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Abstract. We propose a collocation method based on multivariate polynomial splines over5
triangulation or tetrahedralization for numerical solution of partial differential equations. We start6
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1. Introduction. In this paper, we propose and study a new collocation method17

based on multivariate splines for numerical solution of partial differential equations18

over polygonal domain in Rd for d ≥ 2. Instead of using a second order elliptic19

equation in divergence form:20

(1.1){
−
∑d
i,j=1

∂
∂xi

(aij(x) ∂
∂xj

u) +
∑d
i=1 b

i(x) ∂
∂xi

u+ c1(x)u = f, x ∈ Ω ⊂ Rd,
u = g, on ∂Ω

21

which is often used for various finite element methods, we discuss in this paper a more22

general form of second order elliptic PDE in non-divergence form:23

(1.2)

{ ∑d
i,j=1 a

ij(x) ∂
∂xi

∂
∂xj

u+
∑d
i=1 b

i(x) ∂
∂xi

u+ c(x)u = f, x ∈ Ω ⊂ Rd,
u = g, on ∂Ω,

24

where the PDE coefficient functions aij(x), i, j = 1, · · · , d are in L∞(Ω) and satisfy25

the standard elliptic condition. In addition, when d ≥ 2, we shall assume the so-called26

Cordés condition, see (4.3) in a later section or see [18]. Numerical solutions to the27

2nd order PDE in the non-divergence form have been studied extensively recently.28

See some studies in [18], [12], [15], [19], [17], and etc.. The method in this paper29

provides a new and more effective approach.30

In this paper, we shall mainly use the Sobolev space H2(Ω) which is dense in31

H1(Ω). It is known when Ω is convex (cf. [6]), the solution to the Poisson equation32

will be H2(Ω). Recently, the researchers in [5] showed that when Ω has an uniformly33

positive reach, the solution of (1.2) with zero boundary condition will be in H2(Ω).34

Domains of uniformly positive reach, e.g. star-shaped domain and domains with holes35

are shown in [5]. Many more domains than convex domains can have H2 solution.36
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2 MING-JUN LAI AND JINSIL LEE

This enables us to consider the idea of collocation method. For any u ∈ H2(Ω), we37

use the standard norm38

(1.3) ‖u‖H2 = ‖u‖L2(Ω) + ‖∇u‖L2(Ω) +

d∑
i,j=1

‖ ∂

∂xi

∂

∂xj
u‖L2(Ω)39

for all u on H2(Ω) and the semi-norm40

(1.4) |u|H2 =

d∑
i,j=1

‖ ∂

∂xi

∂

∂xj
u‖L2(Ω).41

Since we will use multivariate spline functions to approximate the solution u ∈ H2(Ω),42

we use Cr smooth spline functions with r ≥ 1 and the degree D of splines sufficiently43

large satisfying D ≥ 3r + 2 in R2 and D ≥ 6r + 3 in R3. Indeed, how to use such44

spline functions has been explained in [1], [16], and [17], and etc..45

Certainly, the PDE in (1.2) includes the standard Poisson equation as a special46

case.47

(1.5)

{
−∆u = f, x ∈ Ω ⊂ Rd,
u = g, on ∂Ω.

48

For convenience, we shall begin with this equation to explain our collocation method49

and establish the method by showing that the numerical solution is convergent to the50

true solution. As mentioned above, we shall use Cr spline functions with r ≥ 1 to do51

so. In addition, we shall use the so-called domain points (cf. [10]) to be the collocation52

points (they will be explained in the next section). For simplicity, let us say s is a53

C2 spline of degree D defined on a triangulation 4 of Ω and ξi, i = 1, · · · , N are the54

domain points of 4 and degree D′ > 0, where D′ may be different from D. Our55

multivariate spline based collocation method is to seek a spline function s satisfying56

(1.6)

{
−∆s(ξi) = f(ξi), ξi ∈ Ω ⊂ Rd,
s(ξi) = g(ξi), ξi ∈ ∂Ω.

57

As a multivariate spline space (to be defined in the next section) is a linear vector58

space which is spanned by a set of basis functions. Since it is difficult to construct59

locally supported basis functions in Cr(Ω) with r ≥ 1, we will begin with discontinuous60

spline space s ∈ S−1
D (4) and then add the smoothness conditions which are written61

as Hs = 0, where s is the coefficient vector of s and H is the matrix consisting of all62

smoothness condition across each interior edge of a triangulation/tetrahedralization.63

We mainly look for the coefficient vector s such that the spline s with coefficient64

vector s satisfies (1.6). Clearly, (1.6) leads to a linear system which may not have a65

unique solution. It may be an over-determined linear system if D′ ≥ D or an under-66

determined linear system if D′ < D. Our method is to use a least squares solution if67

the system is overdetermined or a sparse solution if the system is under-determined68

(cf. [13]).69

To establish the convergence of the collocation solution s as the size of 4 goes to70

zero, we define a new norm ‖u‖L on H2(Ω) for the Poisson equation as follows.71

(1.7) ‖u‖L = ‖∆u‖L2(Ω) + ‖u‖L2(∂Ω).72

We mainly show that the new norm is equivalent on the standard norm on H2(Ω).73

That is,74
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SPLINE COLLOCATION METHOD 3

Theorem 1.1. Suppose Ω ⊂ Rd be a bounded domain. Suppose the closure of Ω75

is a multiple-strictly-star-shaped domain (see Definition 2.4). Then there exist two76

positive constants A and B such that77

(1.8) A‖u‖H2 ≤ ‖u‖L ≤ B‖u‖H2 , ∀u ∈ H2(Ω).78

See the proof of Theorem 3.3 in a later section. Letting u ∈ H2(Ω) be the solution of79

(1.5) and us be the spline solution of (1.6), we use the first inequality above to have80

A‖u− us‖H2 ≤ ‖u− us‖L.81

It can be seen from (1.6) that ‖u − us‖2L =
∫

Ω
(∆(u − us))

2dx +
∫
∂Ω
|us − u|2 =82 ∫

Ω
(f+∆us)

2dx+
∫
∂Ω
|us−g|2 will be small for a sufficiently large amount of collocation83

points and distributed evenly, our Theorem 1.1 implies that ‖u − us‖H2 is small.84

Furthermore, we will show85

(1.9) ‖u− us‖L2(Ω) ≤ C|4|2‖u− us‖L and ‖∇(u− us)‖L2(Ω) ≤ C|4|‖u− us‖L86

for a positive constant C, where |4| is the size of triangulation or tetrahedralization87

4 under the assumption that u−us = 0 on ∂Ω. These will establish the multivariate88

spline based collocation method for the Poisson equation.89

In general, we let L be the PDE operator in (1.10). Note that we begin with the90

second order term of the PDE just for convenience.91

(1.10)

{ ∑d
i,j=1 a

ij(x) ∂
∂xi

∂
∂xj

u = f, x ∈ Ω ⊂ Rd,
u = g, on ∂Ω,

92

We shall similarly define a new norm associated with the PDE (1.10):93

(1.11) ‖u‖L = ‖L(u)‖L2(Ω) + ‖u‖L2(∂Ω).94

Similarly we will show the following.95

Theorem 1.2. Suppose Ω ⊂ Rd be a bounded domain. Suppose the closure of96

Ω is of uniformly positive reach rΩ > 0 and a multiple strictly star-shaped domain.97

Suppose that the second order partial differential equation in (1.10) is elliptic, i.e.98

satisfying (4.2) and satisfies the Cordés condition if d ≥ 2. There exist two positive99

constants A1 and B1 such that100

(1.12) A1‖u‖H2 ≤ ‖u‖L ≤ B1‖u‖H2 , ∀u ∈ H2(Ω).101

See a proof in a section later. Similar to the Poisson equation setting, this result will102

enable us to establish the convergence of the spline based collocation method for the103

second order elliptic PDE in non-divergence form. Also, we will have the improved104

convergence similar to (1.9).105

There are a few advantages of the collocation methods over the traditional finite106

element methods, discontinuous Galerkin methods, virtual element methods, and etc..107

For example, no numerical quadrature is needed for the computation. For another108

example, it is more flexible to deal with the discontinuity arising from the PDE109

coefficients as one may easily adjust the locations of some collocation points close to110

the discontinuity. A clear advantage of multivariate splines is that one can increase111

the accuracy of the approximation by increasing the degree of splines and/or the112

number of collocation points which can be cheaper than finding the solution over a113
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4 MING-JUN LAI AND JINSIL LEE

uniform refinement of the underlying triangulation or tetrahedralization within the114

memory budget of a computer.115

We shall provide many numerical results in 2D and 3D to demonstrate how well116

the spline based collocation methods can perform. Mainly, we would like to show117

the performance of solutions under the various settings: (1) the PDE coefficients are118

smooth or not very smooth, (2) the PDE solutions are smooth or not very smooth,119

(3) the domain of interest is star-shaped or non-star-shaped, even very complicated120

domain such such the human head used in the numerical experiment in this paper,121

and (4) the dimension d can be 2 or 3. In particular, using splines of high degree122

enables us to find a numerical solution with high accuracy. We are not able to show123

the rate of convergence in terms of the size of triangulation. Instead, we present the124

accuracy of spline solutions for various kinds of testing functions. In addition, we shall125

compare with the existing methods in [1] and [12] to demonstrate that the multivariate126

spline based collocation method can be better in the sense that it is more accurate127

and more efficient under the assumption that the associated collocation matrices are128

generated beforehand. Finally, we remark that we have extended our study to the129

biharmonic equation, i.e. Stokes equations and Navier-Stokes equations as well as the130

Monge-Ampére equation. These will leave to a near future publication, e.g. [14].131

2. Preliminary on Multivariate Splines and the Trace Inequality. In132

this section, we first quickly summarize the essentials of multivariate splines and then133

present an elementary discussion on the trace inequality which will be used in later134

sections.135

2.1. Multivariate Splines. We begin with bivariate spline functions. For any136

polygonal domain Ω ⊂ Rd with d = 2, let 4 := {T1, · · · , Tn} be a triangulation of137

Ω which is a collection of triangles and V be the set of vertices of 4. For a triangle138

T = (v1, v2, v3) ∈ Ω, we define the barycentric coordinates (b1, b2, b3) of a point139

(x, y) ∈ Ω. These coordinates are the solution to the following system of equations140

b1 + b2 + b3 = 1141

b1v1,x + b2v2,x + b3v3,x = x142

b1v1,y + b2v2,y + b3v3,y = y143

and are nonnegative if (x, y) ∈ T. We use the barycentric coordinates to define the144

Bernstein polynomials of degree D:145

BTi,j,k(x, y) :=
k!

i!j!k!
bi1b

j
2b
k
3 , i+ j + k = D,146

which form a basis for the space PD of polynomials of degree D. Therefore, we can147

represent all s ∈ PD in B-form:148

s|T =
∑

i+j+k=D

cijkB
T
ijk,∀T ∈ 4,149

where the B-coefficients ci,j,k are uniquely determined by s. Moreover, for given150

T = (v1, v2, v3) ∈ 4,we define the associated set of domain points to be151

(2.1) DD′,T := { iv1 + jv2 + kv3

D′
}i+j+k=D′ .152

We define the spline space S−1
D (4) := {s|T ∈ PD, T ∈ 4}, where T is a triangle153

in a triangulation 4 of Ω. We use this piecewise polynomial space to define the space154
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SPLINE COLLOCATION METHOD 5

SrD := Cr(Ω) ∩ S−1
D (4). This can be achieved through the smoothness conditions on155

the coefficients of s ∈ S−1
D (4). Let s be the coefficient vector of s and H be the156

matrix which consists of the smoothness conditions across each interior edge of 4. It157

is known that Hs = 0 if and only if s ∈ Cr(Ω) (cf. [10]).158

Computations involving splines written in B-form can be performed easily accord-159

ing to [1] and [16]. In fact, these spline functions have numerically stable, closed-form160

formulas for differentiation, integration, and inner products. If D ≥ 3r + 2, spline161

functions on quasi-uniform triangulations have optimal approximation power.162

Lemma 2.1. ([Lai and Schumaker, 2007[10]]) Let k ≥ 3r+2 with r ≥ 1. Suppose163

4 is a quasi-uniform triangulation of Ω. Then for every u ∈W k+1
q (Ω), there exists a164

quasi-interpolatory spline su ∈ Srk(4) such that165

||Dα
xD

β
y (u− su)||q,Ω ≤ C|4|k+1−α−β |u|k+1,q,Ω166

for a positive constant C dependent on u, r, k and the smallest angle of 4, and for all167

0 ≤ α+ β ≤ k with168

|u|k,q,Ω := (
∑
a+b=k

||Da
xD

b
yu||

q
Lq(Ω))

1
q .169

Similarly, for trivariate splines, let Ω ⊂ R3 and 4 be a tetrahedralization of170

Ω. We define a trivariate spline just like bivariate splines by using Bernstein-Bźier171

polynomials defined on each tetrahedron t ∈ 4. Letting172

SrD(4) = {s ∈ Cr(Ω) : s|t ∈ PD, t ∈ 4} = Cr(Ω) ∩ S−1
D (4)173

be the spline space of degree D and smoothness r ≥ 0, each s ∈ SrD(4) can be174

rewritten as175

s(x)|t =
∑

i+j+k+`=D

ctijk`B
t
ijk`(x), ∀t ∈ 4,176

where Btijk` are Bernstein-Bźier polynomials (cf. [1], [10], [16] ) which are nonzero on177

t and zero otherwise. Approximation properties of trivariate splines can be found in178

[11] and [8].179

How to use them to solve partial differential equations based on the weak formu-180

lation like the finite element method has been discussed in [1] and [16]. We leave the181

detail to these references.182

2.2. The Trace Inequality. We first recall the trace theorem from [4] that183

Theorem 2.2. Suppose that Ω is a bounded domain with C1,1 boundary. For184

u ∈ H1(Ω)185

(2.2) ‖u‖L2(∂Ω) ≤ C(‖u‖L2(Ω) + ‖∇u‖L2(Ω))186

for a positive constant C independent of u.187

As the domain Ω of interest may not have a C1,1 boundary, we would like to have this188

inequality for polygonal domains. Let us begin with the following trivial identity:189

(2.3) div(α|u|2) = div(α)(u2) + 2α · u∇u190

for any vector function α ∈ C1(Ω)d. Integrating the above identity over Ω, we use191

the divergence theorem to have192
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6 MING-JUN LAI AND JINSIL LEE

Lemma 2.3. For any u ∈ H1(Ω) and any vector α ∈ C(Ω)d, one has193 ∫
Ω

(divα)|u|2 + 2

∫
Ω

u(α · ∇u) =

∫
∂Ω

α · n|u|2.(2.4)194
195

We begin with the concept of strictly star-shaped domains introduced in [3]. In196

fact, we relax the condition of strictly star-shaped domain a little bit to make it more197

useful for application.198

Definition 2.4. A bounded domain Ω ⊂ Rd is a strictly star-shaped domain if199

it has a piecewise linear or smooth boundary and there exist a point x0 ∈ Ω and a200

positive constant γΩ > 0 depending only on Ω such that201

(2.5) (x− x0) · n ≥ γΩ > 0, ∀x ∈ ∂Ω, a.e.,202

where n stands for the normal direction of the boundary ∂Ω and a.e. stands for almost203

everywhere. When γΩ = 0, Ω is a star-shaped domain. Furthermore, we say a domain204

Ω multiple-strictly-star-shaped domain if Ω is able to be decomposed into the union205

of a finitely many strictly star-shaped sub-domains, i.e. Ω =
⋃`
i=1 Ωi with Ωi being a206

strictly star-shaped domain for i = 1, · · · , ` and Ωi ∩ Ωj = ∅ for i 6= j, i, j = 1, · · · , `.207

When Ω is a strictly star-shaped domain with center x0 and γΩ > 0, we use208

α = x− x0 in the result of Lemma 2.3 to have209

d

∫
Ω

|u|2 + 2

∫
Ω

u((x− x0) · ∇u) =

∫
∂Ω

(x− x0) · n|u|2 ≥ γΩ

∫
∂Ω

|u|2.(2.6)210
211

Now we apply Cauchy-Schwarz inequality to the second term on the left-hand side212

above to have213

(2.7) γΩ

∫
∂Ω

|u|2 ≤ d
∫

Ω

|u|2 + |Ω|

√∫
Ω

|u|2
√∫

Ω

|∇u|2 ≤ C1

∫
Ω

|u|2 + C2

∫
Ω

|∇u|2214

and hence, taking a square root both sides, we have a proof of (2.2) for a strictly215

star-shaped domain Ω.216

When Ω is a multiple-strictly star-shaped domain, we simply apply Lemma 2.3217

to each Ωi. Letting γΩ = min{γΩi , i = 1, · · · , `} and ∂Ω is a subset of
⋃
i ∂Ωi, we use218

the219

γΩ

∫
∂Ω

|u|2 ≤
∑̀
i=1

γΩi

∫
∂Ωi

|u|2 ≤
∑̀
i=1

C1

∫
Ωi

|u|2 + C2

∫
Ωi

|∇u|2

= C1

∫
Ω

|u|2 + C2

∫
Ω

|∇u|2.(2.8)220

Taking a square root both sides of the inequality yields (2.2). Clearly, we can decom-221

pose a polygonal domain Ω into a triangulation/tetrahedralization. As each triangle222

and each tetrahedron is a strictly star-shaped domain, we use the above discussion to223

conclude224

Theorem 2.5. Suppose that Ω is a polygonal domain. For any u ∈ H1(Ω) one225

has the trace inequality (2.2).226

The same holds for a domain Ω with a curvy triangulation 4, i.e. a triangulation227

with curve boundary.228
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SPLINE COLLOCATION METHOD 7

3. A Splined Based Collocation Method for the Poisson Equation. Let229

us explain a collocation method based on bivariate splines/trivariate splines for a230

solution of the Poisson equation (1.5). For convenience, we simply explain our method231

when d = 2 in this section. Numerical results in the settings of d = 2 and d = 3 will232

be given in a later section.233

For given 4 be a triangulation, we choose a set of domain points {ξi}i=1,··· ,N234

explained in the previous section as collocation points and find the coefficient vector235

c of spline function s =
∑
t∈4

∑
i+j+k=D

ctijkB
t
ijk satisfying the following equation at those236

points237

(3.1)

{
−
∑
t∈4

∑
i+j+k=D c

t
ijk∆Btijk(ξi) = f(ξi), ξi ∈ Ω ⊂ R2

s(ξi) = g(ξi), on ∂Ω,
238

where {ξi = (xi, yi)}i=1,··· ,N ∈ DD′,4 are the domain points of 4 of degree D as239

explained in (2.1) in the previous section. Using these points, we have the following240

matrix equation:241

−Kc :=
[
−∆(Btijk(ξi))

]
c = [f(ξi)] = f,242

where c is the vector consisting of all spline coefficients ctijk, i+ j + k = D, t ∈ 4. In243

general, the spline s with coefficients in c is a discontinuous function. In order to make244

s ∈ SrD, its coefficient vector c must satisfy the constraints Hc = 0 for the smoothness245

conditions that the SrD functions possess (cf. [10]). Our collocation method is to find246

c∗ by solving the following constrained minimization:247

min
c
J(c) =

1

2
(‖Bc− g‖2 + ‖Hc‖2) subject to −Kc = f ,(3.2)248

249

where B,g are from the boundary condition and H is from the smoothness condition.250

Note that we need to justify that the minimization has a solution. In general, we do251

not know if the matrix K is invertible and hence, −Kc = f may not have a solution.252

However, we can show that a neighborhood of −Kc = f , i.e.253

(3.3) N = {c : || −Kc− f || ≤ ε, ||Hc|| ≤ ε, ||Bc− g|| ≤ ε}254

is not empty.255

Indeed, by Lemma 2.1 in the previous section, for any given ε1 > 0, we can find256

a quasi-interpolatory spline su satisfying257

||∆u−∆su||∞ ≤ ||uxx − (su)xx||∞ + ||uyy − (su)yy||∞ ≤ 2C|4|k−2 ≤ ε1.258

if |4| is small enough and k = D is large enough. In other words, at the domain points259

over 4 with degree D′ ≥ k, quasi-interpolatory spline su from Lemma 2.1 satisfies260

| − f(xi, yi) − ∆I(su)(xi, yi)| = | − f(xi, yi) − ∆su(xi, yi)| ≤ ε1 for all 1 ≤ i ≤ N .261

That is, the neighborhood N in (3.3) is not empty.262

We thus consider a nearby problem of the minimization (3.2), that is,263

min
c
‖Bc− g‖2 + ||Hc||2 subject to || −Kc− f ||L∞ ≤ ε1.(3.4)264

265

It is easy to see that the minimizer of the above (3.4) clearly approximates the mini-266

mizer of (3.2).267
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8 MING-JUN LAI AND JINSIL LEE

Next, let c∗ be the minimizer of (3.4) and us be the spline with the coefficient268

vector c∗. Then, we want to prove that our numerical solution us is close to the269

solution u, e.g. ||u− us||L2(Ω) is very small. To describe how small it is, we let ε2 =270

‖Bc∗−g‖2 +‖Hc∗‖2 ≥ ‖Bc∗−g‖2. That is,
∑

(xi,yi)∈∂Ω |u(xi, yi)−us(xi, yi)|2 ≤ ε2.271

Without loss of generality, we may assume that us approximates u on ∂Ω very well in272

the sense that ‖u(x, y) − us(x, y)‖L2(∂Ω) ≤ Cε2 for a positive constant C. Similarly,273

if the number of collocation points is enough, we have ‖∆us + f ||L2(Ω) ≤ Cε1. We274

would like to show275

(3.5) ‖u− us‖L2(Ω) ≤ C|4|2(ε1 + ε2)276

for some constant C > 0, where |4| is the size of the underlying triangulation or277

tetrahedralization 4 of the domain Ω. To do so, we first show278

Lemma 3.1. Suppose that Ω is a polygonal domain. Suppose that u ∈ H3(Ω).279

Then there exists a positive constant Ĉ depending on D ≥ 1 such that280

||∆u(x, y)−∆us(x, y)||L2(Ω) ≤ ε1Ĉ.281

Proof. Indeed, by Lemma 2.1, we have a quasi-interpolatory spline su satisfying282

|∆u(x, y)−∆su(x, y)| ≤ ε1,∀(x, y) ∈ Ω.283

Then, we use the minimization (3.4) to have the minimizer us satisfying284

|∆u(xi, yi)−∆us(xi, yi)| ≤ ε1285

for any domain points (xi, yi) which construct the collocation matrix K. Now, these286

two inequalities imply that287

|∆us(xi, yi)−∆su(xi, yi)| ≤ ε1 + ε1.288

Note that ∆us−∆su is a polynomial over each triangle t ∈ 4 which has small values289

at the domain points. This implies that the polynomial ∆us − ∆su is small over t.290

That is,291

|∆us(x, y)−∆su(x, y)| ≤ C(ε1 + ε1) = 2Cε1(3.6)292293

by using Theorem 2.27 in [10]. Finally, we can use (3.6) to prove294

|∆u(x, y)−∆us(x, y)| = |∆u(x, y)−∆su(x, y) + ∆su(x, y)−∆us(x, y)| ≤ ε1 + 2Cε1.295

and then
||∆u(x, y)−∆us(x, y)||L2(Ω) ≤ ε1Ĉ

for a constant Ĉ depending on the bounded domain Ω and D,D′, but independent of296

|4|.297

Recall a standard norm on H2(Ω) defined in (1.3). In addition, let us define a298

new norm ‖u‖L on H2(Ω) as follows.299

(3.7) ‖u‖L = ‖∆u‖L2(Ω) + ‖u‖L2(∂Ω)300

We can show that ‖ · ‖L is a norm on H2(Ω) as follows: Indeed, if ‖u‖L = 0, then301

∆u = 0 in Ω and u = 0 on the boundary ∂Ω. By the Green theorem, we get302 ∫
Ω

|∇u|2 = −
∫

Ω

u∆u+

∫
∂Ω

u
∂u

∂n
= 0.303
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By Poincaré’s inequality, we get

||u||L2(Ω) ≤ C||∇u||L2(Ω) = 0.

Hence, we know that u = 0. Next for any scalar a, it is trivial to have ‖au‖L =304

‖∆au‖L2(Ω) + ‖au‖L2(∂Ω) = |a|(‖∆u‖2L2(Ω) + ‖u‖L2(∂Ω)). Finally, the triangular in-305

equality is also trivial.306

‖u+ v‖L = ‖∆(u+ v)‖L2(Ω) + ‖u+ v‖L2(∂Ω) ≤ ‖u‖L + ‖v‖L307

by linearity of the Laplacian operator.308

We now show that the new norm is equivalent to the standard norm on H2(Ω).309

Indeed, recall a well-known property about the norm equivalence.310

Lemma 3.2. ([Brezis, 2011 [2]]) Let E be a vector space equipped with two norms,311

‖ ·‖1 and ‖ ·‖2. Assume that E is a Banach space for both norms and that there exists312

a constant C > 0 such that313

‖x‖2 ≤ C‖x‖1, ∀x ∈ E.(3.8)314315

Then the two norms are equivalent, i.e., there is a constant c > 0 such that316

‖x‖1 ≤ c1‖x‖2, ∀x ∈ E.317

Proof. We define E1 = (E, ||·||1) and E2 = (E, ||·||2) be two spaces equipped with318

two different norms. It is easy to see that E1 and E2 are Banach spaces. Let I be the319

identity operator which maps any u in E1 to u in E2. Clearly, it is an injection and320

onto because of the identity mapping and hence, it is a surjection. Because of (3.8),321

the mapping I is a continuous operator. Now we can use the well-known open mapping322

theorem. Let B1(0, 1) = {u ∈ E1, ||u||1 ≤ 1} be an open ball. The open mapping323

theorem says that I(B1(0, 1)) is open and hence, it contains a ball B2(0, c) = {u ∈324

E2, ||u||2 < c}. That is, B2(0, c) ⊂ I(B1(0, 1)). Let us claim that c||u||1 ≤ ||I(u)||2325

for all u ∈ E1. Otherwise, there exists a u∗ such that c||u∗||1 > ||I(u∗)||2. That is,326

c > ||I(u∗/||u∗||1)||2. So I(u∗/||u∗||1) ∈ B2(0, c). There is a u∗∗ ∈ B1(0, 1) such that327

Iu∗∗ = I(u∗/||u∗||1). Since I is an injection, u∗∗ = I(u∗/||u∗||1. Since u∗∗ ∈ B1(0, 1),328

we have 1 > ||u∗∗||1 = ||(u∗/||u∗||1))‖ = 1 which is a contradiction. This shows that329

the claim is correct. we have thus c||u||1 ≤ ||I(u)||2 = ||u||2 for all u ∈ E1. We choose330

c1 = 1/c to finish the proof.331

Theorem 3.3. Suppose Ω ⊂ Rd is a multiple-strictly-star-shaped domain, e.g. a332

polygonal domain. There exist two positive constants A and B such that333

(3.9) A‖u‖H2 ≤ ‖u‖L ≤ B‖u‖H2 , ∀u ∈ H2(Ω).334

Proof. We first use the trace Theorem 2.5 from the previous section. Mainly we335

shall use the inequality in (2.2). It then follows that336

‖u‖L ≤ ‖∆u‖L2(Ω) + ‖u‖L2((∂Ω)

≤
d∑

i,j=1

‖ ∂2

∂xi∂xj
u‖L2(Ω) + C(‖u‖L2(Ω) + ‖∇u‖L2(Ω)) ≤ B‖u‖H2(3.10)337

for all u ∈ H2(Ω), where B = max{1, C}. We then use Lemma 3.2 to finish the proof.338

Indeed, by Lemma 3.2 and the above inequality, there exist α > 0 satisfying339

‖u‖H2 ≤ α‖u‖L.340

Therefore, we choose A = 1
α to finish the proof.341
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10 MING-JUN LAI AND JINSIL LEE

Using Theorem 3.3, we immediately obtain the following theorem342

Theorem 3.4. Suppose f and g are continuous over bounded domain Ω ⊆ Rd for343

d ≥ 2. Suppose that u ∈ H3(Ω). When Ω is a multiple-strictly-star-shaped domain or344

a polygon, we have the following inequality345

||u− us||L2(Ω) ≤ C(ε1 + ε2), ||∇(u− us)||L2(Ω) ≤ C(ε1 + ε2)346

and347 ∑
i+j=2

‖ ∂2

∂xi∂yj
u‖L2(Ω) ≤ C(ε1 + ε2)348

for a positive constant C depending on A and Ω, where A is one of the constants in349

Theorem 3.3.350

Proof. Using Lemma 3.1 and the assumption on the approximation on the bound-351

ary, we have352

||u− us||H2(Ω) ≤
1

A
(‖∆(u− us)‖L2(Ω) + ‖u− us‖L2(∂Ω)) ≤

1

A
(ε1Ĉ + ε2C∂Ω)353

where C∂Ω denotes the length of the boundary of Ω. We choose C = max{Ĉ,C∂Ω}
A to354

finish the proof.355

Finally we show that the convergence of ‖u− us‖L2(Ω) and ‖∇(u− us)‖L2(Ω) can be356

better357

Theorem 3.5. Suppose that (u − us)|∂Ω = 0. Under the assumptions in Theo-358

rem 3.4, we have the following inequality359

||u− us||L2(Ω) ≤ C|4|2(ε1 + ε2) and ||∇(u− us)||L2(Ω) ≤ C|4|(ε1 + ε2)360

for a positive constant C = 1/A, where A is one of the constants in Theorem 3.3 and361

|4| is the size of the underlying triangulation 4.362

Proof. First of all, it is known for any w ∈ H2(Ω), there is a continuous linear363

spline Lw over the triangulation 4 such that364

(3.11) ‖Dα
xD

β
y (w − Lw)‖L2(Ω) ≤ C|4|2−α−β |w|H2(Ω)365

for nonnegative integers α ≥ 0, β ≥ 0 and α+β ≤ 2, where |w|H2(Ω) is the semi-norm of366

w in H2(Ω). Indeed, we can use the same construction method for quasi-interpolatory367

splines used for the proof of Lemma 2.1 to establish the above estimate. The above368

estimate will be used twice below.369

By the assumption that u− us = 0 on ∂Ω, it is easy to see370

‖∇(u− us)‖2L2(Ω) = −
∫

Ω

∆(u− us)(u− us) = −
∫

Ω

∆(u− us − Lu−us)(u− us)

=

∫
Ω

∇(u− us − Lu−us)∇(u− us) ≤ ‖∇(u− us)‖L2(Ω)‖∇(u− us − Lu−us)‖L2(Ω)

≤ ‖∇(u− us)‖L2(Ω)C|4| · |u− us|H2(Ω)

≤ ‖∇(u− us)‖L2(Ω)|4|
C

A
‖∆(u− us)‖L2(Ω).371

where we have used the first inequality in Theorem 3.3. It follows that ‖∇(u −372

us)‖2L2(Ω) ≤ |4|
C
A (ε1 + ε2).373
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Next we let w ∈ H2(Ω) be the solution to the following Poisson equation:374

(3.12)

{
−∆w = u− us in Ω ⊂ Rd
w = 0 on ∂Ω,

375

Then we use the continuous linear spline Lw to have376

‖(u− us)‖2L2(Ω) = −
∫

Ω

∆w(u− us) = −
∫

Ω

∆(w − Lw)(u− us)

=

∫
Ω

∇(w − Lw)∇(u− us) ≤ ‖∇(u− us)‖L2(Ω)‖∇(w − Lw)‖L2(Ω)

≤ ‖∇(u− us)‖L2(Ω)C|4| · |w|H2(Ω) ≤
C

A
|4|(ε1 + ε2)|4|C

A
‖∆w‖L2(Ω)

=
C

A
|4|(ε1 + ε2)|4|C

A
‖u− us‖L2(Ω).377

where we have used the first inequality in Theorem 3.3 and the estimate of ‖∇(u −378

us)‖L2(Ω) above. Hence, we have ‖(u− us)‖2L2(Ω) ≤
C2

A2 |4|2(ε1 + ε2) as |4| → 0.379

4. General Second Order Elliptic Equations. Now we consider a collocation380

method based on bivariate/trivariate splines for a solution of the general second order381

elliptic equation in (1.2). For the PDE coefficient functions aij , bi, c1 ∈ L∞(Ω), we382

assume that383

aij = aji ∈ L∞(Ω) ∀i, j =, · · · , d(4.1)384385

and there exist λ,Λ such that386

λ

d∑
i=1

η2
i ≤

d∑
i,j

aij(x)ηiηj ≤ Λ

d∑
i=1

η2
i ,∀η ∈ Rd\{0}(4.2)387

388

for all i, j and x ∈ Ω. For convenience, we first assume that bi ≡ 0 and c1 = 0. In389

addition to the elliptic condition, we add the Cordés condition for well-posedness of390

the problem. We assume that there is an ε ∈ (0, 1] such that391 ∑d
i,j=1(ai,j)2

(
∑d
i=1 a

ii)2
≤ 1

d− 1 + ε
a.e. in Ω(4.3)392

393

Let γ ∈ L∞(Ω) be defined by394

γ :=

∑d
i=1 a

ii∑d
i,j=1(ai,j)2

.395

Under these conditions, the researchers in [18] proved the following lemma396

Lemma 4.1. Let the operator L1(u) :=
∑d
i,j=1 a

ij(x) ∂2

∂xi∂xj
u satisfy (4.1), (4.2)397

and (4.3). Then for any open set U ⊆ Ω and v ∈ H2(U), we have398

|γL1v −∆v| ≤
√

1− ε|D2v| a.e. in U,(4.4)399400

where ε ∈ (0, 1] is as in (4.3).401
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12 MING-JUN LAI AND JINSIL LEE

Instead of using the convexity to ensure the existence of the strong solution of (1.2)402

in [18], we shall use the concept of uniformly positive reach in [5]. The following is403

just the restatement of Theorem 3.3 in [5].404

Theorem 4.2. Suppose that Ω ⊂ Rd with d ≥ 2 is a bounded domain with uni-405

formly positive reach. Then the second order elliptic PDE in (1.2) satisfying (4.3)406

has a unique strong solution in H2(Ω).407

We now extend the collocation method in the previous section to find a numerical408

solution of (1.2). Similar to the discussion in the previous section, we can construct409

the following matrix for the PDE in (1.2):410

K = a11MxxV + (a12 + a21)MxyV + a22MyyV,411

where a11 is the vector of the PDE coefficient a11(ξi), i = 1, · · · , N and similar for412

other vectors. Similar to (3.4), consider the following minimization problem:413

min
c
J(c) =

1

2
(‖Bc− g‖2 + ‖Hc‖2) subject to −Kc = f ,(4.5)414

415

Again we will solve a nearby minimization problem as in the previous section. Just416

like the Poisson equation, we let ε1 = ‖Kc∗ + f‖∞ and ε2 = ‖Bc − g‖2 + ‖Hc‖2 ≥417

‖Bc − g‖2 be the minimal value of (4.5). In fact, we may assume that the solution418

us for (4.5) approximates u very well in the sense that ‖u − us‖L2(∂Ω) ≤ ε2 and419

‖Lus + f‖L2(Ω) ≤ ε1.420

To show us approximate u over Ω, let us define a new norm ‖u‖L on H2(Ω) as421

follows.422

(4.6) ‖u‖L = ‖Lu‖L2(Ω) + ‖u‖L2(∂Ω)423

We can show that ‖ · ‖L is a norm on H2(Ω) as follows if ε ∈ (0, 1] is large enough.424

Indeed, if ‖u‖L = 0, then Lu = 0 in Ω and u = 0 on the boundary ∂Ω. Using this425

Lemma 4.1 and Theorem 3.3, we get426 ∫
Ω

∆u∆u−
∫

Ω

(∆− γL)u∆u =

∫
Ω

γL(u)∆u = 0(4.7)427
428

and429 ∫
Ω

∆u∆u−
∫

Ω

(∆− γL)u∆u ≥
∫

Ω

|∆u|2 −
∫

Ω

√
1− ε|D2u| · |∆u|430

=

∫
Ω

|∆u|2 −
∫

Ω

√
1− ε|D2u| · |∆u| ≥ ‖∆u‖2 −

√
1− ε
A
‖∆u‖‖∆u‖431

Therefore, if ε > 1−A2, then432

(1−
√

1− ε
A

)‖∆u‖ ≤ 0.433

Hence, we know that u = 0. The other two properties of the norm can be proved434

easily. We mainly show that the above norm is equivalent to the standard norm on435

H2(Ω).436

Theorem 4.3. Suppose that Ω has uniformly positive reach rΩ > 0 and is a437

multiple-strictly-star-shaped domain. Then there exist two positive constants A1 and438

B1 such that439

(4.8) A1‖u‖H2(Ω) ≤ ‖u‖L ≤ B1‖u‖H2(Ω), ∀u ∈ H2(Ω).440
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SPLINE COLLOCATION METHOD 13

Proof. We first use the trace theorem 2.5 that441

‖u‖L2(∂Ω) ≤ C(‖u‖L2(Ω) + ‖∇u‖L2(Ω))442

for u ∈ H1(Ω). It follows that443

‖u‖L ≤ max
i,j=1··· ,d

‖aij‖∞
d∑

i,j=1

‖ ∂2

∂xi∂xj
u‖L2(Ω) + C‖∇u‖L2(Ω) + C‖u‖L2(Ω) ≤ B1‖u‖H2(Ω)444

for all u ∈ H2(Ω), where B1 depending on d,Λ and C. Using Lemma 4 and the above445

inequality, there exist α1 > 0 satisfying446

‖u‖H2 ≤ α1‖u‖L.447

Therefore, we choose A1 = 1
α1

to finish the proof.448

Theorem 4.4. Let Ω be a bounded and closed set satisfying the uniformly positive449

reach condition. Assume that aij ∈ L∞(Ω) satisfy (4.1), (4.2) and (4.3) and ε >450

1 − A2. Suppose that u ∈ H3(Ω). For the solution u of equation (1.10) and the451

corresponding minimizer us, we have the following inequality452

||u− us||L2(Ω) ≤ C(ε1 + ε2)453

for a positive constant C depending on Ω and A1 which is one of the constants in454

Theorem 4.3. Similar for ‖∇(u− us)‖L2(Ω) and |u− us|H2 .455

Next we consider the case that bi and c1 are not zero. Assume that ‖aij‖∞, ‖bi‖∞,456

‖c1‖∞ ≤ Λ1 and we denote that L1(u) :=
∑d
i,j=1 a

ij(x) ∂2

∂xi∂xj
u +

∑d
i=1 b

i(x) ∂
∂xi

u +457

c1(x)u and define a new norm ‖u‖L1
on H2(Ω) as follows.458

(4.9) ‖u‖L1
= ‖L1u‖L2(Ω) + ‖u‖L2(∂Ω).459

Assume that ‖u‖L1
= 0, i.e., L1u = 0 over Ω and u = 0 on ∂Ω. From (4.4), we have460 ∫

Ω

γL(u)∆u ≥ ‖∆u‖2 −
√

1− ε
A
‖∆u‖2.461

Then by the above inequality we get462

0 =

∫
Ω

γL1(u)∆u =

∫
Ω

γL(u)∆u+

d∑
i=1

γbi(x)
∂

∂xi
u∆u+ γc1(x)u∆u463

≥ ‖∆u‖2 −
√

1− ε
A
‖∆u‖2 +

∫
Ω

d∑
i=1

γbi(x)
∂

∂xi
u∆u+ γc1(x)u∆u464

≥ ‖∆u‖2L2(Ω) −
√

1− ε
A
‖∆u‖2L2(Ω) − ‖γ‖∞max

i
‖bi‖∞

√
d‖∇u‖L2(Ω)‖∆u‖L2(Ω)465

−‖γ‖∞‖c1‖∞‖u‖L2(Ω)‖∆u‖L2(Ω)466

≥ ‖∆u‖2L2(Ω) −
√

1− ε
A
‖∆u‖2L2(Ω) − Cm(‖∇u‖L2(Ω)‖∆u‖L2(Ω) + ‖u‖L2(Ω)‖∆u‖L2(Ω))467

where Cm = max{‖γ‖∞maxi ‖bi‖∞
√
d, ‖γ‖∞‖c1‖∞}. By Poincaré inequality, we468

have ‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) ≤ C2‖∆u‖L2(Ω) for some constant C. Using Theorem469
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14 MING-JUN LAI AND JINSIL LEE

3.3, it is followed that470

0 ≥ ‖∆u‖L2(Ω) −
√

1− ε
A
‖∆u‖L2(Ω) − Cm(‖∇u‖L2(Ω) + ‖u‖L2(Ω))471

≥ ‖∆u‖L2(Ω) −
√

1− ε
A
‖∆u‖L2(Ω) − Cm(C + C2)‖u‖H2(Ω)472

≥ ‖∆u‖L2(Ω) −
√

1− ε
A
‖∆u‖L2(Ω) −

Cm(C + C2)

A
‖∆u‖L2(Ω)473

= ‖∆u‖L2(Ω)(1−
√

1− ε
A

− Cm(C + C2)

A
).474

If the term (1 −
√

1−ε
A − Cm(C+C2)

A ) is positive, then we can conclude that ∆u = 0.475

Since ∆u = 0 and u = 0 on ∂Ω, ‖u‖L = 0 and then u = 0. Similar to the proof of476

other norms ‖ · ‖L and ‖ · ‖L, it is easy to prove that ‖u+ v‖L1 ≤ ‖u‖L1 + ‖v‖L1 and477

‖au‖L1
= |a|‖u‖L1

. The detail is omitted.478

Theorem 4.5. Assume that (1−
√

1−ε
A − Cm(C+C2)

A ) > 0. There exist two positive479

constants A2 and B2 such that480

(4.10) A2‖u‖H2(Ω) ≤ ‖u‖L ≤ B2‖u‖H2(Ω), ∀u ∈ H2(Ω).481

Proof. The proof is similar to before. We leave it to the interested reader.482

Therefore, we can get the following theorem for the general elliptic PDE:483

Theorem 4.6. Let Ω be a multiple-strictly-star-shaped domain and has a uni-484

formly positive reach. Assume that aij , bi, c1 ∈ L∞(Ω) satisfy (4.1), (4.2), (4.3) and485

(1−
√

1−ε
A − Cm(C+C2)

A ) > 0. Suppose that u ∈ H3(Ω). For the solution u of equation486

(1.2) and the corresponding minimizer us, we have the following inequality487

||u− us||L2(Ω) ≤ C(ε1 + ε2)488

for a positive constant C depending on Ω and a constant A2 in Theorem 4.5.489

Finally we show that the convergence of ‖u− us‖L2(Ω) and ‖∇(u− us)‖L2(Ω) can be490

better491

Theorem 4.7. Suppose that the bounded domain Ω has an uniformly positive492

reach. Suppose f and g are continuous over bounded domain Ω ⊆ Rd for d = 2, 3.493

Suppose that u ∈ H3(Ω). If u− us|∂Ω = 0, we further have the following inequality494

||u− us||L2(Ω) ≤ C|4|2(ε1 + ε2) and ||∇(u− us)||L2(Ω) ≤ C|4|(ε1 + ε2)495

for a positive constant C = 1/A2, where A2 is one of the constants in Theorem 3.3496

and |4| is the size of the underlying triangulation 4.497

Proof. The proof is similar to Theorem 3.5. We leave the detail to the interested498

reader.499

5. Implementation of the Spline based Collocation Method. Before we500

present our computational results for Poisson equation and general second order el-501

liptic equations, let us first explain the implementation of our spline based collocation502

method. We divide the implementation into two parts. The first part of the im-503

plementation is to construct the collocation matrices K and K associated with the504

triangulation/tetrahedralization, the degree D of spline functions and the smoothness505
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SPLINE COLLOCATION METHOD 15

r ≥ 1 as well as the domain points associated with the triangulation/tetrahedralization506

and degree D′. This part also generates the smoothness matrix H. More precisely,507

for the Poisson equation, we construct MxxV := [(Btijk(x)xx|x=ξ` ] and MyyV :=508

[(Btijk(x)yy|x=ξ` ]. In fact we choose many other points which are in addition to509

the domain points to build these MxxV and MyyV . Then K = MxxV + MyyV510

is a size of 2m × m for the Poisson equation, where m = dim(S−1
D (4)). After511

generating matrices, we save our matrices which will be used later for solution of512

the Poisson equation for various right-hand side functions and boundary conditions.513

And, for the general elliptic equations, we first generate all the related matrices514

MxxV,MxyV,MyyV,MxV,MyV, · · · as the same as for the Poisson equation. Then515

we generate the collocation matrix K associated with the PDE coefficients at the516

same domain points as well as the additional points from all the related matrices517

MxxV,MxyV,MyyV,MxV,MyV, · · · which are already generated before. This part518

is the most time consumed step. See Tables 1 and 2 for the 2D and 3D settings.519

The second part, Part 2 is to construct the right-hand side vector f and the matrix520

B and vector G associated with the boundary condition as well as use an iterative521

method which is similar to [1] to solve the minimization problem (3.4) and (4.5). See522

Table 3 for computational times for the 3D setting.523

We shall use the four different domains in 2D shown in Fig. 1 and four different524

domains in 3D shown in Fig. 2 to test the performance of our collocation method.525

In addition, the spline based collocation method has been tested over many more526

domains of interest. Numerical results can be found in [14].

Fig. 1. Several domains in R2 used for Numerical Experiments

527
In our computational experiments, we use a cluster computer at University of528

Georgia to generate the related collocation matrices for various degree of splines and529

domain points as described in the part I. We use multiple CPUs in the computer530

so that multiple operations can be done simultaneously. For the 2D case, we use 2531

processors on a parallel computer, which has 1.8GHz Intel Core i5 processors for Part 1532
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Fig. 2. Several 3D domains used for Numerical Experiments

Domains Number of Number of degree Time Time Time Time
vertices triangles (P) (G) (UGA P) (UGA G)

Gear 274 426 8 5.27e+01 3.31e+02 2.98e+01 3.49e+01
Flower 297 494 8 5.83e+01 4.09e+02 3.32e+01 4.20e+01

Montreal 549 870 8 9.83e+01 7.26e+02 2.95e+01 8.55e+01
Circle 525 895 8 1.18e+02 1.19e+03 2.78e+01 8.40e+01

Table 1
Times in seconds for generating necessary matrices for each 2D domain in Figure 1.

and Part 2. And we also use a high memory (512GB) node from the Sapelo 2 cluster533

at University of Georgia, which has four AMD Opteron 6344 2.6 GHz processors.534

Using 48 processors on the UGA cluster, we can generate our necessary matrices535

and the computational times for Part 1 are listed in Table 1. For 3D case, we use 48536

processors for Part 1 and 12 processors for Part 2 to do the computation. Tables 2 and537

3 show the computational times for generating collocation matrices, where (P), (UGA538

P) indicates the time for the Poisson equation with 2 processors and 48 processors539

respectively and (G), (UGA G) for the general second order PDE using 2 processors540

and 48 processors, respectively.541

6. Numerical results for the Poisson Equation. We shall present compu-542

tational results for 2D Poisson equation and 3D Poisson equations separately in the543

following two subsections. In each section, we first present the computational results544

from the spline based collocation method to demonstrate the accuracy the method can545

achieve. Then we present a comparison of our collocation method with the numerical546

method proposed in [1] which uses multivariate splines to find the weak solution like547

finite element method. For convenience, we shall call our spline based collocation548

method the LL method and the numerical method in [1] the AWL method.549

6.1. Numerical examples for 2D Poisson equations. We have used various550

triangulations over various bounded domains as shown in [14] and tested many solu-551
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SPLINE COLLOCATION METHOD 17

Domains Number of Number of Degree of Time Time
vertices tetrahedron splines (UGA P) (UGA G)

L-shaped domain 325 1152 9 3.71e+03 4.785e+03
Human head 913 1588 9 6.62e+03 8.278e+03

Torus 773 2911 9 9.55e+03 1.180e+04
Letter B 299 816 9 1.71e+03 2.347e+03

Table 2
Times in seconds for generating necessary matrices for each 3D domain in Figure 2.

Domain Time Time Time Time
(P) (SG) (NSG1) (NSG2)

L shaped domain 1.0729e+02 2.8400e+02 9.6750e+01 6.2362e+01
Human head 9.6791e+01 2.2425e+02 1.0746e+02 5.7200e+01

Torus 4.5197e+02 6.3574e+02 3.2542e+02 2.2183e+02
Letter B 3.7484e+01 9.6532e+01 1.5394e+02 2.2085e+01

Table 3
Times in seconds for finding solutions of 3D Poisson equation(P), general second order elliptic

equation with smooth PDE coefficients (SG) or with non-smooth PDE coefficients (NSG1, NSG2)
for each domain in Figure 2.

tions to the Poisson equation to see the accuracy that the LL method can do. For552

convenience, we shall only present a few of the computational results based on the553

domains in Figure 1. The following is a list of 10 testing functions (8 smooth solutions554

and 2 not very smooth)555

us1 = e
(x2+y2)

2 ,
us2 = cos(xy) + cos(π(x2 + y2)),

us3 =
1

1 + x2 + y2
,

us4 = sin(π(x2 + y2)) + 1,
us5 = sin(3πx) sin(3πy),
us6 = arctan(x2 − y2),

us7 = − cos(x) cos(y)e−(x−π)2−(y−π)2

us8 = tanh(20y − 20x2)− tanh(20x− 20y2),
uns1 = |x2 + y2|0.8 and
uns2 = (xe1−|x| − x)(ye1−|y| − y).556

Note that the test function in us8 is notoriously difficult to compute. One has to557

use a good adaptive triangulation method (cf. [9]). The maximum errors, root mean558

squared error(RMSE) of approximate spline solutions against the exact solution are559

given in Table 4. These errors are computed based on 501×501 equally-spaced points560

fell inside the different domains in Figure 1. We chose collocation points to create561

2m×m matrix K, where m is the number of Bernstein basis functions (the dimension562

of spline space S−1
D (4)) and used an iterative method similar to the one in [1] to find563

the numerical solutions.564

From Table 4, we can see that the performance of our method is excellent. Next565

let us compare with the numerical method in [1] for the same degree, the same smooth-566

ness, and the same triangulation. The comparison results are shown in Table 5. One567

can see that both methods perform very well. Our method can achieve a better568

accuracy due to the reason the more number of collocation points is used than the569

dimension of spline space S−1
D (4).570

Finally, we summarize the computational times for both methods in Table 6. One571

can see the LL method can be more efficient if the collocation matrices are already572
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18 MING-JUN LAI AND JINSIL LEE

Gear Flower with a hole Montreal Circle with 3 holes
Solution RMSE error RMSE error RMSE error RMSE error

us1 1.40e-10 3.43e-10 9.33e-12 4.04e-11 8.03e-11 2.45e-10 2.95e-12 1.08e-11
us2 1.30e-09 1.06e-08 1.54e-07 7.88e-07 1.29e-10 4.20e-10 4.33e-12 1.13e-11
us3 6.03e-11 1.87e-10 9.01e-12 3.25e-11 1.05e-10 3.09e-10 1.90e-12 5.43e-12
us4 1.20e-09 6.15e-09 1.20e-07 7.88e-07 1.15e-10 2.99e-10 7.44e-12 2.23e-11
us5 3.82e-07 2.36e-06 5.87e-06 2.40e-05 2.04e-11 5.40e-11 3.40e-10 1.16e-09
us6 6.13e-10 1.32e-08 8.73e-08 5.93e-07 1.86e-12 6.71e-12 1.09e-12 4.10e-12
us7 1.44e-11 3.42e-11 7.05e-13 1.64e-12 1.51e-11 4.25e-11 1.51e-13 5.74e-13
us8 5.71e-02 2.61e-01 5.22e-01 2.32e+00 1.53e-08 3.44e-07 3.00e-04 4.01e-03
uns1 1.81e-05 1.34e-03 3.97e-11 2.17e-10 1.33e-05 1.80e-04 2.36e-05 3.36e-04
uns2 1.71e-04 7.29e-04 1.33e-04 8.41e-04 3.58e-06 2.02e-05 1.39e-05 1.58e-04

Table 4
The RMSE and the maximum errors of spline solutions for Poisson equations from the matrix

iterative method over several domains when r = 2 and D = 8.

Gear Flower with a hole Montreal Circle with 3 holes
Sol’n AWL LL AWL LL AWL LL AWL LL

us1 1.40e-05 3.43e-10 3.27e-05 4.04e-11 8.89e-07 2.45e-10 3.28e-06 1.08e-11
us2 6.41e-05 1.06e-08 8.52e-05 7.88e-07 3.48e-06 4.20e-10 2.02e-06 1.13e-11
us3 8.55e-06 1.87e-10 4.19e-06 3.25e-11 1.03e-06 3.09e-10 1.04e-06 5.43e-12
us4 2.95e-05 6.15e-09 3.70e-05 7.88e-07 3.63e-06 2.99e-10 1.26e-05 2.23e-11
us5 1.03e-04 2.36e-06 1.36e-04 2.40e-05 1.70e-05 5.40e-11 3.10e-05 1.16e-09
us6 3.02e-05 1.32e-08 1.25e-05 5.93e-07 2.06e-06 6.71e-12 5.94e-06 4.10e-12
us7 1.74e-10 3.42e-11 1.56e-10 1.64e-12 3.11e-07 4.25e-11 1.32e-11 5.74e-13
us8 1.78e+00 2.61e-01 2.65e+00 2.32e+00 2.42e-06 3.44e-07 5.71e-02 4.01e-03
uns1 6.53e-03 1.34e-03 1.74e-05 2.17e-10 1.73e-04 1.80e-04 5.39e-03 3.36e-04
uns2 8.47e-03 7.29e-04 1.44e-03 8.41e-04 1.84e-04 2.02e-05 5.25e-04 1.58e-04

Table 5
The maximum errors of spline solutions for the Poisson equation over the four domains in

Figure 1 when r = 2 and D = 8 for both the AWL method and the LL method.

generated. The LL method can be useful for time dependent PDE such as the heat573

equation. We only need to generate the collocation matrix once and use it repeatedly574

for many time step iterations.575

6.2. Numerical results for the 3D Poisson equation. We have used our576

collocation method to solve the 3D Poisson equation and the tested 10 smooth and577

non-smooth solution over various domains. For convenience, we only show a few578

computational results to demonstrate that our collocation method works very well.579

More detail can be found in [14]. Our testing smooth solutions are as follows:580

u3ds1 = sin(2x+ 2y) tanh(
xz

2
)

u3ds2 = e
x2+y2+z2

2

u3ds3 = cos(xyz) + cos(π(x2 + y2 + z2))

u3ds4 =
1

1 + x2 + y2 + z2

u3ds5 = sin(π(x2 + y2 + z2)) + 1

u3ds6 = 10e−x
2−y2−z2

u3ds7 = sin(2πx) sin(2πy) sin(2πz)
u3ds8 = z tanh((− sin(x) + y2))
u3dns1 = |x2 + y2 + z2|0.8
u3dns2 = (xe1−|x| − x)(ye1−|y| − y)(ze1−|z| − z).581

The maximum errors, mean squared errors of approximate spline solutions against582

the exact solution are computed based on 501× 501× 501 equally-spaced points over583
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Domain Number of Number of Average time Average time for
vertices triangles for AWL method LL method (part 2)

Gear 274 426 4.7290e+01 9.3832e-01
Flower with a hole 297 494 1.7610e+01 1.0522e+00

Montreal 549 870 2.6441e+01 1.5352e+00
Circle with 3 holes 525 895 3.0227e+01 1.6433e+00

Table 6
The number of vertices, triangles and the averaged time for solving the 2D Poisson equation

for each domain in Figure 1.

L shaped domain Human head Torus Letter B
Solution RMSE error RMSE error RMSE error RMSE error

u3ds1 3.15e-11 9.69e-11 5.83e-12 6.45e-11 1.79e-10 2.04e-09 6.86e-12 4.11e-11

u3ds2 8.21e-10 2.15e-09 3.45e-10 2.95e-09 1.14e-08 8.50e-08 4.50e-11 6.24e-10

u3ds3 7.33e-10 2.37e-09 7.26e-10 8.21e-09 5.34e-09 3.31e-08 3.96e-09 3.48e-07

u3ds4 3.89e-10 1.06e-09 2.68e-10 2.76e-09 3.57e-09 2.29e-08 7.89e-11 1.36e-09

u3ds5 1.02e-09 2.88e-09 9.75e-10 5.78e-09 1.33e-08 8.95e-08 3.64e-09 4.16e-07

u3ds6 3.86e-09 1.10e-08 2.35e-09 2.47e-08 3.39e-08 1.90e-07 3.65e-10 2.63e-09

u3ds7 1.76e-09 1.49e-08 4.19e-08 5.21e-07 1.01e-07 2.34e-06 4.86e-08 4.39e-07

u3ds8 5.89e-11 1.94e-10 2.69e-11 1.66e-10 6.42e-10 4.32e-09 8.16e-11 1.52e-09

u3dns1 1.15e-06 9.60e-05 3.82e-06 6.23e-04 5.07e-09 3.22e-08 7.98e-07 1.34e-04

u3dns2 5.49e-06 9.37e-05 2.30e-04 4.84e-03 1.09e-04 1.58e-03 5.51e-06 2.06e-04

Table 7
The RMSE and the maximum errors of spline solutions for the 3D Poisson equation over the

four domains in Figure 2 when r = 1 and D = 9.

the different domains shown Figure 2.584

We choose collocation points to create 2m×m matrix K, where m is the number585

of Bernstein basis functions, i.e. the dimension of spline space S−1
D (4) and used586

the iterative method to find the numerical solutions. We tested 10 functions over the587

domains in Figure 2 and present the maximum errors, root mean square error(RMSE)588

are presented in Table 7. We also compare the AWL method and LL method for the589

numerical solution of the 3D Poisson equation. See numerical results in Table 8 and 9.590

591

7. Numerical Results for General Second Order Elliptic PDE. We shall592

present computational results for 2D general second order PDEs and 3D general593

second order PDEs separately in the following two subsections. In each section, we594

first present the computational results from the spline based collocation method to595

demonstrate the accuracy the method can achieve. Then we present a comparison of596

our collocation method with the numerical method based on [12]. For convenience,597

we shall call our spline based collocation method the LL method and the numerical598

method in [12] the LW method.599

7.1. Numerical examples for 2D general second order equations. We600

have used the same triangulations over various bounded domains as shown in Figure601

1 and tested the same solutions which we used for the Poisson equation for the general602

second order equation to see the accuracy that the LL method can have. The maxi-603

mum errors and the root mean squared error(RMSE) of approximate spline solutions604

against the exact solution are given in Tables in this section. The maximum errors are605

computed based on 501 × 501 equally-spaced points fell inside the different domains606

in Figure 1. We chose additional collocation points to create 2m×m matrix K, where607

m is the number of Bernstein basis functions (the dimension of spline space S−1
D (4)608

and used the similar iterative method in [1] to find the numerical solutions.609
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L shaped domain Human head
AWL LL AWL LL

Solution RMSE error RMSE error RMSE error RMSE error

u3ds1 8.64e-12 2.07e-10 3.15e-11 9.69e-11 2.83e-09 7.56e-07 5.83e-12 6.45e-11

u3ds2 2.54e-10 4.92e-09 8.21e-10 2.15e-09 1.61e-08 2.72e-06 3.45e-10 2.95e-09

u3ds3 1.37e-10 3.51e-09 7.33e-10 2.37e-09 6.44e-08 1.21e-05 7.26e-10 8.21e-09

u3ds4 1.16e-10 2.09e-09 3.89e-10 1.06e-09 1.83e-08 2.72e-06 2.68e-10 2.76e-09

u3ds5 2.70e-10 3.89e-09 1.02e-09 2.88e-09 6.09e-08 8.43e-06 9.75e-10 5.78e-09

u3ds6 8.56e-10 1.04e-08 3.86e-09 1.10e-08 1.31e-07 1.35e-05 2.35e-09 2.47e-08

u3ds7 2.61e-10 2.90e-09 1.76e-09 1.49e-08 1.88e-08 2.72e-06 4.19e-08 5.21e-07

u3ds8 1.79e-11 4.96e-10 5.89e-11 1.94e-10 8.16e-09 3.41e-07 2.69e-11 1.66e-10

u3dns1 5.86e-05 3.61e-03 1.15e-06 9.60e-05 3.63e-08 2.67e-06 3.82e-06 6.23e-04

u3dns2 1.67e-03 3.87e-03 5.49e-06 9.37e-05 3.42e-04 2.49e-03 2.30e-04 4.84e-03

Table 8
The maximum errors of spline solutions for the 3D Poisson equation over the four domains in

Figure 2 when r = 1 and D = 9 for the AWL method and LL method.

Torus Letter B
AWL LL AWL LL

Solution RMSE error RMSE error RMSE error RMSE error

u3ds1 3.55e-09 5.74e-07 1.79e-10 2.04e-09 4.35e-11 1.43e-09 6.86e-12 4.11e-11

u3ds2 2.92e-08 1.98e-06 1.14e-08 8.50e-08 3.71e-10 5.42e-09 4.50e-11 6.24e-10

u3ds3 1.07e-07 8.90e-06 5.34e-09 3.31e-08 6.08e-10 4.45e-08 3.96e-09 3.48e-07

u3ds4 1.88e-08 1.46e-06 3.57e-09 2.29e-08 9.06e-11 1.11e-09 7.89e-11 1.36e-09

u3ds5 8.25e-08 5.50e-06 1.33e-08 8.95e-08 5.72e-10 5.57e-08 3.64e-09 4.16e-07

u3ds6 2.50e-07 1.80e-05 3.39e-08 1.90e-07 7.19e-10 1.36e-08 3.65e-10 2.63e-09

u3ds7 8.07e-08 5.83e-06 1.01e-07 2.34e-06 4.95e-09 1.15e-07 4.86e-08 4.39e-07

u3ds8 8.16e-09 7.24e-07 6.42e-10 4.32e-09 6.73e-11 1.77e-09 8.16e-11 1.52e-09

u3dns1 3.92e-08 2.67e-06 5.07e-09 3.22e-08 3.24e-04 9.12e-03 7.98e-07 1.34e-04

u3dns2 6.30e-04 2.29e-03 1.09e-04 1.58e-03 1.18e-03 3.97e-03 5.51e-06 2.06e-04

Table 9
The maximum errors and root mean square error(RMSE) of spline solutions for the 3D Poisson

equation over the four domains in Figure 2 when r = 1 and D = 9 for the AWL method and LL
method.

7.1.1. 2D general second order equations with smooth coefficients. We610

first tested a 2nd order elliptic equation with smooth coefficients with a11 = x2 +611

y2, a12 = cos(xy), a21 = exy, a22 = x3 + y2 − sin(x2 + y2), b1 = 3 cos(x)y2, b2 =612

e−x
2−y2

, c = 0. Using these smooth coefficients, we have tested 2 non-smooth solutions613

uns1, uns2, and 8 smooth solutions us1−us8 for our four domains used in the previous614

section. And the errors of the solutions for the four domains in Figure 1 is presented615

in Table 11. The numerical results show that the LL method works very well. In616

Table 12, we compare with the LW method and see that the LL method produces617

more accurate results.618

Finally, Table 13 shows the averaged computational time for the LL method is619

shorter than the LW method. Together with the computational results in Table 12,620

we conclude that the LL method is more effective and efficient than the LW method.621

622

7.1.2. 2D general second order equations with non-smooth coefficients.623

Example 1. In [18], the researchers experimented their numerical methods for624

the second order PDE as follows:625

2∑
i,j=1

(1 + δij)
xi
|xi|

xj
|xj |

uxixj = f in Ω, u = 0 on ∂Ω,626
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Domain Number of Number of Average time Average time
vertices tetrahedrons for AWL method for LL method

L-shaped domain 325 1152 6.9400e+02 9.6791e+01
Human head 913 1588 3.7610e+03 1.0729e+02

Torus 773 2911 4.5198e+03 4.5197e+02
Letter B 299 816 2.6495e+02 3.7484e+01

Table 10
The number of vertices, tetrahedrons and the averaged time for solving the 3D Poisson equations

for each domain in Figure 2.

Gear Flower with a hole Montreal Circle with 3 holes
Solns RMSE error RMSE error RMSE error RMSE error

us1 3.48e-10 1.08e-09 2.43e-10 1.52e-09 8.13e-11 3.87e-10 8.84e-11 3.80e-10
us2 1.79e-08 6.07e-08 1.65e-06 9.04e-06 1.81e-10 8.90e-10 4.61e-11 1.65e-10
us3 1.21e-10 4.80e-10 3.61e-11 1.95e-10 9.91e-11 5.30e-10 2.67e-11 1.12e-10
us4 1.45e-08 5.69e-08 1.02e-06 4.87e-06 7.80e-11 3.59e-10 5.40e-11 1.97e-10
us5 1.87e-07 7.00e-07 1.94e-06 1.38e-05 1.94e-11 8.54e-11 9.65e-11 3.67e-10
us6 3.00e-08 1.75e-07 4.44e-06 3.27e-05 2.91e-12 9.90e-12 2.97e-11 1.37e-10
us7 2.54e-11 7.55e-11 6.50e-12 2.66e-11 1.42e-11 6.08e-11 4.15e-12 1.55e-11
us8 1.52e+00 5.85e+00 9.77e+00 5.41e+01 9.61e-08 9.79e-07 2.66e-03 1.19e-02
uns1 2.43e-05 1.83e-03 1.01e-10 4.22e-10 1.55e-06 9.63e-05 2.05e-04 9.33e-03
uns2 1.22e-04 8.20e-04 1.97e-04 1.33e-03 5.30e-06 4.22e-05 3.87e-05 2.92e-04

Table 11
The maximum errors and RMSE of spline solutions for general second order elliptic equations

with smooth coefficients over the each domain in Figure 1 when r = 2 and D = 8.

where Ω = (−1, 1)2 and the solution u is u(x, y) = (xe1−|x| − x)(ye1−|y| − y) which627

is one of our testing functions. It is easy to see those coefficients satisfy the Cordes628

condition629 ∑d
i,j=1(ai,j)

2

(
∑2
i=1 aii)

2
=

22 + 1 + 1 + 22

(2 + 2)2
=

10

16
≤ 1

2− 1 + ε
630

when ε = 3
5 . This equation was also numerically experimented in [12] and [19].631

Let us test our method on this 2nd order elliptic equation with non-smooth coef-632

ficients for the 2 non-smooth solutions uns1, uns2, and 8 smooth solutions us1 − us8633

over the four domains used in the previous section. We use bivariate splines of degree634

D = 8 and smoothness r = 2. And the maximum errors and RMSE of the solutions635

for the four domains in Figure 1 are presented in Table 14. Table 15 shows that LL636

method produces solutions with better accuracy than LW method over these 4 domains.637

Example 2. The second example in the paper [18] is another second order PDE:638

2∑
i,j=1

(δij +
xixj
|x|2

)uxixj = f in Ω, u = 0 on ∂Ω,639

where Ω = (0, 1)2 and the solution u is u(x, y) = |x2 +y2|α2 which is on the list of our640

testing functions. Then those coefficients satisfy the Cordes condition when ε = 4
5 .641

Similar to Example 1, we also tested solving the PDE by using the 10 testing642

functions used before with D = 8 and r = 2. See Table 16 for the maximum and643

RMSE errors. Table 17 shows that the LL method produces numerical solutions with644

a better accuracy than that of the LW method over these 4 domains.645

7.1.3. Numerical Results for 3D General Second Order Elliptic Equa-646

tions. In this subsection, we extend the PDE in Example 1–Example 2 to the 3D647
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Gear Flower with a hole Montreal Circle with 3 holes
Solns LW LL LW LL LW LL LW LL

us1 1.28e-06 1.08e-09 8.93e-08 1.52e-09 2.21e-07 3.87e-10 1.36e-08 3.80e-10
us2 3.88e-06 6.07e-08 8.36e-07 9.04e-06 4.95e-07 8.90e-10 1.60e-07 1.65e-10
us3 5.98e-07 4.80e-10 2.10e-08 1.95e-10 2.48e-07 5.30e-10 1.32e-08 1.12e-10
us4 7.97e-06 5.69e-08 1.09e-06 4.87e-06 2.45e-07 3.59e-10 1.77e-07 1.97e-10
us5 9.51e-05 7.00e-07 3.50e-06 1.38e-05 6.97e-08 8.54e-11 3.80e-07 3.67e-10
us6 2.96e-05 1.75e-07 1.43e-07 3.27e-05 8.09e-09 9.90e-12 1.77e-08 1.37e-10
us7 1.90e-08 7.55e-11 4.16e-09 2.66e-11 3.51e-08 6.08e-11 1.86e-09 1.55e-11
us8 1.17e+00 5.85e+00 1.75e+00 5.41e+01 6.18e-07 9.79e-07 5.80e-03 1.19e-02
uns1 9.85e-02 1.83e-03 9.24e-04 4.22e-10 6.91e-05 9.63e-05 8.07e-04 9.33e-03
uns2 4.95e-02 8.20e-04 1.02e-02 1.33e-03 1.85e-04 4.22e-05 1.80e-03 2.92e-04

Table 12
The maximum errors of spline solutions for general elliptic equations with smooth coefficients

over the four domains studied before when r = 2 and D = 8 for the LW method and the LL method.

Domain Number of Number of Average time Average time
vertices triangles for LW method for Part 2 of LL method

Gear 274 426 5.6646e+02 1.0355e+01
Flower with a hole 297 494 8.3236e+02 1.1792e+01

Montreal 549 870 1.9026e+03 2.5606e+01
Circle with 3 holes 525 895 4.4387e+03 2.6831e+01

Table 13
The number of vertices, triangles and the averaged time in seconds for solving 2D general second

order equations over the four domains in Figure 1 by the LW and LL methods.

Gear Flower with a hole Montreal Circle with 3 holes
Solution RMSE error RMSE error RMSE error RMSE error

us1 3.28e-10 7.65e-10 1.40e-11 4.90e-11 4.48e-10 1.50e-09 2.00e-11 7.49e-11
us2 1.29e-09 1.24e-08 9.50e-08 9.48e-07 9.31e-10 2.76e-09 2.78e-11 9.55e-11
us3 5.39e-11 2.76e-10 9.62e-12 4.66e-11 5.99e-10 2.11e-09 9.71e-12 3.21e-11
us4 1.37e-09 9.85e-09 1.17e-07 1.01e-06 1.21e-09 4.32e-09 4.66e-11 1.45e-10
us5 2.88e-08 9.74e-08 9.10e-08 3.18e-07 1.53e-10 5.38e-10 2.04e-11 6.88e-11
us6 5.71e-10 7.98e-09 8.40e-08 6.89e-07 5.32e-11 1.94e-10 8.36e-12 3.05e-11
us7 2.56e-11 1.08e-10 6.61e-13 2.67e-12 2.18e-11 1.88e-10 1.88e-12 6.52e-12
us8 6.49e-02 4.18e-01 4.23e-01 1.75e+00 7.14e-08 5.90e-07 1.43e-04 2.22e-03
uns1 1.74e-03 9.09e-03 3.61e-11 2.63e-10 1.06e-03 4.68e-03 2.33e-05 2.58e-04
uns2 5.50e-04 1.73e-03 2.87e-04 1.07e-03 7.09e-05 2.90e-04 8.11e-05 2.94e-04

Table 14
The maximum errors of spline solutions for general elliptic equations with non-smooth coeffi-

cients in Example 1 over the four domains in Figure 2 when r = 2 and D = 8.

Gear Flower with a hole Montreal Circle with 3 holes
Method LW LL LW LL LW LL LW LL

us1 5.69e-05 7.65e-10 1.18e-04 4.90e-11 3.93e-08 1.50e-09 9.11e-06 7.49e-11
us2 8.94e-04 1.24e-08 1.99e-03 9.48e-07 1.61e-06 2.76e-09 1.39e-04 9.55e-11
us3 1.25e-04 2.76e-10 4.20e-05 4.66e-11 2.89e-07 2.11e-09 1.77e-05 3.21e-11
us4 1.72e-03 9.85e-09 1.97e-03 1.01e-06 3.92e-07 4.32e-09 2.19e-04 1.45e-10
us5 9.71e-03 9.74e-08 4.53e-03 3.18e-07 1.14e-02 5.38e-10 2.83e-02 6.88e-11
us6 1.12e-04 7.98e-09 5.08e-05 6.89e-07 2.51e-08 1.94e-10 1.48e-05 3.05e-11
us7 1.16e-05 1.08e-10 4.77e-06 2.67e-12 1.90e-05 1.88e-10 5.02e-05 6.52e-12
us8 7.90e-01 4.18e-01 1.07e+00 1.75e+00 2.22e-02 5.90e-07 6.34e-02 2.22e-03
uns1 6.97e-03 9.09e-03 3.92e-05 2.63e-10 1.19e-03 4.68e-03 3.72e-04 2.58e-04
uns2 8.17e-03 1.73e-03 1.78e-03 1.07e-03 6.78e-04 2.90e-04 1.61e-03 2.94e-04

Table 15
The maximum errors of spline solutions for general elliptic equations with non-smooth coeffi-

cients in Example 1 over the four domains when r = 2 and D = 8 for the LW method and the LL
method.
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Gear Flower with a hole Montreal Circle with 3 holes
Solution RMSE error RMSE error RMSE error RMSE error

us1 1.74e-10 4.02e-10 8.49e-12 3.64e-11 1.24e-10 4.43e-10 1.19e-11 4.18e-11
us2 1.39e-09 1.07e-08 1.03e-07 9.29e-07 4.05e-10 1.25e-09 5.49e-12 1.89e-11
us3 1.29e-10 5.09e-10 9.32e-12 3.66e-11 3.03e-10 9.81e-10 3.04e-12 1.01e-11
us4 1.09e-09 9.22e-09 1.11e-07 9.37e-07 1.21e-10 4.47e-10 6.32e-12 2.44e-11
us5 1.75e-08 6.64e-08 1.06e-07 3.30e-07 1.02e-10 3.34e-10 1.03e-11 3.25e-11
us6 5.55e-10 9.07e-09 8.05e-08 4.91e-07 1.12e-11 5.97e-11 2.83e-12 9.33e-12
us7 5.16e-12 2.15e-11 7.14e-13 2.41e-12 2.46e-11 8.34e-11 8.19e-13 2.88e-12
us8 6.15e-02 3.65e-01 4.60e-01 2.05e+00 2.07e-08 3.67e-07 1.69e-04 3.00e-03
uns1 1.75e-03 9.35e-03 3.12e-11 1.89e-10 1.12e-04 7.52e-04 2.34e-05 3.47e-04
uns2 1.23e-04 5.80e-04 8.48e-05 5.70e-04 3.53e-06 1.60e-05 1.05e-05 1.15e-04

Table 16
The maximum errors and RMSE of spline solutions for general elliptic equations with non-

smooth coefficients in Example 2 over the four domains when r = 2 and D = 8.

Gear Flower with a hole Montreal Circle with 3 holes
Method LW LL LW LL LW LL LW LL

us1 2.11e-06 4.02e-10 1.19e-06 3.64e-11 4.55e-10 4.43e-10 3.61e-06 4.18e-11
us2 2.36e-05 1.07e-08 7.82e-06 9.29e-07 1.81e-08 1.25e-09 1.33e-05 1.89e-11
us3 4.98e-06 5.09e-10 2.60e-07 3.66e-11 3.83e-09 9.81e-10 1.79e-06 1.01e-11
us4 6.50e-06 9.22e-09 1.20e-05 9.37e-07 6.68e-10 4.47e-10 8.93e-06 2.44e-11
us5 4.32e-02 6.64e-08 1.37e-05 3.30e-07 1.35e-03 3.34e-10 5.46e-04 3.25e-11
us6 5.63e-03 9.07e-09 6.38e-07 4.91e-07 1.00e-04 5.97e-11 2.62e-05 9.33e-12
us7 6.57e-05 2.15e-11 7.89e-08 2.41e-12 1.90e-06 8.34e-11 7.68e-07 2.88e-12
us8 4.54e-01 3.65e-01 8.85e-01 2.05e+00 4.51e-03 3.67e-07 2.78e-03 3.00e-03
uns1 7.18e-03 9.35e-03 4.15e-07 1.89e-10 1.03e-03 7.52e-04 3.22e-04 3.47e-04
uns2 6.99e-03 5.80e-04 9.81e-04 5.70e-04 1.40e-04 1.60e-05 3.86e-04 1.15e-04

Table 17
The maximum errors of spline solutions for general elliptic equations with non-smooth coeffi-

cients in Example 2 over the four domains when r = 2 and D = 8 for the LW method and the LL
method.

setting and use our collocation method based on trivariate splines to find spline ap-648

proximation.649

Example 3. We tested a 2nd order elliptic equation (1.2) with smooth PDE co-650

efficients a11 = x2 + y2, a22 = cos(xy − z), a33 = exp( 1
x2+y2+z2+1 ), a12 + a21 =651

x2 − y2 − z, a23 + a32 = cos(xy − z) sin(x − y), a13 + a31 = 1
y2+z2+1 , b1 = 0, b2 =652

−1, b3 = tan−1(x3 − y2 + cos(z)), c = x + y + z, where a12 = a21, a32 = a23 and653

a13 = a31. The testing functions are the 2 not very smooth solutions uns1, uns2, and654

8 smooth solutions us1− us8 over the four domains used in the previous section. And655

the maximum and RMSE errors of the solutions for the four domains in Figure 2 are656

reported in Table 18.657

Example 4. We next test a 3D general second order equations with nonsmooth658

PDE coefficients:659

3∑
i,j=1

(1 + δij)
xi
|xi|

xj
|xj |

uxixj = f in Ω, u = 0 on ∂Ω660

which is an extension of one of the examples studied in [18]. These PDE coefficients
satisfies the Cordes condition∑3

i,j=1(ai,j)2

(
∑3
i=1 a

ii)2
=

22 + 1 + 1 + 22 + 1 + 1 + 22 + 1 + 1

(2 + 2 + 2)2
=

18

64
≤ 1

3− 1 + ε
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L shaped domain Human head Torus Letter B
Solution RMSE error RMSE error RMSE error RMSE error

us1 2.08e-11 1.32e-10 5.04e-12 3.70e-11 1.48e-11 1.53e-10 3.07e-12 3.19e-11
us2 5.07e-10 3.02e-09 6.98e-10 4.07e-09 7.53e-10 4.77e-09 3.80e-11 3.00e-10
us3 2.88e-10 1.85e-09 1.73e-09 1.52e-08 1.72e-09 2.43e-08 3.41e-08 4.85e-07
us4 2.23e-10 1.24e-09 7.73e-10 6.34e-09 3.83e-10 2.17e-09 2.63e-10 4.04e-09
us5 6.73e-10 3.93e-09 1.20e-09 8.54e-09 1.83e-09 3.66e-08 1.58e-08 3.89e-07
us6 1.55e-09 9.42e-09 5.62e-09 4.81e-08 4.55e-09 2.25e-08 1.73e-10 1.47e-09
us7 4.00e-09 2.13e-07 1.12e-07 9.35e-07 9.21e-08 3.70e-06 8.26e-08 1.02e-06
us8 1.81e-11 1.04e-10 3.76e-11 2.45e-10 5.52e-11 3.99e-10 6.43e-11 1.46e-09
uns1 5.27e-06 1.64e-04 1.23e-05 4.15e-04 8.61e-10 6.61e-09 1.03e-05 2.26e-04
uns2 6.99e-05 1.05e-03 1.86e-04 2.62e-03 1.25e-04 1.75e-03 3.55e-05 4.45e-04

Table 18
The maximum errors and the root mean square error(RMSE) of spline solutions of the general

elliptic 2nd order equation in Example 3 with smooth coefficients over the four domains in Figure 2
when r = 1 and D = 9.

L shaped domain Human head Torus Letter B
Solution RMSE error RMSE error RMSE error RMSE error

us1 3.05e-06 1.14e-04 1.75e-12 1.97e-11 1.82e-05 2.02e-04 1.94e-05 6.21e-04
us2 2.92e-05 6.98e-04 1.86e-10 1.31e-09 4.55e-04 3.77e-03 1.26e-04 3.29e-03
us3 2.08e-04 6.26e-03 3.67e-10 4.06e-09 3.54e-03 2.74e-02 7.09e-04 2.30e-02
us4 1.17e-05 3.28e-04 1.23e-10 8.40e-10 1.20e-04 9.87e-04 1.88e-05 4.84e-04
us5 1.52e-04 4.03e-03 6.92e-10 4.24e-09 2.81e-03 2.73e-02 6.15e-04 2.10e-02
us6 1.45e-04 3.72e-03 1.21e-09 1.08e-08 2.32e-03 1.84e-02 2.58e-04 5.63e-03
us7 1.96e-09 1.67e-08 4.42e-08 5.16e-07 1.04e-07 2.53e-06 4.18e-08 4.90e-07
us8 6.75e-06 2.59e-04 5.38e-12 3.93e-11 4.79e-05 4.96e-04 2.02e-05 5.46e-04
uns1 2.46e-05 5.11e-04 1.73e-05 1.12e-03 4.55e-04 3.72e-03 5.06e-05 7.59e-04
uns2 6.88e-13 3.63e-12 9.30e-05 1.78e-03 1.07e-04 1.69e-03 1.08e-13 8.11e-13

Table 19
The maximum errors and the RMSE of spline solutions for the general elliptic 2nd order

equations in Example 4 with non-smooth coefficients over the four domains in Figure 2 when r = 1
and D = 9.

when ε ≤ 1. We tested our splined based collocation method using the 2 not very661

smooth solutions uns1, uns2, and 8 smooth solutions from us1 to us8 given in the662

previous section. over the four domains used before with D = 9 and r = 1. And the663

errors of the solutions for the four domains in Figure 2 are presented in Table 19.664

Example 5. We consider the second example in [18] and extend it to the 3D665

setting:666

3∑
i,j=1

(δij +
xixj
|x|2

)uxixj = f in Ω, u = 0 on ∂Ω667

Note that these PDE coefficients satisfy the Cordes condition when ε = 4
5 . We use our668

collocation method and tested 2 not-very-smooth solutions uns1, uns2, and 8 smooth669

solutions us1 − −us8 over the 4 domains used before with D = 9 and r = 1. The670

maximum and RMSE errors are presented in Table 20.671

From Tables 18–20, we can see that the collocation method works very well in672

the 3D setting.673
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