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A MULTIVARIATE SPLINE BASED COLLOCATION METHOD FOR
NUMERICAL SOLUTION OF PARTIAL DIFFERENTIAL
EQUATIONS*

MING-JUN LAIT AND JINSIL LEE!

Abstract. We propose a collocation method based on multivariate polynomial splines over
triangulation or tetrahedralization for numerical solution of partial differential equations. We start
with a detailed explanation of the method for the Poisson equation and then extend the study to
the second order elliptic PDE in non-divergence form. We shall show that the numerical solution
can approximate the exact PDE solution very well. Then we present a large amount of numerical
experimental results to demonstrate the performance of the method over the 2D and 3D settings.
In addition, we present a comparison with the existing multivariate spline methods in [1] and [12]
to show that the new method produces a similar and sometimes more accurate approximation in a
more efficient fashion.
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1. Introduction. In this paper, we propose and study a new collocation method
based on multivariate splines for numerical solution of partial differential equations
over polygonal domain in R? for d > 2. Instead of using a second order elliptic
equation in divergence form:

(1.1)

— Y o A (@ (@) g2u) + S V(@) gu+ el = f, weQCRY
U =g, on0f)

which is often used for various finite element methods, we discuss in this paper a more
general form of second order elliptic PDE in non-divergence form:
d ij o 8 d i )
(12) Zi,j:l a”(x)aixiaizjuﬂ—zi:l bz(x)afxlu—l—c(x)u = f7 T € Q C Rd,
U =g, on 09,

where the PDE coefficient functions a/(z),4,j5 = 1, ,d are in L>(Q) and satisfy
the standard elliptic condition. In addition, when d > 2, we shall assume the so-called
Cordés condition, see (4.3) in a later section or see [18]. Numerical solutions to the
2nd order PDE in the non-divergence form have been studied extensively recently.
See some studies in [18], [12], [15], [19], [17], and etc.. The method in this paper
provides a new and more effective approach.

In this paper, we shall mainly use the Sobolev space H2(f2) which is dense in
H(Q). Tt is known when  is convex (cf. [6]), the solution to the Poisson equation
will be H2(€2). Recently, the researchers in [5] showed that when (2 has an uniformly
positive reach, the solution of (1.2) with zero boundary condition will be in H?(f2).
Domains of uniformly positive reach, e.g. star-shaped domain and domains with holes
are shown in [5]. Many more domains than convex domains can have H? solution.
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2 MING-JUN LAI AND JINSIL LEE

This enables us to consider the idea of collocation method. For any u € H2(f2), we
use the standard norm

d

0
(1.3) llull g2 = |lullL2) + | Vull L2 ) + H%%UHH(Q)
ij=1 Tt
for all w on H?(f2) and the semi-norm
d
o 0
1.4 = — )
(1.4) ul i;I H(‘)xi 8%UHL2(Q)

Since we will use multivariate spline functions to approximate the solution u € H?(2),
we use C" smooth spline functions with » > 1 and the degree D of splines sufficiently
large satisfying D > 3r + 2 in R? and D > 6r + 3 in R3. Indeed, how to use such
spline functions has been explained in [1], [16], and [17], and etc..

Certainly, the PDE in (1.2) includes the standard Poisson equation as a special
case.

_ _ d
(1.5) { A f, e CRY

U =g, on 0.

For convenience, we shall begin with this equation to explain our collocation method
and establish the method by showing that the numerical solution is convergent to the
true solution. As mentioned above, we shall use C" spline functions with r > 1 to do
so. In addition, we shall use the so-called domain points (cf. [10]) to be the collocation
points (they will be explained in the next section). For simplicity, let us say s is a
C? spline of degree D defined on a triangulation A of Q and &;,i = 1,--- , N are the
domain points of A and degree D' > 0, where D’ may be different from D. Our
multivariate spline based collocation method is to seek a spline function s satisfying

{ —As(&) = f(&), &eQCRY
s(&)  =g(&), & € o

As a multivariate spline space (to be defined in the next section) is a linear vector
space which is spanned by a set of basis functions. Since it is difficult to construct
locally supported basis functions in C"(Q2) with r > 1, we will begin with discontinuous
spline space s € Sgl(A) and then add the smoothness conditions which are written
as Hs = 0, where s is the coefficient vector of s and H is the matrix consisting of all
smoothness condition across each interior edge of a triangulation/tetrahedralization.
We mainly look for the coefficient vector s such that the spline s with coefficient
vector s satisfies (1.6). Clearly, (1.6) leads to a linear system which may not have a
unique solution. It may be an over-determined linear system if D’ > D or an under-
determined linear system if D’ < D. Our method is to use a least squares solution if
the system is overdetermined or a sparse solution if the system is under-determined
(cf. [13]).

To establish the convergence of the collocation solution s as the size of A goes to
zero, we define a new norm ||ul|;, on H?(Q) for the Poisson equation as follows.

(1.6)

(1.7) lulle = [|Au]2@) + llull200)-

We mainly show that the new norm is equivalent on the standard norm on H?((2).
That is,
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SPLINE COLLOCATION METHOD 3

THEOREM 1.1. Suppose  C R? be a bounded domain. Suppose the closure of Q
is a multiple-strictly-star-shaped domain (see Definition 2.4). Then there exist two
positive constants A and B such that

(1.8) Allullzzz < |lullz < Bllullge,  Vu € H*(Q).

See the proof of Theorem 3.3 in a later section. Letting u € H?(£2) be the solution of
(1.5) and us be the spline solution of (1.6), we use the first inequality above to have

Al = w2 < = ] .

It can be seen from (1.6) that [Ju — usl|7 = [(A(u — us))?de + [ [us — ul* =
Jo(f+Aus)?de+ [, [us—g|* will be small for a sufficiently large amount of collocation
points and distributed evenly, our Theorem 1.1 implies that ||u — us||gz is small.
Furthermore, we will show

(1.9)  llu = uslr2(e) < CIAPlu = usllz and [V (u — us) | r2() < ClAJu — us

for a positive constant C, where |A| is the size of triangulation or tetrahedralization
A under the assumption that u —us = 0 on 9€2. These will establish the multivariate
spline based collocation method for the Poisson equation.

In general, we let £ be the PDE operator in (1.10). Note that we begin with the
second order term of the PDE just for convenience.

d ij a 0 _ d
(1.10) Zw:laj(z)axia—xju =f, xe€QCRY
U =g, on 09,

We shall similarly define a new norm associated with the PDE (1.10):

(1.11) lulle = 1£u)llL2@) + lullz2 (o0)-

Similarly we will show the following.

THEOREM 1.2. Suppose Q C R? be a bounded domain. Suppose the closure of
Q is of uniformly positive reach rq > 0 and a multiple strictly star-shaped domain.
Suppose that the second order partial differential equation in (1.10) is elliptic, i.e.
satisfying (4.2) and satisfies the Cordés condition if d > 2. There exist two positive
constants A1 and By such that

(112) Adllallze < Julle < Billullse,  Va € H2(Q).

See a proof in a section later. Similar to the Poisson equation setting, this result will
enable us to establish the convergence of the spline based collocation method for the
second order elliptic PDE in non-divergence form. Also, we will have the improved
convergence similar to (1.9).

There are a few advantages of the collocation methods over the traditional finite
element methods, discontinuous Galerkin methods, virtual element methods, and etc..
For example, no numerical quadrature is needed for the computation. For another
example, it is more flexible to deal with the discontinuity arising from the PDE
coefficients as one may easily adjust the locations of some collocation points close to
the discontinuity. A clear advantage of multivariate splines is that one can increase
the accuracy of the approximation by increasing the degree of splines and/or the
number of collocation points which can be cheaper than finding the solution over a
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4 MING-JUN LAI AND JINSIL LEE

uniform refinement of the underlying triangulation or tetrahedralization within the
memory budget of a computer.

We shall provide many numerical results in 2D and 3D to demonstrate how well
the spline based collocation methods can perform. Mainly, we would like to show
the performance of solutions under the various settings: (1) the PDE coefficients are
smooth or not very smooth, (2) the PDE solutions are smooth or not very smooth,
(3) the domain of interest is star-shaped or non-star-shaped, even very complicated
domain such such the human head used in the numerical experiment in this paper,
and (4) the dimension d can be 2 or 3. In particular, using splines of high degree
enables us to find a numerical solution with high accuracy. We are not able to show
the rate of convergence in terms of the size of triangulation. Instead, we present the
accuracy of spline solutions for various kinds of testing functions. In addition, we shall
compare with the existing methods in [1] and [12] to demonstrate that the multivariate
spline based collocation method can be better in the sense that it is more accurate
and more efficient under the assumption that the associated collocation matrices are
generated beforehand. Finally, we remark that we have extended our study to the
biharmonic equation, i.e. Stokes equations and Navier-Stokes equations as well as the
Monge-Ampére equation. These will leave to a near future publication, e.g. [14].

2. Preliminary on Multivariate Splines and the Trace Inequality. In
this section, we first quickly summarize the essentials of multivariate splines and then
present an elementary discussion on the trace inequality which will be used in later
sections.

2.1. Multivariate Splines. We begin with bivariate spline functions. For any
polygonal domain  C R? with d = 2, let A := {T},---,T,,} be a triangulation of
Q which is a collection of triangles and V be the set of vertices of A. For a triangle
T = (v1,v2,v3) € §, we define the barycentric coordinates (b1, ba,bs) of a point
(z,y) € Q. These coordinates are the solution to the following system of equations

b1 +ba+0b3=1
b1v1,g +bovo g +b3v3 . =T
b1v1,y + bavay + b3vz y =y
and are nonnegative if (z,y) € T. We use the barycentric coordinates to define the
Bernstein polynomials of degree D:

T

which form a basis for the space Pp of polynomials of degree D. Therefore, we can
represent all s € Pp in B-form:

T
sle = Y B VT € A,
i+j+k=D

where the B-coefficients ¢; j, are uniquely determined by s. Moreover, for given
T = (v1,v9,v3) € A,we define the associated set of domain points to be

i1 + jus + kv
(2.1) Dpr1 = {%}Zﬁrjﬁrk:D/‘

We define the spline space S;'(A) := {s|r € Pp,T € A}, where T is a triangle
in a triangulation A of 2. We use this piecewise polynomial space to define the space
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SPLINE COLLOCATION METHOD 5

7 :=C"(Q2) NS5 (A). This can be achieved through the smoothness conditions on
the coefficients of s € SBl(A). Let s be the coeflicient vector of s and H be the
matrix which consists of the smoothness conditions across each interior edge of A. It
is known that Hs = 0 if and only if s € C"(Q) (cf. [10]).

Computations involving splines written in B-form can be performed easily accord-
ing to [1] and [16]. In fact, these spline functions have numerically stable, closed-form
formulas for differentiation, integration, and inner products. If D > 3r + 2, spline
functions on quasi-uniform triangulations have optimal approximation power.

LEMMA 2.1. ([Lai and Schumaker, 2007[10]]) Let k > 3r+2 with r > 1. Suppose
A is a quasi-uniform triangulation of Q. Then for every u € W(f“(Q), there exists a
quasi-interpolatory spline s, € S} (A) such that

102 Dy (u = su)llg < CIAF P lulis g0

for a positive constant C dependent on u,r, k and the smallest angle of 2\, and for all
0<a+p <k with

1
[u|k,q,0 = ( Z HDgDZ“H%q(Q))q'
a+b=k

Similarly, for trivariate splines, let Q@ C R? and A be a tetrahedralization of
Q. We define a trivariate spline just like bivariate splines by using Bernstein-BZier
polynomials defined on each tetrahedron ¢ € A. Letting

SH(A)={s€C"(Q) s, ePp,t € A} =C™(QQ) N SH (A)

be the spline space of degree D and smoothness r > 0, each s € S}, (A) can be
rewritten as

s()|e = Z CineBijre(x), Vte A,
i+j+k+0=D

where ijM are Bernstein-BZier polynomials (cf. [1], [10], [16] ) which are nonzero on
t and zero otherwise. Approximation properties of trivariate splines can be found in
[11] and [8].

How to use them to solve partial differential equations based on the weak formu-
lation like the finite element method has been discussed in [1] and [16]. We leave the
detail to these references.

2.2. The Trace Inequality. We first recall the trace theorem from [4] that

THEOREM 2.2. Suppose that Q is a bounded domain with CY' boundary. For
u e HY(Q)

(2.2) [ull2o0) < Cllullp2@) + IVullL2(@))

for a positive constant C' independent of u.

As the domain Q of interest may not have a C'! boundary, we would like to have this
inequality for polygonal domains. Let us begin with the following trivial identity:

(2.3) div(aul?) = div(a)(u?) + 2o - uVu

for any vector function o € C'(Q)?. Integrating the above identity over 2, we use
the divergence theorem to have
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6 MING-JUN LAI AND JINSIL LEE

LEMMA 2.3. For any u € H' () and any vector a € C(Q)?, one has

(2.4) /Q(diva)|u|2—|—2/gu(a~Vu):/(ma~n|u\2.

We begin with the concept of strictly star-shaped domains introduced in [3]. In
fact, we relax the condition of strictly star-shaped domain a little bit to make it more
useful for application.

DEFINITION 2.4. A bounded domain Q@ C R? is a strictly star-shaped domain if
it has a piecewise linear or smooth boundary and there exist a point xo € Q and a
positive constant yq > 0 depending only on Q) such that

(2.5) (x—x0) - n>v>0, Vxeda.e.,

where n stands for the normal direction of the boundary 9Q) and a.e. stands for almost
everywhere. When vq = 0, 0 is a star-shaped domain. Furthermore, we say a domain
Q0 multiple-strictly-star-shaped domain if ) is able to be decomposed into the union

of a finitely many strictly star-shaped sub-domains, i.e. ) = Ule Q; with Q; being a
strictly star-shaped domain for i =1,--- £ and Q; NQ; =0 fori#j,i,j=1,--- L.

When € is a strictly star-shaped domain with center xy and v > 0, we use
o = X — Xg in the result of Lemma 2.3 to have

@0 d 2 [ ulex—x)- Vo = [ exo)nful 200 [l

Now we apply Cauchy-Schwarz inequality to the second term on the left-hand side
above to have

1) o[ wi<a |u|2+|ﬂ|\/ / u|2\/ [vu<cn [k ce [ (vup
o0 Q Q Q Q Q

and hence, taking a square root both sides, we have a proof of (2.2) for a strictly
star-shaped domain €.

When (2 is a multiple-strictly star-shaped domain, we simply apply Lemma 2.3
to each ;. Letting vo = min{yq,,7 =1,--- ,¢} and 0N is a subset of | J; 0€;, we use
the

4 14
v [ WP e [ wPYon [ e [ (vup
00 = o0, ] : Q,

(2.8) :cl/ |u\2+02/ Vul?.
Q Q

Taking a square root both sides of the inequality yields (2.2). Clearly, we can decom-
pose a polygonal domain  into a triangulation/tetrahedralization. As each triangle
and each tetrahedron is a strictly star-shaped domain, we use the above discussion to
conclude

THEOREM 2.5. Suppose that §) is a polygonal domain. For any u € H'(Q) one
has the trace inequality (2.2).

The same holds for a domain Q with a curvy triangulation A, i.e. a triangulation
with curve boundary.

This manuscript is for review purposes only.
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SPLINE COLLOCATION METHOD 7

3. A Splined Based Collocation Method for the Poisson Equation. Let
us explain a collocation method based on bivariate splines/trivariate splines for a
solution of the Poisson equation (1.5). For convenience, we simply explain our method
when d = 2 in this section. Numerical results in the settings of d = 2 and d = 3 will
be given in a later section.

For given A be a triangulation, we choose a set of domain points {§;}i=1,....n
explained in the previous section as collocation points and find the coefficient vector
c of spline function s = Z Z cﬁj kaj i Satisfying the following equation at those

tEA i+j+k=D
points

(3.1) { =2 ten Xivjrr=p CpAB(&) =
9

(&), &eQCR?
(&) ‘

(&), on 09,

where {& = (zi,vi)}i=1,.... v € Dpr s are the domain points of A of degree D as
explained in (2.1) in the previous section. Using these points, we have the following
matrix equation:

—Kc:= [—A(ijk(fi))] c=[f(&)] =1

where c is the vector consisting of all spline coefficients cfjk, i+j+k=D,te A In
general, the spline s with coefficients in c is a discontinuous function. In order to make
s € 8}, its coefficient vector ¢ must satisfy the constraints Hc = 0 for the smoothness
conditions that the S, functions possess (cf. [10]). Our collocation method is to find

c* by solving the following constrained minimization:
1
(3.2) minJ(c) = 3 (|[Be —g|* + || Hel|*) subject to — Ke =1,
Cc

where B, g are from the boundary condition and H is from the smoothness condition.
Note that we need to justify that the minimization has a solution. In general, we do
not know if the matrix K is invertible and hence, —Kc¢ = f may not have a solution.
However, we can show that a neighborhood of —Kc =f, i.e.

(3.3) N={c:||- Ke—f]| <eHe|| < [Be—gl| < ¢}

is not empty.
Indeed, by Lemma 2.1 in the previous section, for any given €; > 0, we can find
a quasi-interpolatory spline s,, satisfying

[[Au — Asylloo < [|tize — (Su)azl|oo + H“yy - (SU)yyHOO < 20|A|k_2 < €.

if |A| is small enough and k = D is large enough. In other words, at the domain points
over A\ with degree D’ > k, quasi-interpolatory spline s, from Lemma 2.1 satisfies
| = f(zisyi) — Al (su) (@i, yi)| = | = f@i, i) — Asulwi, yi)] < €1 forall 1 < < N.
That is, the neighborhood N in (3.3) is not empty.

We thus consider a nearby problem of the minimization (3.2), that is,

(3.4) min| Be — g||?> + ||Hc||? subject to || — Kc —f||p~ < €.

It is easy to see that the minimizer of the above (3.4) clearly approximates the mini-
mizer of (3.2).

This manuscript is for review purposes only.
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8 MING-JUN LAI AND JINSIL LEE

Next, let ¢* be the minimizer of (3.4) and ug be the spline with the coefficient
vector c¢*. Then, we want to prove that our numerical solution u, is close to the
solution u, e.g. ||u — usl|r,(q) is very small. To describe how small it is, we let e; =
||Bc* _g||2 + HHC*HQ > ||Bc* _g||2, That is, Z(zi,yi)eaﬂ |u(£13i, yz) —us(ggi7yi)|2 < €9.
Without loss of generality, we may assume that us approximates u on 0S2 very well in
the sense that ||u(z,y) — us(x,y)||12(90) < Cez for a positive constant C. Similarly,
if the number of collocation points is enough, we have ||Au, + f|[120) < Cer. We
would like to show

(3.5) lu = us 20y < ClAP(e1 + €2)

for some constant C' > 0, where |A| is the size of the underlying triangulation or
tetrahedralization A of the domain Q2. To do so, we first show

LEMMA 3.1. Suppose that §) is a polygonal domain. Suppose thal u € H3(Q).
Then there exists a positive constant C' depending on D > 1 such that

[[Au(z,y) — Aus(z,y)|[22(0) < aC.
Proof. Indeed, by Lemma 2.1, we have a quasi-interpolatory spline s,, satisfying
|Au(z,y) — Asy(z,y)] < €1,V(z,y) € Q.
Then, we use the minimization (3.4) to have the minimizer u satisfying
|Au(@i, i) — Aus (@, 3:)] < e

for any domain points (z;,y;) which construct the collocation matrix K. Now, these
two inequalities imply that

|[Aug (@i, yi) — Asy(s,yi)| < €1+ €.

Note that Aus — As, is a polynomial over each triangle ¢t € /A which has small values
at the domain points. This implies that the polynomial Augs — As,, is small over t.
That is,

(3.6) |[Aug(z,y) — Asy(z,y)] < Cler +€1) = 2C¢
by using Theorem 2.27 in [10]. Finally, we can use (3.6) to prove
|Au(z,y) — Aus(z,y)| = |Au(z,y) — Asy(z,y) + Asu(z,y) — Aug(z,y)| < €1 + 2Ce;.

and then A
[ Au(z,y) — Aus(xay)HL?(Q) <eC

for a constant C depending on the bounded domain Q and D, D’ but independent of
|A. d

Recall a standard norm on H?(Q) defined in (1.3). In addition, let us define a
new norm ||ul|z, on H2(f2) as follows.

(3.7) lulle = [|Au]2@) + llullz2a0)

We can show that || - ||z is a norm on H?(Q2) as follows: Indeed, if ||ul; = 0, then
Au=01in © and v = 0 on the boundary 90f). By the Green theorem, we get

/|Vu|2:f/uAu+/ ua—u:O.
0 Q o On
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By Poincaré’s inequality, we get
||u||L2(Q) S C||Vu||L2(Q) =0.

Hence, we know that v = 0. Next for any scalar a, it is trivial to have |aul|p =
|Aau| r2(q) + [lav| r200) = |a|(HAu||%2(Q) + [Jul[z2(90)). Finally, the triangular in-
equality is also trivial.

lu+ vl = A+ V)2 @) + llu+ vl < llulle + vl

by linearity of the Laplacian operator.
We now show that the new norm is equivalent to the standard norm on H?(().
Indeed, recall a well-known property about the norm equivalence.

LEMMA 3.2. ([Brezis, 2011 [2]]) Let E be a vector space equipped with two norms,
-1 and |- ||2. Assume that E is a Banach space for both norms and that there exists
a constant C > 0 such that

(3.8) llz]|2 < Cllz|1, Vx € E.
Then the two norms are equivalent, i.e., there is a constant ¢ > 0 such that
llz]|1 < erllx]l2, Vz € E.

Proof. We define £y = (E,||-||1) and E2 = (E, ||-||2) be two spaces equipped with
two different norms. It is easy to see that E; and E5 are Banach spaces. Let I be the
identity operator which maps any u in F; to v in Fs. Clearly, it is an injection and
onto because of the identity mapping and hence, it is a surjection. Because of (3.8),
the mapping [ is a continuous operator. Now we can use the well-known open mapping
theorem. Let B1(0,1) = {u € Ei,||ul]ls < 1} be an open ball. The open mapping
theorem says that I(B1(0,1)) is open and hence, it contains a ball By(0,¢) = {u €
Es,|lull2 < ¢}. That is, B(0,¢) C I(B1(0,1)). Let us claim that c||ull; < ||I(w)]]2
for all u € Ey. Otherwise, there exists a u* such that c|[u*||1 > |[I(u*)||]2. That is,
e > || (u*/||u*]|]1)]|2- So I(u*/||u*||1) € B2(0,c). There is a u** € B1(0,1) such that
Tu** = I(u*/||u*|]1). Since I is an injection, u** = I(u*/||u*||1. Since u** € B1(0,1),

we have 1 > [|[u**||1 = ||(v*/||v*||1))|| = 1 which is a contradiction. This shows that
the claim is correct. we have thus c||ull1 < |[[I(u)||2 = ||u||2 for all u € E;. We choose
¢1 = 1/c to finish the proof. 0

THEOREM 3.3. Suppose Q@ C R is a multiple-strictly-star-shaped domain, e.g. a
polygonal domain. There exist two positive constants A and B such that

(3.9) Allullgz < llullp < Bllullgz, Vue H*(Q).
Proof. We first use the trace Theorem 2.5 from the previous section. Mainly we

shall use the inequality in (2.2). It then follows that

llullz < [[Aullp2Q) + lullL2(o0)
d 2
0
(3.10) <y ||8$‘ax‘U||L2<Q) + C(lull 2@ + IVullL2()) < Bllullu2
. 1O 5

ij=1

for all u € H?(2), where B = max{1,C}. We then use Lemma 3.2 to finish the proof.
Indeed, by Lemma 3.2 and the above inequality, there exist a > 0 satisfying

[ull 2 < allullL.

Therefore, we choose A = é to finish the proof. 0
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10 MING-JUN LAI AND JINSIL LEE

Using Theorem 3.3, we immediately obtain the following theorem

THEOREM 3.4. Suppose f and g are continuous over bounded domain Q C R? for
d > 2. Suppose that u € H3(Q). When Q is a multiple-strictly-star-shaped domain or
a polygon, we have the following inequality

l[u —usl|r2(q) < Cler + €2), |[V(u — us)|[2(0) < Cler + €2)
and
82
Z ||3Tayju||m(n) < C(e1 + €2)
i+j=2
for a positive constant C depending on A and €2, where A is one of the constants in

Theorem 3.35.

Proof. Using Lemma 3.1 and the assumption on the approximation on the bound-
ary, we have

1 1 .
llu = usllm2(0) < 7 (1A = us)l[z2() + llu = usllz200)) < (60 + e2Co0)

where Cyq denotes the length of the boundary of 2. We choose C' = M to
finish the proof. O

Finally we show that the convergence of [|u — us||r2(q) and ||V (u — us)||2(q) can be
better

THEOREM 3.5. Suppose that (u — us)|aq = 0. Under the assumptions in Theo-
rem 3.4, we have the following inequality

u— a2y < CIAP (e + e2) and [V (u — ug)l 2@y < ClAl(er +e2)

for a positive constant C = 1/A, where A is one of the constants in Theorem 3.3 and
|A| is the size of the underlying triangulation /\.

Proof. First of all, it is known for any w € H?(Q), there is a continuous linear
spline L,, over the triangulation A such that

(311) ||D§D5(U} — Lw)||L2(Q) S C|A|2_°‘_'@|w|Hz(Q)

for nonnegative integers o > 0, 8 > 0 and a+3 < 2, where |w| g2 (q) is the semi-norm of
w in H2(Q). Indeed, we can use the same construction method for quasi-interpolatory
splines used for the proof of Lemma 2.1 to establish the above estimate. The above
estimate will be used twice below.

By the assumption that u — us = 0 on 0f2, it is easy to see

IV = w)leey == [ A= w)u=w) == [ A=~ L))
= | V(u—us = Lu—u,)V(u—1us) < [[V(u—us)llr2)|V(u = us = Lu—u,)
Q
< IV(u = us) 2 ) ClA| - [u — us| g2
SV (u = w2 A7 1AW = )l 22(0)-

|L2(0)

where we have used the first inequality in Theorem 3.3. It follows that ||V (u —
uS)||2L2(Q) <A (e + e).
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SPLINE COLLOCATION METHOD 11

Next we let w € H2(Q2) be the solution to the following Poisson equation:
—Aw =u—us inQ CR?
(3.12) { w =0 on 09,

Then we use the continuous linear spline L,, to have

||(u—us)||%2(m: /Aw U—ug) = /Aw L) (u—uyg)

V(w = L)V (u = us) < [[V(w = us)l| L2 (@) IV (0 = L)l 22(0)

Q
C
<V (u = us) || L20)ClA| - |w| g2 o) < Z|A|(€1 + 62)|A|Z||AU/||L2(Q)

C C
= Z\N(fl + 62)\A|Z||u — Us||L2 ()
where we have used the first inequality in Theorem 3 3 and the estimate of ||V (u —

us)| L2() above. Hence, we have |[|(u us)||L2(Q) 2 |A\ (e1+€)as|Al—0. O

4. General Second Order Elliptic Equations. Now we consider a collocation
method based on bivariate/trivariate splines for a solution of the general second order
elliptic equation in (1.2). For the PDE coefficient functions a,b%,c! € L>(Q), we
assume that

(41) aij == aji S LOO(Q) VZ,] =y 7d

and there exist A, A such that

d d d
(4.2) A 0P <D a (@ <A 7Yy € RA\{0}
i=1 ij i=1

for all i,j and = € Q. For convenience, we first assume that b* = 0 and ¢! = 0. In
addition to the elliptic condition, we add the Cordés condition for well-posedness of
the problem. We assume that there is an € € (0, 1] such that

d ..
Zi,j:1(aw)2 .

a.e. in Q
(X a2~ d=1+e

(4.3)

Let v € L>(£2) be defined by

d ..
Z_: au
vi= - =1

Zi,j:l (a®7)?
Under these conditions, the researchers in [18] proved the following lemma

LEMMA 4.1. Let the operator L£q(u) = Zz('i,jzl aij(x)ax o7 U satisfy (4.1), (4.2)
and (4.3). Then for any open set U C Q and v € H*(U), we have

(4.4) |vLiv — Av| < V1 —¢|D*v| a.e. in U,

where € € (0,1] is as in (4.3).
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Instead of using the convexity to ensure the existence of the strong solution of (1.2)

in [18], we shall use the concept of uniformly positive reach in [5]. The following is

just the restatement of Theorem 3.3 in [5].

THEOREM 4.2. Suppose that Q C R* with d > 2 is a bounded domain with uni-
formly positive reach. Then the second order elliptic PDE in (1.2) satisfying (4.3)
has a unique strong solution in H?(S).

We now extend the collocation method in the previous section to find a numerical
solution of (1.2). Similar to the discussion in the previous section, we can construct
the following matrix for the PDE in (1.2):

K =ajMzzV + (aj2 + as1 ) MayV + ags MyyV,
where aj; is the vector of the PDE coefficient a'!(¢;),i = 1,--- , N and similar for
other vectors. Similar to (3.4), consider the following minimization problem:

1
(4.5) min J(c) = §(||Bc —g|*+ |Hc||*) subject to — Kc=f,

Again we will solve a nearby minimization problem as in the previous section. Just
like the Poisson equation, we let ¢; = ||[Kc* + f||» and €2 = ||Bc — gl|? + ||[Hcl|? >
| Be — g||? be the minimal value of (4.5). In fact, we may assume that the solution
us for (4.5) approximates u very well in the sense that [[u — usr290) < €2 and
[Lus + fllzz) < e

To show us approximate u over ), let us define a new norm |jul|z on H?(Q) as
follows.

(4.6) lullz = |LullL2(0) + [lullL2(00)

We can show that || - ||z is a norm on H?(Q) as follows if € € (0, 1] is large enough.
Indeed, if |jullz = 0, then Lu = 0 in Q and u = 0 on the boundary 9. Using this
Lemma 4.1 and Theorem 3.3, we get

(4.7 / AulAuy — / (A —yL)uAu = / YL(u)Au =0
Q Q Q
and
/ AuAu — / (A —~yL)uAu > / |Aul? —/ V1 — €| D%u| - |Aul
Q Q Q Q

Vv1—¢€
A

= [18P ~ [ VIZdD2ul 1] > Aul? — = Aal)Aul
Q Q

Therefore, if € > 1 — A2, then

v1—ce€
A

Hence, we know that u = 0. The other two properties of the norm can be proved
easily. We mainly show that the above norm is equivalent to the standard norm on
H?(Q).

THEOREM 4.3. Suppose that 0 has uniformly positive reach rq > 0 and is a
multiple-strictly-star-shaped domain. Then there exist two positive constants A1 and
By such that

(1- )| Aul] < 0.

(4.8) Ayllull sz < lulle < Billull ey, Vu € HA(Q).
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Proof. We first use the trace theorem 2.5 that

[ullzo0) < Clllullpz@) + IVullL2(a))
for u € H(Q). It follows that

d
N 92
lullz < e la" ]| oo Z ||axial_ju||L2(Q) + C||Vul 2y + Cllullz2 (o) < Billullg2(0)

ij=1

for all u € H?(S2), where B; depending on d, A and C. Using Lemma 4 and the above
inequality, there exist cv; > 0 satisfying

lull 2 < axfjul|c

Therefore, we choose A1 = a% to finish the proof. ]

THEOREM 4.4. Let Q) be a bounded and closed set satisfying the uniformly positive
reach condition. Assume that a” € L>®(Q) satisfy (4.1), (4.2) and (4.3) and € >
1 — A% Suppose that u € H3(Q). For the solution u of equation (1.10) and the
corresponding minimizer ug, we have the following inequality

||'LL — us”LQ(Q) S C(El + 62)

for a positive constant C depending on Q and A; which is one of the constants in
Theorem 4.3. Similar for |V (u — us)||12() and |u — us|g>.
Next we consider the case that b° and ¢! are not zero. Assume that ||a™ ||, |6/l c0s
d y 2 d i
[¢'loo < Ay and we denote that £q(u) := Y77, ¥ (x)%amju +> i bl(x)a%iu +
c*(z)u and define a new norm ||ul|z, on H?(Q) as follows.

(4.9) lulley = [1£1ull2) + llullz2 (o0)-
Assume that ||ul|z, =0, i.e., L1 =0 over Q and v = 0 on 9. From (4.4), we have

[ re@auz au? - ¥ sl
Q

Then by the above inequality we get

d
0= / YLi(u)Au = / yL(u)Au + vai(ac)aa ulAu + el (z)ulu
Q Q i1 Li

A 0
V1—e
A
—||7||oo||01HooHU||L2(Q)HAUHL2(Q)

v1—e€
2 HAUH%2(9) T A HAUH%?(Q) — Con([IVul| L2 [[Au| L2 () + llull 220 [[AullL2(0))

d
Vo 9
> Au]? - Y7 A + / S () b+ e (r)udu
i=1 '

> [|Aul|s ) — 18U 22 ) = 17lloo max [0l V| Vaul| 22 | At 20

where C,,, = max{||7|/oo max; ||0*[lcc Vd, |[¥]loc|lc¢*|loc}. By Poincaré inequality, we
have |[ull12(0) < C||Vul|2(q) < C?||Aul|12(q) for some constant C. Using Theorem
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14 MING-JUN LAI AND JINSIL LEE

3.3, it is followed that

Vv1—e
02 [|Au]l L2 () = == 1Aull2(@) = CullVullzz0) + llull L2(2))

V1i—e¢

2 [[Aull @) = = [1Aullz2@) — Cm(C + C?)lull a2 o)
]. — € Cm C + 02
S P A T Pk T
1—€¢ C,,(C+C?
P )

If the term (1 — ‘/14: - C"'L(i+c2)) is positive, then we can conclude that Au = 0.
Since Au = 0 and v = 0 on 9%, |lu]|r = 0 and then u = 0. Similar to the proof of
other norms || - ||z and || - ||z, it is easy to prove that ||u+v||z, < |lullz, + |v]z, and
lau|lz, = |al||u|lz,. The detail is omitted.

THEOREM 4.5. Assume that (1—~ }4_6 — Cm'(i+c2)) > 0. There exist two positive
constants As and By such that

(4.10) Asllull g0y < lulle < Bsllull gy, Vu € HA(Q).

Proof. The proof is similar to before. We leave it to the interested reader. a0
Therefore, we can get the following theorem for the general elliptic PDE:

THEOREM 4.6. Let €2 be a multiple-strictly-star-shaped domain and has a uni-
formly positive reach. Assume that a¥,b', ct € L>(Q) satisfy (4.1), (4.2), (4.3) and

(1-Y 14_6 — Cm(Cchz)) > 0. Suppose that u € H*>(Q). For the solution u of equation
(1.2) and the corresponding minimizer us, we have the following inequality

l|u —us|[r20) < Cler + €2)

for a positive constant C' depending on Q and a constant As in Theorem j.5.

Finally we show that the convergence of [|u — us||z2(q) and ||V (u — us)||r2(q) can be
better

THEOREM 4.7. Suppose that the bounded domain €2 has an uniformly positive
reach. Suppose f and g are continuous over bounded domain Q C R? for d = 2,3.
Suppose that u € H3(Q). If u — us|sn = 0, we further have the following inequality

= 4|z < CIAP(er + €2) and [[V(u = uy)||za(e) < ClAI(er + €2)

for a positive constant C' = 1/As, where As is one of the constants in Theorem 3.3
and |A| is the size of the underlying triangulation /.

Proof. The proof is similar to Theorem 3.5. We leave the detail to the interested
reader. |

5. Implementation of the Spline based Collocation Method. Before we
present our computational results for Poisson equation and general second order el-
liptic equations, let us first explain the implementation of our spline based collocation
method. We divide the implementation into two parts. The first part of the im-
plementation is to construct the collocation matrices K and K associated with the
triangulation/tetrahedralization, the degree D of spline functions and the smoothness
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r > 1 as well as the domain points associated with the triangulation/tetrahedralization
and degree D’. This part also generates the smoothness matrix H. More precisely,
for the Poisson equation, we construct MxzV := [(B;(X)zz|x=¢,] and MyyV :=
[(Bjj(X)yylx=¢,].- In fact we choose many other points which are in addition to
the domain points to build these MxxV and MyyV. Then K = MxxV + MyyV
is a size of 2m x m for the Poisson equation, where m = dim(Sp'(A)). After
generating matrices, we save our matrices which will be used later for solution of
the Poisson equation for various right-hand side functions and boundary conditions.
And, for the general elliptic equations, we first generate all the related matrices
MaxxV, MxyV, MyyV, MxV, MyV,--- as the same as for the Poisson equation. Then
we generate the collocation matrix I associated with the PDE coefficients at the
same domain points as well as the additional points from all the related matrices
MaxxV, MxyV, MyyV, MxV, MyV,--- which are already generated before. This part
is the most time consumed step. See Tables 1 and 2 for the 2D and 3D settings.

The second part, Part 2 is to construct the right-hand side vector f and the matrix
B and vector G associated with the boundary condition as well as use an iterative
method which is similar to [1] to solve the minimization problem (3.4) and (4.5). See
Table 3 for computational times for the 3D setting.

We shall use the four different domains in 2D shown in Fig. 1 and four different
domains in 3D shown in Fig. 2 to test the performance of our collocation method.
In addition, the spline based collocation method has been tested over many more
domains of interest. Numerical results can be found in [14].
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FiG. 1. Several domains in R? used for Numerical Experiments

In our computational experiments, we use a cluster computer at University of
Georgia to generate the related collocation matrices for various degree of splines and
domain points as described in the part I. We use multiple CPUs in the computer
so that multiple operations can be done simultaneously. For the 2D case, we use 2
processors on a parallel computer, which has 1.8GHz Intel Core i5 processors for Part 1
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16 MING-JUN LAI AND JINSIL LEE

F1c. 2. Several 3D domains used for Numerical Experiments

Domains Number of Number of  degree Time Time Time Time
vertices triangles (P) (G) (UGAP) (UGA G)
Gear 274 426 8 5.27e+01  3.31e+02  2.98e+01 3.49e+01
Flower 297 494 8 5.83e4+01  4.09e4+02  3.32e+01  4.20e+01
Montreal 549 870 8 9.83e4+01  7.26e+02  2.95e+01 8.55e+01
Circle 525 895 8 1.18e+02  1.19e+03  2.78e+01 8.40e+01

TABLE 1
Times in seconds for generating necessary matrices for each 2D domain in Figure 1.

and Part 2. And we also use a high memory (512GB) node from the Sapelo 2 cluster
at University of Georgia, which has four AMD Opteron 6344 2.6 GHz processors.
Using 48 processors on the UGA cluster, we can generate our necessary matrices
and the computational times for Part 1 are listed in Table 1. For 3D case, we use 48
processors for Part 1 and 12 processors for Part 2 to do the computation. Tables 2 and
3 show the computational times for generating collocation matrices, where (P), (UGA
P) indicates the time for the Poisson equation with 2 processors and 48 processors
respectively and (G), (UGA G) for the general second order PDE using 2 processors
and 48 processors, respectively.

6. Numerical results for the Poisson Equation. We shall present compu-
tational results for 2D Poisson equation and 3D Poisson equations separately in the
following two subsections. In each section, we first present the computational results
from the spline based collocation method to demonstrate the accuracy the method can
achieve. Then we present a comparison of our collocation method with the numerical
method proposed in [1] which uses multivariate splines to find the weak solution like
finite element method. For convenience, we shall call our spline based collocation
method the LL method and the numerical method in [1] the AWL method.

6.1. Numerical examples for 2D Poisson equations. We have used various
triangulations over various bounded domains as shown in [14] and tested many solu-
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SPLINE COLLOCATION METHOD 17

Domains Number of Number of Degree of Time Time
vertices tetrahedron splines (UGA P) (UGA G)
L-shaped domain 325 1152 9 3.71le+03 4.785e+03
Human head 913 1588 9 6.62e+03 8.278e+03
Torus 773 2911 9 9.55e+03 1.180e+04
Letter B 299 816 9 1.71e+403 2.347e+03
TABLE 2

Times in seconds for generating necessary matrices for each 3D domain in Figure 2.

Domain Time Time Time Time
(P) (SG) (NSG1) (NSG2)
L shaped domain 1.0729e+02 2.8400e+02 9.6750e+01 6.2362e+01
Human head 9.6791e+01 2.2425e+402 1.0746e+02 5.7200e+-01
Torus 4.5197e+02  6.3574e+02  3.2542e¢4-02 2.2183e+02
Letter B 3.7484e+01 9.6532e+01 1.5394e+02 2.2085e+-01
TABLE 3

Times in seconds for finding solutions of 3D Poisson equation(P), general second order elliptic
equation with smooth PDE coefficients (SG) or with non-smooth PDE coefficients (NSG1, NSG2)
for each domain in Figure 2.

tions to the Poisson equation to see the accuracy that the LL method can do. For
convenience, we shall only present a few of the computational results based on the
domains in Figure 1. The following is a list of 10 testing functions (8 smooth solutions
and 2 not very smooth)

s1 (=®+y?)
ur=e 2
u*? = cos(xy) + cos(m(z* + y?)),
s3 1
T2y
u** = sin(r(2? 4+ 32)) + 1,
u®® = sin(37x) sin(37y),
u®® = arctan(z? — 3?),
u*" = — cos(x) cos(y)e_(‘r_”)z_(y—”)2
u*® = tanh(20y — 202?) — tanh (202 — 20y?),

unsl _ |1}2 +y2|0‘8 and

u"52 _ ((Eelilw‘ . Z)(yelily‘ . y)
Note that the test function in u*® is notoriously difficult to compute. One has to
use a good adaptive triangulation method (cf. [9]). The maximum errors, root mean
squared error(RMSE) of approximate spline solutions against the exact solution are
given in Table 4. These errors are computed based on 501 x 501 equally-spaced points
fell inside the different domains in Figure 1. We chose collocation points to create
2m x m matrix K, where m is the number of Bernstein basis functions (the dimension
of spline space S5 (A)) and used an iterative method similar to the one in [1] to find
the numerical solutions.

From Table 4, we can see that the performance of our method is excellent. Next
let us compare with the numerical method in [1] for the same degree, the same smooth-
ness, and the same triangulation. The comparison results are shown in Table 5. One
can see that both methods perform very well. Our method can achieve a better
accuracy due to the reason the more number of collocation points is used than the
dimension of spline space S;,'(A).

Finally, we summarize the computational times for both methods in Table 6. One
can see the LL method can be more efficient if the collocation matrices are already
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Gear Flower with a hole Montreal Circle with 3 holes
Solution RMSE error RMSE error RMSE error RMSE error
u’T 1.40e-10  3.43e-10 | 9.33e-12 4.04e-11 8.03e-11  2.45e-10 | 2.95e-12  1.08e-11
u®? 1.30e-09  1.06e-08 | 1.54e-07 7.88e-07 1.29e-10  4.20e-10 | 4.33e-12  1.13e-11
u®® 6.03e-11 1.87e-10 | 9.0le-12 3.25e-11 1.05e-10  3.09e-10 | 1.90e-12  5.43e-12
us? 1.20e-09  6.15e-09 | 1.20e-07 7.88e-07 1.15e-10  2.99e-10 | 7.44e-12  2.23e-11
u®® 3.82e-07  2.36e-06 | 5.87e-06 2.40e-05 2.04e-11  5.40e-11 | 3.40e-10  1.16e-09
w6 6.13e-10 1.32e-08 8.73e-08 5.93e-07 1.86e-12 6.71le-12 1.09e-12 4.10e-12
w7 1.44e-11 3.42e-11 7.05e-13 1.64e-12 1.51e-11 4.25e-11 1.51e-13 5.74e-13
w8 5.71e-02 2.61e-01 5.22e-01 2.32e+00 1.53e-08 3.44e-07 3.00e-04 4.01e-03
unst 1.81e-05  1.34e-03 | 3.97e-11 2.17e-10 1.33e-05  1.80e-04 | 2.36e-05  3.36e-04
uns? 1.71e-04  7.29e-04 | 1.33e-04 8.41e-04 3.58e-06  2.02e-05 | 1.39e-05  1.58e-04
TABLE 4

The RMSE and the maximum errors of spline solutions for Poisson equations from the matriz
iterative method over several domains when r =2 and D = 8.

Gear Flower with a hole Montreal Circle with 3 holes
Sol’'n AWL LL AWL LL AWL LL AWL LL

u®l 1.40e-05 3.43e-10 3.27e-05 4.04e-11 8.89¢-07  2.45e-10 | 3.28¢-06  1.08e-11
u®? 6.41e-05 1.06e-08 8.52e-05 7.88e-07 3.48¢-06  4.20e-10 | 2.02¢-06  1.13e-11
u®? 8.55e-06 1.87e-10 4.19e-06 3.25e-11 1.03e-06 3.09e-10 1.04e-06 5.43e-12
ust 2.95e-05 6.15e-09 3.70e-05 7.88e-07 3.63e-06  2.99e-10 | 1.26e-05  2.23e-11
u®® 1.03e-04 2.36e-06 1.36e-04 2.40e-05 1.70e-05  5.40e-11 | 3.10e-05  1.16e-09
u®® 3.02e-05 1.32e-08 1.25e-05 5.93e-07 2.06e-06  6.71e-12 | 5.94e-06  4.10e-12
u
u

s7 1.74e-10 3.42e-11 1.56e-10 1.64e-12 3.11e-07 4.25e-11 1.32e-11 5.74e-13
8 1.78e4-00 2.61e-01 2.65e+00 2.32e+00 2.42e-06 3.44e-07 5.71e-02 4.01e-03
unel 6.53e-03 1.34e-03 1.74e-05 2.17e-10 1.73e-04 1.80e-04 5.39e-03 3.36e-04
une? 8.47e-03 7.29e-04 1.44e-03 8.41e-04 1.84e-04 2.02e-05 5.25e-04 1.58e-04
TABLE 5
The maximum errors of spline solutions for the Poisson equation over the four domains in
Figure 1 when r = 2 and D = 8 for both the AWL method and the LL method.

3 generated. The LL method can be useful for time dependent PDE such as the heat
574 equation. We only need to generate the collocation matrix once and use it repeatedly
575 for many time step iterations.

576 6.2. Numerical results for the 3D Poisson equation. We have used our
577  collocation method to solve the 3D Poisson equation and the tested 10 smooth and
578 mnon-smooth solution over various domains. For convenience, we only show a few
579 computational results to demonstrate that our collocation method works very well.
580  More detail can be found in [14]. Our testing smooth solutions are as follows:

w3t = sin(2z + 2y) tanh(%)

Y352 6712”22“2
w33 = cos(zyz) 4 cos(m(z? + 32 + 22))
L34t — 1

L+a22+y2 + 22

w3 = sin(m(z? + 2 + 2%)) + 1
u3d36 _ 106—1:2—1/2—z2
w7 = gin(2mz) sin(27y) sin(272)

1?4 = ztanh((—sin(z) + 3?))

uddnsl _ |932 + y2 + 22|0.8
581 w2 = (pel 1P — g (yel T = y) (ze! 717l = 2).
582 The maximum errors, mean squared errors of approximate spline solutions against

583 the exact solution are computed based on 501 x 501 x 501 equally-spaced points over
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Domain Number of Number of  Average time Average time for
vertices triangles for AWL method  LL method (part 2)
Gear 274 426 4.7290e+-01 9.3832e-01
Flower with a hole 297 494 1.7610e+01 1.0522e+00
Montreal 549 870 2.6441e+01 1.5352e+4-00
Circle with 3 holes 525 895 3.0227e+4-01 1.6433e+00
TABLE 6

The number of vertices, triangles and the averaged time for solving the 2D Poisson equation
for each domain in Figure 1.

L shaped domain Human head Torus Letter B
Solution RMSE error RMSE error RMSE error RMSE error
3dsT 3.15e-11 9.69e-11 5.83e-12 6.45e-11 1.79e-10 2.04e-09 6.86e-12 4.11e-11
w3152 8.21e-10 2.15e-09 3.45e-10 2.95e-09 1.14e-08 8.50e-08 4.50e-11 6.24e-10
3ds3 7.33e-10 2.37e-09 7.26e-10 8.21e-09 5.34e-09 3.31e-08 3.96e-09 3.48e-07
u3dst 3.89e-10 1.06e-09 2.68e-10 2.76e-09 3.57e-09 2.29e-08 7.89e-11 1.36e-09
3ds5 1.02e-09 2.88e-09 9.75e-10 5.78e-09 1.33e-08 8.95e-08 3.64e-09 4.16e-07
3ds6 3.86e-09 1.10e-08 2.35e-09 2.47e-08 3.39e-08 1.90e-07 3.65e-10 2.63e-09
3ds7 1.76e-09  1.49e¢-08 | 4.19e-08  5.21e-07 | 1.01e-07  2.34e-06 | 4.86e-08  4.39e-07
3ds8 5.89e-11 1.94e-10 2.69e-11 1.66e-10 6.42e-10 4.32e-09 8.16e-11 1.52e-09
3dnsl 1.15e-06 9.60e-05 3.82e-06 6.23e-04 5.07e-09 3.22e-08 7.98e-07 1.34e-04
3dns2 | 549e-06  9.37e-05 | 2.30e-04  4.84¢-03 | 1.09¢-04  1.58e-03 | 5.51e-06  2.06e-04
TABLE 7

The RMSE and the mazimum errors of spline solutions for the 8D Poisson equation over the

four domains in Figure 2 when r =1 and D = 9.

SIS S

g 2 2 g

SN

the different domains shown Figure 2.

We choose collocation points to create 2m x m matrix K, where m is the number
of Bernstein basis functions, i.e. the dimension of spline space SBl(A) and used
the iterative method to find the numerical solutions. We tested 10 functions over the
domains in Figure 2 and present the maximum errors, root mean square error(RMSE)
are presented in Table 7. We also compare the AWL method and LL method for the
numerical solution of the 3D Poisson equation. See numerical results in Table 8 and 9.

7. Numerical Results for General Second Order Elliptic PDE. We shall
present computational results for 2D general second order PDEs and 3D general
second order PDEs separately in the following two subsections. In each section, we
first present the computational results from the spline based collocation method to
demonstrate the accuracy the method can achieve. Then we present a comparison of
our collocation method with the numerical method based on [12]. For convenience,
we shall call our spline based collocation method the LL method and the numerical
method in [12] the LW method.

7.1. Numerical examples for 2D general second order equations. We
have used the same triangulations over various bounded domains as shown in Figure
1 and tested the same solutions which we used for the Poisson equation for the general
second order equation to see the accuracy that the LL method can have. The maxi-
mum errors and the root mean squared error(RMSE) of approximate spline solutions
against the exact solution are given in Tables in this section. The maximum errors are
computed based on 501 x 501 equally-spaced points fell inside the different domains
in Figure 1. We chose additional collocation points to create 2m X m matrix K, where
m is the number of Bernstein basis functions (the dimension of spline space Sp'(A)
and used the similar iterative method in [1] to find the numerical solutions.
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L shaped domain Human head
AWL LL AWL LL
Solution RMSE error RMSE error RMSE error RMSE error
w3 Tt 8.64e-12  2.07e-10 | 3.15e-11  9.69e-11 | 2.83e-09  7.56e-07 | 5.83e-12  6.45e-11
w3452 2.54e-10  4.92e-09 | 8.21e-10  2.15e-09 | 1.61e-08  2.72e-06 | 3.45e-10  2.95e-09
u3ds3 1.37e-10  3.51e-09 | 7.33e-10  2.37e-09 | 6.44e-08  1.21e-05 | 7.26e-10  8.21e-09
uddsd 1.16e-10  2.09e-09 | 3.89e-10  1.06e-09 | 1.83e-08  2.72e-06 | 2.68e-10  2.76e-09
u3dss 2.70e-10  3.89e-09 | 1.02e-09  2.88e-09 | 6.09e-08  8.43e-06 | 9.75e-10  5.78e-09
w3456 8.56e-10  1.04e-08 | 3.86e-09  1.10e-08 | 1.31e-07  1.35e-05 | 2.35e-09  2.47e-08
w3ds7 2.61e-10  2.90e-09 | 1.76e-09  1.49¢-08 | 1.88e-08  2.72e-06 | 4.19¢-08  5.21e-07
w3958 1.79e-11  4.96e-10 | 5.89e-11  1.94e-10 | 8.16e-09  3.41e-07 | 2.69e-11  1.66e-10
yldnst 5.86e-05  3.61e-03 | 1.15e-06  9.60e-05 | 3.63e-08  2.67e-06 | 3.82e-06  6.23e-04
y3dne? 1.67¢-03  3.87e¢-03 | 5.49¢-06  9.37e-05 | 3.42e-04  2.49¢-03 | 2.30e-04  4.84¢-03
TABLE 8

The mazimum errors of spline solutions for the 8D Poisson equation over the four domains in
Figure 2 when r =1 and D =9 for the AWL method and LL method.

Torus Letter B
AWL LL AWL LL
Solution RMSE error RMSE error RMSE error RMSE error
uBTsT 3.55e-09  5.74e-07 | 1.79e-10  2.04e-09 | 4.35e-11 1.43e-09 | 6.86e-12  4.11e-11
w3452 2.92e-08 1.98e-06 1.14e-08  8.50e-08 | 3.71e-10 5.42e-09 | 4.50e-11 6.24e-10
u3ds3 1.07e-07  8.90e-06 | 5.34e-09  3.31e-08 | 6.08e-10  4.45e-08 | 3.96e-09  3.48e-07
uddsd 1.88e-08 1.46e-06 | 3.57e-09  2.29e-08 | 9.06e-11 1.11e-09 7.89e-11 1.36e-09
u3dss 8.25e-08  5.50e-06 1.33e-08  8.95e-08 | 5.72e-10 5.57e-08 | 3.64e-09  4.16e-07
u34s6 2.50e-07  1.80e-05 3.39¢-08 1.90e-07 | 7.19e-10 1.36e-08 | 3.65e-10  2.63e-09
w3ds7 8.07¢-08  5.83e-06 1.01e-07  2.34e-06 | 4.95e-09 1.15e-07 | 4.86e-08  4.39e-07
u3ds8 8.16e-09  7.24e-07 | 6.42e-10  4.32e-09 | 6.73e-11 1.77e-09 | 8.16e-11 1.52e-09
y3dnsl 3.92e-08  2.67e-06 | 5.07e-09  3.22e-08 | 3.24e-04  9.12e-03 7.98e-07 1.34e-04
y3dns? 6.30e-04  2.29e-03 1.09e-04 1.58e-03 1.18¢-03  3.97e-03 | 5.51e-06  2.06e-04
TABLE 9

The mazimum errors and root mean square error(RMSE) of spline solutions for the 3D Poisson
equation over the four domains in Figure 2 when r = 1 and D = 9 for the AWL method and LL
method.

7.1.1. 2D general second order equations with smooth coefficients. We
first tested a 2nd order elliptic equation with smooth coefficients with a;; = 22 +
y?, a1p = cos(zy),as; = eV, az = 2° + y?® — sin(z? + y?),by = 3cos(x)y?, by =
e~ =y’ ,c = 0. Using these smooth coefficients, we have tested 2 non-smooth solutions
u™t u™2 and 8 smooth solutions u*! —4*® for our four domains used in the previous
section. And the errors of the solutions for the four domains in Figure 1 is presented
in Table 11. The numerical results show that the LL method works very well. In
Table 12, we compare with the LW method and see that the LL method produces
more accurate results.

Finally, Table 13 shows the averaged computational time for the LL method is
shorter than the LW method. Together with the computational results in Table 12,
we conclude that the LL method is more effective and efficient than the LW method.

7.1.2. 2D general second order equations with non-smooth coefficients.

EXAMPLE 1. In [18], the researchers experimented their numerical methods for
the second order PDE as follows:

2
Z 1+ 6”)m|x—j|uzzj =f inQ, u=0on 09,
i,j=1 g

This manuscript is for review purposes only.



630

632
633
634
635

639

640
641
642
643
644
645

646

647

SPLINE COLLOCATION METHOD 21

Domain Number of Number of Average time Average time
vertices tetrahedrons  for AWL method  for LL method
L-shaped domain 325 1152 6.9400e+02 9.6791e+01
Human head 913 1588 3.7610e+03 1.0729e+-02
Torus 773 2911 4.5198e+-03 4.5197e+02
Letter B 299 816 2.6495e+-02 3.7484e+01
TABLE 10

The number of vertices, tetrahedrons and the averaged time for solving the 3D Poisson equations
for each domain in Figure 2.

Gear Flower with a hole Montreal Circle with 3 holes
Solns RMSE error RMSE error RMSE error RMSE error

u®l 3.48e-10 1.08e-09 2.43e-10 1.52e-09 8.13e-11  3.87e-10 | 8.84e-11 3.80e-10
us? 1.79e-08 6.07e-08 1.65e-06 9.04e-06 1.81e-10  8.90e-10 | 4.61le-11 1.65e-10
u®® 1.21e-10 4.80e-10 3.61le-11 1.95e-10 9.91e-11 5.30e-10 2.67e-11 1.12e-10
us? 1.45e-08 5.69e-08 1.02e-06 4.87e-06 7.80e-11 3.59e-10 5.40e-11 1.97e-10
u
u
u

s5 1.87e-07 7.00e-07 1.94e-06 1.38e-05 1.94e-11 8.54e-11 9.65e-11 3.67e-10
=6 3.00e-08 1.75e-07 4.44e-06 3.27e-05 2.91e-12 9.90e-12 2.97e-11 1.37e-10
s7 2.54e-11 7.55e-11 6.50e-12 2.66e-11 1.42e-11 6.08e-11 4.15e-12 1.55e-11
us® 1.52e4-00 5.85e+00 9.77e+00 5.41e+01 9.61e-08 9.79e-07 2.66e-03 1.19e-02
unst 2.43e-05 1.83e-03 1.01e-10 4.22e-10 1.55e-06 9.63e-05 2.05e-04 9.33e-03
uns? 1.22e-04 8.20e-04 1.97e-04 1.33e-03 5.30e-06 4.22e-05 3.87e-05 2.92e-04
TABLE 11
The mazximum errors and RMSE of spline solutions for general second order elliptic equations
with smooth coefficients over the each domain in Figure 1 when r =2 and D = 8.

where Q = (—1,1)% and the solution u is u(x,y) = (ze' 1%l — 2)(ye' =Wl — ) which
is one of our testing functions. It is easy to see those coefficients satisfy the Cordes
condition

Sigmi(@is) 24141422 10 1

(X2 an)? (2422 16 2—1+¢
when € = £. This equation was also numerically experimented in [12] and [19].

Let us test our method on this 2nd order elliptic equation with non-smooth coef-
ficients for the 2 non-smooth solutions u™**,u™2, and 8 smooth solutions u®' — u*8
over the four domains used in the previous section. We use bivariate splines of degree
D = 8 and smoothness r = 2. And the mazimum errors and RMSE of the solutions
for the four domains in Figure 1 are presented in Table 14. Table 15 shows that LL
method produces solutions with better accuracy than LW method over these 4 domains.

EXAMPLE 2. The second example in the paper [18] is another second order PDE:

2
2 (O + %)umj —f inQ, u=0ondQ,
ij=1

where Q = (0,1)% and the solution u is u(z,y) = |22 +y>|> which is on the list of our
testing functions. Then those coefficients satisfy the Cordes condition when € = %.
Similar to Example 1, we also tested solving the PDE by using the 10 testing
functions used before with D = 8 and r = 2. See Table 16 for the maximum and
RMSE errors. Table 17 shows that the LL method produces numerical solutions with

a better accuracy than that of the LW method over these 4 domains.

7.1.3. Numerical Results for 3D General Second Order Elliptic Equa-
tions. In this subsection, we extend the PDE in Example 1-Example 2 to the 3D
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Gear Flower with a hole Montreal Circle with 3 holes
Solns LW LL LW LL LW LL LW LL

u®T 1.28e-06 1.08e-09 8.93e-08 1.52e-09 2.21e-07  3.87e-10 | 1.36e-08  3.80e-10
u®? 3.88e-06 6.07e-08 8.36e-07 9.04e-06 4.95e-07  8.90e-10 | 1.60e-07  1.65e-10
u®® 5.98e-07 4.80e-10 2.10e-08 1.95e-10 2.48¢-07  5.30e-10 | 1.32e-08  1.12e-10
ust 7.97e-06 5.69e-08 1.09e-06 4.87e-06 2.45e-07  3.59e-10 | 1.77e-07  1.97e-10
us® 9.51e-05 7.00e-07 3.50e-06 1.38e-05 6.97e-08  8.54e-11 | 3.80e-07  3.67e-10
u
u

s6 2.96e-05 1.75e-07 1.43e-07 3.27e-05 8.09e-09 9.90e-12 1.77e-08 1.37e-10
s7 1.90e-08 7.55e-11 4.16e-09 2.66e-11 3.51e-08 6.08e-11 1.86e-09 1.55e-11
u®® 1.17e4-00 5.85e+00 1.75e+400 5.41e+01 6.18e-07  9.79e-07 | 5.80e-03 1.19e-02
umet 9.85e-02 1.83e-03 9.24e-04 4.22e-10 6.91e-05 9.63e-05 8.07e-04 9.33e-03
w2 4.95e-02 8.20e-04 1.02e-02 1.33e-03 1.85e-04 4.22e-05 1.80e-03 2.92e-04
TABLE 12
The mazimum errors of spline solutions for general elliptic equations with smooth coefficients
over the four domains studied before when r = 2 and D = 8 for the LW method and the LL method.

Domain Number of  Number of Average time Average time
vertices triangles for LW method  for Part 2 of LL method
Gear 274 426 5.6646e+-02 1.0355e+01
Flower with a hole 297 494 8.3236e+02 1.1792e+01
Montreal 549 870 1.9026e+-03 2.5606e+01
Circle with 3 holes 525 895 4.4387e+03 2.6831e+01
TABLE 13

The number of vertices, triangles and the averaged time in seconds for solving 2D general second
order equations over the four domains in Figure 1 by the LW and LL methods.

Gear Flower with a hole Montreal Circle with 3 holes
Solution RMSE error RMSE error RMSE error RMSE error
u®l 3.28e-10 7.65e-10 1.40e-11 4.90e-11 4.48e-10 1.50e-09 | 2.00e-11 7.49e-11
u®? 1.29e-09 1.24e-08 | 9.50e-08 9.48e-07 9.31e-10  2.76e-09 | 2.78e-11 9.55e-11
u®® 5.39e-11 2.76e-10 | 9.62e-12 4.66e-11 5.99e-10  2.11e-09 | 9.7le-12 3.2le-11
us? 1.37e-09  9.85e-09 1.17e-07 1.01e-06 1.21e-09  4.32e-09 | 4.66e-11 1.45e-10
u®® 2.88e-08  9.74e-08 | 9.10e-08 3.18e-07 1.53e-10  5.38e-10 | 2.04e-11 6.88e-11
w6 5.71e-10 7.98e-09 8.40e-08 6.89e-07 5.32e-11 1.94e-10 8.36e-12 3.05e-11
u®’ 2.56e-11 1.08e-10 6.61le-13 2.67e-12 2.18e-11 1.88e-10 1.88e-12 6.52e-12
us® 6.49e-02  4.18e-01 | 4.23e-01 1.75e4-00 7.14e-08  5.90e-07 1.43e-04  2.22e-03
unst 1.74e-03  9.09e-03 | 3.6le-11 2.63e-10 1.06e-03  4.68e-03 | 2.33e-05 2.58e-04
uns? 5.50e-04 1.73e-03 | 2.87e-04 1.07e-03 7.09e-05  2.90e-04 | 8.11e-05 2.94e-04
TABLE 14

The mazimum errors of spline solutions for general elliptic equations with non-smooth coeffi-
cients in Example 1 over the four domains in Figure 2 when r =2 and D = 8.

Gear Flower with a hole Montreal Circle with 3 holes
Method LW LL LW LL LW LL LW LL

u’t 5.69e-05  7.65e-10 1.18e-04 4.90e-11 3.93e-08  1.50e-09 | 9.11e-06  7.49e-11
u®? 8.94e-04  1.24e-08 1.99e-03 9.48e-07 1.61e-06  2.76e-09 | 1.39e-04  9.55e-11
u®® 1.25e-04  2.76e-10 4.20e-05 4.66e-11 2.89e-07  2.11e-09 | 1.77e-05  3.21e-11
us? 1.72e-03  9.85e-09 1.97e-03 1.01e-06 3.92e-07  4.32e-09 | 2.19¢-04  1.45e-10
u®® 9.71e-03  9.74e-08 4.53e-03 3.18e-07 1.14e-02  5.38e-10 | 2.83e-02  6.88e-11
w6 1.12e-04 7.98e-09 5.08e-05 6.89e-07 2.51e-08 1.94e-10 1.48e-05 3.05e-11
us? 1.16e-05 1.08e-10 4.77e-06 2.67e-12 1.90e-05 1.88e-10 5.02e-05 6.52e-12
us® 7.90e-01 4.18e-01 1.07e400 1.75e+00 2.22e-02 5.90e-07 6.34e-02 2.22e-03
unst 6.97e-03  9.09e-03 3.92e-05 2.63e-10 1.19e-03  4.68e-03 | 3.72e-04  2.58e-04
uns? 8.17e-03  1.73e-03 1.78e-03 1.07e-03 6.78¢-04  2.90e-04 | 1.61e-03  2.94e-04

TABLE 15
The mazimum errors of spline solutions for general elliptic equations with non-smooth coeffi-
cients in FExample 1 over the four domains when r = 2 and D = 8 for the LW method and the LL
method.
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Gear Flower with a hole Montreal Circle with 3 holes
Solution RMSE error RMSE error RMSE error RMSE error
u’T 1.74e-10  4.02e-10 | 8.49e-12 3.64e-11 1.24e-10  4.43e-10 | 1.19e-11  4.18e-11
u®? 1.39e-09  1.07e-08 | 1.03e-07 9.29e-07 4.05e-10  1.25e-09 | 5.49e-12  1.89e-11
u®® 1.29e-10  5.09e-10 | 9.32e-12 3.66e-11 3.03e-10  9.81e-10 | 3.04e-12  1.0le-11
us? 1.09e-09  9.22e-09 | 1.11e-07 9.37e-07 1.21e-10  4.47e-10 | 6.32e-12  2.44e-11
u®® 1.75e-08  6.64e-08 | 1.06e-07 3.30e-07 1.02e-10  3.34e-10 | 1.03e-11  3.25e-11
w6 5.55e-10 9.07e-09 8.05e-08 4.91e-07 1.12e-11 5.97e-11 2.83e-12 9.33e-12
w7 5.16e-12 2.15e-11 7.14e-13 2.41e-12 2.46e-11 8.34e-11 8.19e-13 2.88e-12
w8 6.15e-02 3.65e-01 4.60e-01 2.05e+00 2.07e-08 3.67e-07 1.69e-04 3.00e-03
unst 1.75e-03  9.35e-03 | 3.12e-11 1.89e-10 1.12e-04  7.52e-04 | 2.34e-05  3.47e-04
uns? 1.23e-04  5.80e-04 | 8.48e-05 5.70e-04 3.53e-06  1.60e-05 | 1.05e-05  1.15e-04
TABLE 16

The maximum errors and RMSE of spline solutions for general elliptic equations with non-
smooth coefficients in Example 2 over the four domains when r =2 and D = 8.

Gear Flower with a hole Montreal Circle with 3 holes
Method LW LL LW LL LW LL LW LL

u®l 2.11e-06  4.02e-10 | 1.19e-06 3.64e-11 4.55e-10  4.43e-10 | 3.61e-06  4.18e-11
u®? 2.36e-05  1.07e-08 | 7.82e-06 9.29e-07 1.81e-08  1.25e-09 | 1.33e-05  1.89e-11
u®® 4.98e-06  5.09e-10 | 2.60e-07 3.66e-11 3.83e-09  9.81e-10 | 1.79¢-06  1.0le-11
ust 6.50e-06  9.22e-09 | 1.20e-05 9.37e-07 6.68e-10  4.47e-10 | 8.93e-06  2.44e-11
u®® 4.32e-02  6.64e-08 | 1.37e-05 3.30e-07 1.35e-03  3.34e-10 | 5.46e-04  3.25e-11
u®® 5.63e-03  9.07e-09 | 6.38e-07 4.91e-07 1.00e-04  5.97e-11 | 2.62e-05  9.33e-12
u®’ 6.57e-05 2.15e-11 7.89e-08 2.41e-12 1.90e-06 8.34e-11 7.68e-07 2.88e-12
u®® 4.54e-01  3.65e-01 | 8.85e-01  2.05e4+00 | 4.51e-03  3.67e-07 | 2.78e-03  3.00e-03
unst 7.18¢-03  9.35e-03 | 4.15e-07 1.89e-10 1.03e-03  7.52e-04 | 3.22e-04  3.47e-04
une? 6.99¢-03  5.80e-04 | 9.81e-04 5.70e-04 1.40e-04  1.60e-05 | 3.86e-04  1.15e-04

TABLE 17
The mazimum errors of spline solutions for general elliptic equations with non-smooth coeffi-
cients in Example 2 over the four domains when r = 2 and D = 8 for the LW method and the LL
method.

setting and use our collocation method based on trivariate splines to find spline ap-
proximation.

EXAMPLE 3. We tested a 2nd order elliptic equation (1.2) with smooth PDE co-
efficients a1 = 2% + y%,a*2 = cos(xy — 2),a% = e)<p(Wl+zg+l),a12 + a?! =
2?2 —y? — 2,a® + a®? = cos(zy — 2)sin(z — y),a'® + 3! = m’bl = 0,b =
—1,b3 = tan~ (2% — y% + cos(2)),c = =+ y + z, where a'? = a®',a** = a® and
a'3 = a3!. The testing functions are the 2 not very smooth solutions u™*',u™*2, and
8 smooth solutions u®' — u®® over the four domains used in the previous section. And
the maximum and RMSE errors of the solutions for the four domains in Figure 2 are

reported in Table 18.

EXAMPLE 4. We next test a 3D general second order equations with nonsmooth
PDE coefficients:

3

E (1+6ij)|xz||x—j‘uximj:f in Q, u=0on o
x| |x;

i,j=1 e

which is an extension of one of the examples studied in [18]. These PDE coefficients
satisfies the Cordes condition

Som (@ 2414142414142 414118 1

(0 aii)? (2+2+42)2 64~ 3—1+c¢€
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L shaped domain Human head Torus Letter B
Solution RMSE error RMSE error RMSE error RMSE error
u’T 2.08e-11 1.32e-10 | 5.04e-12  3.70e-11 1.48e-11 1.53e-10 | 3.07e-12  3.19e-11
u®? 5.07e-10  3.02e-09 | 6.98¢-10  4.07e-09 | 7.53e-10  4.77e-09 | 3.80e-11  3.00e-10
u®® 2.88¢-10  1.85e-09 | 1.73e-09  1.52e-08 | 1.72e-09  2.43e-08 | 3.41e-08  4.85e-07
us? 2.23e-10  1.24e-09 | 7.73e-10  6.34e-09 | 3.83e-10  2.17e-09 | 2.63e-10  4.04e-09
u®® 6.73e-10  3.93e-09 | 1.20e-09  8.54e-09 | 1.83e-09  3.66e-08 | 1.58e-08  3.89e-07
w6 1.55e-09 9.42e-09 5.62e-09 4.81e-08 4.55e-09 2.25e-08 1.73e-10 1.47e-09
w7 4.00e-09  2.13e-07 | 1.12e-07  9.35e-07 | 9.21e-08  3.70e-06 | 8.26e-08  1.02e-06
w8 1.81e-11 1.04e-10 3.76e-11 2.45e-10 5.52e-11 3.99e-10 6.43e-11 1.46e-09
unst 5.27e-06  1.64e-04 | 1.23e-05 4.15e-04 | 8.61e-10  6.61e-09 | 1.03e-05  2.26e-04
uns? 6.99¢-05  1.05e-03 | 1.86e-04  2.62e-03 | 1.25e-04  1.75e-03 | 3.55e-05  4.45e-04
TABLE 18

The mazimum errors and the root mean square error(RMSE) of spline solutions of the general
elliptic 2nd order equation in Example 3 with smooth coefficients over the four domains in Figure 2
when r =1 and D = 9.

L shaped domain Human head Torus Letter B
Solution RMSE error RMSE error RMSE error RMSE error
usT 3.05e-06 1.14e-04 1.75e-12 1.97e-11 1.82e-05 2.02e-04 1.94e-05 6.21e-04
u®? 2.92e-05 6.98e-04 1.86e-10 1.31e-09 4.55e-04 3.77e-03 1.26e-04 3.29e-03
u®? 2.08¢-04  6.26e-03 | 3.67e-10  4.06e-09 | 3.54e-03  2.74e-02 | 7.09e-04  2.30e-02
us? 1.17e-05  3.28e-04 | 1.23e-10  8.40e-10 | 1.20e-04  9.87e-04 | 1.88e-05  4.84e-04
u®® 1.52e-04  4.03e-03 | 6.92e-10  4.24e-09 | 2.81e-03  2.73e-02 | 6.15e-04  2.10e-02
w6 1.45e-04  3.72e-03 | 1.21e-09  1.08e-08 | 2.32e-03  1.84e-02 | 2.58e-04  5.63e-03
u®? 1.96e-09 1.67e-08 | 4.42e-08  5.16e-07 | 1.04e-07  2.53e-06 | 4.18e-08  4.90e-07
u®® 6.75e-06  2.59e-04 | 5.38e-12  3.93e-11 | 4.79e-05  4.96e-04 | 2.02e-05  5.46e-04
wnst 2.46e-05 5.11e-04 1.73e-05 1.12e-03 4.55e-04 3.72e-03 5.06e-05 7.59e-04
w2 6.88¢-13  3.63e-12 | 9.30e-05 1.78e-03 | 1.07e-04  1.69e-03 | 1.08e-13  8.11le-13
TABLE 19

The mazimum errors and the RMSE of spline solutions for the general elliptic 2nd order
equations in Example J with non-smooth coefficients over the four domains in Figure 2 when r = 1
and D = 9.

when € < 1. We tested our splined based collocation method using the 2 not very
smooth solutions u™', u™2, and 8 smooth solutions from u®' to u*® given in the
previous section. over the four domains used before with D =9 and r = 1. And the

errors of the solutions for the four domains in Figure 2 are presented in Table 19.

EXAMPLE 5. We consider the second example in [18] and extend it to the 3D
setting:

3
Z (0i + T;TQJ Vaia; = f inQ, u=0on0Q
ij=1

Note that these PDE coefficients satisfy the Cordes condition when e = %. We use our

collocation method and tested 2 not-very-smooth solutions u™', u™?2, and 8 smooth

solutions u®' — —u*® over the 4 domains used before with D = 9 and r = 1. The

mazimum and RMSE errors are presented in Table 20.

From Tables 18-20, we can see that the collocation method works very well in
the 3D setting.
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