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Abstract

We study the convergence of discrete and penalized least squares spherical splines in spaces with
stable local bases. We derive a bound for error in the approximation of a sufficiently smooth function
by the discrete and penalized least squares splines. The error bound for the discrete least squares splines
is explicitly dependent on the mesh size of the underlying triangulation. The error bound for the penalized
least squares splines additionally depends on the penalty parameter.
c⃝ 2011 Elsevier Inc. All rights reserved.
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1. Introduction

Suppose we are given a set of locations on the unit sphere S2 along with real values associated
with these locations. We seek a smooth function defined on S2 approximating these values.

The problem has applications in atmospheric sciences, geodesy, geometric surface design,
etc. For example, meteorological models require initial data for the time evolution equations.
Many of the current methods use data associated with the nodes on a uniform grid. Since these
types of data sets are often not available, field measurements over non-uniform or scattered
locations are first fit by a spline. Then the spline values at the nodes of a uniform grid can be
calculated and used in models. In geometric surface design, spherical splines can be constructed
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to fit point clouds. In geodesy, spherical splines can approximate the geo-potential from satellite
measurements around Earth [9].

In many cases spherical splines are proved to be the most convenient tools for interpolation
and approximation of scattered data. Spherical splines were introduced in [2] and studied
in [3,4,10]. A comprehensive summary of properties of spherical splines can be found in [8]. For
comparison of spherical splines with spherical radial basis functions, see [7]. In [6], an efficient
iterative computational algorithm is combined with the global fitting methods outlined in [3] to
reduce the size of linear systems involved and thus to decrease computational costs. Convergence
of the minimal energy interpolating spherical splines was studied in [5]. The results extend the
bivariate minimal energy spline interpolation studied in [11] to the spherical setting. Convergence
results for the discrete and penalized least squares methods in the bivariate setting were studied
in [12–14]. However, to the best of the authors’ knowledge, the convergence of the discrete least
squares and penalized least squares splines on the sphere have not been explored in the literature.

The least squares methods are the methods of choice for data sets that are very large and
contain random noise. Thus it is important to understand the approximating properties of the
least squares spherical splines, and determine their convergence order. This is the goal of the
paper.

Let us introduce the discrete least squares (DLS) and the penalized least squares (PLS) splines.
Suppose V = {vi , i = 1, . . . , n} is a given set of locations on the unit sphere S2, and ∆ is
a triangulation of S2. Fix two integers d > r ≥ 0, and let Sr

d(∆) be the space of spherical
splines of degree d and smoothness r over the triangulation ∆ (to be defined more precisely in
Section 2.1). Suppose we are given the set of discrete values { f (v), v ∈ V} of a function f . We
fix a parameter λ ≥ 0 and seek a spline function sλ, f ∈ Sr

d(∆), called the penalized least squares
spline, satisfying

Pλ(sλ, f ) = min{Pλ(s) : s ∈ Sr
d(∆)}. (1)

Here Pλ(s) := L(s − f )+λE (s) is called the penalized least squares functional, L is the discrete
least squares functional, and E is the energy functional, respectively defined by

L(s − f ) :=

−
v∈V

|s(v) − f (v)|2, (2)

and

E (s) :=

∫
S2

−
|α|=2

|Dαs|2.

Here Dαs, |α| = 2 stands for the second order partial derivatives of the spline s. More precisely,
s is homogeneously extended to R3, differentiated, and then restricted back to the sphere for
integration. (In our proofs and computational examples we use linear homogeneous extensions,
since in this case the energy of a function is equivalent to the square of its second Sobolev semi-
norm defined below.)

When λ = 0, s0, f is called the discrete least squares fit of f . That is,

L(s0, f − f ) = min{L(s − f ) : s ∈ Sr
d(∆)}.

A triangulation ∆ is called β-quasi-uniform when

|∆|

ρ∆
≤ β,
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for some β ≥ 0. Here ρ∆ := min{ρτ , τ ∈ ∆} with ρτ being the diameter of the largest spherical
cap contained in a spherical triangle τ . The mesh size of the triangulation ∆ is defined by
|∆| := max{|τ |, τ ∈ ∆}, with |τ | being the diameter of the smallest spherical cap containing
a triangle τ .

To state our results we need to introduce Sobolev semi-norms. Let

| f |k,p,Ω =

−
|α|=k

‖Dα f ‖p,Ω

denote the semi-norm of a function f in the Sobolev space W k,p(Ω), k ≥ 0, 1 ≤ p ≤ ∞,
Ω ⊆ S2, where α = (α1, α2, α3) is a triple index with |α| = α1 + α2 + α3 and Dα stands
for partial derivatives, for example D(1,0,1)

= Dx Dz (see [1,10,8] for detailed definitions of
semi-norms in Sobolev spaces on the unit sphere).

The issue of the existence of DLS splines in Sr
d(∆) was addressed in [6]. A sufficient condition

for the existence of a unique minimizer of the least squares sum in (2) is that the data sites are
evenly distributed over the triangulation ∆ with respect to the degree d. This condition requires
that for every triangle τ ∈ ∆ the matrix

[Bd
i jk(vℓ)]vℓ∈τ∩V , i+ j+k=d (3)

is of full rank. Here the spherical homogeneous Bernstein–Bézier basis polynomials Bd
i jk are

defined with respect to a triangle τ and correspond with the columns of the matrix. They are
evaluated at the data sites vℓ inside the triangle, with each row of the matrix corresponding to a
data site (details are presented in Section 2.1). It is shown in [12] that such sets exist and can be
easily constructed.

The condition on the data sites above ensures that a semi-definite inner product ⟨ f, g⟩ =∑
v∈V f (v)g(v) defined on a space of bounded functions on the unit sphere becomes definite

when restricted to the space of splines Sr
d(∆). More specifically, under this condition, if a spline

satisfies
∑

vℓ∈τ∩V s(vℓ)
2

= 0 on every τ , we have

[s(vℓ)]vℓ∈τ∩V = [Bd
i jk(vℓ)]vℓ∈τ∩V , i+ j+k=d [ci jk]i+ j+k=d = 0,

where [s(vℓ)] is a vector of the spline values at the data sites inside τ , [ci jk] is a vector of the
Bernstein–Bézier coefficients of the spline s restricted to τ , and 0 is a vector of zeros of the same
length as [s(vℓ)]. If the matrix [Bd

i jk(vℓ)] is of full rank, the coefficients of the spline vanish,
and s|τ ≡ 0 on every triangle (see Section 2.1 for the definition of spherical Bernstein–Bézier
polynomials and splines).

It is stated in [6] that, if the vertices of the triangulation ∆ form a subset of V , the PLS spline
exists and is unique. The derivation of an error bound for the PLS splines involves the estimates
for the DLS error. We therefore additionally require that the data sites are evenly distributed over
∆ with respect to d .

The constants in the main results stated below depend on the properties of the spline spaces
such as degree and quasi-uniformity parameter β of the underlying triangulation. They also
depend on the norms of the inverses of the matrices above, which in turn depend on locations of
data inside a triangle relative to its vertices. Finally, they depend on the number of data locations
in a triangle. To simplify the statements of the theorems we say that the constants depend on the
spline space and distribution of the data locations. Later on, as we work through components of
the proofs we explain this dependence in detail.
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Theorem 1. Suppose the data sites in V are evenly distributed over the β-quasi-uniform
triangulation ∆ with respect to the degree d of the spline space Sr

d(∆), where d ≥ 3r+2. Suppose
that the mesh size of the triangulation |∆| is bounded by 1. Then there exists a constant C
depending on the spline space and distribution of the data locations such that for every function
f in the Sobolev space W m+1,∞(S2)

‖ f − s0, f ‖∞,S2 ≤ C |∆|
m+1

| f |m+1,∞,S2 .

Here m is an integer between 0 and d with (d − m) mod 2 = 0.

Theorem 2. Let ∆ be a β-quasi-uniform triangulation of the sphere S2 with |∆| ≤ 1 and let N
denote the number of triangles in ∆. Suppose the triangulation ∆ satisfies two conditions:

(1) the data sites in V are evenly distributed over ∆ with respect to the degree d of the spline
space Sr

d(∆), where d ≥ 3r + 2;
(2) the vertices of the triangulation ∆ form a subset of V .

Let sλ, f be the spline minimizing Pλ in (1). Then there exist positive constants C, C ′ and C ′′

such that

‖ f − sλ, f ‖∞,S2 ≤ C |∆|
m+1

| f |m+1,∞,S2 + λN (C ′
|∆|

m−1
| f |m+1,∞,S2 + C ′′

| f |2,∞,S2)

for every function f in the Sobolev space W m+1,∞(S2). Here m is an integer between 1 and d
with (d−m) mod 2 = 0. The constants C, C ′ and C ′′ depend on the spline space and distribution
of the data locations.

Note that following the ideas in [15] one can choose the penalty parameter λ ∼ O(|∆|
m+1/N )

leading to the order of convergence O(|∆|
m+1) for the penalized least squares approximation.

The proof of Theorem 1 is similar to the analysis of the bivariate discrete least squares fit
in [12], and the proof of Theorem 2 is similar to the one given in [14]. However, we introduce a
simplified argument in the proof of Theorem 2 based on the derivative estimate

‖Dα( f − s0, f )‖∞,S2 ≤ C ′′′
|∆|

m+1−|α|
| f |m+1,∞,S2 .

The paper is organized as follows. In the preliminary section we introduce spherical
polynomials in the Bernstein–Bézier (BB-) form. Several properties of spherical BB-polynomials
used in the proof of our main results are briefly reviewed for convenience. We review the
existence and properties of stable local bases for spline spaces as well. In Section 3 we study the
convergence of the DLS fit. In Section 4 we describe the PLS method and study convergence of
the resulting splines. Finally, in Section 5 we present several computational examples to illustrate
convergence of the DLS and the PLS spline finding algorithms.

2. Preliminaries

2.1. Spherical splines

Let v1, v2, v3 be three points on the unit sphere S2, which do not lie on the same great circle.
Let τ = ⟨v1, v2, v3⟩ be a spherical triangle, that is, τ is the smallest domain bounded by the great
arcs v1v2, v2v3 and v3v1. The spherical barycentric coordinates of a point v on S2 relative to τ

are the unique real numbers b1, b2, b3 such that

v = b1v1 + b2v2 + b3v3.
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Given an integer d ≥ 0, the spherical homogeneous Bernstein–Bézier basis polynomials of
degree d relative to τ are defined as

Bd,τ
i jk (v) :=

d!

i ! j !k!
bi

1(v)b j
2(v)bk

3(v), i + j + k = d,

and

P(v) :=

−
i+ j+k=d

ci jk Bd,τ
i jk (v)

is called a spherical homogeneous Bernstein–Bézier (SBB) polynomial of degree d . Hd(τ )

denotes the space of all such polynomials.
To prove our results we will need the following case of Lemma 4.4 in [10].

Lemma 3. Let τ be a spherical triangle with |τ | ≤ 1. There exists a positive constant K1
dependent on d and the smallest angle Θτ of τ such that for any P ∈ Hd(τ )

A−1/2
τ ‖P‖2,τ ≤ ‖P‖∞,τ ≤ K1 A−1/2

τ ‖P‖2,τ . (4)

Here Aτ is the area of the spherical triangle τ and ‖ · ‖2,τ , ‖ · ‖∞,τ denote the standard L2 and
L∞ norms on τ .

We will also need a spherical analogue of Markov inequality. See [10,5] or [8] for a proof.

Lemma 4. Let P be a spherical polynomial of degree d defined on a triangle τ with |τ | ≤ 1.
There exists a constant K2 dependent on d, p, k and the smallest angle of τ , such that

|P|k,p,τ ≤
K2

ρk
τ

‖P‖p,τ ,

for all 1 ≤ p ≤ ∞.

Let ∆ be a triangulation of S2, i.e. ∆ is a collection of spherical triangles such that the union
of all triangles in ∆ covers S2, and any two triangles in ∆ either do not intersect each other or
share an edge or a vertex. Define Sr

d(∆) to be the space of piecewise spherical polynomials of
degree d and smoothness r on ∆, i.e.

Sr
d(∆) := {s : s|τ ∈ Hd(τ ), ∀τ ∈ ∆} ∩ Cr (S2).

Here s ∈ Cr (S2) if and only if

Dαsd |S2

is continuous for all α such that |α| ≤ r , where sd is the homogeneous extension of s of
degree d, i.e.,

sd(v) = |v|
ds


v

|v|


, ∀v ∈ R3

\ {0}.

Define star1(v) to be the union of all triangles in ∆ that share the vertex v and

stark(v) :=


{star1(w) : w is a vertex of stark−1(v)},

for k > 1. Similarly, for a spherical triangle τ , let star0(τ ) = τ and for k ≥ 1

stark(τ ) :=


{star1(w) : w is a vertex of stark−1(τ )}.
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We will need a bound on the number nk of triangles in the kth star around τ which can be found
in [5].

Lemma 5. Suppose ∆ is a β-quasi-uniform triangulation with |∆| ≤ 1. For a triangle τ ∈ ∆
and k ≥ 0 the number nk of triangles in stark(τ ) satisfies

2

πβ2 (2k + 1)2
≤ nk ≤

5β2

4
(2k + 1)2.

Note also that for a spherical triangle |τ | ≤ 1 in ∆, its area Aτ is related to the parameters |∆|

and ρ∆ as

πρ2
∆

5
≤ Aτ ≤

π |∆|
2

4
. (5)

Finally, analogous to the planar case, the smallest angle of a triangle in ∆, denoted by Θ∆, is
closely related to the quasi-uniformity parameter β [5]. There exists a positive constant K3 such
that

Θ∆ ≥
K3

β
.

Therefore, in the following sections we state our results in relation to β rather then the smallest
angle of ∆.

2.2. Approximation properties of spherical splines

In Section 13.4 of [8], the authors remark that a construction analogous to the bivariate setting
can be followed in order to define a stable local basis {Bξ , ξ ∈ M} associated with a stable local
minimal determining set M in the spline space Sr

d(∆) for d ≥ 3r + 2. Detailed construction of
minimal determining sets can be found in [4]. The properties of such bases were studied in [10].
The results that we need are summarized below.

Let S := Sr
d(∆) be a spline space of degree d and smoothness r with d ≥ 3r + 2 over the

triangulation ∆ (defined in Section 2.1). There exists a minimal determining set M that is local
and stable. There exists a basis B := {Bξ , ξ ∈ M} associated with M that is local and stable.
That is, for any spline s ∈ S

s =

−
ξ∈M

cξ Bξ

for some coefficients cξ . For any ξ ∈ M let τξ be a triangle containing ξ with the area denoted
by Aτξ . Then

(1) support(Bξ ) ⊆ star3(τξ );

(2) ‖Bξ‖∞,S2 ≤ K4;

(3) |cξ | ≤ K5 A−1/p
τξ

‖s‖p,τξ , for 1 ≤ p ≤ ∞. (6)

The constants K4 and K5 depend on d, p and β.
It was also shown in [10] that with the basis B one can construct a quasi-interpolation operator

Q : W m+1,p(S2) → S which achieves the optimal approximation property.
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Theorem 6. Let ∆ be a β-quasi-uniform spherical triangulation with |∆| ≤ 1. Let 1 ≤ p ≤ ∞

and d ≥ 3r + 2. For any f ∈ W m+1,p(S2) there exists a spline function Q f ∈ Sr
d(∆) such that

| f − Q f |k,p,S2 ≤ K6|∆|
m+1−k

| f |m+1,p,S2 ,

for all 0 ≤ k ≤ min{r + 1, m + 1}. Here K6 is a constant depending only on d, p and β, and m
is to be taken between 0 and d with (d − m) mod 2 = 0.

The proof of the above result can also be found in [8,5].

3. Convergence of discrete least squares splines

In this section we investigate the L∞ error bound for the DLS spline approximation on the
sphere. Given a data set {(vi , f (vi )) : vi ∈ V}

n
i=1 let S := Sr

d(∆) denote the spline space over a
β-quasi-uniform triangulation ∆, |∆| ≤ 1.

Let X := B(S2) be the space of all bounded real-valued functions on the sphere equipped
with the semi-definite inner product

⟨ f, g⟩L =

n−
i=1

f (vi )g(vi ).

The inner product ⟨·, ·⟩L induces the semi-norm

‖ f ‖L = ⟨ f, f ⟩
1/2
L = L( f )1/2,

with the DLS functional L defined in (2). Recall that the DLS spline s0, f satisfies

L(s0, f − f ) = min{L(s − f ), s ∈ S}.

As mentioned earlier we require that the data sites vi , i = 1, . . . , n are evenly distributed over
the triangulation ∆ with respect to d . Note that the sets τ ∩ V involved in (3) are not necessarily
disjoint since some data may be located at the vertices or on the edges of ∆. To simplify certain
proofs we will assume that there is a way to partition the data locations V into the subsets Vτ ⊂ τ

such that all Vτ are disjoint and


τ∈∆ Vτ = V , and the matrices

[Bd
i jk(vℓ)]vℓ∈Vτ

are of full rank.
Under this assumption we conclude the following

(1) the DLS spline exists in S ;
(2) ⟨·, ·⟩L is a definite inner product on S , thus S is a Hilbert space with respect to this inner

product;
(3) for any f ∈ X

‖ f ‖
2
L =

−
v∈V

f (v)2
=

−
τ∈∆

−
v∈Vτ

f (v)2
=

−
τ∈∆

‖ f ‖
2
L,τ ,

where ‖ f ‖L,τ = (
∑

v∈Vτ
f (v)2)1/2 denotes the restriction of ‖ f ‖L to Vτ .

(4) for any f ∈ X and any τ ∈ ∆

‖ f ‖
2
L,τ =

−
v∈Vτ

f (v)2
≤

−
v∈Vτ

‖ f ‖
2
∞,τ ≤ max

T ∈∆
{#VT }‖ f ‖

2
∞,τ = K 2

7‖ f ‖
2
∞,τ , (7)

with K7 independent of τ .
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Define a projection operator L : X → S by L f = s0, f . Clearly, L is linear. We will prove that
L is bounded with respect to L∞(S2). To this end we use Theorem 3.1 in [12]. The hypotheses
of this theorem, (2.1), (3.1) and (3.2), are checked in the following lemmas.

Lemma 7 (Condition 3.1 in [12]). Suppose the data set V is evenly distributed over the given
triangulation ∆ with respect to the degree d of the spline space S . Then for every triangle τ in
∆ and any spline s ∈ S

K8‖s‖∞,τ ≤ ‖s‖L,τ (8)

for some positive constant K8 depending on S and the data locations.

Proof. Fix τ ∈ ∆. Write s|τ in BB-form as

s|τ =

−
i+ j+k=d

ci jk Bd
i jk .

Recall from [2] that Bd
i jk are positive on τ and−

i+ j+k=d

Bd
i jk = (b1 + b2 + b3)

d .

The barycentric coordinates b1, b2, b3 on the sphere do not form a partition of unity, however on
the triangle τ each is positive and bounded above by 1. Therefore

|s|τ (v)| ≤

−
i+ j+k=d

|ci jk |B
d
i jk(v) ≤ max

i+ j+k=d
|ci jk |

−
i+ j+k=d

Bd
i jk(v) ≤ 3d

‖c‖∞.

Since the data locations are evenly distributed over the triangulation ∆, the coefficients c =

(ci jk)i+ j+k=d of the spline s|τ can be found uniquely by solving the system

[Bd
i jk(v)]v∈Vτ

c = Mτ c = s,

where s is a vector of values of the spline s|τ at the data locations v ∈ Vτ . Then

‖c‖∞ ≤ ‖M−1
τ ‖∞‖s‖∞ = ‖M−1

τ ‖∞ max
v∈Vτ

|s(v)| ≤ ‖M−1
τ ‖∞

−
v∈Vτ

|s(v)|2

1/2

= ‖M−1
τ ‖∞‖s‖L,τ .

Therefore

|s|τ (v)| ≤ 3d
‖M−1

τ ‖∞‖s‖L,τ ,

thus we have (8) with K8 = 1/(3d maxτ∈∆ ‖M−1
τ ‖∞). �

The next condition of Theorem 3.1 (Condition 3.2 in [12]) in [12] is satisfied by (7).
Finally, we check condition (2.1) of [12]. Recall from Section 2 that M denotes a minimal

determining set for S and {Bξ , ξ ∈ M} denotes the basis associated with M.

Lemma 8. Suppose that S is a spline space with d ≥ 3r + 2. There exist constants 0 < K9,

K10 < ∞ such that

K9

−
ξ∈M

|cξ |
2

≤


−
ξ∈M

cξ Bξ


2

L

≤ K10

−
ξ∈M

|cξ |
2, (9)

for all (cξ )ξ∈M.
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Proof. Since d ≥ 3r + 2, S possesses a stable local basis B. Let s =
∑

ξ∈M cξ Bξ . By (3) in (6)
we have−

ξ∈M
c2
ξ ≤ K 2

5

−
ξ∈M

‖s‖2
∞,τξ

,

where τξ is a triangle in ∆ containing ξ . Since there is more than one domain point ξ ∈ M in
every triangle of ∆ the sum on the right-hand side of the inequality above has repeating terms.
Let Mτ := M ∩ τ , τ ∈ ∆. Then−

ξ∈M
‖s‖2

∞,τξ
≤ max

τ∈∆
#Mτ

−
τ∈∆

‖s‖2
∞,τ ,

where maxτ∈∆ #Mτ depends on the degree d and smoothness r of S and can be bounded by a
constant depending on d only. Using Lemma 7 to estimate ‖s‖∞,τ we arrive at−

ξ∈M
c2
ξ ≤ K 2

5 K 2
8 max

τ∈∆
#Mτ‖s‖2

L

which is equivalent to the left-hand side inequality of (9). Next, to estimate ‖s‖L in the right-hand
side inequality of (9) we use (7):

‖s‖2
L =

−
τ∈∆

‖s‖2
L,τ ≤

−
τ∈∆

K 2
7‖s‖2

∞,τ = K 2
7

−
τ∈∆


−
ξ∈M

cξ Bξ


2

∞,τ

.

Let Mτ be a subset of M containing the points ξ such that the corresponding basis functions Bξ

have support in τ . Then using (2) of (6)
−
ξ∈M

cξ Bξ


2

∞,τ

=


−

ξ∈Mτ

cξ Bξ


2

∞,τ

≤

 −
ξ∈Mτ

|cξ | ‖Bξ‖∞,τ

2

≤ K 2
4

 −
ξ∈Mτ

|cξ |

2

≤ C K 2
4

−
ξ∈Mτ

|cξ |
2,

and thus

‖s‖2
L ≤ C K 2

4 K 2
7

−
τ∈∆

−
ξ∈Mτ

|cξ |
2.

The constant C above depends on the cardinality of Mτ . We claim that the cardinality of
Mτ depends on d and β only. Note that support(Bξ ) ⊆ star3(τξ ) by (1) in (6), and therefore
Mτ ⊆ star3(τ ) ∩ M. The number of triangles in star3(τ ) is n3. It is bounded by Lemma 5 and
the bound depends only on β.

In the last sum ξ is repeated at most max #{τ ∈ ∆ : ξ ∈ Mτ } times. Since Mτ ⊆ star3(τ ) ∩

M, max #{τ : ξ ∈ Mτ } ≤ n3. Then−
τ∈∆

−
ξ∈Mτ

|cξ |
2

≤ n3

−
ξ∈M

|cξ |
2.

It follows that

‖s‖2
L ≤ C K 2

4 K 2
7 n3

−
ξ∈M

|cξ |
2,

thus we have proven the second and final inequality in (9). �
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The results proved in Lemmas 7 and 8 together with (7) lead to the conclusion that the
projection operator L defined earlier as L f = s0, f is bounded with respect to L∞(S2).

Theorem 9. Suppose the given data sites in V are evenly distributed over the β-quasi-uniform
triangulation ∆, |∆| ≤ 1, with respect to the degree d of the spline space S where d ≥ 3r + 2.
Then there exists a constant K11 > 0 such that

‖L‖∞ ≤ K11.

The constant K11 depends on how the data is distributed over the triangulation, how many
data sites are located in a triangle, the degree d of the spline space, and the quasi-uniformity
parameter β.

Proof. Theorem 3.1 in [12]. �

We are now positioned to prove one of the main results in this paper.

Proof of Theorem 1. Let Q f be the quasi-interpolant defined in Section 2. Since Q f is a
spherical spline in S , L Q f = Q f and hence

‖ f − L f ‖∞,S2 ≤ ‖ f − Q f ‖∞,S2 + ‖L Q f − L f ‖∞,S2 .

Since L is linear, we have

‖ f − L f ‖∞,S2 ≤ ‖ f − Q f ‖∞,S2 + ‖L(Q f − f )‖∞,S2 ≤ (1 + ‖L‖∞)‖ f − Q f ‖∞,S2 .

By Theorems 6 and 9

‖ f − L f ‖∞,S2 ≤ C |∆|
m+1

| f |m+1,∞,S2 . �

In the next section we investigate the behavior of the PLS splines. We will need an estimate
involving the derivatives of the DLS splines. Consider the following.

For any α = (α1, α2, α3) with nonnegative integers α1, α2, α3 satisfying |α| = α1+α2+α3 ≤

r + 1 and a sufficiently smooth function f , we use Theorem 6 and Lemma 4 to conclude

‖Dα( f − L f )‖∞,S2 ≤ ‖Dα( f − Q f )‖∞,S2 + ‖Dα(L Q f − L f )‖∞,S2

≤ K6|∆|
m+1−|α|

| f |m+1,∞,S2 +
K2

ρ
|α|

∆

‖L Q f − L f ‖∞,S2

for a positive constant K2 dependent on d , |α| and β. Since, according to Theorem 6

‖L Q f − L f ‖∞,S2 ≤ ‖L‖∞‖Q f − f ‖∞,S2 ≤ K11 K6|∆|
m+1

| f |m+1,∞,S2 ,

we have proven the following theorem.

Theorem 10. Under the conditions of Theorem 1 there exists a constant K12 depending on d, β,
|α|, and ‖L‖∞ such that for every function f in W m+1,∞(S2) for some integer m between 0 and
d with (d − m) mod 2 = 0, we have

‖Dα( f − L f )‖∞,S2 ≤ K12|∆|
m+1−|α|

| f |m+1,∞,S2

for any 0 ≤ |α| ≤ min{r + 1, m + 1}.
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4. Convergence of penalized least squares splines

Suppose that a given set of data values {vi , f (vi )}
n
i=1 corresponds to a sampling of some

function f on the unit sphere. Given a triangulation ∆ with |∆| ≤ 1 define

X := {g ∈ B(S2) : ∀τ ∈ ∆, g|τ ∈ C1(τ )},

to be a subspace of bounded functions on the sphere equipped with the semi-definite inner
product

⟨h, g⟩P = ⟨h − f, g − f ⟩L + λ⟨h, g⟩E

with λ > 0 being a fixed parameter. Here

⟨h, g⟩L :=

n−
i=1

h(vi )g(vi )

as in Section 3. The energy inner product is

⟨h, g⟩E :=

−
τ∈∆

∫
τ

−
|α|=2

Dαh Dαgdσ,

and the energy semi-norm ‖h‖E is
√

⟨h, h⟩E .
Fix a spline space S = Sr

d(∆) with d ≥ 3r +2 so that S possesses a stable local basis. Assume
that the given data are evenly distributed over the triangulation ∆ with respect to the degree d, and
the vertices of the triangulation ∆ form a subset of V . Then for any function f ∈ X there exists
the DLS spline s0, f with the approximation properties outlined in Theorems 1 and 10. There
exists a unique PLS spline sλ, f corresponding to the penalty parameter λ (see [6] for a proof).

The PLS spline corresponding to the penalty parameter λ and approximating the function f
is denoted by sλ, f . It is defined as the spline minimizing the functional

Pλ(s) = L(s − f ) + λE (s)

over the space of all spherical splines S . The DLS spline can be characterized by

⟨s0, f − f, s⟩L = 0, ∀s ∈ S.

Similarly, the PLS spline sλ, f ∈ S is characterized by

⟨ f − sλ, f , s⟩L = λ⟨sλ, f , s⟩E , ∀s ∈ S.

The sum of the two equations yields

⟨s0, f − sλ, f , s⟩L = λ⟨sλ, f , s⟩E , ∀s ∈ S.

In particular, for s = s0, f − sλ, f it follows that

‖s0, f − sλ, f ‖
2
L = λ⟨sλ, f , s0, f ⟩E − λ‖sλ, f ‖

2
E ≥ 0. (10)

Thus for any λ > 0‖sλ, f ‖
2
E ≤ ⟨sλ, f , s0, f ⟩E . By Cauchy–Schwarz’s inequality, we have

‖sλ, f ‖E ≤ ‖s0, f ‖E . (11)

By Cauchy–Schwarz’s inequality we get in (10)

‖s0, f − sλ, f ‖
2
L = λ⟨sλ, f , s0, f − sλ, f ⟩E ≤ λ‖sλ, f ‖E ‖s0, f − sλ, f ‖E . (12)
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As in [13], we introduce the following quantity

KS := sup


‖s‖E
‖s‖L

, s ∈ S, s ≠ 0


.

As we noted in Section 3 since the data are evenly distributed, ‖ · ‖L is a norm on S and the
constant KS is well defined. Let us show that KS is bounded.

It is easy to see that for any s ∈ S

‖s‖2
E ≤

−
τ∈∆

|s|22,2,τ .

Since s is a spherical polynomial of degree d on a spherical triangle τ , by Lemma 4

|s|22,2,τ ≤
K 2

2

ρ4
τ

‖s‖2
2,τ

for some constant K2 depending on d and β. By Lemmas 3 and 7

‖s‖2
E ≤

−
τ∈∆

K 2
2

ρ4
τ

‖s‖2
2,τ ≤

K 2
2

ρ4
∆

−
τ∈∆

Aτ‖s‖2
∞,τ ≤

K 2
2

K 2
8

max
τ∈∆

Aτ

ρ4
∆

‖s‖2
L.

We therefore get

‖s‖E ≤
K2

K8

max
τ∈∆

A1/2
τ

ρ2
∆

‖s‖L.

That is,

KS = sup


‖s‖E
‖s‖L

: s ∈ S, s ≠ 0


≤
K2

K8

max
τ∈∆

A1/2
τ

ρ2
∆

.

Now from (12) and (11) we have

‖s0, f − sλ, f ‖
2
L ≤ λKS ‖s0, f ‖E ‖s0, f − sλ, f ‖L

or

‖s0, f − sλ, f ‖L ≤ λKS ‖s0, f ‖E .

Thus we conclude by Lemma 7 that

‖s0, f − sλ, f ‖∞,S2 ≤
1

K8
‖s0, f − sλ, f ‖L ≤

λKS
K8

‖s0, f ‖E . (13)

Let us study the right-hand side of the above inequality. Suppose that f ∈ W m+1,∞(S2), m ≥ 1,
and r ≥ 1. Then s0, f − f ∈ W 2,∞(S2). By the definition of ‖ · ‖E , Lemma 3, triangle inequality,
and Theorem 10 we have

‖s0, f ‖E ≤ |s0, f |2,2,S2 ≤

−
τ∈∆

|s0, f |2,2,τ ≤

−
τ∈∆

A1/2
τ |s0, f |2,∞,τ ≤ N max

τ∈∆
A1/2

τ |s0, f |2,∞,S2

≤ N max
τ∈∆

A1/2
τ (|s0, f − f |2,∞,S2 + | f |2,∞,S2)

≤ N max
τ∈∆

A1/2
τ (K12|∆|

m−1
| f |m+1,∞,S2 + | f |2,∞,S2) =: C f ,
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where N = #{τ : τ ∈ ∆}. Thus, it follows by (13) that

‖s0, f − sλ, f ‖∞,S2 ≤
λKS
K8

C f . (14)

By (14), (5) and the estimate for KS we have

‖s0, f − sλ, f ‖∞,S2 ≤ λNβ2 π

4
K2

K 2
8

(K12|∆|
m−1

| f |m+1,∞,S2 + | f |2,∞,S2). (15)

Proof of Theorem 2. By the triangle inequality

‖ f − sλ, f ‖∞,S2 ≤ ‖s0, f − f ‖∞,S2 + ‖s0, f − sλ, f ‖∞,S2 .

Apply Theorem 1 and (15). �

5. Computational examples

In this section we present four computational examples. In Example 1 we demonstrate that
for a sufficiently smooth function the error of the DLS fit decreases as O(|∆|

d+1). In Example 2
we show that the error for the PLS fit depends linearly on the parameter λ. In Example 3 we
demonstrate how the penalty parameter can be adjusted with the refinement of the triangulation
∆ to achieve the convergence order O(|∆|

d+1) for the PLS spline. In Example 4 we show that
when the data values contain random noise, the PLS fit with an appropriate choice of parameter
λ can perform better than the DLS fit.

Example 1. Let ∆0 be a triangulation of the unit sphere with 8 triangles and 6 vertices
{(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)}. We refine ∆0 uniformly to get ∆1 by partitioning each
triangle into four using midpoints of the edges. Similarly ∆k+1 denotes the uniform refinement
of ∆k for k = 1, 2, 3. We use a set of 47,106 data sites almost uniformly scattered over the sphere
and a test function

f (x, y, z) = 1 + x8
+ e2y3

+ e2z2
+ 10xyz.

The data sites form a subset of domain points corresponding to degree 8 over the last refinement
∆4, that is

V ⊂


iv1 + jv2 + kv3

‖iv1 + jv2 + kv3‖
: v1, v2, v3 are vertices of τ ∈ ∆4, i + j + k = 8


(some domain points that belong to the edges of triangulation ∆4 are removed, and all repetitions
are eliminated).

We use the iterative algorithm in [6] to find the DLS spline s0, f in spaces S1
d(∆k), d = 5, 6, 7.

The maximum values ed,k, d = 5, 6, 7, k = 0, . . . , 4 of the error |s0, f − f | evaluated over the
data locations are listed in Table 1, and the ratios of the error values are recorded in Table 2.

Example 2. Next we consider the PLS fit in the spline spaces S1
d(∆3), d = 5, 6 over the

triangulation ∆3, that consists of 512 triangles. We sample the function g = xd over 47,106
scattered data locations as in Example 1. We compute the PLS splines sλ,g with the parameter
λk = 1/2k , for k = 2, 3, 4, 5. The maximum values ed,k of the error |sλ,g − g| over the data
locations are listed in Table 3. Note that the function xd in this example has its (d + 1) Sobolev
semi-norm vanishing on the sphere, while its second Sobolev semi-norm remains nonzero. This
choice of test function allows us to trace the dependence of the error on the parameter λ.
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Table 1
Error in the approximation of f by the DLS splines.

ed,0 ed,1 ed,2 ed,3 ed,4

S1
5 (∆k ) 3.2326e−01 1.7535e−02 9.2120e−04 2.2662e−05 4.0062e−07

S1
6 (∆k ) 4.8938e−02 2.1900e−03 4.9109e−05 1.2004e−06 9.6883e−09

S1
7 (∆k ) 3.8714e−02 5.5652e−04 1.5188e−05 1.3509e−07 2.8862e−10

Table 2
Ratios of errors in the approximation of f by the DLS splines.

ed,0/ed,1 ed,1/ed,2 ed,2/ed,3 ed,3/ed,4

S1
5 (∆k ) 18.44 19.03 40.65 56.57

S1
6 (∆k ) 22.35 44.59 40.91 123.90

S1
7 (∆k ) 69.56 36.64 112.43 468.05

Table 3
Linear dependence of the error on λ, maximal error values over the data locations.

ed,k ed,2 ed,3 ed,4 ed,5

S1
5 (∆3) 7.7918e−3 3.9232e−3 1.9680e−3 9.8513e−4

S1
6 (∆3) 1.3865e−2 7.0475e−3 3.5482e−3 1.7767e−3

Table 4
Linear dependence of the error on λ, ratios of maximal error values over the data locations.

ed,2/ed,3 ed,3/ed,4 ed,4/ed,5

S1
5 (∆3) 1.9861 1.9935 1.9977

S1
6 (∆3) 1.9673 1.9862 1.9970

The ratios of the error values are listed in Table 4. As expected they approach 2 as λ is reduced
by a factor of 2. It is clear from Table 4 that the error in approximation of f by the PLS spline
depends on the parameter λ linearly.

Example 3. In this example we demonstrate how λ can be chosen to achieve the order of
approximation O(|∆|

d+1) for PLS splines. In our error estimate, Theorem 2, the last term
does not depend on the size of the triangulation |∆|. It is proportional to λN , where N is the
number of triangles. To have λN ∼ O(|∆|

d+1) we must have λ ∼ O(|∆|
d+1/N ). Since with

each refinement the number of triangles increases by a factor of 4, while the triangulation size
decreases by a factor of 2, we decrease λ by a factor of 2d+3. We sample the function f as
in Example 1 at 47,106 almost uniformly scattered locations over the unit sphere. We find the
PLS splines in Sr

d(∆), r = 1, d = 5, 6 over the triangulations ∆k, k = 0, 1, 2, 3, 4 with the
penalty parameters λ = 1/2k(d+3)+2(d−4)+1. The factor 1/22(d−4)+1 in λ reflects the fact that
for the initial triangulation ∆, λ is chosen increasingly small as the degree of the space rises.
The factor is chosen to match the error in the approximation of f by PLS spline with that in the
approximation of f by the DLS splines in Table 1. The errors in maximal norm are evaluated
over the data locations and are listed in Table 5. The ratios of errors as we refine triangulations
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Table 5
Error in the approximation of f by the PLS splines.

ed,0 ed,1 ed,2 ed,3 ed,4

S1
5 3.2072e−1 1.7561e−2 9.2116e−4 2.2665e−5 4.0066e−7

S1
6 5.3473e−2 2.1840e−3 4.9124e−5 1.2004e−6 9.6886e−9

S1
7 3.9077e−2 5.5688e−4 1.5188e−5 1.3509e−7 2.2828e−10

Table 6
Ratios of errors in the approximation of f by the PLS splines.

ed,0/ed,1 ed,1/ed,2 ed,2/ed,3 ed,3/ed,4

S1
5 18.26 19.06 40.64 56.57

S1
6 24.48 44.46 40.92 123.90

S1
7 70.17 36.67 112.43 591.77

Table 7
Maximum errors for least squares fittings for data with 5% noise.

∆1 ∆2 ∆3

DLS 0.0551 0.1349 0.3251
PLS 0.0451 0.0545 0.0522
λ 1/26 1/24 1/25

Table 8
Maximum errors for least squares fittings for data with 2.5% noise.

∆1 ∆2 ∆3

DLS 0.0259 0.0674 0.1625
PLS 0.0218 0.0316 0.0322
λ 1/27 1/25 1/26

Table 9
Maximum errors for least squares fittings for data with 1% noise.

∆1 ∆2 ∆3

DLS 0.0105 0.0270 0.0650
PLS 0.0097 0.0149 0.0169
λ 1/29 1/26 1/27

are listed in Table 6. Comparison with Tables 1 and 2 allows us to conclude that our choices of λ

are reasonable.

Example 4. Finally, we present the case when the data values contain random noise. That is, let y
be the values of f over the 47,106 points as in Example 1. Let e be a vector of 47,106 uniformly
distributed random numbers in [−1, 1]. We compute both least squares spherical spline fits toy = y + σey over the spline spaces S1

6(∆k) and k = 1, 2, 3, σ = 0.05, 0.025, 0.01 (by the
product ey we mean entry by entry multiplication). The maximum values of |sλ, f − f | over the
47,106 points are recorded in Tables 7–9. By adjusting the parameter λ, we are able to find PLS
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splines, which have maximum errors smaller than corresponding DLS splines. The respective
values of λ are listed under the error values for PLS splines.
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