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Abstract

In this paper we first revisit a classical problem of computing variational splines. We propose to compute local variational splines
in the sense that they are interpolatory splines which minimize the energy norm over a subinterval. We shall show that the error
between local and global variational spline interpolants decays exponentially over a fixed subinterval as the support of the local
variational spline increases. By piecing together these locally defined splines, one can obtain a very good C0 approximation of the
global variational spline. Finally we generalize this idea to approximate global tensor product B-spline interpolatory surfaces.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In the classical problem of variational spline approximation one chooses, for a given function f , a C2 curve sf
that extremizes the problem

minimize

{ ∫
[a,b]

∣∣s′′(t)
∣∣2 dt : s ∈ S, s(ti) = f (ti), i = 1:n

}
,

where τ := {a = t1 < t2 < · · · < tn = b} is a partition of interval [a, b], and S is a space of C1 functions on [a, b]
whose second derivative is square integrable. It is well known that the solutions to the above problem are piecewise
polynomial splines that approximate the thin-beam splines of mechanics. It is also well known that to compute these
spline, one solves a (banded) linear system of the order of the number of data points within [a, b] that are being
interpolated. This is our ‘global’ solution. The goal of this paper is to compare the error between this global solution
and certain ‘local’ solutions computed by minimizing over small subintervals of [a, b] that contain only a few data
points. In particular, we show that the error decreases exponentially as the number of data points is increased. The
motivation is that these local solutions require far fewer computations than the global solution. Therefore, if one wants
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to change only a few data points, or if the solution to the problem is required over only a small subinterval of [a, b],
then it may be wise to approximate the global spline by these local splines. Moreover, by piecing together these local
splines, one obtains a good C0 approximation to the global spline. Although these approximations are only C0, we
show that the derivatives of these local solutions also approximate well in the sense that their error also decreases
exponentially as the number of data points is increased. Hence, our main results show that the error between local and
global splines, and their derivatives, both decay exponentially as the number of data points increase.

As stated above, solutions to the above problem are piecewise polynomial. To be more precise, they are piecewise
cubic in C2[a, b], and so it is enough to assume that S is a space of piecewise polynomials (cf. [1–3] and [8]). Without
loss of generality we let S := S1

3,τ be the linear space of C1 piecewise cubic polynomials on [a, b] with breakpoints ti .
(See the next section for justifications.) In a B-spline basis we are considering all spline functions of order 4 with a
double knot at each breakpoint. Now let τl := [tl , tl+1] be a subinterval of [a, b] for a fixed l. In this paper we consider
a local minimization problem, whereby the minimization is carried out over a subinterval τ k

l := [tl−k, tl+1+k], where
we have assumed that t−i := t1 for all nonnegative integer i and ti = tn for all i > n. That is, for a given continuous
function f on [a, b], let sf and sf,l,k be solutions to the following problems:

minimize
{
E(s) := E[a,b](s): s ∈ Λτ (f )

}
(1)

and

minimize
{
Eτk

l
(s): s ∈ Λτ (f )

}
, (2)

respectively, with

EI : s →
∫
I

∣∣s′′(t)
∣∣2 dt, (3)

where I is a closed subinterval of [a, b] and

Λτ(f ) := {
s ∈ S: s(ti ) = f (ti), i = 1:n}

. (4)

The solution to (1) is typically unique, whereas the solution to (2) is not unique away from the interval τ k
l where the

functional Eτk
l

has no influence. Hence, we have some freedom in choosing how to extend sf,l,k from τ k
l to the entire

interval [a, b], however, the results in this paper are independent of any extension.
One of the main results in this paper is to show that ‖(sf − sf,l,k)|τl

‖∞ decays exponentially to zero as k increases
to ∞ and k < n, while if k � n the error is clearly identically zero. Thus, sf can be approximated by sf,l,k|τl

for all
l = 1, . . . , n− 1. But we point out at the outset that this convergence may not be monotonic, and later give an example
to illustrate this point. Since 2D tensor product B-spline interpolatory surfaces play a significant role in applications,
we shall generalize the result mentioned above to the 2D setting.

The paper is organized as follows. We begin with a simple fact regarding our choice of spline spaces. Then we
establish some stability properties of the spline space in Section 3. In Section 4 we prove our main result in the paper.
We then generalize the result for tensor product of B-spline surfaces in Section 5. We shall present some numerical
experiments in Section 6 to demonstrate the effectiveness of our local spline scheme. Finally we give several remarks
in Section 7.

2. A simple fact

In general we could consider a spline space S = Sr
d,τ with d � 3, and r = 1 or r = 2. But, by the result in this

section, we only need to consider S1
3,τ . The result and proof in this section are well known over a space of piecewise

C2 functions on [a, b], and in particular over C2 piecewise polynomials. The importance here is that minimizing over
larger C1 spaces of piecewise polynomials, i.e., Sr

d,τ for d � 3 and r = 1 or 2, also produces C2 natural splines.
Define

〈u,v〉 :=
b∫

a

u′′(t)v′′(t)dt
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a semi-inner product, and semi-norm

‖s‖ := √〈s, s〉 = √
E(s).

Theorem 1. Let f ∈ Sr
d,τ with d � 3 and r = 1 or 2. Then a minimizer sf to (1) is a C2 piecewise natural cubic spline

interpolant to the data {(ti , f (ti))}, i = 1:n. In particular, ‖sf ‖ � ‖f ‖.

Proof. Since sf solves (1), it follows that

d

dα

∣∣∣
α=0

〈sf + αg, sf + αg〉 = 2〈sf + αg,g〉|α=0 = 2〈sf , g〉 = 0

for all g ∈ S such that g(ti) = 0 for i = 1:n. And so,

0 = 〈sf , g〉 =
n−1∑
i=1

ti+1∫
ti

s′′
f (t)g′′(t)dt

=
n−1∑
i=1

(
s′′
f g′ − s′′′

f g
∣∣ti+1
ti

+
ti+1∫
ti

s
(iv)
f (t)g(t)dt

)

= −(
s′′
f

(
t+1

)
g′(t1) + s′′′

f

(
t+1

)
g(t1)

) + (
s′′
f

(
t−n

)
g′(tn) + s′′′

f

(
t−n

)
g(tn)

)
+

n−1∑
i=2

(
s′′
f

(
t−i

) − s′′
f

(
t+i

))
g′(ti) + (

s′′′
f

(
t−i

) − s′′′
f

(
t+i

))
g(ti) +

n−1∑
i=1

ti+1∫
ti

s
(iv)
f (t)g(t)dt

= −s′′
f

(
t+1

)
g′(t1) + s′′

f

(
t−n

)
g′(tn) +

n−1∑
i=2

(
s′′
f

(
t−i

) − s′′
f

(
t+i

))
g′(ti)

+
n−1∑
i=1

ti+1∫
ti

s
(iv)
f (t)g(t)dt.

Hence, a necessary condition to solve this for all admissible variations g is that

s′′
f

(
t+1

) = 0, s′′
f

(
t−n

) = 0,

s′′
f

(
t−i

) = s′′
f

(
t+i

)
for i = 2:n − 1,

s
(iv)
f

∣∣
(ti ,ti+1)

= 0 for i = 2:n − 1.

That is, sf is a C2 natural cubic spline. �
3. Stability properties

In this section we derive various stability conditions and inequalities that will be used for the main results of this
paper. For B-splines we have the following estimate, specialized here to 2-norms, and modified (weakened) slightly
so that we see the dependence of hmin and hmax. Here, ‖g‖2 denotes the usual L2 norm on functions g(t) over [a, b],
and ‖c‖2 is the standard l2 norm on sequences.

Lemma 2. (See [3,4].) Let s := ∑
i ciNi(t) be a spline function with respect to the B-spline basis (Ni(t)) for S. There

exists a constant D3 > 0, depending only on the order of the spline, such that

D3hmin‖c‖2
2 � ‖s‖2

2 � hmax‖c‖2
2.
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The constant D3 is given in [3], and in particular is independent of the mesh size (and knot spacings). For cubic
splines, D3 ≈ 1/5.6. Lemma 2 provides a stability estimate for s. Later we will need a stability estimate for s′′. For
this we need the following polynomial inequality.

Lemma 3. Let p(t) be any algebraic polynomial such that p(a) = p(b) = 0. Then,

‖p‖2 � h2‖p′′‖2

with h := b − a.

Proof. By Rolle’s theorem there exists c, a < c < b, such that p′(c) = 0. Then, with p(a) = p′(c) = 0, we can
represent p(t) as

p(t) = p(a) + p′(c)(t − a) +
t∫

a

s∫
c

p′′(u)duds =
t∫

a

s∫
c

p′′(u)duds.

And so,

‖p‖2
2 =

b∫
a

∣∣p(t)
∣∣2 dt =

b∫
a

∣∣∣∣∣
t∫

a

s∫
c

p′′(u)duds

∣∣∣∣∣
2

dt

�
b∫

a

( b∫
a

b∫
a

∣∣p′′(u)
∣∣duds

)2

dt = h3

( b∫
a

∣∣p′′(u)
∣∣du

)2

� h4

b∫
a

∣∣p′′(u)
∣∣2 du = h4‖p′′‖2

2. �

We will also need an L2 version of Markov’s inequality. For polynomials of degree d on the interval [−1,1] it has
the form

‖p′‖2 � Cdd2‖p‖2.

Clearly, we can choose C0 = 0 when d = 0. Following [5, Table II], the optimal value for C3 is approximately 0.7246.
By a change of variable, we have the following Markov estimate for polynomials on [a, b],

‖p′‖2 � 2Cd

d2

h
‖p‖2.

Here, the L2 norms are defined over [a, b], and h := b − a. It follows that

‖p′′‖2 � 2Cd

d2

h
‖p′‖2 � 4C2

d

d4

h2
‖p‖2.

Hence, we have

Lemma 4. For any algebraic polynomial p(t) of degree d on [a, b],

‖p′′‖2 �
√

Du

h2
‖p‖2 (5)

with
√

Du ≈ 4C2
dd4, a constant depending only on the degree d . For d = 3,

√
Du ≈ 4(0.7246)2d4 ≈ 2.1d4 ≈ 170.11.

We can now derive a desired stability estimate for the spline space S.
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Lemma 5. Let s := ∑
i ciNi(t) be a spline function with respect to the B-spline basis (Ni(t)) for S. Assume that

s ∈ H := Λτ (0). Then,

D3
hmin

h4
max

‖c‖2
2 � 1

h4
max

∥∥s(t)
∥∥2

2 �
∥∥s′′(t)

∥∥2
2 � Du

1

h4
min

∥∥s(t)
∥∥2

2 � Du

hmax

h4
min

‖c‖2
2,

for constants D3 and Du independent of the mesh spacing.

Proof. Let pj := s(t)|τj
for j = 1:n − 1. Each pj is a polynomial of degree d restricted to τj . Since s ∈ H , s(ti) = 0

for i = 1:n, and so pj (tj ) = 0 = pj (tj+1) for j = 1:n − 1. Hence, for each j , we can apply Lemma 3 to the polyno-
mial pj on the interval τj . And so we have∥∥s(t)

∥∥2
2 =

∑
j

∫
τj

∣∣pj (t)
∣∣2 dt �

∑
j

h4
j

∫
τj

∣∣p′′
j (t)

∣∣2 dt

� h4
max

∑
j

∫
τj

∣∣p′′
j (t)

∣∣2 dt = h4
max

∥∥s′′(t)
∥∥2

2.

Likewise,∥∥s′′(t)
∥∥2

2 =
∑
j

∫
τj

∣∣p′′
j (t)

∣∣2
dt �

∑
j

Du

1

h4
j

∫
τj

∣∣pj (t)
∣∣2

dt

� Du

1

h4
min

∑
j

∫
τj

∣∣pj (t)
∣∣2 dt = Du

1

h4
min

b∫
a

∣∣s(t)∣∣2 dt

= Du

1

h4
min

∥∥s(t)
∥∥2

2.

Then, by Lemma 2, we have

D3
hmin

h4
max

‖c‖2
2 � 1

h4
max

∥∥s(t)
∥∥2

2 �
∥∥s′′(t)

∥∥2
2 � Du

1

h4
min

∥∥s(t)
∥∥2

2 � Du

hmax

h4
min

‖c‖2
2. �

Lemma 6. Let γ and a0, . . . , am be nonnegative real numbers. Suppose that γ (a0 +· · ·+ak−1) � ak for k = 1, . . . ,m.
Then,

γ (1 + γ )k−1a0 � ak.

Proof. We immediately establish that γ a0 � a1 when k = 1. Then, by strong induction,

ak+1 � γ (a0 + a1 + a2 + · · · + ak)

� γ
(
a0 + γ a0 + γ (1 + γ )a0 + · · · + γ (1 + γ )k−1a0

)
= γ

(
(1 + γ ) + γ (1 + γ )

(1 + γ )k−1 − 1

(1 + γ ) − 1

)
a0

= γ
(
(1 + γ ) + (1 + γ )

(
(1 + γ )k−1 − 1

))
a0

= γ (1 + γ )ka0. �
Lemma 7. (α1 + · · · + αm)2 � mα2

1 + · · · + mα2
m.

Proof. mα2
1 + · · · + mα2

m − (α1 + · · · + αm)2 = ∑
i

∑
j �=i (αi − αj )

2 � 0. �
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4. Main results

In this section we present our main results in Lemma 8 and Theorem 9. The key idea in the lemma involve an
orthogonality condition on the difference between the local and global interpolants, and is similar to that used in [7]
and other papers (from which the basic idea originates). However, unlike that paper, the proof is done here in such a
way that no ‘natural extension’ of the spline sf,l,k outside the interval τ k

l is needed.
Let H = Λτ (0) be the linear subspace of S with inner product 〈f,g〉H := 〈f ′′, g′′〉L2,[a,b] and norm ‖ · ‖H :=√〈·,·〉H , and let 〈f,g〉H,τk

l
:= 〈f ′′, g′′〉L2,τ

k
l

with norm ‖ · ‖H,τk
l

:=
√

〈·,·〉H,τk
l

. Hence, E(s) = 〈s, s〉H and Eτk
l
(s) =

〈s, s〉H,τk
l

. Since sf solves (1), it follows that, for all g ∈ H ,

d

dα

∣∣∣
α=0

〈sf + αg, sf + αg〉H = 2〈sf + αg,g〉H |α=0 = 2〈sf , g〉H = 0.

Likewise, a necessary condition for sf,l,k to solve (2) is that 〈sf,l,k, g〉H,τk
l

= 0 for all g ∈ H . Let Gk := {g ∈ H :

supp(g) ⊆ τ k
l }. Then, 〈sf,l,k, g〉H,τk

l
= 〈sf,l,k, g〉H for all g ∈ Gk , and so it follows that 〈sf − sf,l,k, g〉H = 0 for all

g ∈ Gk . That is, sf − sf,l,k ∈ G⊥
k .

Lemma 8. The error between the local and global spline interpolants on the interval τl satisfies

‖sf − sf,l,k‖H,τl
� C1σ

q‖sf − sf,l,k‖H,τ
q+2
l −τ

q−1
l

for 1 < q � k, with σ =
√

Duρ5

D3+Duρ5 , C1 = Duρ5

D3σ
, and ρ := hmax/hmin.

Note that the constants σ and C1 depend on the mesh ratio ρ, but not the separate mesh sizes hmin or hmax. Note
also that σ < 1.

Proof. Let s := sf − sf,l,k . Then s ∈ H , and it has a representation s = ∑
i ciNi for some coefficients ci . For q � 1,

let

wq :=
∑
i∈Iq

ciNi and uq := s − wq

with respect to the index set

Iq := {
i: supp(Ni) ⊆ τ

q
l

}
.

Let

aq :=
∑
i∈Rq

c2
i

with Rq := {i: supp(Ni)∩ (τ
q+1
l − τ

q
l ) �= ∅}. Note that 〈s,wq〉H = 0 when q � k since wq ∈ Gk , and that supp(uq)∩

supp(wq) ⊆ τ
q+1
l − τ

q
l . Then, for q � k,

‖wq‖2
H = 〈wq,wq〉H

= 〈s − uq,wq〉H
= 〈−uq,wq〉H
= 〈−uq,wq〉

H,τ
q
l −τ

q−1
l

� ‖uq‖
H,τ

q
l −τ

q−1
l

‖wq‖
H,τ

q
l −τ

q−1
l

�
∥∥∥∥ ∑

i∈Rq−1

ciNi

∥∥∥∥
H

‖wq‖H .

Hence, ‖wq‖H � ‖∑
i∈Rq−1

ciNi‖H when q � k, and so, by Lemma 5,
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K1

q−2∑
i=0

ai � ‖wq‖2
H �

∥∥∥∥ ∑
i∈Rq−1

ciNi

∥∥∥∥2

H

� K2aq−1 (6)

for 1 < q � k, with K1 := D3hmin/h4
max and K2 := Duhmax/h4

min. And so, for 1 < q � k, we have the estimate

γ

q−2∑
i=0

ai � aq−1

with γ := K1/K2. By Lemma 6,

a0 � 1

γ
σq−1aq

with

σ := 1

1 + γ
= K2

K1 + K2
.

By Lemma 5

aq =
∑
i∈Rq

c2
i � 1

K1
‖s‖2

H,τ
q+2
l −τ

q−1
l

,

and so

a0 � 1

γK1
σq−1‖s‖2

H,τ
q+2
l −τ

q−1
l

= K2

K2
1

σq−1‖s‖2
H,τ

q+2
l −τ

q−1
l

for 1 < q � k. Therefore,

‖s‖2
H,τl

=
∥∥∥∥ ∑

Ni |τl �=0

ciNi

∥∥∥∥2

H,τl

� K2a0 (by Lemma 5)

= K2
2

K2
1

σq−1‖s‖2
H,τ

q+2
l −τ

q−1
l

(from above)

and hence,

‖s‖H,τl
� C1

√
σq−1‖s‖

H,τ
q+2
l −τ

q−1
l

for 1 < q � k, with

C1 := K2

K1
=

Du
hmax
h4

min

D3
hmin
h4

max

= Duρ
5

D3

and

σ = K2

K1 + K2
=

Du
hmax
h4

min

D3
hmin
h4

max
+ Du

hmax
h4

min

= Duρ
5

D3 + Duρ5
. �

Theorem 9. Let f ∈ L2
2[a, b] ∩ C[a, b]. Let ρ := hmax/hmin. For k > 2 there exists σ ∈ (0,1) such that

‖sf − sf,l,k‖H,τl
� C3σ

k‖f ‖H

and, if f ∈ C2[a, b], then

‖sf − sf,l,k‖∞,τl
� C4σ

kh
3/2
max‖f ′′‖∞
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with

C3 := 2Duρ
5

D3σ 3
, C4 := 4Duρ

11/2
√

b − a

D
3/2
3 σ 3

, σ =
√

Duρ5

D3 + Duρ5
.

In particular, C3 and σ depend only on the mesh ratio ρ, and σ < 1.

Proof. To establish the first inequality we have

‖sf − sf,l,k‖H,τl
� C1σ

k−2‖sf − sf,l,k‖H,τk
l −τk−3

l
(by Lemma 8)

� C1σ
k−2(‖sf ‖H,τk

l
+ ‖sf,l,k‖H,τk

l

)
� C1σ

k−2(‖sf ‖H + ‖sf,l,k‖H,τk
l

)
� C1σ

k−2(‖f ‖H + ‖f ‖H,τk
l

)
� 2C1σ

k−2‖f ‖H

= 2C1

σ 2
σk‖f ‖H

by using the minimum property of C2 natural cubic splines, with C1 = Duρ5

D3σ
. For the second estimate, first note that

sf − sf,l,k = ∑
i αiNi for some αi . And so,

‖sf − sf,l,k‖2∞,τl
=

∥∥∥∥ ∑
supp(Ni)∩τl �=∅

αiNi

∥∥∥∥2

∞,τl

�
( ∑

supp(Ni)∩τl �=∅
|αi |

)2 (
due to

∣∣Ni(t)
∣∣ � 1

)
� 4

∑
supp(Ni)∩τl �=∅

|αi |2 (Lemma 7 and the number of Ni supported in τl)

� C2
2‖sf − sf,l,k‖2

H,τ 1
l

(by Lemma 5)

with C2 := 2
√

h4
max

D3hmin
. And so, putting it together gives

‖sf − sf,l,k‖∞,τl
� C2‖sf − sf,l,k‖H,τ 1

l

� 2C1

σ 3
C2σ

k‖f ‖H (similar to above estimate)

� 2C1C2σ
k−3‖f ′′‖∞

√
b − a,

with

2C1C2σ
−3

√
b − a = 2

Duρ
5

D3σ
2

√
h4

max

D3hmin
σ−3

√
b − a = 4Duρ

11/2
√

b − a

D
3/2
3 σ 3

h
3/2
max. �

Corollary 10. Let f ∈ C2[a, b]. Let ρ := hmax/hmin. For k > 2 there exists σ ∈ (0,1) such that∥∥s′
f − s′

f,l,k

∥∥∞,τl
� C5σ

k
√

hmax‖f ′′‖∞
with

C5 := (8ρ + 2h3
max)Duρ

11/2
√

b − a

D
3/2
3 σ 3

and σ =
√

Duρ5

D3 + Duρ5
.
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Proof. Let s := sf − sf,l,k and h := t − u with t, u ∈ τl . By Taylor’s theorem

s(t) = s(u) + s′(u)h + s′′(c)
2! h2

for some c between t and u. And so, by Theorem 9,

‖s′‖∞,τl
� 2

h
‖s‖∞,τl

+ h2

2
‖s′′‖∞,τl

� 2

h
C4σ

k
(
h

3/2
max

)‖f ′′‖∞ + h2

2
‖s′′‖∞,τl

.

Since s′′ is linear, it follows that

‖s′′‖∞,τl
�

( ∑
supp(Ni)∩τl �=∅

|αi |
)

.

And so just as in the proof of Theorem 9 it follows that

‖s′′‖∞,τl
� C4σ

kh
3/2
max‖f ′′‖∞.

Therefore,

‖s′‖∞,τl
�

(
2

h
+ h2

2

)
C4σ

khmax

√
hmax‖f ′′‖∞,

with (
2

h
+ h2

2

)
C4hmax �

(
2

hmin
+ h2

max

2

)
4Duρ

11/2
√

b − a

D
3/2
3 σ 3

hmax

= (8ρ + 2h3
max)Duρ

11/2
√

b − a

D
3/2
3 σ 3

. �

5. Tensor product B-spline surfaces

In this section we generalize the results in the previous section to the tensor B-spline surfaces. The generalization
is straightforward and hence, we just outline the steps. Consider a rectangular domain Ω := [a, b] × [c, d]. Recall
τ is a partition of [a, b] and let ν = {c = r1 < r2 < · · · < rm = d} be a partition of [c, d]. Consider a tensor product
B-spline space

S :=
{
s ∈ C1,1([a, b] × [c, d]), s =

∑
i,j

cijNi,τNj,ν

}
,

where Ni,τ is a B-spline of order 4 with a double knot at each breakpoint of τ and similar for Nj,ν . Let Ωl,k =
[tl , tl+1] × [rk, rk+1] be a sub-rectangle of [a, b] × [c, d]. Furthermore, let Ω

q
l,k = [tl−q, tl+1+q ] × [rk−q, rk+1+q ]

for q � 0, where we have assumed that t−i := t1 for all nonnegative integer i and ti = tn for all i > n. Similar for
breakpoints rj . For a continuous function f on [a, b] × [c, d], let sf and sf,l,k,q be the solutions of the following
minimization problems:

minimize
{
EΩ(s): s ∈ Λτ,ν(f )

}
(7)

and

minimize
{
EΩ

q
l,k

(s): s ∈ S, s ∈ Λτ,ν(f )
}
, (8)

respectively, with

EI : s →
∫
I

∣∣s(2,2)(u, v)
∣∣2 dudv, (9)

where I is a closed subdomain of Ω and
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Λτ,ν(f ) := {
s ∈ S: s(ti , rj ) = f (ti , rj ), i = 1:n, j = 1:m}

. (10)

Here,

s(2,2)(u, v) := suuvv(u, v) = ∂4s

∂u2∂v2
(u, v).

Just as the natural cubic spline curve minimizes (1), we have the following well-known characterization of the
natural bicubic spline (cf. [1] or [2]).

Theorem 11. A minimizer sf to (7) over the space S is a C2,2 piecewise bicubic spline interpolant satisfying the
natural boundary conditions

s(2,0)(a, rj ) = s(2,0)(b, rj ) = s(0,2)(ti , c) = s(0,2)(ti , d) = 0

along on the boundary, for i = 1:n and j = 1:m, and

s(2,2)(a, c) = s(2,2)(a, d) := s(2,2)(b, c) = s(2,2)(b, d) = 0

at the corners.

Let hmax = max{ti+1 − ti , rj+1 − rj , i = 1:n, j = 1:m} and hmin = min{ti+1 − ti , rj+1 − rj , i = 1:n, j = 1:m}.
Let ‖s‖2 denotes the usual L2 norm on function g(t, r) over Ω . By an application of Lemma 2 to tensor products we
have

Lemma 12. Let s := ∑
ij cijNi,τ (t)Nj,ν(r) be a spline function in S. Then

D2
3h2

min‖c‖2
2 � ‖s‖2

2 � h2
max‖c‖2

2,

where ‖c‖2
2 = ∑

ij |cij |2.

The next result is a generalization of Lemma 3.2. However, the proof is not a straightforward generalization. We
use the ideas in the proof of Lemma 5.2 in [6].

Lemma 13. Let p(u, v) be a bivariate tensor product polynomial of coordinate degrees (3,3) on I = [a, b] × [c, d]
that vanishes at the corner points. Then,

C0‖p‖2 � h4
∥∥p(2,2)

∥∥
2

with h := max{b − a, d − c}, for some absolute constant C0 > 0.

Proof. Suppose that the area of the rectangular domain is 1. Let

C0 := inf
{∥∥p(2,2)

∥∥
2: ‖p‖2 = 1, p bicubic that vanishes at the corner points

}
.

Let (pk) be a minimizing sequence with norm ‖pk‖2 = 1 such that pk → p∗ with ‖p∗‖2 = 1 and C0 = ‖p(2,2)∗ ‖2.
Now, if C0 = 0, then necessarily p∗ is bilinear. But since p vanishes at the four corner points, it follows that p∗ ≡ 0,
which contradicts the assumption ‖p‖2 = 1. Hence, C0 > 0. And so, C0‖p‖2 � ‖p(2,2)‖2.

Now, by a change of variables from the unit square to the rectangle, we have the stated result. �
We can now derive our desired stability estimate for the spline space S.

Lemma 14. Let s := ∑
ij cijNi,τ (t)Nj,ν(r) be a spline function in S. Assume that s ∈ H := Λτ,ν(0). Then,

D2
3
h2

min

h8
max

‖c‖2
2 � 1

h8
max

‖s‖2
2 � EΩ(s) � D2

u

1

h8
min

‖s‖2
2 � D2

u

h2
max

h8
min

‖c‖2
2,

for constants D̃3 := D3C0 and Du as in Section 3.
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Proof. The inequalities on the right-hand side follow by the Markov-type inequality for p-norms in Lemma 4, and
by Lemma 12. The first inequality follows from Lemma 12. For the second inequality, we use Lemma 13. �

The next result and its proof is an extension of Lemma 8 and its proof to 2D.

Lemma 15. The error between the local and global spline interpolants on the subdomain Ωl,k satisfies

‖sf − sf,l,k,q‖H,Ωl,k
� C1σ

q‖sf − sf,l,k,q‖
H,Ω

q+2
l,k −Ω

q−1
l,k

for 1 < q , with σ =
√

Duρ10

D̃3+Duρ10 , C1 = Duρ10

D̃3σ
, and ρ := hmax/hmin.

Proof. Let H = Λτ,ν(0) be the linear subspace of S with inner product

〈f,g〉H := 〈
f (2,2), g(2,2)

〉
L2(Ω)

and note that norm ‖s‖2
H := EΩ(s). Next, let

〈f,g〉H,Ω
q
l,k

:= 〈
f (2,2), g(2,2)

〉
L2(Ω

q
l,k)

.

Since sf solves (8), it follows that, for all g ∈ H ,

〈sf , g〉H = 0.

Likewise, a necessary condition for sf,l,k,q to solve (9) is that 〈sf,l,k,q , g〉H,Ω
q
l,k

= 0 for all g ∈ H . Let Gq := {g ∈ H :

supp(g) ⊆ Ω
q
l,k}. Then 〈sf,k, g〉H,Ω

q
l,k

= 〈sf,l,k,q , g〉H for all g ∈ Gq , and so it follows that 〈sf − sf,l,k,q , g〉H = 0 for

all g ∈ Gk .
Let s = sf − sf,l,k,q . Then s ∈ H , and it has a representation s = ∑

ij cijNi,τNj,ν for some coefficients cij . Let

Ir := {
(i, j): supp(Ni,τNj,ν) ⊆ Ωr

i,k

}
.

For 1 � r � q , let

wr :=
∑
i∈Ir

cijNi,τNj,ν and ur := s − wr.

Let

ar :=
∑

(i,j)∈Rr

c2
ij

with Rr := {(i, j): supp(Ni,τNj,ν) ∩ (Ωr+1
l,k − Ωr

l,k) �= ∅}. Note that 〈s,wr 〉H = 0 when r � q since wr ∈ Gq , and

that supp(ur) ∩ supp(wr) ⊆ Ωr+1
l,k − Ωr

l,k . Then, for r � q ,

‖wr‖2
H = 〈wr,wr 〉H

= 〈s − ur,wr〉H
= 〈−ur,wr 〉H
= 〈−ur,wr 〉H,Ωr

l,k−Ωr−1
l,k

� ‖ur‖H,Ωr
l,k−Ωr−1

l,k
‖wr‖H,Ωr

l,k−Ωr−1
l,k

�
∥∥∥∥ ∑

(i,j)∈Rr−1

cijNi,τNj,ν

∥∥∥∥
H

‖wr‖H .
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Hence, ‖wr‖H � ‖∑
(i,j)∈Rr−1

cijNi,τNj,ν‖H when r � q , and so, by Lemma 14,

K1

r−2∑
�=0

a� � ‖wr‖2
H �

∥∥∥∥ ∑
(i,j)∈Rr−1

cijNi,τNj,ν

∥∥∥∥2

H

� K2ar−1 (11)

for 1 < r � q , with K1 := D̃3h
2
min/h8

max and K2 := Duh
2
max/h8

min. And so, for 1 < r � q , we have the estimate

γ

r−2∑
�=0

a� � ar−1

with γ := K1/K2. By Lemma 6,

a0 � 1

γ
σ r−1ar

with

σ := 1

1 + γ
= K2

K1 + K2
.

By Lemma 14,

ar =
∑

(i,j)∈Rr

c2
ij � 1

K1
‖s‖2

H,Ωr+2
l,k −Ωr−1

l,k

,

and so

a0 � 1

γK1
σ r−1‖s‖2

H,Ωr+2
l,k −Ωr−1

l,k

= K2

K2
1

σ r−1‖s‖2
H,Ωr+2

l,k −Ωr−1
l,k

for 1 < r � q . Therefore,

‖s‖2
H,Ωl,k

=
∥∥∥∥ ∑

Ni,τ Nj,ν |Ωl,k
�=0

cijNi,τNj,ν

∥∥∥∥2

H,Ωl,k

� K2a0 (by Lemma 14)

= K2
2

K2
1

σ r−1‖s‖2
H,Ωr+2

l,k −Ωr−1
l,k

(from above)

and hence,

‖s‖H,Ωl,k
� C1

√
σ r−1‖s‖

H,Ωr+2
l,k −τ r−1

l,k

for 1 < r � q , with

C1 := K2

K1
=

Du
h2

max

h8
min

D̃3
h2

min
h8

max

= Duρ
10

D̃3

and

σ = K2

K1 + K2
=

Du
h2

max

h8
min

D̃3
h2

min
h8

max
+ Du

h2
max

h8
min

= Duρ
10

D̃3 + Duρ10
. �

We are now ready to prove the second main theorem in this paper.
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Theorem 16. Let f ∈ L2
2([a, b] × [c, d]) ∩ C([a, b] × [c, d]). For q > 2 there exists σ ∈ (0,1) such that

‖sf − sf,l,k,q‖H,Ωl,k
� C5σ

q‖f ‖H ,

and, if f ∈ C2,2([a, b] × [c, d]),
‖sf − sf,l,k,q‖∞,Ωl,k

� C6σ
q
∥∥D2f

∥∥∞,

where∥∥D2f
∥∥∞ = sup

{∣∣f (2,2)(u, v)
∣∣: u,v ∈ Ω

}
,

and with

C5 = 2
Duρ

10

D̃3σ 3
, C6 := 4C5

h4
max√

D̃3hmin

and σ =
√

Duρ10

D̃3 + Duρ10
.

Proof. To establish the first inequality we have

‖sf − sf,l,k,q‖H,Ωl,k
� C1σ

q−2‖sf − sf,l,k,q‖
H,Ω

q
l,k−Ω

q−2
l,k

(by Lemma 15)

� C1σ
q−2(‖sf ‖H + ‖sf,l,k,q‖H,Ω

q
l,k

)
� C1σ

q−2(‖f ‖H + ‖f ‖H,Ω
q
l,k

)
(by Theorem 11)

� 2C1σ
q−2‖f ‖H

with C1 = Duρ10

D̃3σ
. For the second estimate, we first note that sf − sf,l,k,q = ∑

(i,j) αijNi,τNj,ν for some αij . And so,

‖sf − sf,l,k,q‖2∞,Ωl,k
=

∥∥∥∥ ∑
supp(Ni,τ Nj,ν )∩Ωl,k �=∅

αijNi,τNj,ν

∥∥∥∥2

∞,Ωl,k

�
( ∑

supp(Ni,τ Nj,ν )∩Ωl,k �=∅
|αij |

)2 (
due to |Ni,τ | � 1

)
� 16

∑
supp(Ni,τ Nj,ν )∩Ωl,k �=∅

|αij |2

� C2
2‖sf − sf,l,k,q‖2

H,Ω1
l,k

(by Lemma 14)

with C2 := 4

√
h8

max
D̃3h

2
min

= 4 h4
max√

D̃3hmin
. And so, putting it together gives

‖sf − sf,l,k,q‖∞,Ωl,k
� C2‖sf − sf,l,k,q‖H,Ω1

l,k

� 2C1C2σ
q−3

∥∥D2f
∥∥∞

√
(b − a)(d − c). �

6. Numerical experiments

In this section we compare some local and global approximations. In Fig. 1, local solutions are plotted for k = 0
through k = 3 for the function f (t) = cos(5t) defined over [−π,π]. There are ten breakpoints, t1, . . . , t10, and the
max error ek := |sf − sf,l,k|∞,τl

is calculated over the interval τl := [t5, t6] = [−0.34907,0.34907] for each curve.
The errors are tabulated for k = 0 through k = 4 in the table that follows. Note that when k = 0, the natural spline
sf,j,0 is a line segment supported on τl , and when k = 4 the local and global curves are the same in this example,
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Fig. 1. Plotted are the local solutions for k = 0, . . . ,3, respectively, of f (t) = cos(5t) on [−π,π ] with 10 breakpoints.

hence the error is zero.

Figure 1 k = 0 1 2 3 4
ek = 0.2323 0.13166 0.05 0.01295 0
ek/ek−1 = 0.56646 0.37978 0.25890 0

In Fig. 2, piecewise local approximations

sf,k(t) := {
sf,l,k(t): t ∈ [tl , tl+1]

}
are plotted for k = 0, . . . ,3, together with the global solution. Although these local solutions are not smooth at the
breakpoints, one can only see this for the broken line, when k = 0. This is not surprising, given that the error between
the derivatives of the global and piecewise local interpolants decay exponentially, as governed by Corollary 10.

Local approximations to three functions are plotted in Fig. 3. In Fig. 3, sf is in a lighter shade and the sf,l,k are
in darker type. In each example, all local approximants are plotted for k = 0,1, . . . ,20, which overlap so closely that
they are difficult to distinguish from each other, and from sf . For (a) there are 100 breakpoints (n = 100), and for (b)
and (c) n = 200.

The L2 and L∞ errors are given in Table 1. By looking at consecutive terms, ones sees that we can take σ ≈ ek/ek−1
between 0.2 and 0.4. This is much better than the value of σ suggested in Lemma 8, which is very close to 1 (due to
Du being very large compared to D3). Hence, the estimate of σ in this paper may not be sharp. But the theoretical and
empirical results both show the exponential decay that we hoped to see. And so, in practice, we can piece these local
solutions together, i.e., use sf,l,k|τl

, l = 1:n − 1, to replace sf . This new curve is only continuous, however due to the
exponential decay in the errors of the derivatives as well as function values at the knots, the break in smoothness will
not be visually noticeable for large k.
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Fig. 2. Piecewise defined local approximations to f (t) = cos(5t) on [−π,π ] with 10 breakpoints for k = 0, . . . ,3.

Table 1
Errors in L2 and L∞ norms for various k

k = 0 1 2 3 4 5 6 7 8 9 10 11

(a) 2.5e–03 4.4e–04 9e–05 1e–05 2e–06 7e–08 7e–08 3e–08 1e–08 3e–09 9e–10 2e–10

(b) 3.1e–03 6.0e–04 1e–04 3e–05 9e–06 2e–06 4e–07 8e–08 1e–08 1e–09 4e–10 3e–10

(c) 2.4e–04 1.9e–05 8e–06 6e–06 7e–06 8.5e–07 2e–07 4e–08 4e–10 3e–09 2e–09 8e–10

The results in this paper show that the errors between local and global variational spline interpolants decrease
exponentially as the number of data points increase. However, this convergence may not be monotonic. Suppose we
are given uniform knots with data values (10,0,−1,0,0,0,0,−1,0,10). Then, the L∞ errors for sf,4,0 through sf,4,4

are 0.039513, 0.039513, 0.000149, 0.023692 and 0.000000, respectively, as computed over the middle interval. The
jump from 0.00149 to 0.023692 is due to the data values −1, which pull the local curve down, away from the global
interpolant, which is heavily influenced by the values 10 at the two end points. The last error is identically zero because
sf,4,4 = sf .

In Fig. 4 the global tensor product solution to the function s(u, v) = exp(uv) sin(20uv) on [−1,1]2 is plotted.
Local solutions centered about the rectangle [0.3939,0.4141] × [0.5135,0.5405] were computed for several k. Both
the L2 and L∞ errors between the local and global solutions over this rectangle are listed in Table 2. As expected, the
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(a) (b)

(c)

Fig. 3. (a) f (t) = 1
25t2+1

; (b) f (t) = cos(5t); (c) f (t) = t2 cos(5t).

Fig. 4. Tensor product approximation of s(u, v) = exp(uv) sin(20uv) on [−1,1]2, with 100 × 75 breaks, τ = [0.3939,0.4141] × [0.5135,0.5405].
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Table 2
Errors in L2 and L∞ norms for various k

Figure 4 4 5 6 7 8 9 10 11 12

ek = 1.2e–02 2.3e–03 5.7e–04 1.3e–04 2.9e–05 5.8e–06 9.5e–07 1.1e–07 6.3e–08

2.7e–08 1.0e–08 3.4e–09 1.0e–09 3.1e–10 9.1e–11 2.3e–11 7.0e–12 9.1993e–13

ek/ek−1 = 0.19288 0.24315 0.23370 0.21879 0.19701 0.16386 0.11818 0.56185

0.37311 0.33709 0.31421 0.29553 0.28485 0.26186 0.29410 0.13113

Fig. 5. Local and global interplants to penny data.

decay is exponential as k increases. Similar to the results for curves, the exponential constant is between 0.1 and 0.4
here, and in particular much less than the theoretical value of σ derived in this paper.

As a final comparison, in Fig. 5 we plot local and global solutions to a ‘penny’ data set. Here, one can see that very
little detail is lost in the middle part of the local solution, compared to the global solution. That is, Lincoln’s head is
well approximated using only local data.
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7. Final remarks

We conclude with the following remarks:

Remark 1. In Section 5 we used an energy functional based on a fourth-order derivative. It is possible to use the
following energy functional:

EΩ(s) =
∫
Ω

((
∂2s

∂x2

)2

+
(

∂2s

∂x∂y

)2

+
(

∂2s

∂y2

)2)
dx dy

which involves only second-order derivatives. This will make the proof more complicated. In fact, under this energy
functional, Lai and Schumaker studied the convergence of local and global bivariate piecewise polynomial interpola-
tions over triangulations (cf. [7]).

Remark 2. Clearly, the result in Section 5 can be extended to approximate tensor product of B-spline functions
of more than 2D dimensions. Also, we can extend it to parametric B-spline surfaces (x(u, v), y(u, v), z(u, v)) with
x(u, v), y(u, v) and z(u, v) being tensor product of B-spline functions. Moreover, we expect that these results will lay
the groundwork for work on other variational curve and surface problems, and in particular variational subdivision, as
has been studied by the first author.
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