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Abstract. Manipulation of control points is a standard procedure in
parametric B-spline surface design. Unfortunately, this tool alone is
not sufficient to achieve certain goals such as removal of gaps among
compound parametric B-spline surfaces. In this paper, we introduce a
new approach for removing gaps but maintaining at least the geomet-
rical smoothness condition. If the underlying knot sequences along
the connecting boundaries of two parametric B-spline surfaces are

proportional, they can be connected in a G
1 fashion without chang-

ing the structure of B-spline representation. Otherwise, they can still

be connected in a G
1 fashion, but with one requirement, namely, by

sacrificing the true B-spline representation along a boundary strip of
one of the two B-spline surfaces. Our method involves manipulation
of Bézier coefficients along a boundary strip, and we demonstrate the

feasibility of this approach by considering the C
1 cubic setting. This

procedure is generalized to connecting up to four B-spline surfaces
with a common corner.

§0. Prelude

This paper represents a joint work with Charles Chui under the sponsor-
ship of an NSF GOALI grant with matching support by McDonnell Dou-
glas Aerospace (now Boeing Company, St. Louis). The research problem
was motivated by the need of connecting surface patches that are designed
independently. The basic assumption is that the boundary of each surface
patch is supposed to be determined by a given finite set of points. How-
ever, certain gaps, though invisible to the human eyes, were usually found
to exist when these surface patches are connected by using the CAD tools
from Unigraphics. The objective of the paper was, therefore, to develop
a design criterion to avoid such gaps, while yielding a reasonably smooth
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compound surface. We use the G1 smoothness criterion as the goal in
our research. The paper [4], with Charles Chui as a co-author, was com-
pleted and submitted in April, 1998, to the Journal of Computer Aided
Geometric Design (CAGD) for publication. A revision of the paper was
re-submitted in 2003, but was later rejected. To our surprise, however, the
same journal, CAGD, has recently published a similar work [12]. Since
our paper [4] has not appeared in print, the intention of this writing is to
publish its exact content and to point out the similarity with the recently
published work [12] in CAGD.

In [12], certain necessary and sufficient conditions for two NURBS
patches R1(u, v) and R2(ũ, ṽ) to join in the G1 fashion are given under
the assumption that R1(u, 0) = R2(u, 0) (cf. (3) in [12, p.289]). This is
a very restrictive assumption. Although the G0 condition implies that
R1(u, 0) and R2(u, 0) have a common boundary curve, namely, R1(u, 0)=
R2(w(u), 0) with re-parametrization, say w(u), yet the assumption
R1(u, 0) = R2(u, 0) rarely happens in practice, and indeed does not even
apply to true NURBS. As mentioned above, two adjacent patches are
usually determined only by imposing a finite set of common (interpolat-
ing) points on the boundaries. That is, it is more practical to assume
R1(u, 0) = R2(ũ, 0), only for some finite discrete values of the parameters
u and ũ, in the usual design process. In addition, the weaker condition of
common interpolating points (as opposed to a common boundary curve)
allows us to extend the study to connecting true NURBS patches, as in
our later published work [3].

Our study in [4] is based on the practical setting, and an effective
algorithm is developed to modify the spline coefficients near the (com-
mon) boundary of only one of two spline surface patches to achieve a G1

compound patch, without gaps. In this regard, we like to mention that
although our condition is only sufficient (but not necessary in general),
yet it applies to practical applications and can add to the capability of the
Unigraphics CAD tools.

In the following, the content of [4] is presented without change. Since
this volume is dedicated to Professor Charles K. Chui on the occasion of
his 65th birthday, he declines to be a co-author of this paper. We are
happy to honor and respect his wish.

§1. Introduction

In most CAD/CAM/CAE systems, a 3-D geometry object, expressed as
Bézier, B-spline or NURBS surfaces, often consists of several individually
designed surfaces. When these surface patches are put together, the as-
sembled surface, called compound surface, often contains some undesirable
discontinuities such as gaps, holes, and overlaps. There are various ways
to repair these defects, but the general approach is to carve away portions
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of boundary strips and fill in the gaps or holes by introducing new surface
patches which are relatively much smaller, and usually narrower, than the
original ones. For instance, in recent literature [6–9], gap and hole fill-
ing algorithms using Coons surface patches and Gregory surface patches
were developed for such corrections. These algorithms require a designer
to interactively choose a bounding box from the original geometry object
before a Coons or Gregory patch is constructed to replace the portion
of the original surface patches within the bounding box which contains
these discontinuities. The main disadvantage of this general approach in
CAD/CAM/CAE applications is that a significant amount of the geomet-
ric data set of control points is lost, and the new patches for the repair do
not have representation in terms of control points. This paper presents a
different approach to correcting these undesirable surface discontinuities.
Instead of carving away portions of the boundary and filling in new sur-
face patches, we develop an algorithm for manipulating the control points,
and Bézier coefficients when necessary, only near the boundary, to achieve
the same goal. Of course this does not work when B-splines with simple
knots are considered. Fortunately, in many CAD/CAM/CAE applica-
tions, multiple knots are often used. For instance, for cubic B-splines,
double interior knots are used, resulting in C1 continuity instead of C2

continuity; and for quintic B-splines, usually only C2 continuity is suffi-
cient in the automobile industry. Even in this multiple knot setting, we
will show that manipulating control points is not enough when the knot
spacings are arbitrary. Our solution for this situation is to manipulate the
Bézier coefficients of the polynomial pieces, but only along the boundary
strips. The sacrifice is to slightly reduce the geometric smoothness along
these boundary strips. To demonstrate the feasibility and efficiency of
our approach, we only consider the C1 cubic setting, although we believe
that our algorithms can be generalized to deal with high order B-spline
surfaces. In the following, we first introduce some necessary notations and
explain more precisely what we will study in this paper.

Let S and S̃ be two C1 bi-cubic parametric B-spline surfaces in the 3-
dimensional (or 3-D) space with parametric knot sequences {(ui, vj) : 0 ≤
i ≤ 2m+5, 0 ≤ j ≤ 2n+5} and {(ũi, ṽj) : 0 ≤ i ≤ 2m̃+5, 0 ≤ j ≤ 2ñ+5},

respectively. That is, S and S̃ can be represented as finite tensor-product
cubic B-spline series, f and f̃ , with double interior knots and four-fold
boundary knots. We will assume that S and S̃ pass through the same
set of data points along one of their edges as determined by the knot
sequences, or equivalently,

f(u2i, v2) = f̃(ũ2i, ṽ2), i = 1, · · · , m̂ := min(m̃, m).

We mention, however, that the interpolation conditions do not play a
significant role when connecting S and S̃ in the G1 fashion. Observe
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that although the parametric edges u2 ≤ u ≤ u2m̂, v = v2 and ũ2 ≤
ũ ≤ ũ2m̂, ṽ = ṽ2 in 2-D coincide, the two boundary edges, f(u, v2) and
f̃ (ũ, ṽ2) in the 3-dimension space, usually only meet at the common set of
data points described above, and hence, there are m̂ − 1 possible gaps or
overlaps between the two surfaces S and S̃.

To minimize the modifications of S and S̃, we first study the pos-
sibility of removing these gaps and overlaps simply by manipulating the
control points without disturbing the given interpolation data. If this is
not feasible, we then modify the boundary strip of S (or of S̃) to remove
these gaps and overlaps. We emphasize that the important features of this
approach are that no additional surface patches are used to fill in the gaps,
that the modification (if needed) is very minimal, and that the combined
surface, without gaps and overlaps, is smooth. The objective of this paper
is to establish two mathematical results, derive some useful formulas, and
give the corresponding efficient algorithms. First, if one knot sequence,
say {ui}, is proportional to a subsequence of the other knot sequence {ũi},
then the two surfaces S and S̃ may be modified to have no gaps and no
overlaps, and the combined surface is geometrically continuously differen-
tiable (called G1). Secondly, if these knot sequences are not proportional,
then we present an algorithm to change the Bézier points of the boundary
strip of S, say,

u2 ≤ u ≤ u2m̂ and v2 ≤ v ≤ v6,

to remove the gaps or overlaps, so that the combined surface is again G1,
and the major portion of S, namely, S minus the boundary strip,

{S(u, v) : u2 ≤ u ≤ u2m+4 and v6 ≤ v ≤ v2n+4},

is still the original C1 bi-cubic B-spline surface. In other words, C1 is
sacrificed only along the edge of one B-spline surface to yield a global
(i.e., combined) G1 surface which is C1 outside this boundary strip, and
which does not have any gaps and overlaps. This procedure is extended
to treat certain multiple (i.e., compound) C1 bi-cubic B-spline surfaces.

The outline of the paper is as follows. We first introduce the necessary
notations and definitions such as Bernstein representation of B-spline sur-
faces, derive an algorithm for converting a B-spline surface to Bernstein
form, and characterize G1 geometric smoothness conditions. These will
be done in §2. The main results of this paper are presented in §3, where
we analyze the conditions of the knot sequences for C0 and G1 connection
of S and S̃ without sacrificing the B-spline representation; and when the
knots are arbitrary, we derive an algorithm for connecting S and S̃ in a G1

fashion. Connection of multiple bi-cubic B-spline surfaces is considered in
§4. Finally, in §5, we present several numerical examples to demonstrate
our results.
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§2. Preliminaries

In this section, we introduce some necessary notations and certain ele-
mentary properties of B-splines and Bernstein polynomials. We refer the
details on these subjects to the references [1, 2, 5, 11].

2.1. C1 Bi-Cubic B-Spline Surfaces and Bernstein Polynomials

We begin with the definition of C1 bi-cubic B-spline surfaces. Let u =
{ui}

2m+5
i=0 be a partition of [0, 1], defined by

u = {0 = u0 = . . . = u3 < u4 = u5 < u6 = u7 < . . .

< u2m = u2m+1 < u2m+2 = . . . = u2m+5 = 1}.
(2.1)

Then u can be used to define the ith normalized cubic B-splines,

N4,u,i(x) =(ui+4 − ui)[ui, ui+1, ui+2, ui+3, ui+4](x − u)3+,

i = 0, · · · , 2m + 1, (2.2)

where the standard notation of fourth order divided difference with respect
to the variable u is used (see [1, 8]). Similarly, let

v = {0 = v0 = . . . = v3 < v4 = v5 < v6 = v7 < . . .

< v2n = v2n+1 < v2n+2 = . . . = v2n+5 = 1}
(2.3)

be another knot sequence that governs the normalized cubic B-splines
N4,v,j(x), j = 0, · · · , 2n + 1.

In this paper, we will consider C1 bi-cubic B-spline surfaces of the
form

S : f(u, v) =

2m+1∑

i=0

2n+1∑

j=0

di,jN4,u,i(u)N4,v,j(v), (2.4)

where u and v are parameters with (u, v) ∈ [0, 1]2 and di,j ∈ IR3, i =
0, . . . , 2m + 1, j = 0, . . . , 2n + 1, are called the global control points (or de
Boor points) of the surface S.

Next let

φn,i,a,b(x) =

(
n

i

)(
x − a

b − a

)i (
b − x

b − a

)n−i

, 0 ≤ i ≤ n, (2.5)

be the Bernstein polynomials of degree n relative to the interval [a, b].
In the following, we restrict our attention only to the interval [a, b] for
the Bernstein polynomials φn,i,a,b(u). For this purpose, we introduce the
notation

Bn,i,a,b(u) = χ[a,b](u)φn,i,a,b(u), (2.6)
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where the standard notation of the characteristic function χ[a,b] has been
used. Now, since any polynomial may be written in terms of the Bernstein
polynomial form, any B-spline can be expressed in terms of Bn,i,a,b(u),
because of the localness property. For example, when n = 3, with the
knot sequence u in (2.1) and by introducing the notation

αi =
u2i+4 − u2i+2

u2i+4 − u2i

, βi =
u2i+2 − u2i

u2i+4 − u2i

= 1 − αi, 0 ≤ i ≤ m, (2.7)

the B-splines N4,u,i(x) in (2.2), i = 0, · · · , 2m + 1, can be represented as

N4,u,2i(u) = B3,2,u2i,u2i+2
(u) + αiB3,3,u2i,u2i+2

(u)

+ αiB3,0,u2i+2,u2i+4
;

N4,u,2i+1(u) = βiB3,3,u2i,u2i+2
(u) + βiB3,0,u2i+2,u2i+4

(u)

+ B3,1,u2i+2,u2i+4
(u),

(2.8)

where 0 ≤ i ≤ m. Observe from (2.7) that α0 = βm = 1 and β0 = αm = 0.
Hence, (2.8) can be rewritten explicitly as

N4,u,0(u) = B3,0,u2,u4
(u),

N4,u,1(u) = B3,1,u2,u4
(u);

N4,u,2i(u) = B3,2,u2i,u2i+2
(u) + αiB3,3,u2i,u2i+2

(u),

+ αiB3,0,u2i+2,u2i+4
,

N4,u,2i+1(u) = βiB3,3,u2i,u2i+2
(u) + βiB3,0,u2i+2,u2i+4

(u)

+ B3,1,u2i+2,u2i+4
(u), 1 ≤ i ≤ m − 1;

N4,u,2m(u) = B3,2,u2m,u2m+2
(u),

N4,u,2m+1(u) = B3,3,u2m,u2m+2
(u).

2.2. An Algorithm for Converting Bi-Cubic B-Spline Surfaces
in the B-Spline Representation to the Bernstein Form

In view of (2.8), we can write the B-spline surface S in (2.4) in terms
of the localized Bernstein polynomials, namely,

S : f(u, v) =

2m+1∑

i=0

2n+1∑

j=0

di,jN4,u,i(u)N4,v,j(v) (2.9)

=

m∑

i=1

n∑

j=1

3∑

k=0

3∑

`=0

ci,j,k,`B3,k,u2i,u2i+2
(u)B3,`,v2j ,v2j+2

(v),(2.10)
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where for each polynomial surface patch

f(u, v) : u ∈ [u2i, u2i+2], v ∈ [v2j , v2j+2], i = 1, . . . , m; j = 1, . . . , n,

the 3-dimensional coefficients ci,j,k,` : 0 ≤ k, ` ≤ 3, are called the Bézier

coefficients of the (i, j)th polynomial surface patch. An algorithm for
converting the global control points

{di,j : i = 0, . . . , 2m + 1, j = 0, . . . , 2n + 1}

to the Bézier coefficients

{ci,j,k,` : 0 ≤ k, ` ≤ 3; i = 1, . . . , m, j = 1, . . . , n}

is given as follows. Recall the notations of αi and βi’s in (2.7) and in-
troduce the analogous notation for the knot sequence v. That is, we also
set

ξj =
v2j+4 − v2j+2

v2j+4 − v2j

, ηj = 1 − ξj , 0 ≤ j ≤ n. (2.11)

Then, by introducing the arrays

{hk,`}0≤k≤2m+1, 1≤`≤n+1, {vk,`}1≤k≤m+1, 0≤`≤2n+1,

and {ak,`}1≤k≤m+1, 1≤`≤n+1 of sizes (2m+2)× (n+1), (m+1)× (2n+2),
and (m + 1) × (n + 1), respectively, where

h2i,j := ξj−1d2i,2j−2 + ηj−1d2i,2j−1,

h2i+1,j := ξj−1d2i+1,2j−2 + ηj−1d2i+1,2j−1,

i = 0, · · · , m, j = 1, · · · , n + 1;

vi,2j := αi−1d2i−2,2j + βi−1d2i−1,2j ,

vi,2j+1 := αi−1d2i−2,2j+1 + βi−1d2i−1,2j+1,

i = 1, · · · , m + 1, j = 0, · · · , n; and

ai,j := αi−1h2i−2,j + βi−1h2i−1,j

= ξj−1vi,2j−2 + ηj−1vi,2j−1,

i = 1, · · · , m + 1, j = 1, · · · , n + 1,

the mn Bézier coefficient matrices of size 4 × 4 with 3-vector entries

[ci,j,k,`]0≤k,`≤3 , i = 1, · · · , m, j = 1, · · · , n,

can be written in the following unified form

[ci,j,`,3−k]0≤k,`≤3 =




ai,j+1 h2i−1,j+1 h2i,j+1 ai+1,j+1

vi,2j d2i−1,2j d2i,2j vi+1,2j

vi,2j−1 d2i−1,2j−1 d2i,2j−1 vi+1,2j−1

ai,j h2i−1,j h2i,j ai+1,j




,

(2.12)
for i = 1, · · · , m, j = 1, · · · , n.
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2.3. An Algorithm for Converting Bi-Cubic B-spline Surfaces
in the Bernstein Form to the B-Spline Representation

Under certain restrictions on the Bézier coefficients, a surface in its
Bernstein representation can be converted to its B-spline representation.
In other words, we are interested in converting the Bézier coefficients

{ci,j,k,` : 0 ≤ k, ` ≤ 3; i = 1, . . . , m, j = 1, . . . , n}

to the global control points

{di,j : i = 0, . . . , 2m + 1, j = 0, . . . , 2n + 1}.

Suppose that {ci,j,k,` : i = 1, . . . , m, j = 1, . . . , n; 0 ≤ k, ` ≤ 3} satisfy

ci,j,0,` = ci−1,j,3,` = αi−1ci−1,j,2,` + βi−1ci,j,1,`, ` = 0, . . . , 3;

i = 2, . . . , m, j = 1, . . . n,(2.13)

ci,j,k,0 = ci,j−1,k,3 = ξj−1ci,j−1,k,2 + ηj−1ci,j,k,1, ` = 0, . . . , 3;

i = 1, . . . , m, j = 2, . . . , n.(2.14)

along both the m − 1 interior vertical grid lines and the n − 1 interior
horizontal grid lines of the parametric domain, respectively. Then it is
clear from (2.13) and (2.14) that

αi−1ci−1,j,2,0 + βi−1ci,j,1,0 = ξj−1ci,j−1,0,2 + ηj−1ci,j,0,1,

i = 2, . . . , m, j = 2, . . . , n.

Hence, under the assumptions (2.13) and (2.14), we have the following
conversion formulas.

1◦ For the 4 corners of the parametric domain,

d0,0 = c1,1,0,0, d2m+1,0 = cm,1,3,0,

d0,2n+1 = c1,n,0,3, d2m+1,2n+1 = cm,n,3,3.
(2.15)

2◦ Along the horizontal boundaries of the parametric domain,

d2i−1,0 = ci,1,1,0, d2i,0 = ci,1,2,0,

d2i−1,2n+1 = ci,n,1,3, d2i,2n+1 = ci,n,2,3, i = 1, . . . , m.
(2.16)

3◦ Along the vertical boundaries of the parametric domain,

d0,2j−1 = c1,j,0,1, d0,2j = c1,j,0,2,

d2m+1,2j−1 = cm,j,3,1, d2m+1,2j = cm,j,3,2, j = 1, . . . , n.
(2.17)

4◦ For the interior of the parametric domain,


d2i−1,2j d2i,2j

d2i−1,2j−1 d2i,2j−1


 =




ci,j,1,2 ci,j,2,2

ci,j,1,1 ci,j,2,1


, (2.18)

i = 1, . . . , m, j = 1, . . . , n.
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2.4. C0 Continuity Conditions

Let f(u, v) be a bi-cubic B-spline representation defined on [0, 1]2 in
(2.13) with knot sequences u and v in (2.1) and (2.3), and f̃(u, v) be

another bi-cubic B-spline representation of a surface S̃, defined on [0, 1]2

and with knot sequences ũ and ṽ, namely,

ũ = {0 = ũ0 = . . . = ũ3 < ũ4 = ũ5 < ũ6 = ũ7 < . . .

< ũ2m̃ = ũ2m̃+1 < ũ2m̃+2 = . . . = ũ2m̃+5 = 1}, (2.19)

ṽ = {0 = ṽ0 = . . . = ṽ3 < ṽ4 = ṽ5 < ṽ6 = ṽ7 < . . .

< ṽ2ñ = ṽ2ñ+1 < ṽ2ñ+2 = . . . = ṽ2ñ+5 = 1}. (2.20)

That is, in addition to (2.4), we have

S̃ : f̃(u, v) =

2m̃+1∑

i=0

2ñ+1∑

j=0

d̃i,jN4,ũ,i(u)N4,ṽ,j(v)

=

m̃∑

i=1

ñ∑

j=1

3∑

k=0

3∑

`=0

c̃i,j,k,`B3,k,ũ2i,ũ2i+2
(u)B3,`,ṽ2j ,ṽ2j+2

(v). (2.21)

For convenience, similar to (2.7), we also set

α̃i =
ũ2i+4 − ũ2i+2

ũ2i+4 − ũ2i

, β̃i =
ũ2i+2 − ũ2i

ũ2i+4 − ũ2i

= 1 − α̃i, 0 ≤ i ≤ m̃. (2.22)

We say that the corresponding B-spline surfaces S and S̃ are C0

continuously connected (or joined), if for each i ∈ {1, · · · , m̂}, there exists
a reparameterization w̃i = w̃i(u) such that

f(u, v2) = f̃(w̃i(u), ṽ2), u ∈ [u2i, u2i+2]. (2.23)

2.5. G1 Continuity Condition

Two polynomial surface patches

P (u, v), (u, v) ∈ [u2i, u2i+2] × [v2j , v2j+2]

and Q(u, v), (u, v) ∈ [ũ2i, ũ2i+2] × [ṽ2j , ṽ2j+2],

in the 3-dimensional space are said to be connected in a G1 fashion, if
the two polynomial surface patches are continuously connected in the 3-
dimensional space and that for each point on the common boundary edge,
there exists a unique plane that is tangent to both polynomial surface
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patches in the 3-dimensional space. Precisely, there are two conditions
(see [5]) given as follows:

(i) there exists a reparameterization w̃j = w̃j(v) such that P (u2i+2, v) =
Q(ũ2i+2, w̃j(v)), for all v ∈ [v2j , v2j+2], and

(ii) there exist three polynomials Θ(v), Φ(v), and Ψ(v), such that

Θ(v)
∂

∂u
P (u2i+2, v) = Φ(v)

∂

∂u
Q(ũ2i+2, w̃j(v))

+ Ψ(v)
∂

∂v
Q(ũ2i+2, w̃j(v)) (2.24)

for v ∈ [v2j , v2j+1].
For a B-spline surface S, if

f(u, v)
∣∣∣
[u2i,u2i+2]×[v2j ,v2j+2]

and f(u, v)
∣∣∣
[u2i+2,u2i+4]×[v2j ,v2j+2]

satisfy the above conditions (i) and (ii), then we say that S is a geometri-
cally differentiable surface. For short, we will say that S satisfies the G1

condition or S is in a G1 fashion.
Note that, in (2.24), if [ũ2i, ũ2i+2] = [u2i+2, u2i+4] and [ṽ2j , ṽ2j+2] =

[v2j , v2j+2] and if Θ(v) = 1, Φ(v) = 1 and Ψ(v) = 0 with w̃j(v) = v, then
P and Q are C1 continuously connected in the usual sense. That is, in
this case, the G1 condition is the usual C1 condition.

§3. Main Results

Our first goal is to join S and S̃ continuously (i.e., without gaps and

overlaps) and our second goal is to join S and S̃ in a G1 fashion across

the common edge of S̃ and S. However, as we will see later, if the knot
sequences u and ũ do not satisfy certain conditions, the second goal can-
not be achieved without sacrificing the B-spline representation along a
boundary strip of one of the two surfaces. Certainly, without adjusting
the control points of either S or S̃ or both, it is most likely that even the
first goal could not be achieved. On the other hand, we do not wish to
alter the originally designed surfaces S and S̃ by too much. So, our plan
is to adjust only one strip of S while keeping S̃ unaltered.

We now introduce the following definition on the knot sequences.

Definition 3.1. The two knot sequences u and ũ are proportional if

αi = α̃i, i = 1, . . . , m̂ − 1, (3.1)

We divide this section into two subsections. In §3.1., we shall discuss
the connection of S and S̃ when their knot sequences are proportional. In
§3.2, we will then deal with G1 connection when the knot sequences are
not proportional.
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3.1. G1 Connection of S and S̃ in the B-Spline Representation

To join S and S̃ continuously across their edges, we will modify S

defined by f(u, v2), to S? defined by f?(u, v2), where u ∈ [u2i, u2i+2], so

that S? and S̃, defined by f̃ (u, ṽ2), u ∈ [ũ2i, ũ2i+2], i = 1, . . . , m̂, connect

together continuously. Here, analogous to S and S̃, we set

S? : f?(u, v) =

2m+1∑

i=0

2n+1∑

j=0

d?
i,jN4,u,i(u)N4,v,j(v) (3.2)

=
m∑

i=1

n∑

j=1

3∑

k=0

3∑

`=0

c?
i,j,k,`B3,k,u2i,u2i+2

(u)B3,`,v2j ,v2j+2
(v). (3.3)

By the C0 joining condition (2.23) and the algorithm for converting bi-
cubic B-spline surfaces to the Bernstein form, we have to choose

d?
i,0 := d̃i,0, i = 0, . . . , 2m̂, and

d?
2m̂+1,0 :=

1

βm̂

(d̃2m̂+1,0 − αm̂d̃2m̂,0), when m ≥ m̃, or (3.4)

d?
2m̂+1,0 := α̃m̂d̃2m̂,0 + β̃m̂d̃2m̂+1,0, when m < m̃

and we have to set

αid
?
2i,0 + βid

?
2i+1,0 = α̃id̃2i,0 + β̃d̃2i+1,0 (3.5)

for all i = 1, · · · , m̂ − 1. Using (3.4), (2.7), and (2.22), and noting that

d̃2i,0 6= d̃2i+1,0 (otherwise, the surface S̃ has a cusp), the requirement
(3.5) implies that αi = α̃i for all i’s. That is, if the two knot sequences
are proportional, then after choosing d?

i,0 as in (3.4), but keeping d?
i,j =

di,j , j ≥ 1 for all i’s, S? is continuously connected to S̃.
As we see from the above, the proportionality is a necessary to en-

sure that S? is still a C1 surface. This proportionality condition on knot
sequences turns out to be exactly what is needed for S and S̃ to be joined
in a G1 fashion without sacrificing the B-spline representations of S and
S̃, as follows.

Theorem 1. Let S and S̃ be two bi-cubic B-spline surfaces with control

points {di,j, 0 ≤ i ≤ 2m+1, 0 ≤ j ≤ 2n+1} and {d̃i,j, 0 ≤ i ≤ 2m̃+1, 0 ≤
j ≤ 2ñ + 1}, respectively. Assume that the knot sequences u and ũ are

proportional as in (3.1).
1◦ If m = m̃, set

d?
i,0 := d̃i,0, i = 0, . . . , 2m̂ + 1, (3.7)

d?
i,1 :=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
d̃i,0 −

v4 − v2

ṽ4 − ṽ2
d̃i,1, i = 0, . . . , 2m̂ + 1.(3.8)
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2◦ If m > m̃, set





d?
i,0 := d̃i,0, i = 0, . . . , 2m̂,

d?
2m̂+1,0 :=

1

βm̂

(d̃2m̂+1,0 − αm̂d̃2m̂,0),
(3.9)

and





d?
i,1 :=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
d̃i,0 −

v4 − v2

ṽ4 − ṽ2
d̃i,1, i = 0, . . . , 2m̂,

d?
2m̃+1,1 :=

1

βm̂

[(
1 +

v4 − v2

ṽ4 − ṽ2

)
(d̃2m̂+1,0 − αm̂d̃2m̂,0)

−
v4 − v2

ṽ4 − ṽ2
(d̃2m̂+1,1 − αm̂d̃2m̂,1)

]
.

(3.10)
3◦ If m < m̃, set

{
d?

i,0 := d̃i,0, i = 0, . . . , 2m̂,

d?
2m̂+1,0 := α̃m̂d̃2m̂,0 + β̃m̂d̃2m̂+1,0,

(3.11)

and




d?
i,1 :=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
d̃i,0 −

v4 − v2

ṽ4 − ṽ2
d̃i,1, i = 0, . . . , 2m̂,

d?
2m̃+1,1 :=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
(α̃m̂d̃2m̂,0 + β̃m̂d̃2m̂+1,0)

−
v4 − v2

ṽ4 − ṽ2
(α̃m̂d̃2m̂,1 + β̃m̂d̃2m̂+1,1).

(3.12)
In addition, keep d?

i,j := di,j for all other indices i, j. Then the

modified surface S? is still a C1 bi-cubic B-spline surface and the

surfaces S? and S̃ are connected in a G1 fashion.

Proof: We will only prove 2◦, since the proofs of both 1◦ and 3◦ are
similar. It is clear, by using the algorithm described in §2.4, that the
condition (3.9) implies that S? and S̃ are connected continuously without
gaps.

We now show that S? and S̃ are connected in a G1 fashion with
further choice of the control points of S? in (3.10). Indeed, we may even
choose Θ(v) = Φ(v) = 1 and Ψ(v) = 0 in (2.24), and we have to ensure
that

c?
i,1,k,1 − c?

i,1,k,0

v4 − v2
= −

c̃i,1,k,1 − c̃i,1,k,0

ṽ4 − ṽ2
, k = 0, · · · , 3; i = 1, · · · , m̂,

(3.13)
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in order for S? and S̃ to be joined in the G1 fashion.
The first 2m̂ equations for d?

i,1, i = 1, . . . , 2m̂, in (3.10), imply that

the relations in (3.13) hold for k = 1, 2 and i = 1, . . . , m̂. That S̃ is the
original bi-cubic C1 B-spline surface yields

c̃i,1,0,0 = α̃i−1d̃2i−2,0 + β̃i−1d̃2i−1,0,

and c̃i,1,0,1 = α̃i−1d̃2i−2,1 + β̃i−1d̃2i−1,1, i = 1, . . . , m̂.

Since u and ũ are proportional, we have

c?
i,1,0,0 = αi−1d̃2i−2,0 + βi−1d̃2i−1,0 = c̃i,1,0,0, i = 1, . . . , m̂.

Thus, it follows from (3.10) that

c?
i,1,0,1 = αi−1d

?
2i−2,1 + βi−1d

?
2i−1,1

=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
αi−1d̃2i−2,0 −

v4 − v2

ṽ4 − ṽ2
αi−1d̃2i−2,1

+

(
1 +

v4 − v2

ṽ4 − ṽ2

)
βi−1d̃2i−1,0 −

v4 − v2

ṽ4 − ṽ2
βi−1d̃2i−1,1

=

(
1 +

v4 − v2

ṽ4 − ṽ2

)(
α̃i−1d̃2i−2,0 + β̃i−1d̃2i−1,0

)

−
v4 − v2

ṽ4 − ṽ2

(
α̃i−1d̃2i−2,1 + β̃i−1d̃2i−1,1

)

=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
c̃i,1,0,0 −

v4 − v2

ṽ4 − ṽ2
c̃i,1,0,1, i = 1, . . . , m̂,

so that
c?

i,1,0,1

v4 − v2
=

c̃i,1,0,0

v4 − v2
−

c̃i,1,0,1 − c̃i,1,0,0

ṽ4 − ṽ2
,

which implies that the relations (3.10) for k = 0, i = 1, . . . , m̂, hold. Since

c?
i,1,3,1 = c?

i+1,1,0,1,

and c?
i,1,3,0 = c?

i+1,1,0,0, i = 1, . . . , m̂ − 1,

we can similarly conclude (3.13) with k = 3 and i = 1, · · · , m̂− 1. Finally,
for k = 3 and i = m̂, we have

c?
m̂+1,1,0,0 = αm̂d?

2m̂,0 + βm̂d?
2m̂+1,0 = d̃2m̂+1,0 = c̃m̂,1,3,0,

and c?
m̂,1,3,1 = c?

m̂+1,1,0,1 = αm̂d?
2m̂,1 + βm̂d?

2m̂+1,1

=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
αm̂d̃2m̂,0 −

v4 − v2

ṽ4 − ṽ2
αm̂d̃2m̂,1

+

(
1 +

v4 − v2

ṽ4 − ṽ2

)
(d̃2m̂+1,0 − αm̂d̃2m̂,0)

−
v4 − v2

ṽ4 − ṽ2
(d̃2m̂+1,1 − αm̂d̃2m̂,1)

=

(
1 +

v4 − v2

ṽ4 − ṽ2

)
d̃2m̂+1,0 −

v4 − v2

ṽ4 − ṽ2
d̃2m̂+1,1.
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Thus, we have

c?
m̂,1,3,1

v4 − v2
=

c̃?
m̂,1,3,0

v4 − v2
−

c̃m̂,1,3,1 − c̃m̂,1,3,0

ṽ4 − ṽ2
,

which yields (3.13) with k = 3 and i = m̂.

Hence, S? and S̃ are indeed joined together in a G1 fashion along
their common boundary edge. The modified surface S? is still a bi-cubic
B-spline surface with the original control points {di,j}j≥2 but with new
control points {d?

i,0,d
?
i,1} along the boundary strip. So it is still a C1

surface. We have thus established Theorem 1.

We remark here that when two knot sequences u and ũ are propor-
tional and m = m̃, we can replace ũ by u, so that S̃ can be expressed by
using the same knot sequence u as S. If we use a standard linear trans-
form to convert ṽ from [0, 1] to [−1, 0], then two surfaces S and S̃ can
be considered as a single C1 bi-cubic B-spline surface with parameters
(u, v) ∈ [0, 1] × [−1, 1].

3.2. G1 Connection of S and S̃ in the Bernstein Form

In this section, we allow the underlying knot sequences u and ũ to be
arbitrary. In this case, we must sacrifice the bi-cubic B-spline represen-
tation in order to make S? to be continuously connected to S̃. Using the
Bernstein representation (3.3) for S?, we can keep c?

i,j,k,` = ci,j,k,` for all
i, j, k, ` with ` 6= 0 and j 6= 1, but set

c?
i,1,k,0 := c̃i,1,k,0, k = 0, · · · , 3; i = 1, . . . , m̂ − 1.

Then the modified surface S? of S is connected to S̃ continuously. Al-
though we have to point out that S? is only C0 along the boundary strip
of S?, we will show that S?, and hence, S and S̃ can be connected in the G1

fashion by further manipulation of certain additional Bézier coefficients.
To this end, we need to introduce more notations and, for simplicity, we
will only consider m ≥ m̃ so that m̂ = m̃. Let

P (u, v) = f(u, v)|[u2i,u2i+2]×[v2,v4],

and Q(u, v) = f(u, v)|[u2i+2,u2i+4]×[v2,v4]

be two polynomial surface patches of S for a typical i, i.e., i = 1, . . . , m̂.
First of all, we adjust the control points of S by letting

d?
i,0 = d̃i,0, i = 0, 1, . . . , 2m̂ + 1,

c?
i,1,0,0 = c̃i,1,0,0, i = 1, · · · , m̂,

and c?
m̂+1,1,0,0 = c̃m̂,1,3,0,
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in order to connect S and S̃ continuously. Next we let

d?
i,1 =

(
1 +

v4 − v2

ṽ4 − ṽ2

)
d̃i,0 −

v4 − v2

ṽ4 − ṽ2
d̃i,1, i = 0, . . . , 2m̂,

d?
2m̃+1,1 =

1

βm̂

[(
1 +

v4 − v2

ṽ4 − ṽ2

)
(d̃2m̂+1,0 − αm̂d̃2m̂,0)

−
v4 − v2

ṽ4 − ṽ2
(d̃2m̂+1,1 − αm̂d̃2m̂,1)

]
; and

c?
i,1,0,1 =

(
1 +

v4 − v2

ṽ4 − ṽ2

)
c̃i,1,0,0 −

v4 − v2

ṽ4 − ṽ2
c̃i,1,0,1, i = 1, . . . , m̂,

c?
m̂+1,1,0,1 = c?

m̂,1,3,1 =

(
1 +

v4 − v2

ṽ4 − ṽ2

)
c̃m̂,1,3,0 −

v4 − v2

ṽ4 − ṽ2
c̃m̂,1,3,1.

These ensure that S? and S̃ are connected in a G1 fashion across their
common boundary edge. But it is evident that S? is not a C1 surface,
although it is C0. Thus, we have to adjust the other control points di,2

and di,3 of S, i = 1, . . . , m̂, such that S? is in a G1 fashion inside this two-
layer boundary strip over [u2, u2m+4]×[v2, v6]. Notice that f(u, v), (u, v) ∈
[u2, u2m+4]×[v6, v2n+4] is still a portion of the original C1 bi-cubic B-spline
surfaces. This is indeed possible, as in the following.

Theorem 2. Let S and S̃ be two bi-cubic B-spline surfaces with knot

sequences (u,v) and (ũ, ṽ) and control points {di,j , 0 ≤ i ≤ 2m + 1,

0 ≤ j ≤ 2n + 1} and {d̃i,j, 0 ≤ i ≤ 2m̃ + 1, 0 ≤ j ≤ 2ñ + 1}, respectively.

Then while keeping d?
i,j = di,j for 0 ≤ i ≤ 2m̂ + 1, j ≥ 4, the control

points di,j for 0 ≤ i ≤ 2m̂ + 1, 0 ≤ j ≤ 3 and Bézier coefficients ci,0,0,0

and ci,0,0,1 can be modified to certain d?
i,j and c?

i,0,0,0 and c?
i,0,0,1 such that

the corrected surface S? of S is connected to S̃ in a G1 fashion.

Proof. Note that the Bézier coefficients of P (u2i+2, v) and Q(u2i+2, v)
are the same, namely,





α̃id̃2i,0 + β̃id̃2i+1,0,

α̃id2i,1 + β̃id2i+1,1,

αid2i,2 + βid2i+1,2, and

ξ1(αid2i,2 + βid2i+1,2) + η1(αid2i,3 + βid2i+1,3).

Let us compute the first partial derivatives of P and Q at their com-
mon edge u = u2i+2, v ∈ [v2, v4], as follows:

∂uP (u, v)|u=u2i+2
=

3

u2i+2 − u2i

3∑

j=0

(ci,1,3,j − ci,1,2,j)B3,j,v2,v4
(v),
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∂vP (u, v)|u=u2i+2
= ∂vQ(u, v)|u=u2i+2

,

∂uQ(u, v)|u=u2i+2
=

3

u2i+4 − u2i+2

3∑

j=0

(ci+1,1,1,j − ci+1,1,0,j)B3,j,v2,v4
(v),

and

∂vQ(u, v)|u=u2i+2
=

3

v4 − v2

2∑

j=0

(ci+1,1,0,j+1 − ci+1,1,0,j)B2,j,v2,v4
(v).

For convenience, we use the notation

A(t) = ∂uQ(u2i+2, v2 + t(v4 − v2)) =:

3∑

j=0

ajB3,j(t),

B(t) = ∂vQ(u2i+2, v2 + t(v4 − v2)) =:

2∑

j=0

bjB2,j(t), (3.14)

C(t) = ∂uP (u2i+2, v2 + t(v4 − v2)) =:

3∑

j=0

cjB3,j(t),

where B3,j(t) := B3,j,v2,v4
(t) and B2,j(t) := B2,j,v2,v4

(t), t ∈ [0, 1]. First
observe that

a0 =
3α̃i

u2i+4 − u2i+2
(d̃2i+1,0 − d̃2i,0),

c0 =
3β̃i

u2i+2 − u2i

(d̃2i+1,0 − d̃2i,0),

and

a1 =
3α̃i

u2i+4 − u2i+2
(d2i+1,1 − d2i,1),

c1 =
3β̃i

u2i+2 − u2i

(d2i+1,1 − d2i,1).

It follows that a0 is parallel to c0 and a1 is parallel to c1. Note also that

a2 =
3αi

u2i+4 − u2i+2
(d2i+1,2 − d2i,2)

=
3βi

u2i+2 − u2i

(d2i+1,2 − d2i,2) = c2,

and analogously, a3 = c3. Thus, we have

C(t) = A(t) + ĉ0B3,0(t) + ĉ1B3,1(t),
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where ĉ0 := c0 − a0 and ĉ1 := c1 − a1. If both ĉ0 = 0 and ĉ1 = 0, then
C(t) = A(t), so that f(u, v) is C1 across the boundary curve {(u2i+2, v) :
v ∈ [v2, v4]}, and we do not need to do anything further. Hence, we
consider only the cases where ĉ0 6= 0 or ĉ1 6= 0 or both being nonzero.
Note that d̃2i+1,0 6= d̃2i,0 and d2i+1,1 6= d2i,1 (otherwise, S̃ has a cusp).
Meanwhile, ĉ0 = 0 implies ĉ1 = 0 and vice versa. Therefore, we only need
to consider the case that both ĉ0 6= 0 and ĉ1 6= 0.

By the G1 condition (2.35) in §2.6, there exist three polynomials
Θ(t), Ψ(t) and Φ(t), such that

Θ(t)A(t) = Φ(t)C(t) + Ψ(t)B(t). (3.15)

Certainly, we would like to choose polynomials Θ, Φ, and Ψ of lowest
degrees. We have tried linear polynomials for Φ, Ψ, and Θ, but they are
not flexible enough to satisfy (3.15) for those A(t), B(t), and C(t) in (3.14).

We therefore consider quadratic polynomials for Θ(t) and Φ(t) and

cubic polynomial for Ψ(t). By letting µ =
β̃i

α̃i

αi

βi

, we choose

Ψ(t) ≡ 0,

Θ(t) = µξ0B2,0(t) + µξ2B2,2(t),

Φ(t) = ξ0B2,0(t) + ξ2B2,2(t),

with ξ0 6= 0 and ξ2 6= 0. It is straightforward to verify that (3.15) is
satisfied. Hence, the patch

{f(u, v) : (u, v) ∈ [u2i, u2i+4] × [v2, v4]}

satisfies the G1 continuity condition.
By comparing the coefficients in both sides of (3.15), we have

d2i+1,2 − d2i,2 =
u2i+4 − u2i

3

ξ2

3(µ − 1)ξ0
ĉ0

=
ξ2

3ξ0(µ − 1)

(
β̃i

βi

−
α̃i

αi

)(
d̃2i+1,0 − d̃2i,0

)

=
ξ2

3ξ0

α̃i

αi

(
d̃2i+1,0 − d̃2i,0

)
.

Similarly, we also have

d2i+1,3 − d2i,3 = 3
ξ2

ξ0

α̃i

αi

(d2i+1,1 − d2i,1) .

This completes the proof of Theorem 2.

The above proof leads to the following algorithm.
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3.3. An Algorithm of Connecting S and S̃ in a G1 Fashion

We describe, with m ≥ m̃, the following six steps for modifying S

into S?:
1◦ In order to connect S? and S̃ in a C0 fashion, we let

d?
i,0 := d̃i,0, i = 0, . . . , 2m̂, and

d?
2m̂+1,0 :=

1

βm̂

(d̃2m̂+1,0 − αm̂d̃2m̂,0).

To connect S? and S̃ in the G1 fashion across the common boundary
edge, we further let

d?
i,1 =

(
1 +

v4 − v2

ṽ4 − ṽ2

)
d̃i,0 −

v4 − v2

ṽ4 − ṽ2
d̃i,1, i = 0, . . . , 2m̂,

d?
2m̃+1,1 =

1

βm̂

[(
1 +

v4 − v2

ṽ4 − ṽ2

)
(d̃2m̂+1,0 − αm̂d̃2m̂,0)

−
v4 − v2

ṽ4 − ṽ2
(d̃2m̂+1,1 − αm̂d̃2m̂,1)

]
.

2◦ Compute the wrinkles “ĉ0” and “ĉ1”:

ĉ0 =

(
3β̃i

u2i+2 − u2i

−
3α̃i

u2i+4 − u2i+2

)(
d̃2i+1,0 − d̃2i,0

)
, and

ĉ1 =

(
3β̃i

u2i+2 − u2i

−
3α̃i

u2i+4 − u2i+2

)
(
d?

2i+1,1 − d?
2i,1

)
,

for i = 1, . . . , m̂. If both ĉ0 = 0 and ĉ1 = 0 for some i, i.e., when
there are no wrinkles, the surface S? across boundary {(u2i+2, v), v ∈
[v2, v4]} is already C1. Thus, we skip the following steps 3◦ and 4◦

for those indices i’s.
3◦ If there are wrinkles, i.e., ĉ0 6= 0 and ĉ1 6= 0, choose a parameter

` =
ξ2

ξ0
6= 0 and modify d2i,2 and d2i,3 to iron off the wrinkles. We

fix d2i+1,2 and compute a new value of d2i,2 in the following way,

d?
2i+1,2 = d2i+1,2,

d?
2i,2 = d2i+1,2 −

`

3

α̃i

αi

(
d̃2i+1,0 − d̃2i,0

)
, i = 1, · · · , m̂.

Similarly, we fix d2i+1,3 and adjust d2i,3, as follows.

d?
2i+1,3 = d2i+1,3,

d?
2i,3 = d2i+1,3 − 3`

α̃i

αi

(d2i+1,1 − d2i,1) , i = 1, · · · , m̂.
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4◦ Let d?
i,j = di,j for all the remaining indices i and j.

5◦ Finally, apply the algorithm in §2.3 to convert the strip {f?(u, v), u2 ≤
u ≤ u2m+4, v2 ≤ v ≤ v4} of the bi-cubic B-spline surface S? into
Bernstein form. Then we set

c?
i,1,3,0 = α̃id̃2i,0 + β̃id̃2i+1,0,

c?
i+1,1,0,0 = c?

i,1,3,0,

c?
i,1,3,1 = α̃id2i,1 + β̃id2i+1,1, and

c?
i+1,1,0,1 = c?

i,1,3,1, i = 1, · · · , m̂.

Then the surface S? is in G1 and is connected to S̃ in the G1 fashion.

We remark here any two C1 bi-cubic B-spline surfaces without in-
terpolation conditions can be connected in a G1 fashion by following the
same procedure.

§4. Connection of Multiple C1 Bi-Cubic B-Spline Surfaces

The connection of multiple C1 bi-cubic B-spline surfaces is not an easy
task. In the following, we present two situations when three and four
bi-cubic B-spline surface can be connected smoothly without any gaps.

4.1. G1 Connection of Multiple C1 Bi-Cubic B-Spline Surfaces

Let S, S̃, Ŝ be three C1 bi-cubic B-spline surfaces as in Fig. 1 with para-
metric knot sequences (u,v), (ũ, ṽ), and (û, v̂) := {(ûi, v̂j) : 0 ≤ i ≤
2p + 5, 0 ≤ j ≤ 2q + 5}, respectively. Suppose that they satisfy the inter-
polation conditions (3.1) as well as

f̂(û2, v̂2J−2j) = f̃(ũ2, ṽ2j+2), j = 0, · · · , n̂1, (4.1)

f̂(û2, v̂2J+2j) = f(u2, v2j+2), j = 0, · · · , n̂2, (4.2)

for some J ∈ {1, · · · , q} and n̂1 < J, n̂2 < q − J.

To connect these B-spline surfaces in the G1 fashion, we first connect
S and S̃ and then connect the resulting combined surface Š to Ŝ, where
Š is the union of S̃ and the modified S? of S.

We first assume that u is proportional to ũ. Then by Theorem 1,
S can be modified to be S?, so that S? and S̃ are connected in the G1

fashion. Next we have to assume that v and a subsequence of v̂ are
proportional. Also we have to assume that ṽ and another subsequence of
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Fig. 1. An illustration for surfaces S, eS, and bS.

v̂ are proportional. That is, letting ξ̂j =
v̂2j+4 − v̂2j+2

v̂2j+4 − v̂2j

and η̂j = 1 − ξ̂j ,

we have to assume that

η̂J−j−2 = ξ̃j+1, j = 0, · · · , n̂1 − 1

ξ̂J+j = ξj+1, j = 0, · · · , n̂2 − 1.

Then Theorem 1 may be applied to connect the compound B-spline sur-
faces Š and Ŝ in the G1 fashion, except for the common corner shared
by three surfaces. A similar analysis as given in §3.1 shows that it is also
necessary and sufficient to have

u2i+2 − u2i = ũ2i+2 − ũ2i, i = 1, · · · , m̂ − 1, and

v̂2J+2 − v̂2J

v4 − v2
=

v̂2J+4 − v̂2J+2

v6 − v4
= · · · =

v̂2J+2n̂2
− v̂2J+2n̂2−2

v2n̂2+2 − v2n̂2

=
v̂2J − v̂2J−2

ṽ2 − ṽ4
=

v̂2J−2 − v̂2J−4

ṽ4 − ṽ6
= · · · =

v̂2J−2n̂1+2 − v̂2J−2n̂1

ṽ2n̂1
− ṽ2n̂1+2

.

Furthermore, assume that the parametric knot sequences u,v, ṽ, v̂ do
not satisfy the proportionality conditions. To connect these three surfaces
together in a G1 fashion (cf. Fig. 1), we first apply the algorithm in §3.2

to connect S and S̃ in a G1 fashion. Let Š be the union of the resulting
two surfaces. Note that S and S̃ are joined in a C1 fashion across their
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common boundary edge. We then apply the algorithm in §3.2 to join Š

and Ŝ. We treat Š as if it is in the position of S̃ in the algorithm, and
modify some control points as well as some Bézier coefficients of Ŝ to
connect Š and Ŝ in a G1 fashion. Then the combined surface, consisting
of S, S̃, and Ŝ, is a G1 surface.

Similarly, we can treat the G1 connection of four bi-cubic B-spline
surfaces, if the underlying knot sequences have certain stronger propor-
tionality, e.g., all knot sequences are equally spaced with the same spacing.
For another example, supposing that the knot sequences of B-spline sur-
faces S1 and S2 are proportional and the knot sequences of S3 and S4 are
proportional, then we can first apply Theorem 1 to connect S1 and S2 in
the G1 fashion. In this case, S1 and S2 can be viewed as one bi-cubic
B-spline surface. Similarly, S3 and S4 can be viewed as another bi-cubic
B-spline surface. Then we apply Theorem 2 or Algorithm in §3.2. Hence,
the four B-spline surface can be connected in G1 fashion.

h1

k1

h2

k2

h3

k3

ab

c

de

f g

Fig. 2. An illustration for three corner polynomial surfaces.

4.2. G1 Connection of Three C1 Bi-Cubic B-Spline Surfaces (continued)
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We next show that the methods introduced in §3 do not work for C1

connection of three C1 bi-cubic B-spline surfaces S, S̃, and Ŝ as shown
in Fig. 2. Let h1, k1, h2, k2, h3, k3 be the lengths of the corresponding
parametric intervals, as indicated in the diagram, and set

α =
h1

h2
, β =

k1

k3
, γ =

k2

h3
.

The C0 continuity requires that the Bézier coefficients agree along the
three boundary curves. So we consider the seven Bézier coefficients a, b,
. . ., g as shown in Fig. 2. Then the C1 continuity at the central point is
equivalent to

b− a = α(f − b), g − c = α(e − g),

c − a = β(d − c), g − b = β(e − g),

g − b = γ(c − g), e− f = γ(d − e).

It is easy to verify, by using the fact that α, β, γ > 0, that these six
equalities imply that a = b = · · · = g, which violates the true C1 meaning
at the common corner point shared by the three surfaces. That is, we have
shown that C1 connection of three C1 bi-cubic B-spline surfaces with a
common corner is not possible.

§5. Numerical Examples

In the following we present several examples to demonstrate the algorithms
for joining two bi-cubic B-spline surfaces in a G1 fashion. In fact, as we
remarked earlier, the interpolation conditions of the two surfaces are not
essential. Our algorithms are able to join any two surfaces in a G1 fashion.

Example 1. Consider two C1 bi-cubic parametric B-spline surfaces S

and S̃ that interpolate certain data sets at the knots. Clearly, S and S̃

are not joined continuously. See S and S̃ in Fig. 3. After applying the

algorithm in §3.3, we obtain a new surface which satisfies a G1 continuity

condition, as shown in Fig. 4.

Example 2. Let S and S̃ be two bi-cubic B-spline surfaces as shown in

Fig. 5. After applying the algorithm for joining S and S̃ in a G1 fashion

in §3.4, we obtain new surfaces which satisfy the G1 continuity condition,

as shown in Fig. 6, Fig. 7, Fig. 8, and Fig. 9.
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Fig. 3. S and eS only interpolate at some common data points.
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Fig. 4. S and eS are joined in a G
1 fashion.
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Fig. 5. Two disjoint surfaces S and eS.
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Fig. 6. S and eS are joined in a G
1 fashion.
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Fig. 7. S and eS are joined in a G
1 fashion.
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Fig. 8. S and eS are joined in a G
1 fashion.
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Fig. 9. S and eS are joined in a G
1 fashion.

References

1. de Boor, C., A Practical Guide to Splines, Springer Verlag, 1978.

2. Chui, C. K., Multivariate Splines, SIAM Publications, 1988.

3. Chui, C. K., M. J. Lai, and J.-A. Lian, Algorithms for G1 connection
of multiple parametric bi-cubic NURBS surfaces, Numerical Algo-
rithms 23 (2000), 285–313.

4. Chui, C. K., M. J. Lai, J.-A. Lian, and P. F. Cassidy, Removal of
gaps among compound C1 bi-cubic parametric B-spline surfaces, in
manuscript (presented at the NSF Design and Manufacturing

Grantees Conference, Jan. 5–8, 1998, Monterrey, Mexico, 141–142.)

5. Farin, G., Curves and Surfaces for Computer Aided Geometric De-

sign, Academic Press, San Diego, CA, 1995.

6. Farin, G. and B. Hamann, Current trends in geometric modeling and
selected computational applications, J. Comput. Physics 138 (1997),
1–15.

7. Hamann, B. and B. A. Jean, Interactive surface correction based on a
local approximation scheme, Comput. Aided Geom. Design 13 (1996),
351–368.

8. Jean, B. A. and B. Hamann, Interactive techniques for correcting
CAD/CAM data, in Numerical Grid Generation in Computational



Removal of Gaps among Surfaces 313

Fluid Dynamics and Related Fields, N. P. Weatherill, P. R. Eiseman,
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