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BIVARIATE SPLINES OF VARIOUS DEGREES FOR NUMERICAL
SOLUTION OF PARTIAL DIFFERENTIAL EQUATIONS∗

XIAN-LIANG HU† , DAN-FU HAN† , AND MING-JUN LAI‡

Abstract. Bivariate splines with various degrees are considered in this paper. A matrix form of
the extended smoothness conditions for these splines is presented. Upon this form, the multivariate
spline method for numerical solution of partial differential equations (PDEs) proposed by Awanou,
Lai, and Wenston in [The multivariate spline method for scattered data fitting and numerical solu-
tions of partial differential equations, in Wavelets and Splines, G. Chen and M. J. Lai, eds., Nashboro
Press, Brentwood, TN, 2006, pp. 24–76] is generalized to obtain a new spline method. It is observed
that, combined with prelocal refinement of triangulation and automatic degree raising over triangles
of interest, the new spline method of bivariate splines of various degrees is able to solve linear PDEs
very effectively and efficiently.
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1. Introduction. Let Ω ⊂ R2 be a polygonal domain and � be a given trian-
gulation of Ω. A standard spline space Sr

d(�) is the space of all smooth piecewise
polynomial functions of degree d and smoothness r over � with r < d. That is,

Sr
d(�) = {s ∈ Cr(Ω), s|t ∈ Pd, t ∈ �},

where Pd denotes the space of polynomials of degree d, t denotes a triangle, and
Ω =

⋃
{t, t ∈ �}. Such a spline space has been studied for a long time in the

literature and in practice. (See [6] and references therein.)
In this paper we would like to consider bivariate splines of various degrees dt,

t ∈ �, where dt is a positive integer for each t. That is, for a given triangulation �
and a degree vector d = {dt, t ∈ �}, we let

Sr
d(�) = {s ∈ Cr(Ω), s|t ∈ Pdt , t ∈ �}.

Our study of such a spline space Sr
d(�) is motivated by our interest in numeri-

cally solving partial differential equations (PDEs) more effectively and efficiently. For
a PDE with a singularity at the boundary of the domain Ω, a finite element method
requires a much finer mesh at the singularity. Otherwise, one has to increase the
degrees of finite elements. Instead of increasing degrees globally, we would like to
increase the degrees locally and combine this with local triangulation refinement near
the singularity to efficiently solve the PDE. For continuous finite elements, there are
several constructions of finite elements of various degrees available in the literature,
e.g., [15] and [16]. More recently, optimal meshes of p- and hp-finite element methods
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for PDEs with singularity are discussed in [13], and a constructive scheme for p-finite
elements is explained in [14]. However, the implementation of such p-finite elements
is very complicated. Recently, in [1], Awanou, Lai, and Wenston introduced a multi-
variate spline method for numerical solution of PDEs which overcomes the difficulty
of the implementation. The researchers in [1] streamlined the process by skipping
the construction of smooth finite elements. Instead, they simply used discontinuous
piecewise polynomial functions over a triangulation and treated any desired smooth-
ness conditions across edges of triangles as side constraints. Together with the side
constraints of boundary conditions, they applied a Lagrange multiplier method to
solve the system associated with the PDE of interest. Another key ingredient was
to use a special iterative algorithm to solve the associated linear system. (See [1] for
more details.) Smooth spline spaces with various degrees were also considered in [1],
where a degree reduction condition is introduced and incorporated with standard
smoothness conditions acting as constraints. In other words, let d = max{dt, t ∈ �},
Sr
d(�) ⊂ Sr

d(�). As the largest degree d among dt, t ∈ �, becomes large, the size of
the linear system arising from the spline space Sr

d(�) grows rapidly. This will not lead
to an efficient algorithm. Hence in this paper we propose a different approach. To
keep the given degrees over various triangles, we need a new smoothness condition for
polynomial pieces over two adjacent triangles with different degrees. Then we use the
new smoothness conditions in the place of the original smoothness conditions in the
multivariate spline method for numerical solution of PDEs proposed by Awanou, Lai,
and Wenston in [1]. For simplicity, we shall refer to the original multivariate spline
method for PDEs as the ALW spline method. To solve a PDE with singularity on
the boundary of the domain Ω, we do not know in advance which degrees we should
use to achieve the given accuracy of the solution. We adopt a strategy of combining
local refinement and local degree raising to effectively solve PDEs with singularity on
the boundary.

The present paper is organized as follows: A matrix form of the new smoothness
conditions for splines of various degrees is considered in section 2. In section 3, we
shall explain how to use bivariate splines of various degrees for numerical solution of
PDEs. Numerical examples are shown in section 4 to illustrate that our new spline
method is more efficient and effective. Finally we make some remarks about our spline
method in section 5.

2. A matrix form of the new smoothness condition. Let T be a fixed
triangle in �. It is known that any polynomials of degree d can be expressed as the
following so-called B-form:

(2.1) p(x, y) =
∑

i+j+k=d

ci,j,kB
d
i,j,k(x, y),

where ci,j,k are Bézier coefficients of p and Bd
i,j,k(x, y) are Bernstein polynomials of

degree d, which are both sorted in lexicographical order with respect to their Bézier
ordinate (i, j, k). That is, the order of indices (i, j, k) is actually arranged by the
following ordering function:

(2.2) q(i, j, k) =

(
j + k + 1

2

)
+ k + 1.

For example, when d = 3, the linear order of Bézier coefficients is as follows:

c3,0,0, c2,1,0, c2,0,1, c1,2,0, c1,1,1, c1,0,2, c0,3,0, c0,2,1, c0,1,2, c0,0,3.
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Note that all the Bézier coefficients are sorted by this ordering function in the remain-
der of this paper.

The smoothness condition of polynomial patches over two adjacent triangular
domains is an important and useful tool in the study of multivariate splines. It can
be found in the literature, e.g., [3] in the bivariate setting and [2] in the multivariate
setting. A geometric interpretation of bivariate Cr smoothness conditions for general
r ≥ 0 is given in [4]. For convenience, we include the smoothness conditions in this
paper.

Lemma 2.1. Let T := 〈v1, v2, v3〉 and T̃ := 〈v4, v2, v3〉 be triangles sharing the
edge e := 〈v2, v3〉. Let

pd(v) :=
∑

i+j+k=d

cijkB
d
ijk(v) and p̃d(v) :=

∑
i+j+k=d

c̃ijkB̃
d
ijk(v),

where Bd
ijk(v) and B̃d

ijk(v) are the Bernstein–Bézier basis functions associated with T

and T̃ , and Dn
u is the nth order differential operator with respect to direction u. Then

Dn
upd(v) = Dn

u p̃d(v) ∀v ∈ 〈v2, v3〉

for n = 0, . . . , r if and only if

(2.3) c̃n,j,k =
∑

μ+ν+κ=n

cμ,j+ν,k+κB
n
μνκ(λ), j + k = d− n, n = 0, . . . , r,

where λ is the barycentric coordinates of vertex v4 respective to triangle T .
In practice, when applying the spline space Sr

d(�) for numerical solution of PDEs
as in [1] and [7], the smoothness conditions (2.3) are assembled into matrix form for
all interior edges of �:

(2.4) Hc = 0,

where c is a vector of Bézier coefficients of a polynomial of degree d over triangle T
for all T ∈ �. To extend the smoothness conditions to the case of different degrees
on adjacent patches, we first need the following matrix form of the de Casteljau
algorithm.

Lemma 2.2. Let λ = (λ1, λ2, λ3) be the barycentric coordinate of point (x, y) with
respect to T ; then the B-form in (2.1) can be evaluated by

(2.5) Pd(λ) =
∑

i+j+k=d−r

c
(r)
i,j,k(λ)Bd−r

i,j,k(λ) ∀r = 0, 1, . . . , d,

with c
(0)
i,j,k = ci,j,k and the following recurrence:

(2.6) c
(r+1)
i,j,k (λ) = λ1c

(r)
i+1,j,k(λ) + λ2c

(r)
i,j+1,k(λ) + λ3c

(r)
i,j,k+1(λ),

which can be expressed in matrix form

(2.7) c(r+1)(λ) = Dλ,d−rc
(r)(λ)

with notation c(r)(λ) = {c(r)i,j,k(λ)}i+j+k=d−r, r = 1, . . . , d. Furthermore, if the Bézier
ordinate indices are sorted by the ordering function q defined in (2.2), the matrix Dλ,d

is of size d(d + 1)/2 × (d + 1)(d + 2)/2.
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Fig. 2.1. The hierarchical structure of matrix Dλ,d.
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Fig. 2.2. The hierarchical structure of Bézier ordinates.

Proof. The first part of this lemma is the standard de Casteljau algorithm of
triangular B-form, and (2.7) is easy to verify by writing (2.6) in its matrix form.

Let us point out an interesting property of the matrix Dλ,d. First we present the
matrix Dλ,d with degrees d from 1 to 4 as shown in Figure 2.1. The top-left 1 × 3
submatrix represents Dλ,1, the top-left 3 × 6 matrix represents Dλ,2, etc. Observe
that the matrix has a nice pattern. This is because of the definition of the ordering
function q; i.e., the Bézier ordinates are sorted line by line incrementally. In Figure 2.2,
the ordinate ordering for Bézier ordinates of d = 4 indexed by 1–15 is a part of the
ordinate ordering for d = 5 indexed by 1–21. Then it is easy to see that Dλ,d is a
block of Dλ,d+1 when (2.6) is written into (2.7). This property is referred to as a
hierarchical property.

On the other hand, if the Bézier ordinate indices are ordered in another form as
shown in Figure 2.3 for d = 4 and d = 5, we find that this new ordering does not
share the hierarchical property as in Figure 2.2.

Based on the above matrix form of the de Casteljau algorithm, we can express
the standard smoothness conditions in the following matrix form version.

Lemma 2.3. Let c̃ and c be the vector forms of {c̃ijk}i+j+k=d and {cijk}i+j+k=d
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Fig. 2.3. A new ordering of Bézier ordinates.

sorted by the ordering function q in (2.2). Then

Dn
upd(v) = Dn

u p̃d(v) ∀v in 〈v2, v3〉

if and only if

(2.8) Pn,dc̃ = P0,d−n

{
n∏

l=1

Dλ,d+1−l

}
c ∀n = 0, . . . , r,

where Pn,d is a matrix of size (d− n + 1) × (d + 1)(d + 2)/2 and its entry is

Pn,d(i, j) =

{
1, j = q(n, i− 1, d + 1 − n− i), i = 1, . . . , d + 1 − n,
0 otherwise

for all n = 0, . . . , r.
Proof. We need to prove that (2.8) is equivalent to (2.3). By the definition of

Pn,d, it has only one nonzero entry in each row. So we name it the picking matrix,
whose geometric meaning is to pick out the Bézier coefficients on the nth line parallel
to common edge e from all the Bézier coefficients of degree d. Then we have

(2.9) {c̃n,j,k}j+k=d−n = Pn,dc̃ ∀n = 0, . . . , r.

By (2.5), for all n = 0, . . . , r, it is true that∑
μ+ν+κ=n

cμ,j+ν,k+κB
n
μνκ(λ) =

∑
μ+ν+κ=n

c
(0)
μ,j+ν,k+κB

n
μνκ(λ) = c

(n)
0,j,k(λ), j +k = d−n.

It can also be written in vector form. That is, applying (2.7) for n times, we get

{c(n)
0,j,k(λ)}j+k=d−n = P0,d−nc

(n)

= P0,d−nDλ,d+1−nc
(n−1)

= · · ·

= P0,d−n

{
n∏

l=1

Dλ,d+1−l

}
c.(2.10)

Combining (2.3), (2.9), and (2.10), we have (2.8).
Next we express the well-known degree raising algorithm for the B-form in matrix

form as in Lemma 2.2.
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Lemma 2.4. Let p be a polynomial of degree d defined on a triangle T written in

the B-form (2.1), and let c
[d]
ijk = cijk be its coefficients. Then it can also be evaluated

by

p =
∑

i+j+k=d+1

c
[d+1]
ijk Bd+1

ijk ,

where

(2.11) c
[d+1]
ijk = (ic

[d]
i−1,j,k + jc

[d]
i,j−1,k + kc

[d]
i,j,k−1)/(d + 1)

for i+ j+k = d+1. Here coefficients with negative subscripts are assumed to be zero.

Denoting c[d+1] = {c[d+1]
ijk }i+j+k=d+1 and c[d] = {c[d]ijk}i+j+k=d sorted by the ordering

function (2.2), it follows that

(2.12) c[d+1] =
1

d + 1
Adc

[d],

where Ad is a matrix of size (d + 2)(d + 3)/2 × (d + 1)(d + 2)/2, whose pattern is
hierarchical.

Proof. It is easy to see that the degree raising algorithm (2.11) can be expressed in
a matrix form (2.12). It is trivial to prove that the pattern of Ad is hierarchical.

We now extend (2.8) to the case of different degrees on the neighboring triangles
and get the desired explicit smoothness condition.

Theorem 2.5. Let d1 ≥ d2 be two integers and let

pd1
(v) :=

∑
i+j+k=d1

cijkB
d1

ijk(v) and p̃d2(v) :=
∑

i+j+k=d2

c̃ijkB̃
d2

ijk(v).

Let c and c̃ be the vectors of {cijk}i+j+k=d1 and {c̃ijk}i+j+k=d2 sorted by the ordering
function q. Then

Dn
upd1(v) = Dn

u p̃d2(v) ∀v ∈ 〈v2, v3〉

if and only if

(2.13) Pn,d1

{
d2!

d1!

d1−1∏
d=d2

Ad

}
c̃ = P0,d1−n

{
n∏

l=1

Dλ,d1+1−l

}
c ∀n = 0, . . . , r.

Proof. We separate the proof into two cases: d1 = d2 and d1 > d2. For the first
case, it is easy to see that (2.13) is reduced to (2.8).

For the second case, we raise the degree d2 of polynomial to d1 by applying (2.11)
for d1 − d2 times to get

c̃[d1] =
d2!

d1!

{
d1−1∏
d=d2

Ad

}
c̃.

Note that Bézier coefficients c̃[d1] have the same degree as d1. Then we can apply the
usual smoothness conditions, i.e., (2.8). Thus the smoothness conditions for various
degrees follow.

They are the new smoothness conditions which will be used in the rest of the
paper.
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3. A new spline method for numerical solution of PDEs. In [1], Awanou,
Lai, and Wenston proposed a multivariate spline method (i.e., the ALW method) for
numerical solution of Poisson and biharmonic equations. The most striking advan-
tage of the ALW method is that one can directly use piecewise polynomial functions
for solving Poisson and biharmonic equations without constructing finite elements,
macroelements, and locally supported basis functions. The ALW spline method can
be explained briefly as follows: It uses piecewise polynomials over a triangulation and
treats smoothness conditions as side constraints together with boundary conditions to
minimize the Euler–Lagrange functionals associated with Poisson or biharmonic equa-
tions. An iterative method is introduced to solve the special linear systems arising
from the discretization using bivariate spline functions. The method is shown to be
very convenient for numerical solution of Poisson and biharmonic equations. In this
section, our main purpose is to improve the ALW spline method by using bivariate
splines of various degrees through adaptive procedure.

3.1. A unified model for Poisson and biharmonic equations. First let
us introduce some necessary notation. Let Lk be a symmetric partial differential
operator of order 2k with k ≥ 1. In the bivariate setting, let

Dα =

(
∂

∂x

)α1
(

∂

∂y

)α2

∀α = (α1, α2)

and let |α| = α1 + α2. We intend to find approximate solutions of the following
boundary value problem:

(3.1)

{
Lku = f in Ω,
Dαu = Dαg on ∂Ω, |α| ≤ k − 1,

where Ω is a polygonal domain in R2 and f ∈ L2(Ω), g ∈ Ck−1(Ω). Note that model
problem (3.1) includes the Poisson equation in the case L1 = −Δ and the biharmonic
equation in the case L2 = Δ2.

The weak formulation for model problem (3.1) reads as follows: Find u ∈ Hk(Ω)
which satisfies its boundary condition such that

(3.2) a(u, v) = 〈f, v〉 ∀v ∈ Hr
0 (Ω),

where a(u, v) is the bilinear form defined by

a(u, v) =

⎧⎪⎪⎨⎪⎪⎩
∫

Ω

∇u · ∇vdxdy, k = 1,∫
Ω

�u�vdxdy, k = 2,

and 〈f, v〉 =
∫
Ω
f(x, y)v(x, y)dxdy is the L2 inner product of f and v. Here Hk(Ω)

and Hk
0 (Ω) are standard Sobolev spaces.

It is known (cf. [8]) that model problem (3.2) has a unique solution u in Hk(Ω).
The proof can be adapted to show that there is a unique solution su in spline space
Sr

d(�) ⊂ Hk(Ω), where r = k − 1 and su satisfies

(3.3) a(Su, v) = 〈f, v〉 ∀v ∈ Sr
d(�)

and the boundary conditions.
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Based on the standard calculus of variations, model problem (3.1) is the Euler–
Lagrange equation of the following energy functional:

Er(s) =
1

2
a(s, s) − 〈f, s〉.

It is known that the weak solution of the model problem is the minimizer of the energy
functional E(s) in the following spline space (cf. [8, section 8.2.3]):

V = {s ∈ Sr
d(�), Dαs = Dαgh on ∂Ω, |α| ≤ k − 1},

where gh ∈ Sr
d(�) is a spline such that gh|∂Ω is a good approximation of the Dirichlet

boundary condition g. For simplicity let us assume that g is a function of piecewise
polynomial of degree ≤ d. Then the weak solution u satisfies

(3.4) Er(u) = min
s∈V

Er(s).

Also any minimizer satisfying (3.4) is the weak solution.

3.2. Spline solution for (3.4). Next we discuss how to approximate weak
solutions using spline spaces Sr

d(�), which is also denoted as Sr
d if no confusion

arises. We shall compute the approximation su ∈ Sr
d satisfying

Er(su) = min
s∈Sr

d∩V
Er(s).

Let us write a spline function s ∈ Sr
d in the following piecewise polynomial format:

s(x, y)|t =
∑

i+j+k=dt

cti,j,kB
t
i,j,k(x, y), (x, y) ∈ t ∈ �.

Let c = (cti,j,k, i + j + k = dt, t ∈ �) be the B-coefficient vector associated with s.
The above energy functional can be written as

Ẽr(c) =
1

2
cTKrc − cTM f

with respect to B-coefficient vector c, subject to the smoothness conditions Hc = 0
according to (2.13) and boundary condition Bc = G, as treated in [1]. Here, Kr =
diag(Kt

r, t ∈ �) is the stiffness matrix with blocks

Kt
1 =

[∫
t

∇Bt
ijk∇Bt

lmndxdy

]l+m+n=dt

i+j+k=dt

∀t ∈ �

when r = 1, while Kr is the bending matrix in case r = 2, with

Kt
2 =

[∫
t

ΔBt
ijkΔBt

lmndxdy

]l+m+n=dt

i+j+k=dt

∀t ∈ �

as its blocks. Similarly, let M = diag(Mt, t ∈ �) be the mass matrix with blocks

Mt =

[∫
t

Bt
ijkB

t
lmndxdy

]l+m+n=dt

i+j+k=dt

∀t ∈ �
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and let f be the B-coefficient vector of the spline Sf interpolating f at the domain
points of t of degree dt for t ∈ �. By using a Lagrange multiplier method, we let

L̃r(c, α, β) =
1

2
cTKrc − cTMf + αHc + β(Bc −G)

and compute local minimizers. It is easy to see that we need to solve the following
system:

(3.5)

⎡⎣ BT HT Kr

0 0 B
0 0 H

⎤⎦⎡⎣ λ1

λ2

c

⎤⎦ =

⎡⎣ Mf
G
0

⎤⎦ .

Note that the existence and uniqueness of su imply that there exists a unique c
satisfying the above linear system. Thus the iterative method in [1] can be applied
and is effective in solving this linear system. If we denote LT = [BTHT ], λ = [λT

1 λ
T
2 ]T ,

F = Mf and the vector G absorbs the zero vector, then system (3.5) becomes[
LT Kr

0 L

] [
λ
c

]
=

[
F
G

]
.

For any fixed ε > 0, given an initial guess λ(0), e.g., λ(0) = 0, we first compute

c(1) =

(
Kr +

1

ε
LTL

)−1 (
F +

1

ε
LT b− LTλ(0)

)
,

and for k = 1, 2, . . . , we iteratively compute

(3.6) c(k+1) =

(
Kr +

1

ε
LTL

)−1 (
Krc

(k) +
1

ε
LT b

)
.

The matrix (Kr + 1
εL

TL) can be proved to be invertible, and the iterative algorithm
(3.6) is convergent (cf. [1] for more details). For large-scale problems, the conjugate
gradient method for the above iteration is preferred.

3.3. Adaptive algorithms. For the case r = 0 or r = 1, it is known that
when dt = d for all t ∈ � with d ≥ 3r + 2, the spline space Sr

d possesses the
optimal approximation order (cf. [5]). So we require mint∈� dt ≥ 3r + 2. What we
need to do now is decide the degree vector d triangle by triangle. It depends on an
error indicator and an adaptive procedure. For most problems, an a posteriori error
estimate combined with a robust adaptive strategy is necessary as in adaptive finite
element methods. So robust adaptive procedures are introduced here, and we leave
the a posteriori error estimate to the numerical examples. For a better understanding
of the performance of spline spaces with various degrees, we pay attention only to
the performances of the local mesh refinement and the local degree raising. Let us
present these two adaptive procedures in the following pseudocodes.

Algorithm 3.1 (hVersion).

mesh = initialize the Mesh;

TOL = 1e-5;

STEP = 1;

MAXSTEP = 30;

refine_percent = 0.8;
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while STEP <MAXSTEP

x = solve PDE with fixed degree method on mesh;

error = posteriori_estimate(mesh,x);

if sum(error) < TOL

STEP = MAXSTEP + 1;

break;

end

tris = indicate_by_fraction(error,refine_percent);

mesh = refine_mesh(mesh,tris);

STEP = STEP + 1;

end

In the above algorithm, the PDE is solved by any fixed degree algorithms such as
the finite element method in Example 4.1 and the ALW spline method in Example 4.2.
We use the fixed fraction strategy for mesh refinement, in which some fraction of ele-
ments with highest error are marked for refinement. It appears to be the most robust
and convenient strategy among error equidistribution, fixed threshold, error density
equidistribution, and fixed fraction strategies (cf. [11]), and has been proved to be
convergent in energy norm for the Poisson equation in [12]. The marked elements are
refined by Rivara’s algorithm, which bisects the prescribed triangle. It was originally
developed in [10] to produce a conforming triangulation. Rivara’s algorithm is given
as follows:
find the midpoint P of the longest side in T;

Bisect T with P;

while P is a nonconforming point for T’ different to T

find the midpoint Q of the longest side in T’;

bisect T’ with Q;

if P != Q

join P and Q;

P = Q

end

end,

which can be illustrated as in Figure 3.1.

T
P

Q

Fig. 3.1. Conforming refinement using Rivara’s algorithm.

Algorithm 3.2 (pVersion).

mesh = initMesh;

TOL = 1e-5;

STEP = 1;

MAXSTEP = 50;

refine_percent = 0.8;
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while STEP < MAXSTEP

x = solve (3.5) with extended smoothness condition (2.13) on mesh;

error = posteriori_estimate(mesh,x);

error = smooth_error(mesh,error);

if max(error) < TOL

STEP = MAXSTEP + 1;

break;

end

tris = refine_by_fraction(error,refine_percent);

degree(tris) = degree(tris) + 1;

STEP = STEP + 1;

end

In the above algorithms, we have adopted an error smoothing scheme which is as
follows:

step 1: compute the mean error on each node according to its

adjacent elements.

step 2: recompute the mean error on each element

according to its adjacent nodes.

It is important for the convergence of our p-version algorithm to have such an
error smoothing scheme because it is not desired that the degree vary too rapidly for
adjacent triangles.

We shall use these two adaptive procedures in the next section where numerical
results are presented.

4. Numerical examples. We first present our numerical experiments for the
Poisson equation.

Example 4.1. Consider the Poisson equation on an L-shaped domain:{
−�u = f in Ω,

u = g on ∂Ω,

where Ω = {(x, y), (x, y) ∈ (−1, 1) × (−1, 1)\(−1, 0) × (−1, 0)}. Note that our spline
method does not require the information of an analytic solution. For a clear compar-
ison, let

u(x, y) = r
2
3 sin

(
2θ + π

3

)
be an analytic function, where r(x, y) =

√
(x2 + y2) and θ is the angle between vector

(x, y) and the position direction of axis x with tan(θ) = y/x. We use the standard
finite element method and our spline method to approximate u(x, y) by solving the
Poisson equation with f = −Δu inside Ω and g = u on the boundary.

Since we do not use any information about the analytic solution during the adap-
tive procedure, it is standard to introduce an a posteriori error estimator. We prefer
the explicit residual a posteriori error esitmator given in [9] for the Poisson equation.
That is, for any triangle T , its L2 error indicator is

(4.1) ηT :=

{
|T |4||f + �uh||20,2;T +

1

2

∑
e∈∂T

|e|3||Re||20,2;e

} 1
2

,
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where |T | is the minimal diameter of circles that contain triangle T , |e| is the length
of edge e, and Re stands for the jump of ∂uh

∂n on the internal edges or the jump of
∂uh

∂n − g on the boundary edges.

The properties of solution for this problem have been discussed theoretically
in [15], and its p/hp finite element solution is presented in [14]. For both methods we
begin with a special triangulation as shown in Figure 4.1.
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Fig. 4.1. At the left is an original triangulation, which is amplified at the right.

We use such a specially designed mesh, which is generated by hand, to capture
the corner singularity. The full automatic hp adaptive procedure proposed in [14]
required a more accurate reference solution and hence is too expensive to use. Since
we pay attention only to the performance of our p-version spline method, a prebuilt
mesh is enough.

In Table 4.1 we list the performance of a continuous fixed degree finite element
method based on Algorithm 3.1 (hVersion) as well as the performance of our spline
method with local degree raising (Algorithm 3.2) starting with continuous bivariate
splines of degree 3, referred to as S0

3(�). We show the number of triangles and the
number of unknown coefficients of the finite element solutions and spline solutions
which achieve a given tolerance 5e− 3, 5e− 4, or 5e− 5, respectively. We use cubic,
quartic, and quintic finite element methods according to different tolerances because
the low order finite element method yields too many elements, which is beyond the
ability of our machine when the tolerance is small. In addition, we show the to-
tal CPU time for computing the finite element solution and spline solution for each
of the tolerances. Our machine is equipped with Intel Celeron 2.0GHz and 512M
memory.

Table 4.1

The performance of fixed order finite element methods and our spline method.

5e− 3 5e− 4 5e− 5
Cubic Spline Quartic Spline Quintic Spline

Number of elements 872 116 953 180 1078 216
Number of unknowns 8720 2942 14295 4361 22638 6681
CPU time 29.21s 9.83s 45.98s 16.71s 72.89s 32.46s

From Table 4.1, it is clear to see that our spline method with local degree raising
yields higher efficiency due to the smaller size of its system matrix. We also plot in
Figure 4.2 the approximated solutions of both approaches whose tolerance is 5e − 3
and in Figure 4.3 the differences of both solutions against the exact analytic solution.
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Fig. 4.2. The approximate solution of the cubic finite element (left) and our spline method
(right) under tolerance 5e− 3.
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Fig. 4.3. The error of approximate solution of the cubic finite element (left) and our spline
method (right) under tolerance 5e− 3.
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Fig. 4.4. The resulting triangulation (left) for finite element solution and corner amplification
(middle and right).

From the figures in Figure 4.3, we can see that the error plot of our spline solution is
less bumpy than that of the finite element solution and hence, that the surface of our
spline solution is closer to the surface of the exact solution that of the finite element
solution.

In addition, we present in Figure 4.4 the triangulation of the finite element solution
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Fig. 4.5. The triangulation and degrees for our spline solution and two corner amplifications.

when the given tolerance is 5e − 3, and in Figure 4.5 the degrees as well as the
triangulation of the spline solution when the given tolerance is 5e− 3, where we can
see that the highest degree in our spline solution is 8, which happens in a few triangles
around the singularity.

Next we present our numerical results for biharmonic equations.

Example 4.2. We consider a biharmonic problem on an L-shaped domain:⎧⎨⎩
Δ2u = f in Ω,

u = g on ∂Ω,
∂
∂nu = h on ∂Ω,

where Ω is the same L-shaped domain as in the previous example. We test the analytic
solution

u(x, y) = r
5
2 sin

(
5θ

2

)
,

where r(x, y) =
√

(x2 + y2) and θ is the angle between vector (x, y) and the posi-
tion direction of axis x with tan(θ) = y/x. Then f, g, h can be computed directly
from u.

If we denote [·]e as the jump of a function from inside T to outside through edge
e, then the L2 error indicator for any triangle T is the following explicit residual
a posteriori estimator, as proposed in [9]:
(4.2)

ηT :=

{
|T |4||�2uh − f ||20,2;T +

∑
e∈∂T

[|e| ||[�uh]e||22;e + |e|3||[ne · ∇�uh]e||22;e]
} 1

2

,

where the means of |T | and |e| are the same as above and ne is the unit outward
normal to edge e ∈ ∂T . The behavior of the true solution is very similar to the one in
Example 4.1. We first use S1

5(�) based on the special triangulation as in Figure 4.1 to
solve this biharmonic problem by using the ALW spline method in [1] together with
Algorithm 3.1. Then we start with S1

5(�) using Algorithm 3.2 to solve this problem
again. For each tolerance 1e− 3, 1e− 4, 1e− 5, we show in Table 4.2 the number of
triangles, the number of unknown coefficients, and the total computational times of
two spline solutions.
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Table 4.2

The performance of the ALW spline method and our spline method.

1e− 3 1e− 4 1e− 5
ALW New ALW New ALW New

Number of elements 210 116 370 122 716 128
Number of unknowns 4410 3766 7770 4484 15036 5192
Total CPU time 13.45s 15.93s 31.52s 27.61s 75.73s 39.10s

Fig. 4.6. The approximate solution of the ALW spline method (left) and our spline method
(right) under tolerance 1e− 5.
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Fig. 4.7. The error of approximate solution of the ALW spline method (left) and our spline
method (right) under tolerance 1e− 5.

Table 4.2 clearly shows that our spline method is much more efficient than the
ALW spline method using h-adaptivity when the tolerance is small. We also plot in
Figure 4.6 the approximated solutions of both approaches whose tolerance is 1e − 5
and in Figure 4.7 the differences of both solutions against the exact analytic solution.
Comparing the figures in Figure 4.7, we can see that our spline solution is closer to
the exact solution than the ALW solution.

In addition, we present in Figure 4.8 the triangulation of the ALW spline solu-
tion when the given tolerance is 1e − 5 and in Figure 4.9 the degrees as well as the
triangulation of the spline solution with the same tolerance, where we can see that
the highest degree in our spline solution is 12, which happens in a few triangles close
to the singularity.
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Fig. 4.8. The resulting triangulation (left) for the ALW spline method and corner amplifications
(middle and right).
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Fig. 4.9. The triangulation and degrees for our spline solution and two corner amplifications.

In general, we do not have an analytic solution available to guide our adaptive
procedures. Our adaptive algorithms work for these cases. On the other hand, more
accurate a posteriori error estimators are preferred for deciding whether to raise de-
grees or refine the triangle. In fact, a full automatic strategy that combines Algorithms
3.1 and 3.2 is favorable. It is left for future research.

5. Conclusion and remarks. In this paper, we give a new smoothness con-
dition for polynomials with difference degrees over two adjacent triangular Bézier
patches. Based on the new smoothness conditions we implement bivariate splines
of various degrees for numerical solution of PDEs. The p-version adaptive strategy
enables us to efficiently solve Poisson and biharmonic equations with singularity on
the boundary.

We offer the following remarks:
Remark 5.1. It is easy to see that the new smoothness conditions can be gener-

alized to deal with polynomials over adjacent simplices in Rs, s ≥ 3.
Remark 5.2. It is also easy to see that our spline method can be generalized

to numerically solve trivariate partial differential equations, e.g., three-dimensional
Poisson equations and three-dimensional biharmonic equations.

Remark 5.3. It is possible to use our spline method together with local adap-
tive procedures (h-version) to solve nonlinear PDEs such as two-dimensional Navier–
Stokes equations. It will be useful to capture the details for eddies of fluid flows. We
are currently working on this research problem.
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