed. Next we study the remaining case that rg is
not the same as the rank of the matrix whose known entries are given. Finally in this section, we show
the excellent performance of the AP algorithm when starting from an initial matrix obtained from the
OR1MP algorithm in Wang et al. (2015). In §3, we extend the AP algorithm to the compressive sensing
setting. §3 is divided into two subsections. First we study the convergence of the alternating projection
algorithm for compressive sensing. Then we present some numerical experiments. Comparing with
many known algorithms, the alternating projection method performs exceptionally well. Finally in
this paper, we present an algebraic geometry analysis to show the existence of matrix completion and
the number of matrices which can be completed from the given known entries of a rank r matrix.

2. The Alternating Projection Algorithm for Matrix Completion

Let Mr be the manifold in Rn2
consisting of n × n matrices (without loss of generality) of rank r

and denote by PMr the projection operator onto the manifoldMr. Next consider the affine space AΩ

defined as follows:

AΩ := {X | PΩ(X −M) = 0} .
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Affine spaces AΩ consists of matrices which has exactly same entries as M with indices in Ω. Although
it is a convex set, AΩ is not a bounded set. Starting with an initial guess X0 = PΩ(M) or a good
initial guess (see our numerical experiments near the end of this section), the Alternating Projection
(AP) Algorithm can be simply stated as follows:

Algorithm: Alternating Projection Algorithm for Matrix Completion

Data: Rank r of the solution M , the tolerance ε whose default value is 1e-6
Result: Xk, a close approximation of M
Initialize X0 = PΩ(M) or any other good guess;
repeat

Step 1: Yk = PMr(Xk)
Step 2: Xk+1 = PAΩ

(Yk)
until ‖Xk+1 −Xk‖ < ε;

In Algorithm 1 above, the computation of the projection PMr can be realized easily by using the
singular value decomposition. PAΩ

is the projection onto AΩ. The computation PAΩ
(Yk) is obtained

simply by setting the matrix entries of Yk in positions Ω equal to the corresponding entries in M .
Therefore, this algorithm is simple and easy without any minimization. The algorithm is the same as
one in [Jiang, Zhong, Liu, and Song, 2017Jiang et al. (2017)]. One of the purposes of our paper is to
show the convergence under various conditions.

Before studying the convergence of Algorithm 1, let us comment on the existence of a rank r matrix
which has the known entries in position Ω. Let m = |Ω| be the cardinality of Ω. We shall assume
m > 2nr − r2. For convenience, we shall use the complex m dimensional space Cm to discuss the
existence. If one randomly chooses the entries of a matrix M in the positions in Ω from Cm, the
probability of completing the matrix M of rank r is zero. See Theorem 28. Thus, we have to assume
that the given entries are from a rank r matrix M . In other words, we call a vector x ∈ Cm r-feasible
if there exist a rank r matrix M such that M |Ω = x. If the entries x ∈ Cm over Ω are r-feasible,
we would like to know if there is a unique rank-r matrix M satisfying M |Ω = x. We can show that,

generically, the number of ways to complete a matrix of rank r is less than or equal to

n−r−1∏
i=0

(
n+i
r

)(
r+i
r

) .

See Theorem 33. To prove these results, we need some background from algebraic geometry. For
convenience, the details of the statements and their proofs are thus given in the last section of this
paper.

In the rest of this section, we shall assume that the given entries are from a matrix of rank r.
However, in general, we do not know the rank r > 0 of M in advance. Thus, we have to make a guess
of r. Let rg be a guessed rank. As we know any reasonable choice of rg must satisfy m > 2nrg − r2

g ,
we still have either rg < r, rg = r or rg > r. Choose a correct rank rg = r is a key to have the AP
Algorithm, i.e. Algorithm 1 converges with a linear convergence rate. Otherwise, the convergence
rate may not be linear. That is, when rg = rank(M), we can show that Algorithm 1 converge to Mrg

linearly. Otherwise, when rg < rank(M), Algorithm 1 converges to a matrix under some conditions
and may not be the desired matrix M . Thus, this section is divided into three parts. We shall discuss
the two cases in the first two subsections and leave the numerical results in the third subsection.

Another important issue is the distribution of Ω ⊂ {(i, j), i, j = 1, · · · , n}. Clearly, if a column of
M is completely missing, one is not able to recover this column no matter what kind of rank r of M is
and how large m = |Ω| is. If we let x ∈ Rn2−m be the unknown entries of M , the determinant of the
sub-matrix of any r+1 rows and r+1 columns ofM will be zero which forms a polynomial equation with
coefficients formed from known entries M |Ω. We have n2−m unknowns while

(
n
r+1

)2
submatrices from
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M which will result in
(
n
r+1

)2
polynomial equations. Since we have n2−m < n2− 2nr+ r2 = (n− r)2

unknowns and
(
n
r+1

)2
equations, the system of polynomial equations is overdetermined. We have to

assume that the system is consistent, i.e. the system has a solution. Otherwise, the overdetermined
system has no solution, i.e. the matrix M can not be completed. Hence, for the rest of the paper,
let us assume that the overdetermined system of polynomial equations have a solution, i.e. M can be
completed .

2.1 Convergence of Algorithm 1 When rg = Rank(M)

We start with some preliminary results.

Lemma 1 Let L be a linear subspace of Rn. Suppose PL denote the orthogonal projection onto L.
Then, for any x ∈ Rn

‖x‖ = ‖PL(x)‖ if and only if x ∈ L

Equivalently,
‖PL(x)‖ < ‖x‖ if and only if x 6∈ L

Proof The ’if’ part is clear. So, let us prove the ’only if’ part.
Let l1, l2, · · · lk be a orthonormal basis of L. Extend it to a orthonormal basis l1, l2, · · · ln of Rn.

Then,

x =
n∑
i=1

〈x, li〉li

and

‖x‖2 =
n∑
i=1

〈x, li〉2 = ‖PL(x)‖2 +
n∑

i=k+1

〈x, li〉2

Now it follows that if ‖x‖ = ‖PL(x)‖, then
∑n

i=k+1 〈x, li〉
2 = 0, which implies 〈x, li〉 = 0 for all

i ≥ k + 1. Therefore, x =
∑k

i=1〈x, li〉li ∈ L.

Lemma 2 Let L1 and L2 be two linear subspaces of Rn. Suppose PL1 and PL2 denote the orthogonal
projection onto L1 and L2 respectively. Then, L1 ∩ L2 = {0} if and only if

‖PL2PL1‖ < 1. (3)

Proof Assume L1 ∩ L2 = {0}. Let x 6= 0 ∈ Rn. Then if PL1(x) = 0, then PL2PL1(x) = 0 < ‖x‖.
Otherwise, PL1(x) 6= 0. Since L1 ∩ L2 = {0}, PL1(x) 6∈ L2. Therefore, using Lemma 1, we get

‖PL2PL1(x)‖ < ‖PL1(x)‖ ≤ ‖PL1‖ ‖x‖ ≤ ‖x‖ .

Hence, we have
‖PL2PL1(x)‖ < ‖x‖

for all non-zero x 6= 0 ∈ Rn. So,
‖PL2PL1‖ < 1.

To prove the other direction, assume ‖PL2PL1‖ < 1. Assume, on the contrary, that L1 ∩ L2 6= {0}.
Let x 6= 0 ∈ L1 ∩ L2 be a nonzero vector in the intersection. Then PL2PL1(x) = PL2(x) = x which
implies that ‖PL2PL1(x)‖ = ‖x‖, contradicting the assumption.
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Lemma 3 Let M ∈ Mr. Then the projection operator PMr is well defined (single-valued) in a
neighborhood of M and is differentiable with gradient

∇PMr(M) = PTMr (M), (4)

where TM(M) is the tangent space ofM at M and PTM(M) is the projection operator onto the tangent
space.

Proof Since the projection PMr of a matrix X is obtained by hard thresholding the least n − r
singular values, we see that the projection is unique if σr(M) 6= σr+1(M) ≥ 0. Now consider the
neighborhood V of M given by

V :=

{
X ∈ Rn×n | ‖X −M‖F <

σr(M)

4

}
.

Then, by Weyl’s Weyl (1912) or more generally Mirsky’s Mirsky (1960) perturbation bounds on
singular values, we have

|σr(X)− σr(M)| ≤ ‖X −M‖F <
σr(M)

4

and

|σr+1(X)− σr+1(M)| ≤ ‖X −M‖F <
σr(M)

4
.

Hence, noting σr+1(M) = 0, we observe that

σr+1(X) <
σr(M)

4
<

3σr(M)

4
< σr(X).

In particular,

σr(X) 6= σr+1(X).

Therefore, PMr is single valued in the neighborhood V .
For second part of the result, we refer to Theorem 25 in Feppon and Lermusiaux (2017) which is

stated below. We have changed the notations for ease of reading. In particular, note that although
the X has rank greater than r in Feppon and Lermusiaux (2017), its easy to see that their proof goes
through when X has rank greater than or equal to r. Intuitively, it is easy to see that the gradient
vector of the projection PMr of smooth manifold Mr at M will be the projection onto the tangent
plane TMr at M in general.

The following results was used in the proof above.

Theorem 4 (F. Feppon and P.J. Lermusiaux, 2017Feppon and Lermusiaux (2017)) Consider
X ∈ Rn×m with rank greater than r and denote X =

∑r+k
i=1 σiuiv

>
i be its SVD decomposition, where the

singular values are ordered decreasingly: σ1 ≥ σ2 ≥ · · ·σr+k. Suppose that the orthogonal projection
PMr(X) of X onto Mr is uniquely defined, that is σr(X) > σr+1(X). Then PMr , the SVD truncation
operator of order r, is differentiable at X and the differential in a direction Y is given by the formula

∇Y PMr(X) = PTMr (PMr (X))(Y )

+
∑

1≤i≤r
1≤j≤k

[
σr+j

σi − σr+j
〈Y,Φ+

i,r+j〉Φ
+
i,r+j −

σr+j
σi + σr+j

〈Y,Φ−i,r+j〉Φ
−
i,r+j

]
, (5)
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where

Φ±i,r+j =
1√
2

(ur+jv
>
i ± uiv>r+j)

are the principal directions corresponding to the principal curvature of the manifold of rank-r matrices.

Proof Refer to Theorem 25 in Feppon and Lermusiaux (2017).

We are now ready to establish the convergence of Algorithm 1 under a sufficient condition.

Theorem 5 Assume TAΩ
(M)∩TMr(M) = {0}. Then Algorithm 1 converges to M locally at a linear

rate, i.e. there exists a neighborhood V around M such that if X0 ∈ V , then there exists a positive
constant c < 1 such that

‖Xk −M‖ < ck ‖X0 −M‖ , (6)

where Xk is the kth iteration from Algorithm 1.

Proof For notational convenience, let

f(X) := PAΩ
(PMr(X)).

Note that AΩ is an affine space, the gradient ∇PAΩ
of the projection PAΩ

is the projection onto the
tangent space of the affine space AΩ. By Lemma 3 and chain rule, we have

(∇f)(X) = PTAΩ
(M)(PTMr (M)(X)).

as TAΩ
(M) = TAΩ

(X) for all X.
Now from the definition of differentiability of f at M , we have

lim
X→M

‖f(X)− f(M)−∇f(M) · (X −M)‖
‖X −M‖

= 0.

Hence, there exist an open ball V , say a ball V = Br0(M) centered at M of radius r0 around M such
that, for all X ∈ V

‖f(X)− f(M)−∇f(M) · (X −M)‖
‖X −M‖

< ε,

where ε = 1−‖∇f‖
2 > 0. Using our hypothesis and Lemma 2, we have ‖∇f(M)‖ =

∥∥∥PTAΩ
(M) PTMr (M)

∥∥∥ <
1. Therefore, for all X ∈ V , we use M = f(M) to have

‖f(X)−M‖ = ‖f(X)− f(M)‖
≤ ‖f(X)− f(M)−∇f · (X −M)‖+ ‖∇f(M) · (X −M)‖
< ε ‖X −M‖+ ‖∇f(M)‖ ‖(X −M)‖
= (ε+ ‖∇f(M)‖) ‖X −M‖

≤ 1 + ‖∇f(M)‖
2

‖X −M‖ .

where 1+‖∇f(M)‖
2 < 1 since ‖∇f(M)‖ < 1 as discussed above.

Setting c = 1+‖∇f(M)‖
2 < 1, we can rewrite the above inequality as follows:

‖f(X)−M‖ < c ‖X −M‖ for all X ∈ V. (7)
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Hence, if Xk ∈ V = Br0(M), we use Xk+1 = f(Xk) to have

‖Xk+1 −M‖ = ‖f(Xk)−M‖ < c ‖Xk −M‖ ≤ r0

which implies Xk+1 ∈ V = Br0(M). So, if the initial guess X0 ∈ V , we have, by induction,

Xk ∈ V for all k

and
‖Xk −M‖ ≤ ck ‖X0 −M‖ .

We have thus completed the proof.

We will now derive certain equivalent conditions for hypothesis of the above theorem viz. TAΩ
(M)∩

TMr(M) = {0}. Let us recall the following property which is known in the literature. For convenience,
we include a proof.

Lemma 6 The tangent space TMr(M) has an explicit description as follows:

TMr(M) =
{
XM +MY | X ∈ Rn×n and Y ∈ Rn×n

}
. (8)

Proof First recall that the tangent space TMr(M) to a manifoldMr at a point M is the linear space
spanned by all the tangent vectors at 0 to smooth curves γ : R→Mr such that γ(0) = M .

Now let M ∈ Mr be a n × n matrix of rank r. We can write M = X0Y
>

0 where X0, Y0 ∈ Rn×r
and both X0 and Y0 have full column rank. This is possible because M has exactly rank r.

Let γ(t) = X(t)Y (t)> be a smooth curve such that X(0) = X0 and Y (0) = Y0. Hence, γ(0) =
X0Y

>
0 = M . Since X0 and Y0 have full column rank, X0 and Y0 have a r × r minor that does not

vanish. Since nonvanishing of a minor is an open condition, there exist an open neighbourhood of M
to which if we restrict the curve γ, we can assume X(t) and Y (t) have full column rank. In other
words, we can assume, without loss of generality, that X(t)>X(t) and Y (t)>Y (t) are invertible r × r
matrices for all t.

By product rule, we obtain

γ̇(0) = Ẋ(0)Y (0)> +X(0)Ẏ (0)>

= Ẋ(0)Y >0 +X0Ẏ (0)>

= Ẋ(0)(X>0 X0)−1(X>0 X0)Y >0 +X0(Y >0 Y )(Y >0 Y0)−1Ẏ (0)>

=
(
Ẋ(0)(X>0 X0)−1X>0

)
(X0Y

>
0 ) + (X0Y

>
0 )
(
Y0(Y >0 Y )−1Ẏ (0)>

)
=
(
Ẋ(0)(X>0 X0)−1X>0

)
M +M

(
Y0(Y >0 Y0)−1Ẏ (0)>

)
∈
{
XM +MY | X ∈ Rn×n and Y ∈ Rn×n

}
.

Now to prove the reverse inclusion, let AM + MB ∈ {XM +MY | X ∈ Rn×n and Y ∈ Rn×n}.
Consider the smooth curve γ(t) = X(t)Y (t)> defined by

X(t) = t(AX0) +X0

and
Y (t) = t

(
(Y0B)>

)
+ Y0.

An easy computation shows that γ(0) = M and γ̇(0) = AM +MB. Hence we get the equality
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TMr(M) =
{
XM +MY | X ∈ Rn×n and Y ∈ Rn×n

}
This completes the proof.

One can consider TMr(M) as a linear space in Rn2
by rewriting it as

TMr(M) ∼= Range(TM ) =


TM ·



(X1)
>

...

(Xn)>

Y1
...
Yn


| X ∈ Rn×n and Y ∈ Rn×n


where TM is a block matrix of size n2 × 2n2 consisting of 2n3 blocks of size 1× n, Xi and Xj denotes
the ith row and jth column of a matrix X respectively.

Explicitly, TM would take the form

TM =


M>1 0 · · · 0 · · · · · · · · · 0 M1 0 · · · · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

0 0 · · · 0 M>j 0 · · · 0 0 · · · 0 M i 0 · · · 0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...


where the each row corresponds to each index in {1, 2, · · · , n} × {1, 2, · · · , n}.

Let TΩ
M and TΩc

M denote the matrix obtained from TM by choosing the rows corresponding to Ω
and Ωc, respectively.

Example 1 Suppose M =

[
1 4
2 8

]
and Ω = {(1, 2), (2, 1)}. Then

TΩ
M =

[
4 8 0 0 0 0 1 4

0 0 1 2 2 8 0 0

]

TΩc

M =

[
1 2 0 0 1 4 0 0

0 0 4 8 0 0 2 8

]
and

TM =


4 8 0 0 0 0 1 4

0 0 1 2 2 8 0 0

1 2 0 0 1 4 0 0

0 0 4 8 0 0 2 8



Example 2 Suppose M =

−3 −1 −4
9 3 12
6 2 8

 and Ω = {(1, 1), (1, 3), (2, 2), (3, 1)}, Then

TΩ
M =


−3 9 6 0 0 0 0 0 0 −3 −1 −4 0 0 0 0 0 0

−4 12 8 0 0 0 0 0 0 0 0 0 0 0 0 −3 −1 −4

0 0 0 −1 3 2 0 0 0 0 0 0 9 3 12 0 0 0

0 0 0 0 0 0 −3 9 6 6 2 8 0 0 0 0 0 0


9
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TΩc

M =


−1 3 2 0 0 0 0 0 0 0 0 0 −3 −1 −4 0 0 0

0 0 0 −3 9 6 0 0 0 9 3 12 0 0 0 0 0 0

0 0 0 −4 12 8 0 0 0 0 0 0 0 0 0 9 3 12

0 0 0 0 0 0 −1 3 2 0 0 0 6 2 8 0 0 0

0 0 0 0 0 0 −4 12 8 0 0 0 0 0 0 6 2 8


and

TM =



−3 9 6 0 0 0 0 0 0 −3 −1 −4 0 0 0 0 0 0

−4 12 8 0 0 0 0 0 0 0 0 0 0 0 0 −3 −1 −4

0 0 0 −1 3 2 0 0 0 0 0 0 9 3 12 0 0 0

0 0 0 0 0 0 −3 9 6 6 2 8 0 0 0 0 0 0

−1 3 2 0 0 0 0 0 0 0 0 0 −3 −1 −4 0 0 0

0 0 0 −3 9 6 0 0 0 9 3 12 0 0 0 0 0 0

0 0 0 −4 12 8 0 0 0 0 0 0 0 0 0 9 3 12

0 0 0 0 0 0 −1 3 2 0 0 0 6 2 8 0 0 0

0 0 0 0 0 0 −4 12 8 0 0 0 0 0 0 6 2 8


Next we need

Lemma 7 The tangent space TAΩ
(M) at M can be given explicitly as follows.

TAΩ
(M) =

{
X ∈ Rn×n | PΩ(X) = 0

}
. (9)

Proof Recall that

AM := {X | PΩ(X −M) = 0} .

Since PΩ(X −M) = PΩ(X)− PΩ(M) = PΩ(X)− PΩ(PΩ(M)) = PΩ(X − PΩ(M)), we get that the set
AΩ is a translation of the linear space {X ∈ Rn×n | PΩ(X) = 0} by PΩ(M), i.e.

AΩ =
{
X ∈ Rn×n | PΩ(X) = 0

}
+ PΩ(M)

Hence we have that the tangent space of AΩ at M is equal to the tangent space of the vector space
{X ∈ Rn×n | PΩ(X) = 0} at M −PΩ(M). But the tangent space of a vector space at any point is the
vector space itself. Hence the result follows.

With the above preparation, we have another main result in this section.

Theorem 8 The following statements are equivalent:

1. TAΩ
(M) ∩ TMr(M) = {0}

2. Rowspace
(
TΩc

M

)
⊆ Rowspace

(
TΩ
M

)
3. Rank

(
TΩ
M

)
= 2nr − r2, where r = Rank(M)

10
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4. The matrix V Ω(M) of size |Ω| × |Ω| defined by

V Ω
(i1,j1),(i2,j2)(M) =


0 i1 6= i2 and j1 6= j2

〈Mj1 ,Mj2〉 i1 = i2 and j1 6= j2

〈M i1 ,M i2〉 i1 6= i2 and j1 = j2∥∥M i1
∥∥2

+ ‖Mj1‖
2 i1 = i2 and j1 = j2

(10)

has rank 2nr − r2, where Mj stands for the jth column and M i for the ith row of M .

Proof (1) ⇐⇒ (2) Note that the elements of TAΩ
(M) ∩ TMr(M) consists of matrices of the form

XM +MY such that the elements in positions Ω is zero by Lemmas 6 and 7. Hence, observing that
TMr(M) can be considered as the range of TM and that the rows of TM correspond to each index in
{1, 2, · · · , n} × {1, 2, · · · , n}, we can conclude that TAΩ

(M) ∩ TMr(M) = {0} if and only if

NullSpace
(
TΩ
M

)
⊆ NullSpace

(
TΩc

M

)
which is equivalent to

NullSpace
(
TΩ
M

)⊥ ⊇ NullSpace
(
TΩc

M

)⊥
The result follows by noting that

Rowspace
(
TΩc

M

)
= NullSpace

(
TΩc

M

)⊥
and

Rowspace
(
TΩ
M

)
= NullSpace

(
TΩ
M

)⊥
.

(2) ⇐⇒ (3) We begin by recalling that dimension of a tangent space is equal to dimension of the
manifold. So, dim(TMr(M)) = 2nr − r2. Now

2nr − r2 = dim(TM(M)) = dim(Range(TM )) = Rank(TM ) = Rank (Rowspace (TM )) .

Now the equivalence (2) ⇐⇒ (3) follows by recalling that TΩ
M and TΩc

M were obtained from TM by
choosing the rows corresponding to Ω and Ωc, respectively

(3) ⇐⇒ (4) The equivalence follows from fact that V Ω(M) = TΩ
M

(
TΩ
M

)>
. Hence Rank(V Ω(M)) =

Rank(TΩ
M ).

Remark 9 Few remarks are in order here. Size of the matrix TΩ
M is |Ω| × 2n2 which is considerably

larger than the size of the matrix V Ω(M) which has size |Ω| × |Ω|. Therefore, since rank computation
is a memory intensive process, it is much efficient to check the statement (4) of above theorem as
compared to statement (3).
In general, the rank of V Ω(M) is less than or equal to 2nr− r2. The equality occurs when the tangent
spaces intersect trivially.

The following example is an illustration of the linear convergence of the error when the condition
TAΩ

(M) ∩ TMr(M) = {0} is satisfied.

Example 3 We find a 15×15 matrix M of rank 2 which has 28% of entries missing. A straightforward
computation shows that Rank(V Ω(M)) = 2nr − r2. Hence, M satisfies the condition TAΩ

(M) ∩

11
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TMr(M) = {0}. Hence, by Theorems 8 and 5, we know that Algorithm 1 will converge in a linear
fashion.

M =

0.3474 0.0897 0.3971 0.4644 0.4168 0.7576 0.8206 0.8161 0.3279 0.3851 0.0825 0.4742 0.7684 0.6113 0.3832
0.1502 0.0414 0.2196 0.2450 0.2731 0.4415 0.4293 0.4358 0.1859 0.1574 0.0493 0.2386 0.4502 0.3087 0.1999
0.3853 0.1079 0.5912 0.6542 0.7544 1.1986 1.1445 1.1660 0.5024 0.3985 0.1343 0.6315 1.2231 0.8176 0.5325
0.2174 0.0577 0.2760 0.3160 0.3141 0.5394 0.5562 0.5582 0.2305 0.2358 0.0594 0.3160 0.5484 0.4080 0.2594
0.2124 0.0493 0.1453 0.1940 0.0662 0.2317 0.3503 0.3303 0.1109 0.2539 0.0228 0.2216 0.2302 0.2835 0.1647
0.1026 0.0238 0.0701 0.0936 0.0318 0.1117 0.1691 0.1594 0.0535 0.1227 0.0110 0.1070 0.1110 0.1368 0.0795
0.2429 0.0600 0.2290 0.2798 0.1972 0.4141 0.4982 0.4864 0.1846 0.2785 0.0439 0.2974 0.4176 0.3823 0.2332
0.3848 0.0895 0.2658 0.3538 0.1248 0.4257 0.6385 0.6028 0.2032 0.4595 0.0421 0.4033 0.4232 0.5159 0.3002
0.3698 0.1015 0.5311 0.5943 0.6536 1.0640 1.0419 1.0562 0.4488 0.3894 0.1186 0.5806 1.0845 0.7511 0.4852
0.3631 0.0880 0.3138 0.3919 0.2395 0.5511 0.7003 0.6776 0.2496 0.4217 0.0575 0.4246 0.5540 0.5451 0.3282
0.2081 0.0480 0.1369 0.1850 0.0542 0.2139 0.3347 0.3141 0.1036 0.2498 0.0208 0.2133 0.2120 0.2726 0.1575
0.5203 0.1334 0.5792 0.6812 0.5942 1.0977 1.2049 1.1953 0.4769 0.5797 0.1192 0.6992 1.1126 0.9011 0.5627
0.4871 0.1231 0.5111 0.6090 0.4961 0.9538 1.0797 1.0652 0.4178 0.5487 0.1028 0.6328 0.9651 0.8148 0.5047
0.0287 0.0122 0.1183 0.1173 0.2001 0.2658 0.2007 0.2154 0.1057 0.0156 0.0311 0.0991 0.2738 0.1297 0.0927
0.2602 0.0617 0.1997 0.2577 0.1230 0.3353 0.4628 0.4422 0.1558 0.3070 0.0341 0.2867 0.3353 0.3673 0.2173


and

MΩ =

0 0.0897 0.3971 0 0.4168 0.7576 0.8206 0 0.3279 0.3851 0.0825 0 0.7684 0.6113 0.3832
0.1502 0 0 0.2450 0 0.4415 0.4293 0.4358 0 0.1574 0 0.2386 0.4502 0 0.1999
0.3853 0.1079 0.5912 0.6542 0.7544 1.1986 0 1.1660 0.5024 0 0.1343 0 1.2231 0.8176 0.5325
0.2174 0.0577 0.2760 0 0.3141 0 0 0.5582 0.2305 0 0.0594 0.3160 0.5484 0.4080 0

0 0 0.1453 0.1940 0.0662 0.2317 0.3503 0 0.1109 0 0 0.2216 0 0 0.1647
0.1026 0.0238 0.0701 0.0936 0.0318 0.1117 0.1691 0.1594 0.0535 0.1227 0.0110 0 0.1110 0.1368 0.0795
0.2429 0.0600 0.2290 0.2798 0 0 0.4982 0 0.1846 0 0 0.2974 0.4176 0.3823 0.2332

0 0 0 0.3538 0.1248 0 0 0 0 0.4595 0 0 0 0.5159 0.3002
0 0.1015 0.5311 0.5943 0.6536 1.0640 1.0419 1.0562 0.4488 0.3894 0 0.5806 1.0845 0 0

0.3631 0.0880 0.3138 0 0.2395 0.5511 0.7003 0.6776 0.2496 0 0.0575 0.4246 0.5540 0.5451 0
0.2081 0.0480 0.1369 0.1850 0.0542 0.2139 0 0 0.1036 0.2498 0.0208 0.2133 0 0.2726 0.1575

0 0.1334 0.5792 0 0.5942 1.0977 1.2049 1.1953 0 0 0.1192 0.6992 0 0.9011 0.5627
0.4871 0 0.5111 0.6090 0 0.9538 1.0797 0 0 0.5487 0.1028 0.6328 0.9651 0.8148 0.5047
0.0287 0.0122 0.1183 0.1173 0.2001 0.2658 0.2007 0.2154 0 0.0156 0 0.0991 0.2738 0.1297 0.0927
0.2602 0.0617 0.1997 0.2577 0.1230 0.3353 0.4628 0 0.1558 0.3070 0.0341 0.2867 0.3353 0.3673 0.2173


where 0 stands for the unknown entries.

Figure 1: Linear Convergence of the Iterations from Algorithm 1

Notice from the graph in Figure 1 that as the iterations progress, the Xk would eventually land in
a neighborhood of M where the convergence become linear.

The construction of TΩ
M enables us to choose Ω such that TΩ

M is of full rank. We end with this
subsection with the following
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Corollary 10 Given M with rank r, for any integer m such that 2nr − r2 ≤ m ≤ n2, there exists
a subset Ω with m = |Ω| such that V Ω is of full rank, equivalently TAΩ

(M) ∩ TMr(M) = {0} and
Algorithm 1 can find M in a linear fashion for a good initial guess.

Proof We mainly choose Ω such that the corresponding rows of TM which form TΩ
M of rank 2nr− r2.

Then Theorems 8 and 5 can be applied.

2.2 Convergence of Algorithm 1 When rg 6= Rank(M)

In this subsection, we show that the algorithm does converge under certain reasonable assumption
irrespective of whether our guessed rank rg is same as the rank r of matrix M or not. We begin with
two trivial results.

Lemma 11 Let Yk and Xk+1 be the matrices we obtain in the step 1 and step 2 of the kth iteration
of Algorithm 1. Then

Xk+1 =

{
(Yk)i,j if (i, j) 6∈ Ω

Mi,j Otherwise.

That is, Xk+1 is the orthogonal projection of Yk onto AΩ.

Lemma 12 Let Xk+1 = UΣV> be the standard singular value decomposition with Σ = diag{σ1, · · · , σn}.
Then

Yk+1 = UΣ̃V>,

where Σ̃ = diag{σ1, · · · , σrg , 0, · · · , 0}.
Also Yk+1 is the orthogonal projection of Xk+1 onto Mrg .

Mrg , the collection of n×n real (complex) matrices of rank rg, forms a quasi-affine real (complex)
variety and is a manifold of real (complex) dimension rg(2n− rg).

It is well known that Yk, obtained from Xk by SVD truncation, is the orthogonal projection of Xk

onto Mrg . Hence we Xk − Yk must be orthogonal to the tangent space of Mrg at Yk. Recall from
earlier section that tangent space of Mrg at the point X is given by

TMrg
(X) =

{
AX +XB,A ∈ Rm×m, B ∈ Rn×n

}
Lemma 13 Yk satisfies:

〈AYk + YkB,Xk − Yk〉 = 0 for all k,A ∈ Rn×n and B ∈ Rn×n.

Proof LetXk = UΣV> and Yk = UΣ̃V>, where Σ = diag{σ1, · · · , σn} and Σ̃ = diag{σ1, · · · , σrg , 0, · · · , 0}
be the singular value decompositions of Xk and Yk respectively.

〈AYk + YkB,Xk − Yk〉 = Trace
(

(Xk − Yk)>(AYk + YkB)
)

= Trace
(
V(Σ− Σ̃)U>AYk

)
+ Trace

(
V(Σ− Σ̃)U>YkB

)
= Trace

(
V(Σ− Σ̃)U>AUΣ̃V>

)
+ Trace

(
V(Σ− Σ̃)U>UΣ̃V>B

)
= Trace

(
V>V(Σ− Σ̃)U>AUΣ̃

)
+ Trace

(
V(Σ− Σ̃)Σ̃V>B

)
= Trace

(
Σ̃(Σ− Σ̃)U>AU

)
+ Trace

(
V(Σ− Σ̃)Σ̃V>B

)
= 0.

13
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The last step uses the fact that Σ̃(Σ− Σ̃) = (Σ− Σ̃)Σ̃ = 0.

From the definitions, it follows that

‖Xk − Yk‖ ≥ ‖Xk+1 − Yk‖ ≥ ‖Xk+1 − Yk+1‖ for all k. (11)

From equation (11), we observe that ‖Xk − Yk‖ is a non-increasing sequence bounded below by 0, it
thus converges to its infimum. Thus, we have

Lemma 14 The sequence
‖Xk − Yk‖

converges.

So let
L = lim

k
‖Xk − Yk‖2 . (12)

Next we have

Lemma 15
‖Xk+1 −Xk‖2 + ‖Xk+1 − Yk‖2 = ‖Xk − Yk‖2 (13)

Proof The result (13) follows from Lemmas 11 and 12. In fact we have used the fact 〈Xk+1 −
Xk, Xk+1 − Yk〉 = 0 to have (13).

Lemma 16 The series
∞∑
k=1

‖Xk+1 −Xk‖2

converges. In particular
‖Xk+1 −Xk‖ → 0.

Proof We use (13) and (11) to get

‖Xk − Yk‖2 ≥ ‖Xk+1 −Xk‖2 + ‖Xk+1 − Yk+1‖2

summing both sides from k = 1 to n we get

n∑
k=1

‖Xk − Yk‖2 ≥
n∑
k=1

‖Xk+1 −Xk‖2 +

n∑
k=1

‖Xk+1 − Yk+1‖2 .

From which it follows that

‖X1 − Y1‖2 ≥ ‖Xn − Yn‖2 +
n∑
k=1

‖Xk+1 −Xk‖2 ≥
n∑
k=1

‖Xk+1 −Xk‖2

Thus the partial sums of the
∑∞

k=1 ‖Xk+1 −Xk‖2 forms an non-decreasing sequence bounded from
above. The result follows immediately.

14
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Lemma 17 The series
∞∑
k=1

‖(Xk − Yk)Ωc‖2

converges. In particular

‖(Xk − Yk)Ωc‖ → 0.

Proof

‖Xk+1 −Xk‖2 = ‖(Xk+1 −Xk)Ω‖2 + ‖(Xk+1 −Xk)Ωc‖2

= ‖(Xk+1)Ω − (Xk)Ω‖2 + ‖(Xk+1)Ωc − (Xk)Ωc‖2

= ‖MΩ −MΩ‖2 + ‖(Xk+1)Ωc − (Xk)Ωc‖2

= ‖(Xk+1)Ωc − (Xk)Ωc‖2 .

Now noting that (Xk+1)Ωc = (Yk)Ωc the above equation simplifies

‖Xk+1 −Xk‖2 = ‖(Yk)Ωc − (Xk)Ωc‖2

Summing both sides and using Lemma 16, the result follows.

With the above preparation, we are finally ready to establish the main convergence result in this
subsection.

Theorem 18 There exist a subsequence of (Yk)Ω that converges, say without loss of generality, (Yk)Ω →
y?. Assume that there are only finitely many rank-r matrices Y such that PΩ(Y ) = y?. Then there
exist subsequences Xkj and Ykj which converge, say Y ? and X? such that

Xkj → X? and Ykj → Y ?.

Furthermore, we have X?|Ωc = Y ?|Ωc and

X? ∈ AΩ and rank(Y ?) ≤ rg. (14)

Proof By Lemma 14, ‖Xk − Yk‖ →
√
L, we see that the sequence ‖MΩ − (Yk)Ω‖ = ‖(Xk)Ω − (Yk)Ω‖ ≤

2
√
L for all k ≥ 1 without loss of generality. It follows that ‖(Yk)Ω‖ , k ≥ 1 are a bounded sequence

and hence, ‖(Yk)Ω‖ ≤ C1 <∞ for a positive constant C1 and (Yk)Ω → y∗ without loss of generality

Under the assumption that there are finitely many Y ∈ Mrg such that PΩ(Y ) = y∗, we next
claim that Yk, k ≥ 1 are bounded. Indeed, for any matrix Y ∈ Mrg , the set of matrices with rank

≤ rg, if we write the entries in YΩc as variables, say x ∈ Rn2−m while the entries Y |Ω are known, the
determinant of any (r+ 1)× (r+ 1) minor of Y will be zero and is a polynomial function of variables
x with coefficients based on the known entries Y |Ω. Thus, vanishing of all (r + 1) × (r + 1) minors
would form a set of (

(
n

rg+1

)
)2 polynomial equations with variables x and coefficients from entries in

Y |Ω. By our assumption, this set of polynomial equations have finitely many solutions when the
coeffficients of the system is derived from the Ω entries of y?. Since the zeros of these polynomial
equations are continuously dependent on the coefficients of polynomial functions, we see that there
are finitely many solutions to the polynomial system when coefficients are derived from (Yk)Ω that
are sufficiently close to y? . We can bound the zeros by using the coefficients. More precisely, these
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polynomial equations can be reduced to a triangular system (cf. Chen and Moreno Maza (2011)), that
is, writing x = (x1, · · · , xn2−m) for a fixed order of these unknown entries,

f1(x1) = 0,

f2(x1, x2) = 0,

· · · · · · ,
fn2−m(x1, · · · , xn2−m) = 0

(15)

for a set of polynomial functions f1, · · · , fn2−m by using one of the computational methods discussed
in Aubry and Maza (1999). Certainly, for each k ≥ 1, these fi are dependent on k in the sense that the
coefficients of fi are dependent on the values Yk|Ω. Then we can use any standard bound of the zeros of
univariate polynomials to find a bound of these variables x iteratively from the reduced system above.
Indeed, the bound on x1 of this system is obtained by max{1, |ai|, i = 1, · · · , r + 1} with coefficients
ai of the first univariate equation f1 = 0 which are dependent on Yk|Ω. Since Yk|Ω is bounded by C1,
we see x1 is bounded in terms of C1. Then x2 can be bounded from the second equation which is now
univariate if assuming x1 is known. x2 can be bounded in terms of the coefficients of f2 and the bound
on x1. And so on. In summary, all the entries of Yk with indices in Ωc can be bounded in terms of
the entries in Yk|Ω. In other words, ‖Yk‖ ≤ C2 <∞ with a positive constant C2 for all k ≥ 1 which is
dependent on C1 above.

It now follows that there exists a subsequence Ykj which converges to Y ?. Next by (12), Xk

are bounded because of Yk are bounded and hence, Xk, , k ≥ 1 have a convergent subsequence and
Xkj → X? when kj →∞ without loss of generality. By Lemma 17, we have (Y ?)Ωc = (X?)Ωc . Finally,

it is easy to see (14) which follows from the facts that set AΩ and set Mrg are closed sets. These
complete the proof.

Although we do not know how to check if there are only finitely many matrices Y ∈Mr satisfying
(Y )Ω = x, we can see if the norms of Yk are bounded or not from the algorithm. If they are bounded,
the conclusions of Theorem 18 hold. In general, X? 6= Y ? as rg is not equal to rank(M). For example,
when rg < rank(M), Y ∗ will not be equal to M and hence, Y ? does not satisfy (Y ?)Ω = MΩ in general.
Of course X∗ satisfies the interpolation conditions (X∗)Ω = MΩ, but rank(X?) may be bigger than rg.
That is, informally speaking, when rg < rank(M), the chance of X? = M is bigger than the chance
Y ∗ = M . On the other hand, when rg > rank(M), there are more possibilities of matrices with rank
= rg satisfying the interpolatory conditions. Anyway, if X? − Y ? 6= 0, the guess rg is not correct and
we need to increase rg.

Finally, even though X∗ 6= Y ∗ in general, they satisfy the following nice property.

Proposition 19 Let X? and Y ? be matrices in (14) Then,

Y ?(X?)> = Y ?(Y ?)> and (Y ?)>X? = (Y ?)>Y ?.

Proof Using Lemma 13, we obtain

〈AY ? + Y ?B,X? − Y ?〉 = 0

for all A,B ∈ Rn×n which implies

〈A>, Y ?(X? − Y ?)>〉+ 〈B, (Y ?)>(X? − Y ?)〉 = 0

for all A,B ∈ Rn×n. Hence,

Y ?(X? − Y ?)> = 0 and (Y ?)>(X? − Y ?) = 0.
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Rearranging the above equations, we obtain the required result.

3. Numerical Results

In this section, we first present some results based on the simple initial guess X0 = PΩ(M). The
robustness of Algorithm 1 was demonstrated in Jiang et al. (2017). We shall not repeat the similar
numerical experimental results. We mainly present numerical results based on a good strategy to
choose quality initial guesses which lead even better performance of Algorithm 1. That is, we recall an
efficient computational algorithm called OR1MP for matrix completion in Wang et al. (2015). We use
the OR1MP algorithm to get a completed matrix which serves as an initial guess X0. Our numerical
experimental results show that this new initial guess gives more accurate completion. We measure
the error matrices by using the maximum norm of all entries of the matrices. One can see that the
maximum norm error is very small and hence, the recovered matrix is very accurate. We shall also
use Algorithm 1 to recover images from their partial pixel values and demonstrate that Algorithm 1
is able to recover the images better visually. Thus, this section is divided into two subsections.

3.1 Numerical Results: Initial Matrices from the OR1MP Algorithm

In all the experiments in this subsection, we used the initial matrix X0 from the OR1MP algorithm
in Wang et al. (2015) based on the PΩ(M) using a few iterations, that is, X0 = OR1MP(PΩ(M)).

Example 4 In this example, we show the maximum missing rate that Algorithm 1 can recover a
matrix when its rank is fixed. Together we show the computational times. Abbreviations used in Tables
in this example are as follows:
M.R. = Missing Rate, the fraction of missing entries = m

n2 ,
O.R. = oversampling ratio = m

2nr−r2 ,
M.C.E. = Maximum Component Error = maxi,j |(Xrecovered)i,j −Mi,j |,
A.R.E. = Average Relative Error = ‖PΩ(Yk)− PΩ(M)‖F / ‖PΩ(M)‖F ,

Table 1: Numerical results based on 100× 100 matrices averaged over 20 runs

Rank M.R. O.R. M.C.E A.R.E Time

2 0.80 5 9.5202e-04 3.7217e-05 0.4171
5 0.61 4 6.0350e-04 1.0894e-05 0.2648
10 0.43 3 4.4343e-04 4.4977e-06 0.2778
20 0.28 2 6.0317e-04 2.0486e-06 0.8492
35 0.25 1.3 1.2698e-06 0.0015 2.8798
50 0.025 1.3 0.0013 7.2350e-07 1.2605

Example 5 Next we provide another tables to show that our algorithm is very effective in recovering
the original matrix. We let the missing rate = 0.1, 0.2, · · · , 0.9 and find the largest rank our algorithm
can complete within maximum norm error < 1e − 3, that is, every entry of the completed matrix is
accurate to the first three digits. That is, for a fixed missing rate δ, we randomly find the known indices
set Ω with |Ω|/(n2) = 1− δ and then we randomly generate a matrix M of size n×n with rank r ≥ 1.
We use MΩ, Ω, and r to recover M (the stopping criterion is 1e − 5 of the consecutive iterations),

check if the completed matrix M̂ approximates M in the maximum norm within ε = 1e− 3, and repeat
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Table 2: Numerical results based on 250× 250 matrices averaged over 20 runs

Rank M.R. O.R. M.C.E A.R.E Time

10 0.76 3 6.6930e-04 3.0595e-06 1.2283
20 0.53 3 2.2215e-04 1.0460e-06 1.3495
50 0.28 2 2.0560e-04 3.3083e-07 2.2624
75 0.18 1.6 2.6951e-04 2.0955e-07 4.5208
100 0.168 1.3 3.9345e-04 1.6690e-07 14.3622
125 0.025 1.3 6.2102e-04 1.1374e-07 8.8464

Table 3: Numerical results based on 500× 500 matrices averaged over 10 runs

Rank M.R. O.R. M.C.E A.R.E Time

25 0.70 3 2.8565e-04 5.5169e-07 4.5253
50 0.62 2 1.6818e-04 2.4458e-07 10.7270
100 0.28 2 8.6199e-05 8.0210e-08 11.3425
150 0.23 1.5 1.2031e-04 5.6053e-08 35.3097
200 0.04 1.5 1.5896e-04 3.2623e-08 24.1821
250 0.0250 1.3 3.3090e-04 2.8449e-08 46.9267

Table 4: Numerical results based on 1000× 1000 matrices averaged over 10 runs

Rank M.R. O.R. M.C.E A.R.E Time

50 0.70 3 6.8718e-05 1.3722e-07 30.1813
100 0.52 2.5 3.7074e-05 5.2213e-08 50.0631
200 0.10 2.5 2.6120e-05 1.2338e-08 42.7043
300 0.05 1.85 5.1339e-05 1.0448e-08 83.9782
400 0.04 1.5 7.1099e-05 8.0391e-09 186.2271
500 0.0025 1.33 2.4592e-04 6.5708e-09 226.3912
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the computation in 10 times. If all 10 computations are able to accurately recover M , we advance r
by r+ 1 and repeat the above procedures until the accurate recovery is less than 10 times for a fixed r.
In this way, we can find the largest rank for a fixed missing rate. As we use two initial guesses, we
summarize the computational results in Table 5.

missing rates 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

largest ranks 30 16 19 14 9 7 5 2 1 OR1MP

largest ranks 13 14 13 10 9 7 3 2 1 MΩ

Table 5: maximum ranks are based on matrices of size 100 × 100 with initial values from OR1MP
(second row) and from the initial matrix MΩ (third row)

From Table 5, we can see that using OR1MP algorithm to generate an initial guess for Algorithm 1
is much better when the rates of missing entries are small. When the rate of missing entries are large,
the performance is similar. If this table is compared with the ones in Wei et al. (2016), we remind the
reader that we use a much tougher criterion ε = 1e − 3 in the maximum norm to find the maximum
rank than the relative Frobenius norm error used in Wei et al. (2016).

If we use the standard relative Frobenius norm error, we have largest ranks that Algorithm 1 can
recover 100% times listed in Table 6 with two different initial guesses. We can see that the performance
increases greatly when using a completed matrix from OR1MP algorithm.

missing rates 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

largest ranks 132 106 83 68 41 40 25 14 4 OR1MP

largest ranks 33 29 25 24 19 15 11 8 4 MΩ

Table 6: maximum ranks are based on matrices of size 200 × 200 with initial values from OR1MC
(second row) and from the initial matrix MΩ (third row)

3.2 Image Recovery from Partial Pixel Values

We shall use Algorithm 1 to recover images from partial pixel values.

Example 6 Let us use the standard images knee, penny and thank as testing matrices of pixel values.
The image knee is of size 691×691. The image penny is a matrix of size 128×128 and the image thank
is of size 300× 300. For image knee, we use a missing rate 0.85 to generate MΩ and use rank=25 to
find an approximation of the image knee by using the well-known matrix completion OR1MP algorithm
in Wang et al. (2015), then we feed the approximation as an initial guess to Algorithm 1 to get a better
approximation. Also we use the same known entries MΩ as an initial guess in our Algorithm 1 to find
an approximation of the image directly. All these images are shown in Figure 2. We do the same for
the images penny and thank. See Figures 3 and 4. Visually, we can see that starting from an initial
guess obtained from the OR1MP algorithm, our Algorithm 1 produces a much better approximation to
the image. For image penny, we are able to see the face of Lincoln and the word as well as number
1984 are much cleaner although the root-mean square error (RMSE) may not be better. Many images
have been experimented with similar performance.
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Figure 2: The top row: The original image and the image of 15% known entries; The bottom row:
The outputs from Algorithm OR1MP, Algorithm 1 with initial guess from the Algorithm
OR1MP and Algorthm 1 from the 15% known entries based on rank 25.

Figure 3: The top row: The original image and the image of 50% known entries; The bottom row:
The outputs from Algorithm OR1MP, Algorithm 1 with initial guess from the Algorithm
OR1MP and Algorthm 1 from the 50% known entries based on rank 25.
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Figure 4: The top row: The original image and the image of 50% known entries; The bottom row:
The outputs from Algorithm OR1MP, Algorithm 1 with initial guess from the Algorithm
OR1MP and Algorthm 1 from the 50% known entries based on rank 25.

4. Alternating Projection Algorithm for Sparse Solution Recovery Problem

In this section, we will use the same ideas of alternating projection discussed in the previous section
to study the following classical problem in the area of compressed sensing:

minimize
X

‖X‖0 (16)

subject to Ax = b, (17)

where A ∈ Rn×N ,x ∈ RN ,b ∈ Rn, n << N and ‖x‖0 is the `0 quasi-norm of a vector x. Recall that
the `0 quasi-norm of a vector is the number of non-zero components of the vector. Let Ls(RN ) denote
the collection of all s−sparse vectors in RN ,

Ls(RN ) :=
{
x ∈ RN | ‖x‖0 = s

}
and PLs and PA denote the projection onto the set Ls(RN ) and the affine space A := {x : Ax = b},
respectively. It is easy to know A = Null(A) + x0, where x0 ∈ RN satisfies Ax0 = b. Note that the
projection PLs(xk) can be computed easily by setting the smallest n− s components of the vector xk
to zero.
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Our algorithm can be stated as follows:

Algorithm: Alternating Projection Algorithm for `0 Minimization

Data: Sparsity s of the solution x?, the tolerance ε whose default value is 1e-6
Result: xk a close approximation of x?

1 Initialize x0 to a random vector in the affine space A;
2 repeat
3 Step 1: yk = PLs(xk)
4 Step 2: xk+1 = PA(yk);

5 until The smallest n2 − s components of xk+1 have magnitude less than ε;

We first discuss the convergence of Algorithm 2. Then we shall present its numerical performance
in the next section. As a good initial guess is very important to have a quick convergence, we shall
explain a few approaches to obtain reasonable initial guesses.

4.1 Convergence of Algorithm 2

We begin with some elementary results.

Lemma 20 Let Ls(Rn) be the collection defined as follows.

Ls(Rn) =
⊔
I
{x ∈ Rn | xj = 0 ∀j ∈ Ic},

where the index set I ranges over all the subsets of {1, 2, · · · , n1} which has cardinality s. Here,
⊔
I

stands for the disjoint union over I. Then Ls(Rn) consists of a disjoint union of affine spaces.

Proof It is easy to see that the statement is correct.

Lemma 21 The set of vectors in RN for which PLs(x) is single-valued, is given by the open set

Vs =
{
x ∈ Rn2 | |xi1 | ≥ |xi2 | ≥ · · · |xin2

|, |xis+1 | 6= |xis |
}

consisting of vectors which has the property that if one arrange the components in decreasing order of
magnitude, then sth and (s+ 1)th terms are distinct.

Proof We first start by noting that the projection PLs(x) is obtained by setting the smallest N − s
components in magnitude of the vector x to zero. Hence, the projection is single-valued if the N − s
smallest components of x are in unique positions(indices). Hence we must have that the (N − s)th
and (N − s+ 1)th components of x must be distinct. Now we will show that the set Vs is an open set.
Let x = (x1, x2, · · · , xN ) ∈ RN with |xi1 | ≥ |xi2 | ≥ · · · |xiN |, |xis+1 | 6= |xis |. Let

ε :=
||xis+1 | − |xis ||

4

Consider an open ball Bε(x) centered at x of radius ε. We have, for all y ∈ Bε(x) and j ∈ {1, 2, · · · , N},

||yj | − |xj || ≤ |yj − xj | ≤ ‖y − x‖ < ε

Therefore, we have

|yij+1 | ≤ |xij+1 |+ ||yij+1 | − |xij+1 || < |xis+1 |+ ε <
||xis+1 |+ |xis ||

2
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for j ≥ s. Similarly,

|yij | ≥ |xij | − ||xij | − |yij || > |xis | − ε >
||xis+1 |+ |xis ||

2

for j ≤ s. Hence, we deduce that, for all y ∈ Bε(x) and j ∈ {1, 2, · · · , s}, |yij | ≥ |yis |, which implies
that y ∈ Vs and, therefore, Bε(x) ⊂ Vs.

Next let us recall the following well-known results.

Theorem 22 (Von Neumann, 1950Von Neumann (2016)) If L1 and L2 are two closed sub-
spaces of a Hilbert space X, then the sequence of operators

PL1 ,PL2PL1 ,PL1PL2PL1 ,PL2PL1PL2PL1 , · · ·

converge to PL1∩L2. In other words,

lim
k→∞

(PL2PL1)k(x) = PL1∩L2(x)

for all x ∈ X.

Proof Refer to Von Neumann (2016) Chapter 13, Theorem 13.7 for a proof.

Theorem 23 If x? is an isolated point of Ls(RN )∩A. Then, Algorithm 2 will locally converge to x?
linearly.

Proof Let I = Supp(x?) be the support of x? and s = ‖x?‖0. Consider an open set Vs of vectors
which has the property that their n− s smallest components are are in unique positions(indices). In
fact, Vs can be concretely described as

Vs =
{
x ∈ RN | |xi1 | ≥ |xi2 | ≥ · · · |xin2

|, |xis | 6= |xis+1 |
}
.

Clearly x? ∈ Vs. Let B(r) be an open ball centered at x? and of radius r completely contained
inside Vs. Since B(r) ⊆ Vs, for any x ∈ B(r), the projection PLs(x) is uniquely defined. Since affine
spaces in a finite dimensional Euclidean space are closed, one can shrink the ball B(r), if necessary,
such that the restriction Ls(Rn2)|B(r) of the set of s−sparse vectors to the open set B(r) is an affine
space. Then under the assumption the hypothesis in this theorem, the result follows from Theorem
22.

Lemma 24 Assume A has the following property:

Ls(RN ) ∩Null(A) = {0}, (18)

where Null(A) is the null space of A. Furthermore, assume that x? ∈ Ls(RN ) ∩ A. Then x? is an
isolated point of Ls(RN ) ∩ A.
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Proof Assume, on the contrary, that x? is not an isolated point of the set Ls(Rn2) ∩A. Then, since
A and Ls(RN ) are locally affine spaces, there exist a linear space L of dimension greater than or equal
to 1 such that L+ x? ⊆ Ls(RN ) ∩A. Since each of the intersecting spaces are affine spaces locally, L
must lie also in the intersection of their tangent spaces. Hence,

L ⊆ TLs(RN )(x?) ∩Null(A)

where TLs(RN )(x?) is the tangent space to Ls(RN ) at the point x?. Now, since Ls(RN ) is an union

of linear spaces, let us assume x? ∈ L0 ⊆ Ls(RN ) lies in a linear space L0 contained in Ls(RN ).
Therefore, we have

L ⊆ TL0(x?) ∩Null(A) = L0 ∩Null(A) ⊆ Ls(RN ) ∩Null(A) = {0}

which leads to the contradiction as L is of dimension greater than or equal to 1. Note that, in order
to derive the equality in the last equation, we have used the fact that the tangent space of a linear
space is the linear space itself.

The discussion above leads to our final result in this section.

Theorem 25 Under the assumption (18) in Lemma 24, Algorithm 2 will converge linearly for any
starting initial guess x0.

Proof We simply combine Lemma 24 and Theorem 23 together to have this result.

4.2 Numerical Results from Algorithm 2 for Sparse Vector Recovery

We have used Algorithm 2 to compute sparse solutions and compare the performance of several
existing algorithms. Mainly, we compare with the iteratively reweighted `1 minimization (CWB for
short) in Candes et al. (2008), the L1 greedy algorithm (KP) proposed in Kozlov and Petukhov
(2010), the FISTA in Beck and Teboulle (2009), the hard iterative pursuit (HTP) in Foucart (2011),
and generalized approximate message passing algorithm (GAMP) in Donoho et al. (2009), Rangan
(2011). LV stands for our Algorithm 2. We present the frequency of recovery of Gaussian random
matrices of size 128× 256 with sparsity from 10−−70 over 500 repeated runs with a tolerance 1e− 3
in maximum norm. In Figure 5(left figure), we show the performance of various algorithms. Next we
repeat the same experiments based on uniform random matrices of size 128 × 256. The performance
of frequency of recovery from various algorithm is shown in Figure 5 (right). In this case, it is known
that the GAMP is not good.

5. Remarks on Existence of Matrix Completion

Recall Mr is the set of all matrices of size n × n with rank r and Mr is the set of all matrices with
rank ≤ r. It is clear that Mr is the closure of Mr in the Zariski sense (cf. Zariski (1958)). It is easy
to see that dimension Mr is 2nr − r2 (cf. Proposition 12.2 in Harris (2013) for a proof). Then the
dimension of Mr is also 2nr − r2. Also, it is clear that Mr is an algebraic variety. In fact, Mr is an
irreducible variety.

Lemma 26 Mr is an irreducible variety..
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Figure 5: Frequency of Sparse Recovery by Various Algorithms from Gaussian random matrices (left)
and from uniform random matrices(right)

Proof Denote by GL(n) the set of invertible n× n matrices. Consider the action of GL(n)×GL(n)
on Mn(R) given by: (G1, G2) ·M 7→ G1MG−1

2 , for all G1, G2 ∈ GL(n). Fix a rank r matrix M . Then
the variety Mr is the orbit of M . Hence, we have a surjective morphism, a regular algebraic map de-
scribed by polynomials, from GL(n)×GL(n) ontoMr. Since GL(n)×GL(n) is an irreducible variety,
so is Mr. Hence, the closure Mrg of the irreducible set Mrg is also irreducible c.f (cf. Example I.1.4
in Hartshorne (2013)).

Consider the map
ΦΩ :Mr → Cm

given by projecting any matrix X ∈ Mr to its entries in position Ω which form a vector in Rm.
Thus, ΦΩ(Mr) are exactly the set of all r−feasible vectors in Cm. As the projection ΦΩ is ’nice’ (a
polynomial map) unlike a Peano curve mapping [0, 1]→ [0, 1]2), we expect that dim(ΦΩ(Mr)) is less
than or equal to dim(Mr) which is less than the dimension of Cm. Thus, ΦΩ(Mr) is not able to
occupy the whole space Cm. The Lebesgue measure of ΦΩ(Mr) is zero and hence, randomly choosing
a vector x ∈ Cm will not be in ΦΩ(Mr) most likely. Certainly, these intuitions should be made more
precise. Recall the following result from Theorem 1.25 in Sec 6.3 of Shafarevich and Hirsch (1994).

Lemma 27 Let f : X → Y be a regular map between irreducible varieties. Suppose that f is surjective:
f(X) = Y , and that dim(X) = n, dim(Y ) = m. Then m ≤ n, and

1. dim(F ) ≥ n−m for any y ∈ Y and for any component F of the fibre f−1(y);

2. there exists a nonempty open subset U ⊂ Y such that dim(f−1(y)) = n−m for y ∈ U .

We are now ready to prove

Theorem 28 If one chooses randomly the entries of a matrix in the positions Ω, probability of com-
pleting the matrix to a rank r matrix with given known entries is 0.

Proof We mainly use Lemma 27. Let X = Mr which is an irreducible variety by Lemma 26. Let
Y = ΦΩ(Mr) which is also an irreducible variety as it is a continuous image of the irreducible variety
Mr. Clearly, ΦΩ is a regular map, we have dim ΦΩ(Mr) ≤ dim(Mr) = 2nr− r2 < m. Thus, ΦΩ(Mr)
is a proper lower dimensional closed subset in Cm. For almost all points in Cm, they do not belong
to ΦΩ(Mr). In other words, for almost all points x ∈ Cm, there is no matrix X ∈ Mr such that
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ΦΩ(X) = x.

Next define the subset χΩ ⊂Mr by

χΩ =
{
X ∈Mr | Φ−1

Ω (ΦΩ(X)) is zero dimensional
}
.

As we are working over Noetherian fields like R or C, it is worthwhile to keep in mind that all zero
dimensional varieties over such fields will have only finitely many points. Next we recall the following
result from Proposition 11.12 in Harris (2013).

Lemma 29 Let X be a quasi-projective variety and π : X → Pm a regular map; let Y be closure of the
image. For any p ∈ X, let Xp = π−1π(p)) ⊆ X be the fiber of π through p, and let µ(p) = dimp(Xp)
be the local dimension of Xp at p. Then µ(p) is an upper-semicontinuous function of p, in the Zariski
topology on X - that is, for any m the locus of points p ∈ X such that dimp(Xp) > m is closed in
X. Moreover, if X0 ⊆ X is any irreducible component, Y0 ⊆ Y the closure of its image and µ the
minimum value of µ(p) on X0, then

dim(X0) = dim(Y0) + µ. (19)

As we saw that dim(ΦΩ(Mr) ≤ dim(Mr), we can be more precise about these dimensions as shown
in the following

Lemma 30 Assume m > dim(Mr). Then χΩ is open subset ofMr and dim(Mr) = dim(ΦΩ(Mr)) =
dim(ΦΩ(Mr)) if and only if χΩ 6= ∅.

Proof Assume dim(Mr) = dim(ΦΩ(Mr)) = dim(ΦΩ(Mr)). Then using Lemma 27, there exists a
nonempty open subset U ⊂ ΦΩ(Mr) such that dim(Φ−1

Ω (y)) = 0 for all y ∈ U . This implies that
Φ−1

Ω (y) ∈ χΩ. Hence χΩ 6= ∅.
We now prove the converse. Assume χΩ 6= ∅. We will apply Lemma 29 above by setting X =Mrg ,

Y = ΦΩ(Mrg) and π = ΦΩ. Couple of things to note here are that it does not matter whether we
take the closure in Pm or in Cm since Cm is an open set in Pm and the Zariski topology of the affine
space Cm is induced from the Zariski topology of Pm. Mrg is an affine variety. Therefore, it is a
quasi-projective variety.

By our assumption, χΩ is not empty. It follows that there is a point p ∈ Y such that π−1(p)
is zero dimensional. Since zero is the least dimension possible, we have µ = 0. Hence, using (19)

above, we have dim(Mr) = dim(ΦΩ(Mr)). But dimension does not change upon taking closure. So,

dim(ΦΩ(Mr)) = dim(ΦΩ(Mr)). Also, using Lemma 31, χΩ = {x ∈ X : dim(φ−1φ(x)) < 1} is an open
subset of Mr.

In the proof above, the following result was used. See I.8. Corollary 3 in Mumford (1999).

Lemma 31 Let φ : X → Y be a morphism of affine varieties. Let φ−1φ(x) = Z1 ∪ · · · ∪ Zj be the
irreducible components of φ−1φ(x). Let e(x) be the maximum of the dimensions of the Zi, i = 1, · · · , j.
Let Sn(φ) := {x ∈ X : e(x) ≥ n}. Then, for any n ≥ 1, Sn(φ) is a Zariski closed subset of X.
Equivalently {x ∈ X : dim(φ−1φ(x)) < n} is an open subset of X.

Finally, we need the following

Definition 32 The degree of an affine or projective variety of dimension k is the number of inter-
section points of the variety with k hyperplanes in general position.
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For example, the degree of the algebraic variety Mr is known. See Example 14.4.11 in Fulton
(2013), i.e.

Example 7 Degree of the algebraic variety Mr is

n−r−1∏
i=0

(
n+i
r

)(
r+i
r

)
We are now ready to prove another main result in this section.

Theorem 33 Assume that there exist a finite r-feasible vector x ∈ Cm over the given Ω. Then, with
probability 1, the vector x is finite r-feasible. In other words, if one randomly chooses a feasible vector
x in the positions Ω, the matrix can be completed into a rank-r matrix only in finitely many ways with

probability 1. In additional, the number of ways to complete will be less than or equal to

n−r−1∏
i=0

(
n+i
r

)(
r+i
r

) .

Proof We begin by noting that, both Mr and ΦΩ(Mr) are irreducible varieties. So, the clo-

sure ΦΩ(Mr) is also an irreducible variety. By the assumption and using Lemma 30, dim(Mr) =

dim(ΦΩ(Mr)). Hence, applying Lemma 27, there exist a nonempty open subset U ⊂ ΦΩ(Mr) such
that Φ−1

Ω (y) is zero-dimensional for all y ∈ U . In other words, If we choose the m entries in positions
Ω of a matrix from the open set U , then there are finitely many ways to complete the matrix. The
result now follows by recalling that a Zariski open set in an irreducible variety is a dense set whose
complement has Lebesque measure zero.

When we fix m entries of a matrix M , the set of matrices of rank r which has those entries in
the positions Ω are exactly the intersection points of the variety Mr with m hyperplanes, namely
the hyperplanes defined by equations of form Mij = constant. Since m > dim(Mr) = 2nr − r2, the
number of intersection points would be lesser than degree of Mr generically. Now using the exact
formula for the degree from Example 7, the result follows.

Regarding Theorem 18, we have the following open problem: given x ∈ Cm, how to check if there
are only finitely many matrices Y ∈Mr satisfying (Y )Ω = x.
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