Tight Wavelet Frames over Bounded Domains

Ming-Jun Lai and Kyunglim Nam

Abstract

A simple constructive method for a locally supported tight wavelet frame over a bounded domain is introduced in this paper. Examples of B-spline tight wavelet frames and box spline tight wavelet frames over bounded domains are constructed to demonstrate the method.

§1. Introduction

A construction of tight wavelet frames over bounded domains is quite different from construction of tight wavelet frames over unbounded domains. Concrete examples in [3] show that it is impossible to construct tight wavelet frames over bounded domains by modifying tight wavelet frames over unbounded domains. The authors in [3] developed a general theory of non-stationary tight wavelet frame construction over a bounded interval using univariate splines.

In this paper we introduce a simple constructive method for tight wavelet frames over bounded domains. We apply this simple method to construct B-spline tight wavelet frames over interval and box spline tight wavelet frames over bounded domains. One of the advantages of our method is that our method works in the multivariable settings.

To be precise what we study in this paper, let us explain the concept of tight wavelet frames first. A tight wavelet frame over a bounded domain Ω is based on a half infinite sequence of nested subspaces over Ω in $L^{2}(\Omega)$. That is, a sequence of nested subspaces $\left\{V_{k}\right\}_{k \in \mathbb{Z}_{+}}$in $L^{2}(\Omega)$ satisfies

$$
\begin{gathered}
V_{1} \subset V_{2} \subset \cdots \subset V_{k} \subset \cdots \rightarrow L^{2}(\Omega) \\
\quad \text { and } \overline{\bigcup_{k=1} V_{k}}=L^{2}(\Omega) .
\end{gathered}
$$

Let $\Phi_{k}:=\left(\phi_{k, 1}, \cdots, \phi_{k, m_{k}}\right)^{T}$ be a column vector of locally supported functions in V_{k} which generate V_{k}, i.e., $V_{k}=\operatorname{span}\left\{\phi_{k, 1}, \cdots, \phi_{k, m_{k}}\right\}$. Although this sequence of subspaces $\left\{V_{k}\right\}_{k \in \mathbb{Z}_{+}}$does not have both translation
and dilation invariant properties, we say $\left\{\Phi_{k}\right\}_{k \in \mathbb{Z}_{+}}$generates a multiresolution analysis(MRA) over bounded domain Ω.

Because V_{k} is a subspacce of V_{k+1}, the vector Φ_{k} in V_{k} can be generated by the column vector Φ_{k+1} which spans V_{k+1}. That is, there exists a $\operatorname{matrix} P_{k}$ of size $m_{k} \times m_{k+1}\left(m_{k} \leq m_{k+1}\right)$ such that

$$
\begin{equation*}
\Phi_{k}=P_{k} \Phi_{k+1} \tag{1}
\end{equation*}
$$

The matrix P_{k} is often called a refinement matrix. Let Q_{k} be a matrix of size $n_{k} \times m_{k+1}$. Define

$$
\begin{equation*}
\Psi_{k}:=Q_{k} \Phi_{k+1} \tag{2}
\end{equation*}
$$

Let $\langle f, g\rangle=\int_{\Omega} f g$ be the standard inner product on $L_{2}(\Omega)$.
Definition 1. We say the family of vectors $\left\{\Psi_{k}\right\}_{k \in \mathbb{Z}_{+}}$defined in (2) is a (MRA) tight wavelet frame associated with $\left\{\Phi_{k}\right\}_{k \in \mathbb{Z}_{+}}$in $L^{2}(\Omega)$ if

$$
\|f\|^{2}=\sum_{j=1}^{m_{1}}\left|\left\langle f, \phi_{1, j}\right\rangle\right|^{2}+\sum_{k=1}^{\infty} \sum_{j=1}^{n_{k}}\left|\left\langle f, \psi_{k, j}\right\rangle\right|^{2}, \quad \forall f \in L^{2}(\Omega)
$$

where $\Phi_{k}=\left(\phi_{k, 1}, \cdots, \phi_{k, m_{k}}\right)^{T}$ and $\Psi_{k}=\left(\psi_{k, 1}, \cdots, \psi_{k, n_{k}}\right)^{T}$. We call each function $\psi_{k, j}$ for $j=1, \cdots, n_{k}$ and $k \in \mathbb{Z}_{+}$a tight framelet (or a tight wavelet frame generator).

If $\phi_{1, j}, j=1, \cdots, m_{1}$ and $\psi_{k, j}, j=1, \cdots, n_{k}, k=1, \cdots$ generate a tight wavelet frame, then

$$
f=\sum_{j=1}^{m_{1}}\left\langle f, \phi_{1, j}\right\rangle \phi_{1, j}+\sum_{k=1}^{\infty} \sum_{j=1}^{n_{k}}\left\langle f, \psi_{k, j}\right\rangle \psi_{k, j}
$$

for any $f \in L_{2}(\Omega)$.
The paper is organized as follows. In $\S 2$, a tight wavelet frame construction idea is described. In $\S 3$, we present a method for tight wavelet frame construction. According to the construction scheme in $\S 3$, B-spline tight wavelet frames and box spline tight wavelet frames over bounded domains are constructed in $\S 4$ and $\S 5$, respectively.

§2. A Constructive Idea

In this section, we assume that we are given refinable vectors Φ_{k} for V_{k} with refinable matrix P_{k}. Let us show that finding a matrix Q_{k} satisfying

$$
\begin{equation*}
I_{m_{k+1}}=P_{k}^{T} P_{k}+Q_{k}^{T} Q_{k} \tag{3}
\end{equation*}
$$

for a given refinement matrix P_{k} in (1) is a key step for constructing a tight wavelet frame. Here $I_{m_{k+1}}$ is the standard identity matrix of size m_{k+1}.

Indeed, let $\Psi_{k}=Q_{k} \Phi_{k+1}$ be a vector of functions. Clearly, $\Psi_{k} \subset V_{k+1}$. We want to have

$$
\begin{equation*}
\left\langle f, \Phi_{k+1}\right\rangle^{T} \Phi_{k+1}=\left\langle f, \Phi_{k}\right\rangle^{T} \Phi_{k}+\left\langle f, \Psi_{k}\right\rangle^{T} \Psi_{k}, \quad \forall f \in L^{2}(\Omega) \tag{4}
\end{equation*}
$$

Let $c_{k, i}:=\left\langle f, \phi_{k, i}\right\rangle$ for all $i=1, \cdots, m_{k}$ and $C_{k}:=\left(c_{k, 1}, \cdots, c_{k, m_{k}}\right)^{T}$ be a column vector of size $m_{k} \times 1$ for any $k \in \mathbb{Z}_{+}$. In the same way, let $d_{k, j}:=\left\langle f, \psi_{k, j}\right\rangle$ for all $j=1, \cdots, n_{k}$ and $D_{k}:=\left(d_{k, 1}, \cdots, d_{k, n_{k}}\right)^{T}$. Then we know

$$
\begin{align*}
C_{k} & =\left\langle f, \Phi_{k}\right\rangle=\left\langle f, P_{k} \Phi_{k+1}\right\rangle=P_{k} C_{k+1} \\
D_{k} & =\left\langle f, \Psi_{k}\right\rangle=\left\langle f, Q_{k} \Phi_{k+1}\right\rangle=Q_{k} C_{k+1} \tag{5}
\end{align*}
$$

Thus condition in (4) can be expressed in the following form according to our notations,

$$
C_{k+1}^{T} \Phi_{k+1}=C_{k}^{T} P_{k} \Phi_{k+1}+D_{k}^{T} Q_{k} \Phi_{k+1}
$$

That is, $C_{k+1}^{T}=C_{k}^{T} P_{k}+D_{k}^{T} Q_{k}$. By using (5), we get

$$
C_{k+1}^{T} C_{k+1}=C_{k+1}^{T}\left(P_{k}^{T} P_{k}+Q_{k}^{T} Q_{k}\right) C_{k+1}
$$

This implies that Q_{k} must satisfy (3) for all $k \geq 1$. On the other hand, if we find Q_{k} satisfying (3) for all $k \geq 1$, then we have the above equation and hence, by using (5),

$$
C_{k+1}^{T} C_{k+1}=C_{k}^{T} C_{k}+D_{k}^{T} D_{k}
$$

It follows for any $\ell \in \mathbb{Z}_{+}$with $\ell<k$,

$$
\begin{equation*}
C_{k+1}^{T} C_{k+1}=C_{\ell}^{T} C_{\ell}+\sum_{j=\ell}^{k} D_{j}^{T} D_{j} \tag{6}
\end{equation*}
$$

The condition (3) implies $C_{k+1}^{T}=C_{k+1}^{T}\left(P_{k}^{T} P_{k}+Q_{k}^{T} Q_{k}\right)=C_{k}^{T} P_{k}+D_{k}^{T} Q_{k}$ and hence,

$$
C_{k+1}^{T} \Phi_{k+1}=C_{k}^{T} \Phi_{k}+Q_{k}^{T} \Psi_{k}=\ldots=C_{\ell}^{T} \Phi_{\ell}+\sum_{j=\ell}^{k} D_{j}^{T} \Psi_{j}
$$

If $C_{k+1}^{T} \Phi_{k+1}$ converges to f in $L^{2}(\Omega)$, for any $\ell \in \mathbb{Z}_{+}$, we have

$$
\begin{align*}
\|f\|^{2} & =\left\langle f, \lim _{k \rightarrow+\infty} C_{k+1}^{T} \Phi_{k+1}\right\rangle \\
& =\lim _{k \rightarrow+\infty}\left\langle f, C_{\ell}^{T} \Phi_{\ell}+\sum_{j=\ell}^{k} D_{j}^{T} \Psi_{j}\right\rangle \\
& =C_{\ell}^{T} C_{\ell}+\sum_{j=\ell}^{\infty} D_{j}^{T} D_{j} \tag{7}\\
& =\sum_{j=1}^{m_{\ell}}\left|\left\langle f, \phi_{\ell, j}\right\rangle\right|^{2}+\sum_{k=\ell}^{\infty} \sum_{j=1}^{n_{k}}\left|\left\langle f, \psi_{k, j}\right\rangle\right|^{2}
\end{align*}
$$

If we apply (7) for a fixed f and for all g in $L^{2}(\Omega)$, then

$$
\begin{aligned}
\|f+g\|^{2} & =\sum_{j=1}^{m_{\ell}}\left|\left\langle f+g, \phi_{\ell, j}\right\rangle\right|^{2}+\sum_{k=\ell}^{\infty} \sum_{j=1}^{n_{k}}\left|\left\langle f+g, \psi_{k, j}\right\rangle\right|^{2} \\
\|f-g\|^{2} & =\sum_{j=1}^{m_{\ell}}\left|\left\langle f-g, \phi_{\ell, j}\right\rangle\right|^{2}+\sum_{k=\ell}^{\infty} \sum_{j=1}^{n_{k}}\left|\left\langle f-g, \psi_{k, j}\right\rangle\right|^{2}
\end{aligned}
$$

Subtracting the equation (8) from (8), we have

$$
4\langle f, g\rangle=4\left(\left\langle\sum_{j=1}^{m_{\ell}}\left\langle f, \phi_{\ell, j}\right\rangle \phi_{\ell, j}+\sum_{k=\ell}^{\infty} \sum_{j=1}^{n_{k}}\left\langle f, \psi_{k, j}\right\rangle \psi_{k, j}, g\right\rangle\right)
$$

Thus for all $f \in L^{2}(\Omega)$ and for all $\ell \in \mathbb{Z}_{+}$,

$$
\begin{equation*}
f=\sum_{j=1}^{m_{\ell}}\left\langle f, \phi_{\ell, j}\right\rangle \phi_{\ell, j}+\sum_{k=\ell}^{\infty} \sum_{j=1}^{n_{k}}\left\langle f, \psi_{k, j}\right\rangle \psi_{k, j}, \quad \text { weakly } \tag{8}
\end{equation*}
$$

Therefore any function in $L^{2}(\Omega)$ can be analyzed at any level of refinable functions Φ_{ℓ} and together with tight framelets $\psi_{k, j}$ associated with these refinable functions Φ_{k} with $k \geq \ell$. Therefore we conclude the following

Theorem 1. Suppose that Φ_{k} is a given refinable vector which spans V_{k} for all $k \geq 1$ with refinable matrix P_{k}, i.e., $\Phi_{k}=P_{k} \Phi_{k+1}$. Suppose Q_{k} satisfies (3). Let $\Psi_{k}=Q_{k} \Phi_{k}$. Then $\Psi_{k}, k \in \mathbb{Z}_{+}$form a tight wavelet frame. Hence, any $f \in L^{2}(\Omega)$ can be generated by using Φ_{ℓ} and Ψ_{k} with $k \geq \ell$ for any $\ell \geq 1$ as in (8).

§3. A Constructive Method

According to the constructive idea from the the previous section, we summarize a tight wavelet frame construction over a bounded domain as follows. We begin with a criterion how to compute Q_{k} satisfying (3).

Theorem 2. Let $\left\{V_{k}\right\}$ be a MRA generated by a family of functions Φ_{k}. Denote by P_{k} the refinable matrix, i.e., $\Phi_{k}=P_{k} \Phi_{k+1}$. If $I_{m_{k}}-P_{k} P_{k}^{T}$ is positive semi-definite for the identity matrix $I_{m_{k}}$ of size $m_{k} \times m_{k}$, then there exists a Q_{k} satisfying (3) and hence, there exists a tight wavelet frame $\left\{\Psi_{k}\right\}_{k \in \mathbb{Z}_{+}}$of $L^{2}(\Omega)$ defined such a way in (2). Moreover, if each component function $\phi_{k, j}$ of a vector Φ_{k} is locally supported then each component function $\psi_{k, j}$ of the vector Ψ_{k} is locally supported.

Proof: Since the symmetric matrix $I_{m_{k}}-P_{k} P_{k}^{T}$ is positive semi-definite, there exists a unique lower triangular matrix L_{k} such that

$$
\begin{equation*}
I_{m_{k}}=P_{k} P_{k}^{T}+L_{k} L_{k}^{T} \tag{9}
\end{equation*}
$$

Using this lower triangular matrix L_{k} we let

$$
R_{k}=I_{m_{k+1}+m_{k}}-\left[\begin{array}{c}
P_{k}^{T} \tag{10}\\
L_{k}^{T}
\end{array}\right]\left[\begin{array}{ll}
P_{k} & L_{k}
\end{array}\right]
$$

Note that the matrix R_{k} is symmetric and $R_{k}^{T} R_{k}=R_{k}$. Writing $R_{k}=$ $\left[\begin{array}{ll}\widetilde{Q}_{k} & W_{c}\end{array}\right]$ with matrix \widetilde{Q}_{k} of size $\left(m_{k+1}+m_{k}\right) \times m_{k+1}$ and W_{c} being the term who cares, we observe

$$
\widetilde{Q}_{k}^{T} \widetilde{Q}_{k}=I_{m_{k+1}}-P_{k}^{T} P_{k}
$$

It is clear that the rank of \widetilde{Q}_{k} is less than or equal to m_{k+1}. Write

$$
\widetilde{Q}_{k}=\left[\begin{array}{c}
J_{k} \\
\widehat{J}_{k}
\end{array}\right]
$$

with J_{k} being of size $m_{k+1} \times m_{k+1}$ and \widehat{J}_{k} of size $m_{k} \times m_{k+1}$. Then we multiply m_{k+1} Householder transformations $H_{m_{k}} H_{m_{k}-1} \cdots H_{2} H_{1}$ of size $\left(m_{k}+m_{k+1}\right) \times\left(m_{k}+m_{k+1}\right)$ on the left side of matrix \widetilde{Q}_{k}. That is,

$$
H_{m_{k}} H_{m_{k}-1} \cdots H_{2} H_{1} \widetilde{Q}_{k}=\left[\begin{array}{c}
Q_{k} \tag{11}\\
0
\end{array}\right]
$$

where Q_{k} is a upper triangular matrix of size $m_{k+1} \times m_{k+1}$. Let us denote $U_{k}:=H_{m_{k}} H_{m_{k}-1} \cdots H_{2} H_{1}$. Then U_{k} is a unitary matrix and we have

$$
Q_{k}^{T} Q_{k}=\left(U_{k} \widetilde{Q}_{k}\right)^{T}\left(U_{k} \widetilde{Q}_{k}\right)=\widetilde{Q}_{k}^{T} \widetilde{Q}_{k}=I_{m_{k+1}}-P_{k}^{T} P_{k}
$$

The matrix Q_{k} in (11) is the matrix we want to have with full rank m_{k}. By using Theorem1, we conclude that Ψ_{k} so defined using the matrix Q_{k} form a tight wavelet frame.

Moreover, when Φ_{k} consists of locally supported functions for all $k \geq 1$, each P_{k} is a banded matrix for $k \in \mathbb{Z}_{+}$. When P_{k} is a banded matrix, so is $P_{k} P_{k}^{T}$. It follows that L_{k} is banded. Thus, it is easy to see from the definition of Q_{k} that Q_{k} is banded. Thus, $\psi_{k, j}$ are locally supported for each $k \in \mathbb{Z}_{+}$and $j=1, \cdots, m_{k+1}$.

§4. B-spline Tight Wavelet Frames

Because of the efficiency and simplicity of computation, B-splines often have been used for constructing wavelet functions. In this section, we apply the constructive method from the proof of Theorem 2 to construct tight wavelet frames over a bounded domain using B-spline functions defined in equally spaced simple knots.

Let us recall the scaling relation of B-spline ϕ^{m} for $m \geq 2$ (cf.[2]).

$$
\phi^{m}(x)=\sum_{j \in \mathbb{Z}} c_{j}^{m} \phi^{m}(2 x-j)
$$

where

$$
c_{j}^{m}= \begin{cases}2^{-m+1}\binom{m}{j} & \text { for } 0 \leq j \leq m \tag{12}\\ 0 & \text { otherwise }\end{cases}
$$

Consider B-spline function ϕ^{m} of order m whose dyadic translations are restricted into domain $[0, b]$, i.e., $\left.\phi^{m}\left(2^{k} \cdot-i\right)\right|_{[0, b]}$. Let

$$
\phi_{k, j}^{m}(\cdot)=\left.2^{k-1} \phi^{m}\left(2^{k-1} \cdot-j\right)\right|_{[0, b]}
$$

and

$$
V_{k}^{m}:=\left\{\phi_{k, j}^{m}: 1 \leq j \leq m_{k}\right\} .
$$

Then the family of nested sequence of subspaces $\left\{V_{k}^{m}: k \in Z_{+}\right\}$is a MRA generated by $\left\{\phi_{k, 1}^{m}, \cdots, \phi_{k, m_{k}}^{m}\right\}$, where $m_{k}:=2^{k+1}(m-1)+1$. Thus if we denote

$$
\Phi_{k}^{m}:=\left(\phi_{k, 1}^{m}, \cdots, \phi_{k, m_{k}}^{m}\right)^{T}
$$

we can find a refinement matrix P_{k}^{m} of size $m_{k} \times m_{k+1}$ of a vector satisfying $\Phi_{k}^{m}=P_{k}^{m} \Phi_{k+1}^{m}$ for each $k \in \mathbb{Z}_{+}$. First, we check the positive semi-definite property of the matrix $I_{m_{k}}-P_{k}^{m} \cdot P_{k}^{m T}$ for the identity matrix $I_{m_{k}}$.

Lemma 1. The symmetric matrix $I_{m_{k}}-P_{k}^{m} \cdot P_{k}^{m T}$ of size $m_{k} \times m_{k}$ associated with B-splines of order m is positive semi-definite for each $k \in \mathbb{Z}$ and $m \geq 2$.

Proof: Let us denote $\left(p_{i, j}^{m, k}\right):=P_{k}^{m}$. Then for each $i=1, \cdots, m_{k}$

$$
\begin{equation*}
0 \leq \sum_{j=1}^{m_{k+1}} p_{i, j}^{m, k} \leq \frac{1}{2} \sum_{j=0}^{m} c_{j}^{m}=1 \tag{13}
\end{equation*}
$$

where c_{j}^{m} is in (12). Let us denote $G_{k}^{m}:=\left(g_{i, j}^{m, k}\right)=P_{k}^{m} \cdot P_{k}^{m T}$. To show that matrix $I_{m_{k}}-G_{k}^{m}$ is positive semi-definite, we use diagonal dominance of matrix $I_{m_{k}}-G_{k}^{m}$. Since matrix G_{k}^{m} is symmetry, it is sufficient to check $\left|1-g_{i, i}^{m, k}\right| \geq \sum_{i \neq j}\left|g_{i, j}^{m, k}\right|$ for $i \leq\left\lfloor\frac{m_{k}}{2}\right\rfloor+1$. Notice that

$$
g_{i, j}^{m, k}=\sum_{\ell=1}^{m_{k+1}} p_{i, \ell}^{m, k} p_{\ell, j}^{m, k}
$$

Then for each $k \in \mathbb{Z}_{+}$,

$$
\begin{aligned}
1-\left|g_{i, i}^{m, k}\right|-\sum_{j \neq i}\left|g_{i, j}^{m, k}\right| & =1-\sum_{j=1}^{m_{k+1}} \sum_{\ell=1}^{m_{k+1}} p_{i, \ell}^{m, k} p_{j, \ell}^{m, k} \\
& =1-\left(\sum_{\ell=1}^{m_{k+1}} p_{i, \ell}^{m, k}\right)\left(\sum_{\ell=1}^{m_{k+1}} p_{j, \ell}^{m, k}\right)
\end{aligned}
$$

Since (13), $1-\left|g_{i, i}^{m, k}\right| \geq \sum_{j \neq i}\left|g_{i, j}^{m, k}\right|$ for all $i=1, \cdots, m_{k}$. Therefore the symmetry matrix $I_{m_{k}}-P_{k}^{m} \cdot P_{k}^{m T}$ is positive semi-definite.

By the above lemma, we know that for the refinement matrix P_{k}^{m} of a vector Φ_{k}^{m} whose component B-spline functions generate subspace V_{k}^{m} in $L^{2}([0, b])$ satisfies the sufficient condition in Theorem 2. That is, we can construct B-spline tight wavelet frame over $[0, b]$.

The size of the support of B-spline tight framelets $\psi_{k, n_{1}}^{m}, \cdots, \psi_{k, n_{k}}^{m}$ is the same as that of the support of the B-splines $\phi_{k, m_{1}}^{m}, \cdots, \phi_{k, m_{k}}^{m}$ at each level $k \in \mathbb{Z}_{+}$according to our computation below.

In the following example, we illustrate B-spline tight framelets Ψ_{1}^{m} of order $m=3$ obtained by the matrix Q_{1}^{m} for the given matrix P_{1}^{m} associated with Φ_{1}^{m}. We can compute P_{k}^{m} and Q_{k}^{m} for any $k \in \mathbb{Z}_{+}$and for arbitrary integer order $m \geq 2$ of B-spline functions.

Example 1. For the quadratic B-spline ϕ^{m} over the interval $[0,3]$, where $m=3$,bwe have the column vectors

$$
\begin{aligned}
& \Phi_{1}^{3}=\left[\left.\left.\left.\left.\left.\phi^{3}(x+2)\right|_{[0,3]} \phi^{3}(x+1)\right|_{[0,3]} \phi^{3}(x)\right|_{[0,3]} \phi^{3}(x-1)\right|_{[0,3]} \phi^{3}(x-2)\right|_{[0,3]}\right]^{T} \\
& :=\left[\phi_{1,1}^{3} \cdots \phi_{1,5}^{3}\right]^{T}
\end{aligned}
$$

Quadratic B-spline $\left\{\phi_{1,1}^{3}, \cdots, \phi_{1,5}^{3}\right\}$

Framelets $\psi_{1,3}^{3}$ and $\psi_{1,4}^{3}$

Framelets $\psi_{1,1}^{3}$ and $\psi_{1,2}^{3}$

Framelets $\psi_{1,5}^{3}, \psi_{1,6}^{3}, \psi_{1,7}^{3}, \psi_{1,8}^{3}$

Fig. 1. Quadratic B-splines and quadratic B-spline tight framelets of the ground level over a bounded domain $[0,3]$
method in Theorem 2 to have the matrix Q_{1}^{3}. Then we define $\Psi_{1}^{3}:=Q_{1}^{3} \cdot \Phi_{2}^{3}$. The components $\psi_{1,1}^{3}, \cdots, \psi_{1,8}^{3}$ of the column vector Ψ_{1}^{3} are quadratic B spline tight framelets of the ground level. We illustrate the quadratic B-spine and its tight wavelet framelets of the ground level in Fig 1.

§5. Box Spline Tight Wavelet Frames

Our tight wavelet frame constructive method can be applied in the multivariate setting. In this section we use it to construct tight wavelet frames using box spline functions on three direction mesh.

Let us recall a 3 -direction mesh box spline $\phi^{\ell, m, n}(x, y)$ whose Fourier transform is defined as follows for $\ell, n, m \in \mathbb{Z}_{+}$(cf.[2]),

$$
\widehat{\phi}^{\ell m n}(\xi, \eta)=\left(\frac{1-e^{-\sqrt{-1} \xi}}{\sqrt{-1} \xi}\right)^{\ell}\left(\frac{1-e^{-\sqrt{-1} \eta}}{\sqrt{-1} \eta}\right)^{m}\left(\frac{1-e^{-\sqrt{-1}(\xi+\eta)}}{\sqrt{-1}(\xi+\eta)}\right)^{n} .
$$

To make our notations simple, let us denote $\phi^{\nu}:=\phi^{\ell, m, n}$. The two-scale relation of 3-direction mesh box splines is

$$
\phi^{\nu}(x, y)=\sum_{i, j \in \mathbb{Z}} c_{i, j} \phi^{\nu}(2 x-i, 2 y-j)
$$

and its Fourier transformation is

$$
\begin{align*}
\widehat{\phi}^{\nu}(2 \xi, 2 \eta) & =C(\xi, \eta) \widehat{\phi}^{\nu}(\xi, \eta) \\
\text { where } \quad C(\xi, \eta) & =\frac{1}{4} \sum_{i, j \in \mathbb{Z}} c_{i, j} e^{\sqrt{-1}(i \xi+j \eta)} \quad \text { and } \quad|C(0,0)|=4 \tag{14}
\end{align*}
$$

Consider a 3-direction mesh box spline ϕ^{ν} whose dyadic translations are restricted into the domain $[0, a] \times[0, b]$, i.e., $\left.\phi^{\nu}\left(2^{k} x-i, 2^{k} y-j\right)\right|_{[0, a] \times[0, b]}$. Let us denote

$$
\phi_{k, q}^{\nu}(x, y):=\left.2^{2 k} \phi^{\nu}\left(2^{k} x-q_{1}, 2^{k} y-q_{2}\right)\right|_{[0, a] \times[0, b]}
$$

Let m_{k} be the cardinality of the collection of box splines $\phi_{k, q}^{\nu}$ which are not zero over $[0, a] \times[0, b]$ and

$$
V_{k}^{\nu}:=\left\{\phi_{k, q}^{\nu}: 1 \leq q \leq m_{k}\right\}
$$

Then the family of nested sequence of subspaces $\left\{V_{k}^{\nu}: k \in Z_{+}\right\}$is a MRA generated by $\left\{\phi_{k, 1}^{\nu}, \cdots, \phi_{k, m_{k}}^{\nu}\right\}$. Thus if we denote

$$
\Phi_{k}^{\nu}:=\left(\phi_{k, 1}^{\nu}, \cdots, \phi_{k, m_{k}}^{\nu}\right)^{T}
$$

we can find a refinement matrix P_{k}^{ν} of size $m_{k} \times m_{k+1}$ of a vector satisfying $\Phi_{k}^{\nu}=P_{k}^{\nu} \Phi_{k+1}^{\nu}$ for each $k \in \mathbb{Z}_{+}$.

The following lemma says the refinement matrix P_{k}^{ν} of a vector Φ_{k}^{ν} whose component functions generate subspace V_{k}^{ν} in $L^{2}([0, a] \times[0, b])$ satisfies the sufficient condition in Theorem 2.

Lemma 2. If P_{k}^{ν} is a matrix of size $m_{k} \times m_{k+1}$ generated by a collection of box spline functions Φ_{k}^{ν} over bounded domain, i.e. $\Phi_{k}^{\nu}=P_{k}^{\nu} \Phi_{k+1}^{\nu}$, then

$$
I_{m_{k}}-P_{k}^{\nu} \cdot P_{k}^{\nu^{T}}, \quad \text { for each } k \in \mathbb{Z}_{+}
$$

is positive semi-definite.
Proof: Let us denote $\left(p_{i, j}^{\nu, k}\right):=P_{k}^{\nu}$ and $\left(g_{i, j}^{\nu, k}\right):=G_{k}^{\nu}=P_{k}^{\nu} \cdot P_{k}^{\nu T}$. Because of (14),

$$
\begin{equation*}
0 \leq \sum_{j=0}^{m_{k+1}} p_{i, j}^{\nu, k} \leq \frac{1}{4} \sum_{\ell=1}^{m_{k+1}} c_{i, \ell} c_{\ell, j}=1 \tag{15}
\end{equation*}
$$

To show that matrix $I_{m_{k}}-G_{k}^{\nu}$ is positive semi-definite, we use diagonal dominance of matrix $I_{m_{k}}-G_{k}^{\nu}$. Since the matrix G_{k}^{ν} is symmetry, it is sufficient to check $\left|1-g_{i, i}^{\nu, k}\right| \geq \sum_{i \neq j}\left|g_{i, j}^{\nu, k}\right|$ for $i \leq\left\lfloor\frac{m_{k}}{2}\right\rfloor+1$.

$$
0 \leq g_{i, j}^{\nu, k}=\sum_{\ell=1}^{m_{k+1}} p_{i, \ell}^{\nu, k} p_{\ell, j}^{\nu, k}=1
$$

Because of (15),

$$
\begin{aligned}
1-\left|g_{i, i}^{\nu, k}\right|-\sum_{j \neq i}\left|g_{i, j}^{\nu, k}\right| & =1-\sum_{j=1}^{m_{k+1}} \sum_{\ell=1}^{m_{k+1}} p_{i, \ell}^{\nu, k} p_{j, \ell}^{\nu, k} \\
& =1-\left(\sum_{\ell=1}^{m_{k+1}} p_{i, \ell}^{\nu, k}\right)\left(\sum_{\ell=1}^{m_{k+1}} p_{j, \ell}^{\nu, k}\right) \geq 0
\end{aligned}
$$

Therefore the symmetry matrix $I_{m_{k}}-P_{k}^{\nu} \cdot P_{k}^{\nu^{T}}$ is positive semi-definite.

Thus we can construct box spline tight wavelet frame over bounded domain $[0, a] \times[0, b]$ by using the constructive scheme in the proof of Theorem 2. The size of support of box spline tight framelets $\psi_{k, n_{1}}^{\nu}, \cdots$, $\psi_{k, n_{k}}^{\nu}$ is the same as that of the support of the box splines $\phi_{k, m_{1}}^{\nu}, \cdots$, $\phi_{k, m_{k}}^{\nu}$ at each level $k \in \mathbb{Z}_{+}$according to our computation experience.

In the following example we illustrate some of tight wavelet framelets obtained by setting $\Psi_{1}^{\nu}=Q_{1}^{\nu} \Phi_{1}^{\nu}$ for the given refinement matrix P_{1}^{ν} associated with the vector Φ_{1}^{ν} of refinable functions $\phi_{1,1}^{\nu}, \cdots, \phi_{1, m_{1}}^{\nu}$ over a bounded domain, where $\nu=\{1,1,1\}$.

Example 2. For box spline ϕ^{111} over $[0,2] \times[0,2]$, we set the column vector Φ_{1}^{111} with all the integer translations of ϕ^{111} over the domain $[0,2] \times$ $[0,2]$ as follows

$$
\begin{aligned}
\Phi_{1}^{111} & =\left[\left.\left.\phi^{111}(x+1, y+1)\right|_{[0,2] \times[0,2]} \cdots \phi^{111}(x-1, y-1)\right|_{[0,2] \times[0,2]}\right]^{T} \\
& :=\left[\phi_{1,1}^{111} \cdots \phi_{1,9}^{111}\right]^{T} .
\end{aligned}
$$

Similarly, set the column vector Φ_{2}^{111} as follows $\Phi_{2}^{111}=\left[2 \phi^{111}(2 x+2,2 y+\right.$ 2) $\left.\left.\left.\right|_{[0,4]} \cdots 2 \phi^{111}(2 x-2,2 y-2)\right|_{[0,4]}\right]^{T}$. Then from the relation $\Phi_{1}^{111}=$ P_{1}^{111}. Φ_{2}^{111}, we have the refinement matrix P_{1}^{111}. We define $\Psi_{1}^{111}:=$ $Q_{1}^{111} \Phi_{2}^{111}$ with the matrix Q_{1}^{111} obtained by the constructive method. The components of the column vector Ψ_{1}^{111} are tight framelets for box spline ϕ^{111} of the ground level. We illustrate some of tight frameles in Figures 2,3 , and 4.

Acknowledgement: Results in this paper are based on the research supported by the National Science Foundation under the grant No. 0327577.

References

1. C. K. Chui, Multivariate Splines, SIAM Publications, Philedalphia, 1988.
2. C. K. Chui, An introduction to wavelets, Accademic Press, Boston, 1992.
3. C. K. Chui, W. He and Stöckler, Nonstationary tight wavelet frames, I: Bounded Intervals, Appl. Comput. Harmon. Anal. 17 (2004), 141-197.
4. M. J. Lai, Fortran subroutines for B-nets of box splines on three and four directional meshes, Numerical Algorithm, 2 (1992), 33-38.
5. K. Nam, Tight wavelet frame construction and its application for image processing, Doctoral Dissertation, The university of Georgia, 2005.

Ming-Jun Lai
The University of Georgia
Athen, GA
mjlai@math.uga.edu
and
Kyunglim Nam
The University of Toledo
Toledo, OH
knam@utnet.utoledo.edu

Fig. 2. Box Spline ϕ_{111} and its some of Tight Framelets on a bounded domain

Fig. 3. More Box Spline Tight Framelets located on the bounded domain

Fig. 4. More Box Spline Tight Framelets located on the bounded domain

