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Galerkin method with splines for total
variation minimization
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Abstract

Total variation smoothing methods have been proven to be very efficient at discriminating between structures (edges

and textures) and noise in images. Recently, it was shown that such methods do not create new discontinuities and

preserve the modulus of continuity of functions. In this paper, we propose a Galerkin–Ritz method to solve the Rudin–

Osher–Fatemi image denoising model where smooth bivariate spline functions on triangulations are used as approxi-

mating spaces. Using the extension property of functions of bounded variation on Lipschitz domains, we construct a

minimizing sequence of continuous bivariate spline functions of arbitrary degree, d, for the TV-L2 energy functional and

prove the convergence of the finite element solutions to the solution of the Rudin, Osher, and Fatemi model. Moreover,

an iterative algorithm for computing spline minimizers is developed and the convergence of the algorithm is proved.
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Introduction

A few decades ago, Rudin et al.1 proposed a con-
strained total variation minimization method for
image enhancement. Suppose you have an image f
filled with artifacts and your goal is to reduce these
artifacts and enhance the quality of your image while
preserving the details of the image as much as possible.
Assuming that the image f is a function defined on
regular domain X � R

2, Rudin, Osher and Fatemi’s
(ROF) approach is to solve the following penalized
total variation minimization problem

arg min
u2L2ðXÞ

k
Z
X
jDujþ 1

2

Z
X
ju-fj2dx (1)

where
R
XjDuj is the total variation of u, and k is a

positive parameter controlling the fidelity of the recov-
ered image to the initial image f. From now on we will
denote the total variation of a function u by

JðuÞ :¼
Z
X
jDuj (2)

We shall refer to the minimization problem (equa-
tion (1)) as the ROF model, and denote its objective
functional by

Ef
kðuÞ :¼ kJðuÞ þ 1

2

Z
X
ju� fj2dx (3)

Notice that a minimal condition for the ROF model
to be defined is that the image f be a square integrable
function over X in which case the domain of Ef

kðuÞ is
BVðXÞ \ L2ðXÞ, where BVðXÞ stands for the space of
functions of bounded variation over X.
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The last decades witnessed excellent progress and
exciting development regarding the analysis of the
ROF model. The interested reader is referred to
Chambolle et al.2 for a comprehensive introduction
on this topic. Since the introduction of the model,
much understanding is gained on the analytic proper-
ties of its solution (c.f. Caselles et al.,3 Allard,4,5 and
Caselles et al.6). For instance, it is known that, the
solution of the model does not introduce new discon-
tinuity compared to the input data. Specifically, it was
proved in Caselles et al.6 that the jump set of the solu-
tion is always contained in the jump set of the input
image; and if Caselles et al.3 f has modulus of continu-
ity x, then so does the minimizer of Ef

kðuÞ provided that
X is convex. A concise outline of recent progress on the
study of the properties of the continuous model can be
found at Chambolle et al.7

On the computational side of the model, early algo-
rithms were based on smooth approximations of the
primal form of the variational problem (equation (1))
(c.f. Acar and Vogel8 and Chambolle and Lions9).
Chambolle10 first proposed a gradient descent algo-
rithm that operated on the dual form of the original
minimization problem. In addition, He proved that this
algorithm converged to the exact solution of the dis-
cretized model (c.f. Chambolle10,11). Much progress
had since been made in the 2000s to develop highly
accelerated first-order algorithms (c.f. Aujol and
Dossal,12 Beck and Teboulle,13 Beck,14 Combettes
and Wajs,15 Esser et al.,16 Goldstein and Osher,17

Zhu and Chan,18 and Zhu et al.19) to solve the dual
problem. See Chambolle and Pock20 for a recent survey
on such numerical methods. Independent of the afore-
mentioned approaches, there is another class of com-
binatorial optimization methods that are very efficient
and have been extensively studied by the computer
vision community (c.f. Boykov et al.,21 Darbon and
Sigelle,22,23 and Goldfarb and Yin24). We note that in
all aforementioned works, the discretization of the
ROF model is always carried out on a fixed rectangular
grid where finite difference schemes are convenient to
compute the total variation. Error bound of such dis-
cretization was derived in Lai et al.25 and Wang
and Lucier.26

To the best of our knowledge, Dobson and Vogel27

(Theorem 2.2, p. 1782) are among the first to investi-
gate solving the total variation minimization problem
with Galerkin schemes. They gave a sufficient condi-
tion for the convergence of a Galerkin scheme for the
ROF model. However, they also observed that the said
condition is easily achieved if the solution of the ROF
model is sufficiently smooth and suggested that more
research be done under less stringent regularity
assumptions. Along this line of study, many well-
developed methods in the theory of finite element

method are applied to this problem (c.f. Lai and

Messi,28 Matamba Messi,29 Bartels,30,31 Bartels and

Milicevic,32 Chen and Tai,33 Feng and Prohl,34

Feng et al.,35 Litvinov et al.,36 Stamm and Wihler,36

Tian and Yuan,37 and Xu et al.38). It is worth noting

that all these works employ either piecewise-constant

or piecewise-linear finite elements. They also presume

certain regularity conditions on the input data with the

exception of Bartels’ work.
This paper addresses Dobson and Vogel’s question

by constructing a convergent Galerkin scheme regard-

less of the regularity of the solution of the ROF model.

The novelty of our method is we extend the conven-

tional piecewise-linear finite-elements–based approach

to bivariate spline element with arbitrary degree, and

prove the convergence of the numerical scheme. We

also propose a relaxation algorithm for solving the var-

iation problem using bivariate splines. We note in

numerical experiments that unlike other algorithms

that use finite difference schemes, the spline algorithm

that we propose does not show the notorious

“staircase” effect. We also gain flexibility with the

capability to select any polygonal region in an image

for local treatment; this was not easy with algorithms

that required rectangular patches when doing local

denoising. Our method is also anticipating the day

when we will be able to capture images with non-

rectangular CCD devices.
The paper is structured as follows. The next section

is devoted to the necessary mathematical preliminaries

on functions of bounded variation and bivariate spline

functions. In the Galerkin approximation with smooth

splines section, we review relevant properties of the

ROF model and prove the main result (Theorem 11)

of this paper. We introduce an algorithm for approxi-

mating the terms of the spline minimizing sequence and

prove its convergence in the Fixed point relaxation algo-

rithm section. In the last section, we show the numerical

evidence of its effectiveness at smoothing images.

Preliminary results

In this section and throughout the paper, the planar

domain X is assumed polygonal, unless otherwise

noted. We also remind the reader that by domain of

R
2, we mean a connected open subset.

Functions of bounded variation

A function u : X ! R is said to be of bounded varia-

tion if u 2 L1ðXÞ and its total variation

JðuÞ :¼ sup

�Z
X
udivðuÞdx : u 2 C1

cðX;R2Þ (4)
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juðxÞj � 1; 8x 2 Xg (5)

is finite. For example any function u 2 W1;1ðXÞ is of

bounded variation with total variation

Z
X
jDuj ¼

Z
X
jrujdx (6)

The set of functions of bounded variation, denoted

BVðXÞ, is a Banach space for the norm

jjujjBV :¼ jjujjL1 þ
Z
X
jDuj (7)

Furthermore, if u 2 BVðXÞ, then its distributional

derivative,40 Du, is a finite vector-valued Radon mea-

sure on X, and the total variation of Du induces a Borel

measure on X known as the total variation measure of

u over X.
The following result asserts that a function u defined

on a domain X of R2 with zero total variation must be

constant. In particular, if X ¼ R
2, then the total varia-

tion is a norm on BVðR2Þ equivalent to the norm jj � jjBV
defined in equation (7).

Theorem 1 (Poincaré Inequality41,42). Suppose that X is

a bounded Lipschitz domain of R2. Then there exists a

constant C depending only on X such that

jju� uXjjL2ðXÞ � C

Z
X
jDuj; 8u 2 BVðXÞ (8)

where uX ¼ 1
jXj

R
XuðxÞdx is the average value of u over X.

If X ¼ R
2, then there exists C> 0 such that for any com-

pactly supported function u 2 BVðR2Þ

jjujjL2ðR2Þ � C

Z
R

2

jDuj (9)

Another property of functions of bounded variation

that is central to our contribution in this work is the

existence of an extension operator from BVðXÞ into

BVðR2Þ that does not turn the boundary of X into a

singular set for the total variation measure.

Theorem 241 (Proposition 3.21, p. 131). Suppose that X
is a bounded Lipschitz domain. Then for any bounded

open set A � R
2 such that X is relatively compact in A,

there exists a bounded linear extension operator TA :
BVðXÞ ! BVðR2Þ such that the following hold:

a. For any u 2 BVðXÞ; jDTAujðCÞ ¼ 0 and the support

of TAu is contained in A.

b. The restriction of TA to W1;1ðXÞ is a bounded linear

operator into W1;1ðR2Þ.

Proof. The proof is constructive and parallels the con-

struction of an extension operator39 from W01,1(X) to
W1;1ðR2Þ using a partition of unity argument. The com-

plete proof is found in Ambrosio et al.40 h

We now give the properties of the total variation

functional J : L1ðXÞ ! ½0;1� that play a primordial

role in proving the existence and uniqueness of the

solution for the ROF model.

Proposition 3. The total variation functional J :
L1ðXÞ ! ½0;þ1� satisfies the properties:

(a) J is positively 1-homogeneous, i.e., JðtuÞ ¼
tJðuÞ; 8t � 0 and 8u 2 BVðXÞ;

(b) J is convex, i.e., Jðtuþ ð1� tÞvÞ � tJðuÞþ
ð1� tÞJðvÞ, 8t 2 ½0; 1�, 8u; v 2 L1ðXÞ;

(c) J is lower semicontinuous, i.e., if ðunÞ is a sequence

which converges in L1ðXÞ to u, then

JðuÞ � liminf
n!1 JðunÞ (10)

Proof. The proof of the proposition is straightforward

with (a) and (b) arising from the definition of the total

variation, while (c) is a consequence of Lebesgue

Dominated Convergence Theorem. h

To establish the main result of this paper, we need to

construct a sequence of smooth functions that converges

in L1ðXÞ for which the equality holds in equation (10).

By exploiting the extension property of functions of

bounded variation (see Theorem 2 above), we will use

the following lemma to achieve this goal.

Lemma 442 (Proposition 1.15). Suppose u 2 BVðXÞ. If
A �� X is a relatively compact open subset of X
such that Z

@A

jDuj ¼ 0 (11)

then

Z
A

jDuj ¼ lim
�!0

Z
A

jDðu � g�Þj (12)

where g�ðxÞ ¼ ��2gðx=�Þ and g is radially symmet-

ric mollifier.

Bivariate spline functions

Let D be a triangulation of X. A spline function on the

triangulation D is a function s defined on X such that

Hong et al. 3



for any triangle T 2 D, the restriction sjT of s to T is a
polynomial. The degree of a spline function is the max-
imum degree of its restrictions to elements of the trian-
gulation D. The space of spline functions of degree d on
D is denoted by

S�1
d ðDÞ :¼ fs : X ! R : sjT 2 Pd8T 2 Dg

where Pd is the vector space of bivariate polynomials of
degree less than or equal to d. The space of smooth
spline functions of degree d and order
0 � r � d; Sr

dðDÞ, is defined by

Sr
dðDÞ ¼ CrðXÞ \ S�1

d ðDÞ
¼ fs 2 CrðXÞ : sjt 2 Pd; 8T 2 Dg

Given a basis of the polynomial space Pd, it is easy

to see that S�1
d ðDÞ is isomorphic to R

N where N ¼

#ðDÞ dþ 2
2

� �
and #ðDÞ is the number of triangles in

D, while the space of smooth splines Sr
dðDÞ is a sub-

space of RN of the form42

Sr
dðDÞ 	 fc 2 R

N : AðrÞc ¼ 0g (13)

where A(r) is an ðrþ 1Þðdþ 1ÞE
N matrix encoding
the smoothness condition across the interior edges of
the triangulation D, and E is the number of interior
edges of D. Notice that we can use a different basis of
Pd for each triangle T 2 D and in such instance we
shall write

S�1
d ðDhÞ ¼

Y
T2D

P
T
d

For our purposes in this paper, we shall use the
Bernstein-Bézier basis of PT

d for each triangle T 2 D.
Spline functions have been used with much success

in the numerical computation of partial differential
equations using variational methods44–48 and more
recently for the numerical simulation of the Darcy–
Stokes equation.49 In general, spline functions may be
utilized as approximation spaces to study some classes
of variational equations using the Galerkin method.
Their appeal to us in this work is twofold. Firstly,
bivariate spline functions possess good approximation
power in the Sobolev spaces Wm;pðXÞ as illustrated by
the following theorem.

Theorem 543 (Theorem 10.2, p. 277). Suppose that D is
a regular triangulation of X of mesh size h> 0. Let p 2
½1;1� and d 2 N be given. Then for every

u 2 Wdþ1;pðXÞ, there exists a spline function su 2
S0
dðDÞ such that

jjDa
1D

b
2ðu� suÞjjLpðXÞ � Khdþ1�a�bjujdþ1;p

80 � aþ b � d
(14)

where K depends only on d and the smallest angle of

D, and

jujdþ1;p ¼
X

aþb¼dþ1

jjDa
1D

b
2ujjLpðXÞ

Secondly, the differential operators Da
1D

b
2 are

bounded linear operators between the spaces S�1
d ðDÞ

and S�1
d�a�bðDÞ. This property is known in the literature

as the Markov inequality.

Theorem 6 (Markov inequality,42 Theorem 2.32). Let D
be a triangulation of X. Let p 2 ½1;1Þ and d 2 N be

fixed. There exists a constant K depending only on d

such that for all nonnegative integers a and b with

0 � aþ b � d, we have

jjDa
1D

b
2sjjLpðXÞ �

K

qaþb
jjsjjLpðXÞ; 8s 2 S�1

d ðDÞ (15)

where q ¼ minfqt : t 2 Dg with qt the inradius of the

triangle t.

Remark 7. Notice that one can define a spline functions

space on any simplicial tiling of the domain X and

all polynomials based finite element spaces are prefer-

ential subspaces of the spline space S�1
d ðDhÞ for some

choice of d.
Natural images contain structural information in the

form of edges and textures. Resolving these entities

with continuous spline functions will require fine trian-

gulations which in turn demand high resolution images.

An alternative is to use high order spline functions on

moderate size triangulations as these are more capable

of capturing the variations corresponding to edges than

continuous spline functions on such triangulations. The

following result gives the relationship between the

degree and the order of the spline function to guarantee

suitable approximation power in Sobolev spaces.
Theorem 843 (Theorem 10.10). Let d � 3rþ 2 and

suppose D is a regular triangulation of X of mesh size

h. Then for every f 2 Wdþ1
q ðXÞ, there exists a spline s 2

Sr
dðDhÞ such that

jjDa
1D

b
2ðu� suÞjjLpðXÞ � Khdþ1�a�bjujdþ1;p

80 � aþ b � d
(16)
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If X is convex, then the constant K depends only

on r; d and the smallest angle on D; otherwise K

also depends on the Lipschitz constant of the boundary

of X.

Galerkin approximation with

smooth splines

In this section, we describe how we arrive at a family of

continuous bivariate spline functions that approximate

the minimizer of the functional

Ef
kðuÞ :¼ kJðuÞ þ 1

2

Z
X
ju� fj2dx (17)

Before undertaking the analysis of our approxima-

tion method, let us briefly explain why the ROF model

is well posed. In fact, Proposition 3 implies that for f 2
L2ðXÞ and k > 0 fixed, the ROF functional Ef

k is strictly

convex and lower semi-continuous on BVðXÞ \ L2ðXÞ
for the norm of L2ðXÞ. Therefore, the ROF model (1)

has a unique solution and the problem is well posed as

illustrated by the following result.

Theorem 9. Let ufk 2 BVðXÞ be the minimizer of the ROF

functional Ef
kðuÞ. Then for any v 2 BVðXÞ, there holds

jjv� ufkjj2L2 � 2
�
Ef
kðvÞ � Ef

kðufkÞ
�

(18)

and

inf
x2X

fðxÞ � ufkðxÞ � sup
x2X

fðxÞ for a:e: x 2 X (19)

Moreover, if ugk is the minimizer of Eg
kðuÞ, then

jjufk � ugkjjL2 � jjf� gjjL2 (20)

Proof. The proof is a simple exercise of convex analysis

and uses the characterization of the minimizer of a

convex functional using subdifferentials. The complete

proof is found in Matamba Messi.29 h

The approximation of the minimizer of the ROF

model by continuous spline functions is possible

because the space S0
dðDÞ possesses very good approxi-

mation power in high-order Sobolev spaces as illustrat-

ed by Theorem 5 and a function of bounded variation

can be approximated by smooth functions. In using

Theorem 5, we will need to control the norm of high

order derivatives of the mollification of a BV function.

This is done as in the lemma below.

Lemma 10. Let u 2 BVðR2Þ be fixed. Then for any inte-

ger m � 0, any pair of nonnegative integer ða; bÞ such

that aþ b ¼ mþ 1, and any � > 0, we have

jjDa
1D

b
2ðg� � uÞjjL1ðXÞ �

C

�m
jDujðR2Þ (21)

where C is a constant depending only on m and X.

Proof. Let u 2 C1
cðXÞ be given. Let a and b be two

nonnegative integers such that aþ b ¼ mþ 1; we may

assume without loss of generality that a � 1. Then,

with g�� mðxÞ ¼ Da�1
1 Db

2g�ð�xÞ we have

Z
X
Da

1D
b
2ðg� � uÞudx ¼ �

Z
R
2

Da�1
1 Db

2ðg� � uÞ
@u
@x1

dx

¼ �
Z
R
2

Da�1
1 Db

2g� � u
@u
@x1

dx

¼ �
Z
R
2

u g�� m � @u
@x1

dx

¼ �
Z
R
2

u
@

@x1
½g�� m � u�dx

Thus

Z
X
Da

1D
b
2ðg� � uÞudx � jj g�� m � ujj1jDujðR2Þ

Now by H€older’s inequality we have

jj g�� m � ujj1 � jj g�� mjjL2ðR2ÞjjujjL2ðXÞ

a simple computation shows that

jj g�� mjj2L2ðR2Þ �
ffiffiffi
p

p
�m

jjDa�1
1 Db

2gjj1=21
and jjujjL2ðXÞ �

ffiffiffiffiffiffiffijXjp jjujj1

where jXj is the Lebesgue measure of X. Consequently

Z
X
Da

1D
b
2ðg� � uÞudx � Cðm; gÞ

�m
jjujj1jDujðR2Þ (22)

where

Cðm; gÞ ¼
ffiffiffiffiffiffiffiffiffi
pjXj

p
maxaþb¼mjjDa

1D
b
2gjj1=21 (23)

Taking the supremum in equation (22) over all u 2
C1

cðXÞ such that jjujj1 � 1, we obtain by duality and a

denseness argument that

jjDa
1D

b
2ðg� � uÞjjL1ðXÞ �

Cðm; gÞ
�m

jDujðR2Þ

h
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Suppose that X is endowed with a regular triangu-

lation Dh of sise h, and let d 2 N be given. As a finite

dimensional space, S0
dðDhÞ is a closed and convex

subset of L2ðXÞ. Thus, the ROF functional has a

unique minimizer in S0
dðDhÞ. Let sdhðfÞ be the spline

function defined by

sdhðfÞ ¼ arg min
u2S0

dðDhÞ
kJðuÞþ 1

2

Z
X
ju-fj2dx (24)

We are ready to prove that our construction of min-

imum splines above yields a minimizing sequence for

the ROF functional. Let hn be a monotonically decreas-

ing sequence of real numbers such that hn & 0 as

n ! 1. Let Dn be a quasi-regular triangulation of X
with mesh size hn and smallest angle hn. We have the

following result:

Theorem 11. Suppose that the sequence of regular tri-

angulations fDngn is such that

inf
n2N

hn > h > 0 (25)

Given d 2 N, the sequence fsdnðfÞgn defined by

sdnðfÞ ¼ arg min
u2S0

dðDnÞ
kJðuÞþ 1

2

Z
X
ju-fj2dx (26)

is minimizing for the ROF functional Ef
kðuÞ.

Proof. Let T : BVðXÞ ! BVðR2Þ be the extension oper-

ator associated with the 1� neighborhood of X, the
existence of which is guaranteed by Theorem 2. We

recall that T is also a bounded linear operator from

W1;1ðXÞ into W1;1ðR2Þ, and for any u 2 BVðXÞ, Tu is

supported on the the 1� neighborhood of X.
Let 0 < � < 1 and d 2 N be fixed. Let ufk be the

minimizer of Ef
kðuÞ and put uf� ¼ g� � Tufk. Let sf� 2

S0
dðDnÞ be as in Theorem 5. Then by Lemma 10, we have

jjuf� � sf�jjW1;1ðXÞ � Cðd; hÞ hn
�

� �d

(27)

where C depends solely on d and h. Moreover, since T :
W1;1ðXÞ ! W1;1ðR2Þ is bounded, and Tu is compactly

supported for every u, it follows from the Poincaré

inequality (equation (9)) that

jjuf� � sf�jjL2ðXÞ � jjTðuf� � sf�ÞjjL2ðR2Þ

� C

Z
R

2

jrðTðuf� � sf�ÞÞjdx
� CjjTðuf� � sf�ÞjjW1;1ðR2Þ
� CjjTjj�jjuf� � sf�jjW1;1ðXÞ

(28)

with C a universal constant depending only on X1 the
1� neighborhood of X, and jjTjj� is the operator norm
of T.

We now show that by choosing a suitable regulari-
zation scale �, we achieve the convergence of Ef

kðsdnðfÞÞ
to Ef

kðufkÞ as n ! 1. In fact for any � > 0, we have

Ef
k

�
sdnðfÞ

�
� Ef

kðufkÞ

¼ Ef
k

�
sdnðfÞ

�
� Ef

kðsf�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�0

þEf
kðsf�Þ � Ef

kðuf�Þ

þ Ef
kðuf�Þ � Ef

kðuFk Þ
� Ef

kðsf�Þ � Ef
kðuf�Þ þ Ef

kðuf�Þ � Ef
kðufkÞ

So to finish the proof, it suffices to show that

Ef
kðuf�Þ ! Ef

kðufkÞ

and

Ef
kðsf�Þ ! Ef

kðuf�Þ

as n ! 1 for a suitable choice of �. First, we observe
that the convergence of Ef

kðuf�Þ to Ef
kðufkÞ follows from

the fact that

uf� !L
2ðXÞ
�!0

ufk

and by Lemma 4 applied to

Tufk : jDuf�jðXÞ !
�!0

jDTufkjð�XÞ ¼ JðuÞ

Second, by the triangle inequality and direct calcu-
lation we have

jEf
kðsf�Þ � Ef

kðuf�Þj
� k

Z
X
jrðsf� � uf�Þjdxþ

1

2
½jjsf� � uf�jj2L2ðXÞ

þ 2jjuf� � fjjL2ðXÞjjuf� � sf�jjL2ðXÞ�

We continue to rearrange the second term to have

jEf
kðsf�Þ � Ef

kðuf�Þj
� k

Z
X
jrðsf� � uf�Þjdxþ 1

2
jjsf� � uf�jjL2ðXÞ

� ðjjuf� � sf�jjL2ðXÞ þ 2jjuf� � fjjL2ðXÞÞ

� ½kþ 1

2
jjuf� � sf�jjL2ðXÞ þ jjuf� � fjjL2ðXÞ�
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� ½jjuf� � sf�jjW1;1ðXÞ þ jjuf� � sf�jjL2ðXÞ�

� ð1þ CjjTjj�Þ½kþ
CjjTjj�

2
jjuf� � sf�jjW1;1ðXÞ

þ jjuf� � fjjL2 �jjuf� � sf�jjW1;1ðXÞ

where we have used the estimate (equation (28)).
Now, using the estimate (equation (27)) and letting

� ¼ h1=4dn , we infer from the latter inequality that

jEf
kðsf�Þ � Ef

kðuf�Þj � ð1þ CjjTjj�ÞCðd; hÞ

½kþ Cðd; h;TÞhd�1=4

n þ Cðf; ufkÞ�hd�1=4
n

where

Cðf; ufkÞ ¼ jjfjjL2ðXÞ sup
0<�< 1

jjuf�jjL2ðXÞ

Cðd; h;TÞ :¼ CjjTjj�Cðd; hÞ
2

Thus, Ef
kðsnðfÞÞ ! Ef

kðufkÞ as hn ! 0 and the proof is
complete. h

Remark 12. It is easy to construct a sequence of trian-
gulation with vanishing mesh sizes for which condition
(25) is satisfied. Starting from a triangulation D0 of X
with smallest angle h0 and mesh size h0, a sequence of
triangulations Dn is generated via successive refine-
ments as follows: Given Dn, we obtain Dnþ1 by subdi-
viding each triangle t 2 Dn into four triangles by
connecting the midpoints of the edges of t. The result-
ing triangulation Dnþ1 has mesh size h02

�n�1 and small-
est angle h0.

Corollary 13. Under the assumptions of Theorem 11, the
sequence fsdnðfÞgn satisfies the following two properties:

sdnðfÞ !L
pðXÞ

ufk as n ! 1; for any p 2 ½1; 2� (29)

and

JðsdnðfÞÞ ! JðuÞ as n ! 1 (30)

Proof. Since X is a bounded domain it suffices to estab-
lish (29) for p¼ 2. The result for 1 � p < 2 follows
from the fact that L2ðXÞ is canonically embedded
into LpðXÞ. The case p¼ 2 follows easily from
Theorem 9 and Theorem 11. Indeed, owing to equation
(18), we have for all n 2 N

jjsdnðfÞ � ufkjj2L2ðXÞ � 2
�
Ef
kðsdnðfÞÞ � Ef

kðufkÞ
�

thus by Theorem 11 above, we have

jjsdnðfÞ � ufkjj2L2ðXÞ ! 0

as n ! 1. Finally, since

JðsdnðfÞÞ � JðuÞ
¼ 1

k
½Ef

kðsdnðfÞÞ � Ef
kðufkÞ þ

1

2
jjufk � fjj2L2

� 1

2
jjsdnðfÞ � fjj2L2 � � 1

k
½Ef

kðsdnðfÞÞ � Ef
kðufkÞ

þ 1

2
jjufk � sdnðfÞjj2jjufk þ sdnðfÞ � 2fjj2�

� 1

k
ðEf

kðsdnðfÞÞ � Ef
kðufkÞÞ1=2

� ½Ef
kðsdnðfÞÞ � Ef

kðufkÞ þ jjufk þ sdnðfÞ � 2fjj2�

and the sequence fjjsdnðfÞjj2gn is bounded, thanks to

Theorem 11 taking the limit of the latter identity as

n ! 1 yields (30) and the proof is complete. h

Remark 14. Bartels [5] establish Corollary 13 for the

case d¼ 1. Our result generalizes and is applicable to

higher order finite elements under h-refinement for

which property (equation (14)) holds with infinitely dif-

ferentiable functions.

Remark 15. The results of Theorem 20 and Corollary

13 hold if we replace S0
dðDhÞ with Sr

dðDhÞ in the defini-

tion of the spline minimizer sdhðfÞ provided that the

hypotheses of Theorem 8 hold. In particular, we must

have d � 3rþ 2 and a family of regular triangulations.

Fixed point relaxation algorithm

The challenge in computing with the ROF model stems

from the fact that the objective functional Ef
k is not

Gâteaux differentiable; so the solution cannot be

described in terms of the first variation of Ef
k. The

reason why we cannot use the standard machinery of

calculus of variation to solve equation (24) is that the

associated Lagrangian

Lðp; z; xÞ ¼ kjpj þ 1

2
ðz� fÞ2; 8ðp; z; xÞ 2 R

2 
 R
 R
2

is not differentiable with respect to p at the origin

p ¼ 0. One way to mitigate this difficulty is to find a

differentiable relaxation of the Lagrangian L such that

the corresponding energy functional is a perturbation of

Ef
kðuÞ; that approach has been successfully used on at

least three occasions in the literature.8,9,27
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Following Chambolle and Lions,9 we let U� be the

real-valued function defined on R
2 by

U�ðxÞ ¼
jxj2
2�

þ �

2
if jxj � �

jxj if jxj > �

8<
: (31)

and consider the optimization problem

arg min
u2S0

dðDhÞ
Ef
k;�ðuÞ : ¼k

Z
X
U�ðruÞdxþ 1

2

Z
X
ju-fj2dx

� 	

(32)

It is easy to check that the functional Ef
k;� is strictly

convex and lower semicontinuous on S0
dðDhÞ with

respect to the L2-norm. Consequently, the minimiza-

tion problem (equation (32)) has a unique solution

that we denote sdhðf; �Þ. We now show that the family

of functional Ef
k;� converges uniformly to Ef

k and the

minimizers sdhðf; �Þ converge to sdhðfÞ as � goes to zero.

Proposition 16. The family of functionals Ef
k;�ðuÞ con-

verges uniformly in S0
dðDhÞ to Ef

kðuÞ and sdhðf; �Þ !L
2ðXÞ

sdhðfÞ
as � & 0. Furthermore, under the assumptions of Theorem

11, we have sdhðf; h1=4dÞ !L
2ðXÞ

ufk as h goes to 0.

Proof. Let U be the continuous function defined on R
2

by UðxÞ ¼ jxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21 þ x22

q
. It is easy to show that

sup
x2R2

jU�ðxÞ � UðxÞj � �

Therefore, for any u 2 S0
dðDhÞ we have the estimate

jEf
k;�ðuÞ � Ef

kðuÞj � k
Z
X
jU�ðruÞ � UðruÞjdx � kjXj�

and it follows that Ef
k;� converges uniformly in S0

dðDhÞ
to Ef

k.
Next, we note that Theorem 9 remains true on

S0
dðDhÞ. Therefore, rewriting equation (18) in S0

dðDhÞ
for sdhðfÞ, we obtain

jjsdhðf; �Þ � sdhðfÞjj2L2ðXÞ

� 2ðEf
kðsdhðf; �ÞÞ � Ef

kðsdhðfÞÞÞ
� 2ðEf

kðsdhðf; �ÞÞ � Ef
k;�ðsdhðf; �ÞÞÞ

þ ​ 2ðEf
k;�ðsdhðf; �ÞÞ � Ef

kðsdhðfÞÞÞ
� 2ðkjXj�þ Ef

k;�ðsdhðf; �ÞÞ � Ef
k;�ðsdhðfÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0

þ Ef
k;�ðsdhðfÞÞ � Ef

kðsdhðfÞÞÞ
� 4k�jXj

Thus, jjsdhðf; �Þ � sdhðfÞjjL2ðXÞ � 2
ffiffiffiffiffiffiffiffiffiffiffi
kjXj�p

; and it fol-
lows that sdhðf; �Þ converges to sdhðfÞ in L2ðXÞ as � goes
to 0. Finally, by the triangle inequality we have

jjsdhðf; h1=4dÞ � ufkjjL2ðXÞ � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kjXjh1=4d

p
þ jjsdhðfÞ � ufkjjL2ðXÞ

Taking the limit of the latter inequality as h goes to 0
and using Corollary 3.5, it follows that sdhðf; h1=4dÞ con-
verges to ufk in L2ðXÞ as h goes to 0. h

Unlike the spline ROF model (24) for which we
cannot use the first variation to characterize the solu-
tion, the functional Ef

k;� associated with the relaxation
problem (equation (32)) is Gâteaux differentiable.
Therefore, the spline function sdh;�ðfÞ is characterized by:

Proposition 17. A function u 2 S0
dðDhÞ is the minimizer

of the functional Ef
k;� in S0

dðDhÞ if and only if u satisfies
the variational equation

k
Z
X

1

� _ jrujru � rsdxþ
Z
X
ðu� fÞsdx ¼ 0 (33)

for all s 2 S0
dðDhÞ , where a _ b :¼ maxða; bÞ.

Proof. First, we observe that Ef
k;�ðuÞ is Gâteaux differ-

entiable with directional derivatives at any point u 2
S0
dðDhÞ given by

hdEf
k;�ðuÞ; si ¼ k

Z
X

1

� _ jrujru � rsdxþ
Z
X
ðu� fÞsdx

8s 2 S0
dðDhÞ (34)

Therefore, u is a minimizer of Ef
k;�ðuÞ in S0

dðDhÞ if
and only if dEf

k;�ðuÞ ¼ 0, i.e. (equation (33)) holds. h

We now set up the variational equation (33) as a
fixed point equation for a nonlinear operator on
S0
dðDhÞ. Fix u 2 S0

dðDhÞ and define the bilinear form
L½u; k� on S0

dðDhÞ by

L½u; k�ðv;wÞ :¼ k
Z
X

1

� _ jrujrv � rwdxþ
Z
X
vwdx

By Markov Inequality (Theorem 6) L½u; k� is a con-
tinuous, coercive bilinear form on the Hilbert space
S0
dðDhÞ as a subspace of L2ðXÞ. Thus, by Lax–

Milgram Theorem50 (Theorem 2.7.7), for any f 2
L2ðXÞ the equation

L½u; k�ðv;wÞ ¼
Z
X
fwdx 8w 2 S0

dðDhÞ
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has a unique solution in S0
dðDhÞ that we denote by

L½u; k�f. Moreover, since L½u; k� is symmetric L½u; k�f is
characterized by

L½u; k�f ¼ arg min
v2S0

dðDhÞ
k
Z
X

jrvj2dx
� _ jrujþ

Z
X
jv-fj2dx (35)

Hence for f 2 L2ðXÞ fixed, we define the nonlin-
ear operator

F : S0
dðDhÞ ! S0

dðDhÞ
u 7! L½u; k�f

It is easily shown using the characterizing equation
(35) for L½u; k�f and the dominated convergence theo-
rem that the operator F is continuous. Furthermore,
Proposition 17 above defines sdh;�ðfÞ as a fixed point of
F. So we may compute sdh;�ðfÞ using the fixed point iter-
ative scheme presented and analyzed below.

Algorithm 18. Start from any bounded nonnegative
function v0 2 S0

dðDhÞ and for n � 0, let

unþ1 ¼ arg min
u2S0dðDhÞ

k
Z
X
vnjruj2dxþ

Z
X
ju-fj2dx (36a)

vnþ1 :¼ arg min
0< v�1=�

Z
X
vjrunþ1j2þ 1

v
dx¼ 1

� _ jrunþ1j
(36b)

A standard argument using Lax-Milgram Theorem
(see Brezis,39 Corollary 5.8 p. 140) shows that unþ1 is
characterized by the variational equation

k
Z
X
vnrunþ1 � rsdxþ

Z
X
ðunþ1 � fÞsdx ¼ 0 (37)

for all s 2 S0
dðDhÞ. The existence and uniqueness of

unþ1 follows by observing that the bilinear form

L½un�ðu; vÞ :¼
Z
X
kvnru � rvþ uvdx

is continuous—thanks to Theorem 6—and coercive on
S0
dðDhÞ 
 S0

dðDhÞ with respect to the L2-norm.
Consequently, the equation (37) has a unique solution.

We fix � > 0 and for the sake of notation concise-
ness, consider the functional E defined by

Eðu; vÞ ¼
Z
X
k vjruj2 þ 1

v

� �
dxþ

Z
X
ju� fj2dx (38)

It is easy to check that

unþ1 ¼ arg min
u2S0

dðDhÞ
Eðu; vnÞ (39a)

vnþ1 ¼ arg min
0< v�1=�

Eðunþ1; vÞ (39b)

Lemma 19. The sequence fungn is bounded in H1ðXÞ and
satisfies for all n 2 N, and any s 2 S0

dðDhÞ

jjs� unjj2L2ðXÞ � Eðs; vn�1Þ � Eðun; vn�1Þ (40)

In particular, we have for all n 2 N

jjunþ1 � unjj2L2ðXÞ � Eðun; vnÞ � Eðunþ1; vnþ1Þ (41)

Proof. We observe that in view of Theorem 6, proving
the boundedness of fung in H1ðXÞ is equivalent to
proving its boundedness in L2ðXÞ. Let n 2 N be
given. Then by definition of un, we have

Eðun; vn�1Þ � Eð0; vn�1Þ
¼ jjfjj2L2 þ

Z
X

1

vn�1
dx � jjfjj2L2 þ jXj

�

Consequently, we get jjun � fjj2L2ðXÞ � jjfjj2L2ðXÞ þ jXj
� ,

and deduce by the triangle inequality that

jjunjjL2ðXÞ � 2jjfjjL2ðXÞ þ
ffiffiffiffiffiffiffi
jXj
�

r

We now show that jjun � sjj2L2ðXÞ � Eðs; vn�1Þ �
Eðun; vn�1Þ: For any s 2 S0

dðDhÞ, we have

Eðs; vn�1Þ � Eðun; vn�1Þ

¼
Z
X
kvn�1ðjrsj2 � jrunj2Þ þ ðjs� fj2 � jun � fj2Þdx

¼
Z
X
kvn�1jrðs� unÞj2 þ js� unj2dx

þ 2

Z
X
kvn�1run � rðs� unÞ þ ðun � fÞðs� unÞdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼0 by ð37Þ

¼
Z
X
kvn�1jrðs� unÞj2 þ js� unj2dx

� jjs� unjj2L2ðXÞ since vn�1 � 0
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In particular for any n 2 N,

jjunþ1 � unjj2L2ðXÞ � Eðun; vnÞ � Eðunþ1; vnÞ
¼ Eðun; vnÞ � Eðunþ1; vnþ1Þ
þ Eðunþ1; vnþ1Þ � Eðunþ1; vnÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�0 by ð39Þ
� Eðun; vnÞ � Eðunþ1; vnþ1Þ

Thus, the sequence fEðun; vnÞgn is monotone nonin-
creasing and jjun � unþ1jjL2ðXÞ ! 0. h

Theorem 20. The sequence fungn constructed in
Algorithm 4.3 converges in L2ðXÞ to the minimizer
sdhðf; �Þ of Ef

k;�ðuÞ.

Proof. In view of Proposition 17, it suffices to show
that any cluster point u of the sequence fungn
with respect to the L2-norm satisfies the Euler-
Lagrange equation (33). To begin, we note that the
sequence fungn has at least one cluster point as a
bounded sequence in a finite dimensional normed
vector space.

Let u be any cluster point of fungn in L2ðXÞ and

funkgk a subsequence such that unk !L
2ðXÞ

u. Since

jjunkþ1 � unk jjL2ðXÞ ! 0

it follows that unkþ1 !L
2ðXÞ

u as well. By Markov inequal-
ity—Theorem 6—we also have

unk !H
1ðXÞ

k!1
u; and unkþ1 !H

1ðXÞ
k!1

u

Therefore, by Lebesgue dominated convergence the-
orem, we get

vnk ¼
1

jrunk j
^ 1

�
!L
2ðXÞ

k!1
1

jruj ^
1

�
¼ 1

� _ jruj

Next, we establish that u satisfies the variation-
al equation

k
Z
X

1

� _ jrujru � rsdxþ
Z
X
ðu� fÞsdx ¼ 0 (42)

for all s 2 S0
dðDhÞ. Indeed by definition of unkþ1,

there holds

k
Z
X
vnkrs � runkþ1dxþ

Z
X
ðunkþ1 � fÞsdx ¼ 0 (43)

for all k 2 N. Since runkþ1 converges strongly to ru in

L2ðXÞ 
 L2ðXÞ and vnkrs converges strongly to

rs=ð� _ jrujÞ, it follows that
Z
X
vnkrs � runkþ1dx !

Z
X

1

� _ jrujru � rsdx (44)

as k ! 1. Similarly, as unkþ1 converges strongly to u

in L2ðXÞ, we infer that

Z
X
ðunkþ1 � fÞsdx !

Z
X
ðu� fÞsdx as k ! 1 (45)

On passing to the limit as k ! 1 in (43) and taking

into account equations (44) and (45), we obtain equa-

tion (42) and the proof is complete. h

Remark 21. Many choices of the function U� 2 C1ðR2Þ
for constructing a relaxation of the ROF functional

are possible; presumably any choice of a family of

convex continuously differentiable functions that

yields a uniform approximation of the Euclidian

norm should do the trick. A common choice seen in

the literature and introduced by Acar and Vogel8 is

the function

U�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ jxj2

q

Remark 22. For d¼ 1 the relaxation algorithm is not

necessary as a direct algorithm for computing the min-

imizers is readily available. Indeed, in this case the

objective functional reads

Ef
kðsÞ ¼ sup

q 2 S�1
0 ðDhÞ 
 S�1

0 ðDhÞ
jqjTj2 � 1; T 2 Dh

k
Z
X
rs � qdxþ 1

2

Z
X
js� fj2dx

� 	

(46)

and the ROF model over the continuous affine func-

tions turns into the saddle-point problem

ufk ¼ arg mins2S0
1ðDhÞ sup

q 2 S�1
0 ðDhÞ 
 S�1

0 ðDhÞ
jqTj2 � 1; T 2 Dh

�
k
Z
X
rs � qdx

þ 1

2

Z
X
js� fj2dx

	

(47)

One can then solve the latter problem using the first-

order primal dual algorithm studied by Chambolle and

Pock.50 Indeed, Bartels52 has studied it in details and

provided ample evidence of convergence.

10 Journal of Algorithms & Computational Technology 13(0)



Applications to digital image processing

In this section, we report the results of some numerical

experiments done using the algorithm described above

on digital images. It is well known (some of these

observations have been confirmed by theory) that:

1. the ROF model is excellent on piecewise constant

images up to a reduction in contrast;
2. finite difference algorithms for the ROF model are

vulnerable to the staircase effect, whereby smooth

regions are recovered as mosaics of piecewise con-

stant subregions;
3. total variation based image enhancement methods

are ineffective in discriminating textures from noise

at well mixed scales.

Two examples illustrating the issues raised above are

provided, using both the finite difference and spline

methods. However, we will see that the staircase

effect is tamed by the spline method.

A digital total variation spline model

A digital image is a quantization of a light intensity

field. For our purposes here, we model digital images

as samples or quantization of functions defined on a

domain X. For example, an image with resolution

M
N could be thought of as the evaluation on the

grid fði; jÞ : 1 � i � M; 1 � j � Ng of a function f

defined on X ¼ ð1=2; Mþ 1=2Þ 
 ð1=2; Nþ 1=2Þ;
alternatively we could think of it as a sample of local

averages of the function f on squares centered at (i, j).
The algorithm described in the previous section

assumes that f is a function on the continuum

domain X, however, digital images are merely samples

of such functions. Therefore for processing digital

images with the ROF model on spline spaces, we

should try to estimate the function f from its samples

ffi : 1 � i � Pg. One way to do these is to use any of

the penalized spline fitting method introduced by

Awanou et al.52 The problem with this approach is

that the preliminary estimation step significantly modi-

fies the input data. When the estimated function is fed

to the ROF model, we cannot easily discriminate the

contribution of the total variation smoothing proce-

dure on the final output.
In order to clearly illustrate the effect of the total

variation smoothing procedure in digital image proc-

essing, we solve the following variant of the spline min-

imization problem (equation (24))

arg min
s2Sr

dðDhÞ
k
Z
X
jrsjdxþ 1

2

X
T2Dh

X
xi2T

jsðxiÞ-fij2 (48)

where P is the total number of pixels and sðxiÞ is the
value of the spline function s at the pixel location
xi 2 X. We have simply replaced the continuum L2

fidelity term with a discrete counterpart based on the
available data. In general, the optimization problem
(50) may not have a solution unless the pixel locations
D ¼ fxi 2 X : 1 � i � Pg are well distributed across
the triangles of Dh.

Theorem 23. Suppose that the pixel locations

D ¼ fxi 2 X : 1 � i � Pg

are such that, the mapping

NDðsÞ ¼
�X
T2Dh

X
xi2T

sðxiÞ2
�1=2

(49)

is a norm on Sr
dðDhÞ. Then there exists a unique spline

function sh 2 Sr
dðDhÞ such that

sh ¼ arg min
s2Sr

dðDhÞ
EdðsÞ

where

EdðsÞ :¼ k
Z
X
jrsjdxþ 1

2

X
T2Dh

X
xi2T

jsðxiÞ � fij2

Proof. Notice that EdðsÞ is strictly convex and contin-
uous on Sr

dðDhÞ; therefore EdðsÞ has at most one min-
imizer in Sr

dðDhÞ. Let fsngn be a minimizing sequence of
Ed, i.e EdðsnÞ converges to infs2Sr

dðDhÞ EdðsÞ. The
sequence fNDðsnÞgn is bounded, and since we assume
that ND is a norm and Sr

dðDhÞ is finite dimensional, it
follows that any subsequence of fsngn has a convergent
subsequence with respect to the norm ND. Now, if s� is
the limit of a subsequence of fsngn, then by continuity
of Ed we have Edðs�Þ ¼ infs2Sr

dðDhÞ EdðsÞ and s� is a min-
imizer of Ed. Thus, the set of minimizers of Ed is non-
empty. Finally, since Ed is strictly convex and limit
points of fsngn are minimizers of Ed, we infer that the
minimizing sequence fsngn converges to the unique
minimizer sh of Ed. h

Remark 24. The condition (49) is equivalent to saying
that the pixel locations set D is determining for the
space of piecewise polynomials S�1

d ðDhÞ, that is every
element s 2 S�1

d ðDhÞ is uniquely determined by the
values of sjT at the pixel locations DT ¼ D \ T for
every T 2 Dh. Consequently, each triangle T should
contain at least ðdþ 2Þðdþ 1Þ=2 pixel locations.
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Figure 1. (a) The original cartoon image overlayed with a triangulation made of 562 triangles and 316 vertices. (b) The noised image
obtained by adding a white noise with r¼ 25 to the cartoon image. (c) The image recovered with the projected gradient algorithm. (d)
The difference between the noised and recovered images. (e) The image recovered by fitting a continuous cubic spline over the
triangulation in image (a). (f) The difference between the spline and noised images.

Figure 2. (a) A toddler portrait. (b) The noised image obtained by adding a white noise with r¼ 25 to the image in (a). (c) The image
recovered with the projected gradient algorithm. (d) The difference between the noised and recovered images. (e) The image
recovered by fitting a continuous cubic spline over a mesh made of 1271 triangles. (f) The residual image of the spline algorithm.

Figure 3. The spline method is less vulnerable to the staircase effect. (a) Portion of the noised image in Figure 1(b). (b) The image
recovered using the projected gradient algorithm. (c) The image recovered with the spline method.
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Remark 25. In practice the pixel locations are fixed by

the image processing task. Therefore, given a choice of

the degree d, condition (49) restricts our options of

triangulations as well as the shape of the individual

triangles as well. For example when denoising a

M
N image, we may not use a triangulation contain-

ing more than 2MN
ðdþ2Þðdþ1Þ triangles.

Following section of Fixed point relaxation algo-

rithm above, the actual computation is done by itera-

tively solving the sequence of quadratic programs

snþ1 ¼ arg min
s2Sr

dðDhÞ
k
Z
X
vnjrsj2dxþ

X
T2Dh

X
xi2T

jsðxiÞ-fij2 (50)

where

vn ¼ 1

� _ jrsnj or vn ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ jrsnj2

q

These expressions of vn correspond to the relaxation

derived from the functions

U�ðxÞ ¼
jxj2
2�

þ �

2
if jxj � �

jxj if jxj > �

8><
>:

and U�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ jxj2

q
; respectively:

We shall refer to the relaxation associated to

U�ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�þ jxj2

q
, the minimal surface approximation

(MSA) spline method.

Image processing experiments

In this section we present the result of the numerical

experiments for digital image processing situations. We

consider denoising, in painting and image resizing.

Each of these task can be done using total variation

smoothing and can be formulated in the form given in

equation (50).
Experiment 1 (Denoising a cartoon image).
In this test, we use the ROF model to clean up a

Gaussian noise added to the a binary image made of

five geometric shapes. For comparison purposes, we

ran the spline algorithm 4.3 and the finite difference

algorithm studied by the authors in Lai and Messi.28

The spline algorithm is less capable to accurately

resolve the edges than the finite difference algorithm,

as seen by visually comparing panel (d) and panel (f) in

Figure 1. The performance of the spline algorithm may

be improved by choosing a triangulation that is

adapted to the edges in the image. However, generating
such triangulations augment the computational cost of
the algorithm as we would first identify the edges and
the performance of the edge detection algorithm may
be hampered by the noise in the data.

Experiment 2 (Denoising a natural image).
We now show the performance of the spline algo-

rithm on a natural image with minor textures.
� ¼ 1=20, and s ¼ 1=8. Both the projected gradient
algorithm and the spline method effectively reduce
the noise. The finite difference method produces sharp-
er edges than the spline method, see shirt collar in panel
(d) and panel (f) in Figure 2. However, the finite dif-
ference method results in an image with more blocky

Table 1. The PSNRs of various regions in Figure 4, Panel (b).

Perona–Malik MSA spline

Region 1 (red, left) 29.9161 29.9109

Region 2 (green) 28.8445 28.9952

Region 3 (yellow) 31.6307 31.6989

Region 4 (purple) 33.0744 33.1167

Region 5 (blue) 33.3464 33.5832

Region 6 (red, right) 32.4490 32.5882

Figure 4. (a) The image to be cleaned was obtained by addition
of a sample from a white noise with r¼ 20 onto the ground truth
image in panel (b). (b) Edge adapted triangulation of the image
domain. (c) Recovered image using the MSA spline approxima-
tion with �¼ 1, d¼ 6 and r¼ 1. (d) Recovered image using
Perona–Malik finite difference denoising. Original MSA
Bicubic Bilinear.
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regions than the one recovered by the spline method,

see panel (b) and panel (c) in Figure 3.
Experiment 3 (Denoising a natural image with an

edge-adapted triangulation). We show that by using a

triangulation that aligns with the edges in the image, we

make our approach very competitive with the finite

difference method as measured by peak signal-to-

noise ratio, see Table 1. In this experiment, the MSA

spline method is run separately on the regions identified

by a segmentation of the image, see Figure 4 panel (b).
Experiment 4 (Total variation image resizing). Image

resizing consists in increasing/decreasing the resolution

of a given digital image. We achieve this easily by fit-

ting a spline function to the available image using (50)

and evaluating the resulting spline over the pixel loca-

tions for the new resolution of the image. We illustrate

this approach with two examples in Figure 5; each

image in the first column is resized by a factor of 10,

that is, the resulting images have 10 times more pixels

along each direction that the original images. The first

original image is of dimension 18
 28 pixels, while the

second one has a resolution of 15
 24 pixels. One can

notice that both the bicubic and bilinear interpolation

methods lead to the Gibbs discontinuity effect at the

edges of the two images, while our approach barely

show any such effect.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of

this article.

Funding

Jingyue Wang acknowledges supports from the National

Natural Science Foundation of China under Grant

11771084, and from the Natural Science Foundation of

Fujian under Grant 2016J01016.

Leopold Matamba Messi acknowledges support from the U.

S. National Science Foundation under Grant DMS-0931642

to the Mathematical Biosciences Institute.

ORCID iD

Jingyue Wang http://orcid.org/0000-0002-3896-5137

References

1. Rudin L, Osher S and Fatemi E. Nonlinear total varia-

tion based noise removal algorithms. Physica D

Nonlinear Phenomena 1992; 60: 259–268.
2. Chambolle A, Caselles V, Cremers D, et al. An introduc-

tion to total variation for image analysis. In Theoretical

foundations and numerical methods for sparse recovery,

volume 9 of Radon Ser. Comput. Appl. Math. Berlin:

Walter de Gruyter, 2010, pp. 263–340.
3. Caselles V, Chambolle A and Novaga M. Regularity for

solutions of the total variation denoising problem. Rev

Mat Iberoam 2011; 27: 233–252.

4. Allard WK. Total variation regularization for image

denoising, I. Geometric theory. Siam J Math Anal

2007; 39: 1150–1190.
5. Allard WK. Total variation regularization for image

denoising, II. Examples. Siam J Imaging Sci 2008;

1: 400–417.
6. Caselles V, Chambolle A and Novaga M. The disconti-

nuity set of solutions of the TV denoising problem and

some extensions. Multiscale Model Simul 2007;

6: 879–894.
7. Chambolle A, Duval V, Peyre G, et al. Geometric prop-

erties of solutions to the total variation denoising prob-

lem. Inverse Prob 2017; 33: 015002.
8. Acar R and Vogel CR. Analysis of bounded variation

penalty methods for ill-posed problems. Inverse Prob

1994; 10: 1217–1229.
9. Chambolle A and Lions P-L. Image recovery via total

variation minimization and related problems. Numer

Math 1997; 76: 167–188.
10. Chambolle A. An algorithm for total variation minimi-

zation and applications. J Math Imag Vision 2004;

20: 89–97. Special issue on mathematics and

image analysis.
11. Chambolle A. Total variation minimization and a class of

binary MRF models. In A Rangarajan, B Vemuri and A

Yuille (eds), Energy minimization methods in computer

vision and pattern recognition, volume 3757 of lecture

notes in computer science. Berlin/Heidelberg: Springer,

2005, pp. 136–152.

Figure 5. Two images are scaled by a factor of 10 using the MSA spline method with d¼ 7 and r¼ 1. The results are compared to the
bicubic and bilinear interpolation methods implemented in the MATLABVR ’s function imresize.53

14 Journal of Algorithms & Computational Technology 13(0)

http://orcid.org/0000-0002-3896-5137
http://orcid.org/0000-0002-3896-5137


12. Aujol J-F and Dossal C. Stability of over-relaxations for

the forward-backward algorithm, application to Fista.

Siam J Optim 2015; 25: 2408–2433.
13. Beck A and Teboulle M. A fast iterative shrinkage-

thresholding algorithm for linear inverse problems.

SIAM J Imaging Sci 2009; 2: 183–202.
14. Beck A. On the convergence of alternating minimization

for convex programming with applications to iteratively

reweighted least squares and decomposition schemes.

Siam J Optim 2015; 25: 185–209.
15. Combettes PL andWajs VR. Signal recovery by proximal

forward-backward splitting. Multiscale Model Simul

2005; 4: 1168–1200.
16. Esser E, Zhang X and Chan TF. A general framework for

a class of first order primal-dual algorithms for convex

optimization in imaging science. Siam J Imaging Sci

2010; 3: 1015–1046.
17. Goldstein T and Osher S. The split Bregman method for

L1-regularized problems. SIAM J Imaging Sci 2009;

2: 323–343.
18. Zhu M and Chan TF. An efficient primal dual hybrid

gradient algorithm for total variation image restoration.

Technical Report 08-34, UCLA, Center for Applied

Math, 2008.
19. Zhu M, Wright SJ and Chan TF. Duality-based algo-

rithms for total-variation-regularized image restoration.

Comput Optim Appl 2010; 47: 377–400.
20. Chambolle A and Pock T. An introduction to continuous

optimization for imaging. Acta Numerica 2016;

25: 161–319.
21. Boykov Y, Veksler O and Zabih R. Fast approximate

energy minimization via graph cuts. IEEE Trans

Pattern Anal Machine Intell 2001; 23: 1222–1239.

22. Darbon J and Sigelle M. Image restoration with

discrete constrained total variation—part I: fast and

exact optimization. J Math Imaging Vis 2006;

26: 261–276.
23. Darbon J and Sigelle M. Image restoration with discrete

constrained total variation—part II: Levelable functions,

convex priors and non-convex cases. J Math Imaging Vis

2006; 26: 277–291. December
24. Goldfarb D and Yin W. Parametric maximum flow algo-

rithms for fast total variation minimization. SIAM J Sci

Comput 2009; 31: 3712–3743.
25. Lai M, Lucier B and Wang J. The convergence of a

central-difference discretization of Rudin-Osher-Fatemi

model for image denoising. Scale Space Variat Methods

Comput Vision 2009; 5567: 514–526.
26. Wang J and Lucier BJ. Error bounds for finite-difference

methods for Rudin-Osher-Fatemi image smoothing.

SIAM J Numer Anal 2011; 49: 845–868.
27. Dobson DC and Vogel CR. Convergence of an iterative

method for total variation denoising. SIAM J Numer

Anal 1997; 34: 1779–1791.
28. Lai M-J and Messi LM. Piecewise linear approximation

of the continuous Rudin-Osher-Fatemi model for image

denoising. SIAM J Numer Anal 2012; 50: 2446–2466.
29. Matamba Messi L. Theoretical and numerical approxima-

tion of the Rudin-Osher-Fatemi model for image denoising

in the continuous setting. PhD thesis, The University of

Georgia, Athens, GA, 2012.
30. Bartels S. Broken Sobolev space iteration for total vari-

ation regularized minimization problems. IMA J Numer

Anal 2016; 36: 493–502.
31. Bartels S. Error control and adaptivity for a variational

model problem defined on functions of bounded varia-

tion. Math Comp 2015; 84: 1217–1240.
32. Bartels S and Milicevic M. Iterative finite element solu-

tion of a constrained total variation regularized model

problem. Discrete Cont Dynamical Syst Series S 2017;

10: 1207–1232.
33. Chen K and Tai X-C. A nonlinear multigrid method for

total variation minimization from image restoration. J

Sci Comput 2007; 33: 115–138.
34. Feng X and Prohl A. Analysis of total variation flow and

its finite element approximations. Esaim: M2an 2003;

37: 533–556.
35. Feng X, von Oehsen M and Prohl A. Rate of conver-

gence of regularization procedures and finite element

approximations for the total variation flow. Numer

Math 2005; 100: 441–456.
36. Litvinov W, Rahman T and Tai X. A modified TV-stokes

model for image processing. SIAM J Sci Comput 2011;

33: 1574–1597.
37. Stamm B and Wihler T. A total variation discontinuous

Galerkin approach for image restoration. Int J Numer

Anal Model 2015; 12: 81–93.
38. Tian WYi and Yuan X. Convergence analysis of primal–

dual based methods for total variation minimization with

finite element approximation. J Sci Comput 2018;

76: 243–274.
39. Xu J, Tai X-C and Wang L-L. A two-level domain

decomposition method for image restoration. IPI 2010;

4: 523–545.
40. Brezis H. Functional analysis, sobolev spaces and partial

differential equations. Universitext, New York: Springer,

2011. [Database][Mismatch]
41. Ambrosio L, Fusco N and Pallara D. Functions of bound-

ed variation and free discontinuity problems. Oxford

Mathematical Monographs, New York: The Clarendon

Press, Oxford University Press, 2000.
42. Giusti E. Minimal surfaces and functions of bounded var-

iation, volume 80 of Monographs in Mathematics.

Birkh€auser Basel, New York,1984.
43. Lai M-J and Schumaker LL. Spline functions on triangu-

lations, volume 110 of encyclopedia of mathematics and its

applications. Cambridge: Cambridge University

Press, 2007.
44. Lai M-J, Liu C and Wenston P. Bivariate spline

method for numerical solution of time evolution

Navier-Stokes equations over polygons in stream func-

tion formulation. Numer Methods Partial Differential Eq

2003; 19: 776–827.
45. Lai M-J, Liu C and Wenston P. Numerical simulations

on two nonlinear biharmonic evolution equations. Appl

Anal 2004; 83: 563–577.
46. Lai M-J and Wenston P. Bivariate spline method for

numerical solution of steady state Navier-Stokes

Hong et al. 15



equations over polygons in stream function formulation.
Numer Methods Partial Different Eq 2000; 16: 147–183.

47. Lai M-J and Wenston P. Trivariate C1 cubic splines for
numerical solution of biharmonic equations. In Trends in

approximation theory (Nashville, TN, 2000), Innov.
Appl. Math. Vanderbilt Univ. Press, 2001, pp. 225–234.

48. Lai M-J, Wenston P and Ying LA. Bivariate C1 cubic
splines for exterior biharmonic equations. In
Approximation theory, X (St. Louis, MO, 2001), Innov.
Appl. Math. Vanderbilt Univ. Press, Nashville, TN,
2002, pp. 385–404.

49. Awanou G. Robustness of a spline element method with
constraints. J Sci Comput 2008; 36: 421–432.

50. Brenner SC and Scott LR. The mathematical theory of

finite element methods, volume 15 of texts in applied math-

ematics. New York: Springer, 3rd edition, 2008.

51. Chambolle A and Pock T. A first-order primal-dual algo-
rithm for convex problems with applications to imaging.
J Math Imaging Vis 2011; 40: 120–145.

52. Bartels S. Total variation minimization with finite ele-
ments: convergence and iterative solution. SIAM J

Numer Anal 2012; 50: 1162–1180.
53. Awanou G, Lai M-J and Wenston P. The multivariate

spline method for scattered data fitting and numerical
solution of partial differential equations. In Wavelets

and splines: Athens 2005, Mod. Methods Math., pp. 24–
74. Brentwood, TN: Nashboro Press, 2006.

54. The MathWorks, Inc. MATLAB[textregistered] (R2011a).
Natick, Massachusetts, April 2011.

16 Journal of Algorithms & Computational Technology 13(0)


