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We consider the functional linear regression model where the explanatory variable is a random surface
and the response is a real random variable, in various situations where both the explanatory variable and
the noise can be unbounded and dependent. Bivariate splines over triangulations represent the random
surfaces. We use this representation to construct least squares estimators of the regression function with a
penalisation term. Under the assumptions that the regressors in the sample span a large enough space of
functions, bivariate splines approximation properties yield the consistency of the estimators. Simulations
demonstrate the quality of the asymptotic properties on a realistic domain. We also carry out an application
to ozone concentration forecasting over the USA that illustrates the predictive skills of the method.

Keywords: functional data; regression; splines

AMS Subject Classification: 62G08; 65D07

1. Introduction

In various fields, such as environmental science, finance, geological science and biological sci-
ence, large data sets are becoming readily available, e.g. by real time monitoring such as satellites
circulating around the earth. Thus, the objects of statistical study are curves, surfaces and man-
ifolds, in addition to the traditional points, numbers or vectors. Functional data analysis (FDA)
can help represent and analyse infinite-dimensional random processes (Ramsay and Silverman
2005; Ferraty and Vieu 2006). FDA aggregates consecutive discrete recordings and views them
as sampled values of a random curve or random surface, keeping track of order or smoothness. In
this context, random curves have been the focus of many studies, but very few address the case
of surfaces.

In regression, when the explanatory variable is a random function and the response is a real
random variable, we can define the so-called functional linear model, see Chapter 15 in Ramsay
and Silverman (2005) and references therein. In particular, Cardot, Ferraty, and Sarda (1999, 2003)
introduced consistent estimates based on functional principal components, and decompositions
in univariate splines spaces. The model can be generalised to the bivariate setting as follows.
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2 S. Guillas and M.-J. Lai

Let Y be a real-valued random variable. Let D be a polygonal domain in R2. The regression
model is as follows:

Y = f (X) + ε = 〈g, X〉 + ε =
∫

D
g(s)X(s)ds + ε, (1)

where g(s) is in a function space H (usually = L2(D)), ε is a real random variable that satisfies
Eε = 0 and EX(s)ε = 0, ∀s ∈ D. One of the objectives in FDA is to determine or approximate
g which is defined on a 2D spatial domain D from the observations on X obtained over a set of
design points in D and Y .

This model in the univariate setting has been extensively studied using many different
approaches. When the curves are supposed to be fully observed, it is possible to use the Karhunen–
Loève expansion, or the principal components analysis for curves (Yao and Lee 2006; Cai and
Hall 2006; Hall and Horowitz 2007). However, as pointed out by Hall, Muller, and Wang (2006),
when the curves are not fully observed, which is obviously the case in practice, FDA would then
proceed as though some smooth approximation of the observed curves were the collected ones.
One typical approach is based on univariate splines (Cardot et al. 2003; Cardot, Crambes, and
Sarda 2004; Cardot and Sarda 2005), whereas Cai and Hall (2006) and Hall and Horowitz (2007)
use a local-linear smoother, which helps derive asymptotic results. Cardot et al. (2003) introduced
the Penalised B-splines estimator and the smooth principal component regression estimator in one
dimension. Finally, Crambes, Kneip, and Sarda (2009) considered the functional regression prob-
lem, using smoothing splines as well, but with a slightly modified penalty. They derived optimal
rates of convergence for the error in the prediction based on random functions, as opposed to the
case of a prediction error based on a fixed function covered in Cai and Hall (2006).

Motivated by the studies mentioned above, we investigate here the similar problem in the 2D
setting. We consider a functional regression model where the explanatory variable is a random
surface and the response is a real random variable. To express a random surface over a 2D irregular
polygonal domain D, we shall use bivariate splines which are smooth piecewise polynomial
functions over a 2D triangulated polygonal domainD.They are similar to univariate splines defined
on piecewise subintervals. The theory of such bivariate spline functions has recently matured,
see the monograph by Lai and Schumaker (2007). For example, we know the approximation
properties of bivariate spline spaces and how to construct locally supported bases. Computational
algorithms for scattered data interpolation and fitting are available in Awanou, Lai, and Wenston
(2006). In particular, computing integrals with bivariate splines is easy, so it is now possible to
use bivariate splines to build regression models for random surfaces. Certainly, it is possible to
use the standard finite element (FE) method or thin-plate spline method for FDA, see Ramsay
(2002) and Wood (2003) in a non-functional context. A FE analysis was carried out to smooth the
data over complicated domains in Ramsay (2002) and thin-plate splines were used in regression
in Wood (2003). Furthermore, it is also possible to use a tensor product of univariate splines
or wavelets when the domain of interest is rectangular. Our bivariate splines are functions of
piecewise polynomials which are more efficient than thin-plate splines. Also note that the basis
functions for our spline spaces are Bernstein–Bézier polynomials over triangles which are locally
supported and non-negative. The basis functions form a partition of unity, a stable basis and are
suitable for computation. We find that our spline method is particularly easy to use, and hence
will be used in our numerical experiments to be reported in the last section. We shall leave the
investigation of using the FE method, thin-plate spline method and tensor product of univariate
B-splines or wavelets for 2D FDA to the interested reader.

Our approach to FDA in the bivariate setting is a straightforward (called brute force) approach
which is different from the approaches in Cardot et al. (1999, 2003, 2004) and Cardot and Sarda
(2005). Mainly, we use the fact that the bivariate spline space can be dense in the standard L2(D)

space and many other spaces as the size of triangulation decreases to zero. We can approximate
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Journal of Nonparametric Statistics 3

g and X in Equation (1) using spline functions and build a regression model. In our approach, we do
not use the orthogonal expansion of covariance operator nor principal component analysis as in the
standard functional regression approach. One significant difference of our spline approach for the
functional linear model is that instead of using numerical quadrature, i.e. replacing

∫ 1
0 α(t)X(t)dt

by
∑N

j=1 α(tj )X(tj )sj for some discrete points tj with subinterval lengths sj = (tj − tj−1), we
approximate X by a spline fitting SX based on the given data values X(tj ) and data locations tj
(in our current research, these tj = (xj , yj ) locate in a 2D domain) and approximate α by a spline
function Sα (which may not be dependent on tj s) and then we compute

∫
�

Sα(x,y)SX(x,y)dxdy to
approximate

∫
�

α(x, y)X(x, y)dxdy. Note that the inner products Sα and SX can be computed
easily based on our inner product formula for two polynomials over one triangle T (Lai and
Schumaker 2007). In our approach, we may assume that the noise is bounded, or Gaussian, or
unbounded under some moment assumptions, and we do not make explicit assumptions on the
covariance structure of X. The only requirement in our approach is that all the random functions
X span a large enough space so that g can be well estimated. It is a reasonable assumption. In this
paper, we mainly derive rates of convergence in probability towards Sg , a spline approximation
of g, of the empirical estimate when using bivariate splines to approximate X using a discrete
least squares method and a penalised least squares method. We show that when the sample size
n increases, empirical estimates converges to the spline estimator. In these theorems, the spline
space dimension m is fixed. Indeed, the bivariate splines theory has already shown that as the size
of triangulations goes to zero, and, thus, the dimension m of spline spaces becomes large, spline
functions approximate any L2 functions. We do know the convergence rate as m goes to infinity.
However, in practice, we cannot make the size |�| as small as we wish due to the computing power
and the limitation of the given data set. One has to fix a triangulation, degree d and smoothness r ,
and hence, the dimension m of spline space is fixed. The convergence of empirical estimates of Sg

to g in the L2 norm is currently under investigation by the authors with additional assumptions.
We have implemented our approach using bivariate splines and performed numerical simulation,
and forecasting with a set of real data. Comparison with univariate forecasting methods are given
to show that our approach works very well. To our knowledge, our paper is the first piece of work
on functional regression of a real random variable onto random surfaces.

The paper is organised as follows. After introducing bivariate splines in the preliminary section,
we consider approximations of linear functionals with a penalty term in the next section. Then
we address the case of discrete observations of random surfaces in Section 4. In order to illus-
trate the findings on an irregular region, in Section 5 we carry out simulations, and forecasting
with real data, for which the domain is delimited by the US frontiers, and the sample points
are the US Environmental Protection Agency (EPA) monitoring locations. Our numerical experi-
ments demonstrate the efficiency and convenience of using bivariate splines to approximate linear
functionals in functional data regression analysis.

2. Preliminary on bivariate splines

Let D be a polygonal domain in R2. Let � be a triangulation of D in the following sense: � is
a collection of triangles t ⊂ D such that

⋃
t∈� t = D and the intersection of any two triangles

t1, t2 ∈ � is either an empty set or their common edge of t1, t2 or their common vertex of t1, t2.
For each t ∈ �, let |t | denote the longest length of the edges of t, and |�| the size of triangulation,
which is the longest length of the edges of �. Let θ� denote the smallest angle of �. Next let
Sr

d(�) = {h ∈ Cr(D), h|t ∈ Pd , t ∈ �} be the space of all piecewise polynomial functions h of
degree d and smoothness r over �, where Pd is the space of all polynomials of degree d. Such
spline spaces have been studied in depth in the last 20 years and a basic theory and many important
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4 S. Guillas and M.-J. Lai

results are summarised in Lai and Schumaker (2007). Throughout the paper, d ≥ 3r + 2. Then
it is known (Lai and Schumaker 1998, 2007) that the spline space Sr

d(�) possesses an optimal
approximation property: Let D1 and D2 denote the derivatives with respect to the first and second
variables, ‖h‖Lp(D) stand for the usual Lp norm of f over D, |h|m,p,D the Lp norm of the mth
derivatives of h over D and Wm+1

p (D) be the usual Sobolev space over D.

Theorem 2.1 Suppose that d ≥ 3r + 2 and � be a triangulation. Then there exists a quasi-
interpolatory operator Qh ∈ Sr

d(�) mapping any h ∈ L1(D) into Sr
d(�) such that Qh achieves

the optimal approximation order: if h ∈ Wm+1
p (D),

‖Dα
1 D

β

2 (Qh − h)‖Lp(D) ≤ C|�|m+1−α−β |h|m+1,p,D (2)

for all α + β ≤ m + 1 with 0 ≤ m ≤ d, where C is a constant which depends only on d and the
smallest angle θ� and may be dependent on the Lipschitz condition of the boundary of D.

Bivariate splines have been used for scattered data fitting and interpolation for many years.
Typically, the minimal energy spline interpolation, discrete least squares splines for data fitting
and penalised least squares splines for data smoothing as well as several other spline methods have
been used. Their approximation properties have been studied and numerical algorithms for these
data fitting methods have been implemented and tested. See Awanou et al. (2006), Lai (2007) and
the references therein.

3. Approximation of linear functionals with penalty

In this section, we propose a new approach to study the functional f in model (1). We use a spline
space Sr

d(�) with smoothness r > 0 and degree d ≥ 3r + 2 over a triangulation � of a bounded
domain D ⊂ R2 with |�| < 1 sufficiently small, i.e. enabling a good approximation (Awanou
et al. 2006). The triangulation is fixed and, thus, the spline basis and its cardinality m as well. We
study an approximation of the given functional f on the random functions X taking their values
in H. Here H is a Hilbert space, for example, H = Wν

2 (D), the standard Sobolev space of all νth
differentiable functions which are square integrable over D for an integer ν ≥ r > 0, where r is
the smoothness of our spline space Sr

d(�).
We assume that X and Y follow the regression model (1). We seek a solution α ∈ H which

solves the following minimisation problem:

α = arg min
β∈H

E[(Y − 〈β, X〉)2] + ρ‖β‖2
r , (3)

where ρ > 0 is a parameter and ‖β‖2
r denotes the semi-norm of β: ‖β‖2

r = Er (β, β), where
Er (α, β) = ∫

D
∑r

k=0

∑
i+j=k Di

1D
j

2αDi
1D

j

2β, and D1 and D2 stand for the partial derivatives with
respect to the first and second variables. Unless the penalty is equal to zero, α is not necessarily
equal to g. Since Sr

d(�) can be dense in H as |�| → 0, we consider a spline space Sr
d(�) for a

smoothness r ≥ 0 and degree d > r over a triangulation � of D with |�| sufficiently small. Note
that the triangulation is fixed and, thus, the spline basis and its cardinality m as well. We look for
an approximation Sα,ρ ∈ Sr

d(�) of α such that

Sα,ρ = arg min
β∈Sr

d (�)
E[(Y − 〈β, X〉)2] + ρEr (β). (4)

We now analyse how Sα,ρ approximates α in terms of the size |�| of triangulation and ρ → 0+.
Let {φ1, . . . , φm} be a basis for Sr

d(�). We write Sα = ∑m
j=1 cjφj . Then a direct calculation of the
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Journal of Nonparametric Statistics 5

least squares solution of Equation (4) entails that the coefficient vector c = (c1, . . . , cm)T satisfies
a linear system Ac = b with A being a matrix of size m × m with entries E(〈φi, X〉〈φj , X〉) +
ρEr (φi, φj ) for i, j = 1, . . . , m and b being a vector of length m with entries E(Y 〈φj , X〉) for
j = 1, . . . , m.

Although we do not know how X ∈ H is distributed, let us assume that only the zero polynomial
is orthogonal to all functions in the collection X = X(ω), ω ∈ � in the standard Hilbert space
L2(D). This means that the random variables X are distributed in such a way that they generate
a high-dimensional subspace of L2(D). In this case, A is invertible. Otherwise, we would have
cTAc = 0, i.e.

E

(〈
m∑

i=1

ciφi, X

〉)2

+ ρ

∥∥∥∥∥
m∑

i=1

ciφi

∥∥∥∥∥
2

r

= 0. (5)

Since the second term in Equation (5) is equal to zero,
∑m

i=1 ciφi is a polynomial of degree < r .
As the first term in Equation (5) is also zero, this polynomial is orthogonal to X for all X ∈ X .
By the assumption,

∑m
i=1 ciφi is a zero spline and hence, ci = 0 for all i. Thus, we have obtained

the following theorem.

Theorem 3.1 Suppose that only the zero polynomial is orthogonal to the collection X in L2(D).
Then the minimisation problem (4) has a unique solution in Sr

d(�).

To see that Sα,ρ is a good approximation of α, we let {φj , j = m + 1, m + 2, . . .} be a basis of
the orthogonal complement space of Sr

d(�) in L2(D). Then we can write α = ∑∞
j=1 cjφj . Note

that the minimisation in Equation (3) yields E(〈α, X〉〈φj , X〉) + ρEr (α, φj ) = E(f (X)〈φj , X〉)
for all j = 1, 2, . . . while the minimisation in Equation (4) gives

E(〈Sα, X〉〈φj , X〉) + ρEr (Sα, φj ) = E(f (X)〈φj , X〉)
for all j = 1, 2, . . . , m. It follows that

E(〈α − Sα,ρ, X〉〈φj , X〉) + ρEr (α − Sα,ρ, φj ) = 0 (6)

for j = 1, . . . , m. Let Qα be the quasi-interpolatory spline in Sr
d(�) which achieves the optimal

order of approximation of α from Sr
d(�) as in the preliminary section. Then Equation (6)

implies that

E((〈α − Sα,ρ, X〉)2) = E(〈α − Sα,ρ, X〉〈α − Qα, X〉) − ρEr (α − Sα,ρ, Qα − Sα,ρ)

≤ (E((〈α − Sα,ρ, X〉)2))1/2E((〈α − Qα, X〉)2)1/2

− ρ‖α − Sα,ρ‖2
r + ρEr (α − Sα,ρ, α − Qα)

≤ 1
2E((〈α − Sα,ρ, X〉)2) + 1

2E((〈α − Qα, X〉)2)

− 1
2ρ‖α − Sα,ρ‖2

r + 1
2ρ‖α − Qα‖2

r .

Hence E((〈α − Sα,ρ, X〉)2) + ρ‖α − Sα,ρ‖2
r ≤ E((〈α − Qα, X〉)2) + ρ‖α − Qα‖2

r . The approx-
imation of the quasi-interpolant Qα of α (Lai and Schumaker 1998) gives:

Theorem 3.2 Suppose that E(‖X‖2) < ∞ and suppose α ∈ Cν(D) for ν ≥ r . Then the
solution Sα,ρ from the minimisation problem (4) approximates α: E((〈α − Sα,ρ, X〉)2) ≤
C|�|2νE(‖X‖2) + ρC|�|2(ν−r) where C is a positive constant independent of the size |�| of
triangulation �.
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6 S. Guillas and M.-J. Lai

Next we consider the empirical estimate of Sα,ρ . Let Xi, i = 1, . . . , n be a sequence of func-
tional random variables such that only the zero polynomial is perpendicular to the subspace
spanned by {X1, . . . , Xn} except on an event whose probability pn goes to zero as n → +∞. The
empirical estimate ̂Sα,ρ,n ∈ Sr

d(�) is the solution of

̂Sα,ρ,n = arg min
β∈Sr

d (�)

1

n

n∑
i=1

(Yi − 〈β, Xi〉)2 + ρ‖β‖2
r , (7)

with ρ > 0 the smoothing parameter. The solution of the above minimisation is given by ̂Sα,ρ,n =∑m
i=1 cn,iφi with the coefficient vector cn = (cn,i , i = 1, . . . , m) satisfying Âncn = b̂n, where

Ân =
[

1

n

n∑

=1

〈φi, X
〉〈φj , X
〉 + ρEr (φi, φj )

]
i,j=1,...,m

and

b̂n =
[

1

n

n∑

=1

Y
〈φj , X
〉
]

j=1,...,m

=
[

1

n

n∑

=1

(f (X
) + ε
)〈φj , X
〉
]

j=1,...,m

.

Theorem 3.3 Suppose that only the zero polynomial is perpendicular to the subspace spanned
by {X1, . . . , Xn} except on an event whose probability pn goes to zero as n → +∞. Then there
exists a unique ̂Sα,ρ,n ∈ Sr

d(�) minimising (7) with probability 1 − pn.

Proof It is straightforward to see that the coefficient vector of ̂Sα,ρ,n satisfies the above relations.
To see that Âncn = b̂n has a unique solution, we claim that if Ânc

′ = 0, then c′ = 0. It follows
that (c′)TÂnc

′ = 0, i.e.
∑n


=1(〈
∑m

i=1 c′
iφi, X
〉)2 = 0. That is,

∑m
i=1 c′

iφi is orthogonal to X
, 
 =
1, . . . , n. According to the assumption, c′ = 0 except for an event whose probability pn goes to
zero when n → +∞. �

We now prove that ̂Sα,ρ,n approximates Sα,ρ in probability. For simplicity, we consider the case
where the penalty is equal to zero as the entries of A − Ân and b − b̂ are exactly the same with
or without penalty. To this end we need the following lemmas.

Lemma 3.4 Suppose that � is a β-quasi-uniform triangulation (cf. Lai and Schumaker 2007).
There exist two positive constants C1 and C2 independent of � such that for any spline function
S ∈ Sr

d(�) with coefficient vector s = (s1, . . . , sm)T with S = ∑m
i=1 sjφj , C1|�|2‖s‖2 ≤ ‖S‖2 ≤

C2|�|2‖s‖2.

A proof of this lemma can be found in Lai and Schumaker (1998, 2007). The following lemma
is well known in numerical analysis (Golub and Van Loan 1989, p. 82).

Lemma 3.5 Let A be an invertible matrix and Ã be a perturbation of A satisfying ‖A−1‖ ‖A −
Ã‖ < 1. Suppose that x and x̃ are the exact solutions of Ax = b and Ãx̃ = b̃, respectively. Then

‖x − x̃‖
‖x‖ ≤ κ(A)

1 − κ(A)‖A − Ã‖/‖A‖

[
‖A − Ã‖

‖A‖ + ‖b − b̃‖
‖b‖

]
.

Here, κ(A) = ‖A‖‖A−1‖ denotes the condition number of matrix A.
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Journal of Nonparametric Statistics 7

The next Lemma will be used to find the resulting upper bounds for the differences
‖Sα − ̂Sα,ρ,n‖.

Lemma 3.6 Let β = ‖c − ĉn‖/‖c‖, η = ‖A − Ân‖/‖A‖ and θ = ‖b − b̂n‖/‖b‖. For all δ ≤ 1,

we have

P

(
‖Sα − ̂Sα,ρ,n‖

‖Sα‖ ≥ δ

)
≤ 2P

(
η ≥ γ δ

4κ(A)

)
+ P

(
θ ≥ γ δ

4κ(A)

)
where γ = √

C1/C2 from Lemma 3.4.

Proof We first use Lemma 3.4 to get P(‖Sα − ̂Sα,ρ,n‖/‖Sα‖ ≥ δ) ≤ P(‖c − ĉn‖/‖c‖ ≥ γ δ)

where γ = √
C1/C2. Then Lemma 3.5 implies that

P(β ≥ γ δ) ≤ P

(
β ≥ γ δ, κ(A)η ≤ 1

2

)
+ P

(
β ≥ γ δ, κ(A)η ≥ 1

2

)
≤ P

(
κ(A)

1 − κ(A)η
(η + θ) ≥ γ δ, κ(A)η ≤ 1

2

)
+ P

(
κ(A)η ≥ 1

2

)
≤ P

(
(η + θ) ≥ γ δ

2κ(A)

)
+ P

(
κ(A)η ≥ 1

2

)
≤ P

(
η ≥ γ δ

4κ(A)

)
+ P

(
θ ≥ γ δ

4κ(A)

)
+ P

(
η ≥ γ δ

2κ(A)

)
≤ 2P

(
η ≥ γ δ

4κ(A)

)
+ P

(
θ ≥ γ δ

4κ(A)

)
for all δ ≤ 1. �

Thus, we need to analyse the differences between the entries of A and Ân as well as the
differences between b and b̂n. Let: ξ

(1)
i,j,l = 〈φi, Xl〉〈φj , Xl〉, ξ

(2)
j,l = f (Xl)〈φj , Xl〉, and ξ

(3)
j,l =

εl〈φj , Xl〉. We can find rates of convergence by applying exponential inequalities that will be
valid uniformly over the entries of ξ (p) for p = 1, 2, 3.

To use Lemma 3.5, we employ for convenience (all norms are equivalent) the maximum norm
for matrix A − Ân and vector b − b̂n. For simplicity, let us write

[aij ]1≤i,j≤m = A − Ân =
[

1

n

n∑

=1

(ξ
(1)
i,j,l − E(ξ

(1)
i,j,l)

]
1≤i,j≤m

.

We have

Lemma 3.7

P(‖[aij ]1≤i,j≤m‖∞ ≥ δ) ≤
m∑

i=1

m∑
j=1

P

(
|aij | ≥ δ

m
)

)
and, if the probabilities P(|aij | ≥ δ/m)) are bounded for all i, j by the same quantity h(δ, m),

P
(‖[aij ]1≤i,j≤m‖∞ ≥ δ

) ≤ m2h(δ, m).
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8 S. Guillas and M.-J. Lai

Proof

P(‖[aij ]1≤i,j≤m‖∞ ≥ δ) = P

⎛⎝ max
1≤i≤m

m∑
j=1

|aij | ≥ δ

⎞⎠

≤
m∑

i=1

P

⎛⎝ m∑
j=1

|aij | ≥ δ

⎞⎠

≤
m∑

i=1

m∑
j=1

P

(
|aij | ≥ δ

m

)
. �

Similar to Lemma 3.7, we can estimate the entries of b − b̂n. We denote its entries by
bj = −(1/n)

∑n

=1 f (X
)〈φj , X
〉 − E(f (X)〈φj , X〉) + (1/n)

∑n

=1 ε
〈φj , X
〉. Let us write

bj = b1
j + b2

j with b1
j and b2

j being the first and second terms, respectively. It is easy to see that
P(|bj | ≥ δ) ≤ P(|b1

j | ≥ δ/2) + P(|b2
j | ≥ δ/2). Since the functional f is bounded, |f (X
)| ≤

F‖X
‖, with a finite constant F . We obtain immediately the following Lemma.

Lemma 3.8

P(‖b − b̂n‖∞ ≥ δ) ≤
m∑

j=1

P

(
|b1

j | ≥ δ

2

)
+ P

(
|b2

j | ≥ δ

2

)
and, if the probabilities P(|b1

j | ≥ δ/2) and P(|b2
j | ≥ δ/2) are, respectively, bounded for all j by

the same quantities h1(δ) and h2(δ),

P (‖b − b̂n‖∞ ≥ δ) ≤ m(h1(δ) + h2(δ)).

We consider the first case where the variables are bounded, for which we can apply the following
Hoeffding’s exponential inequality (Bosq 1998, p. 24).

Lemma 3.9 Let {ξl}nl=1 be n independent random variables. Suppose that there exists a positive
number M such that for each l, |ξl| ≤ M < ∞ almost surely. Then P(|1/n

∑n

=1(ξl − E(ξl))| ≥

δ) ≤ 2 exp(−nδ2/2M2) for δ > 0.

Theorem 3.10 Suppose that X
, 
 = 1, . . . , n are independent and identically distributed and
X1 is bounded almost surely. Suppose that the ε
 are independent and bounded almost surely.
Assume that f (X) is a bounded linear functional. Then ̂Sα,ρ,n converges to Sα in probability with
convergence rate

P

(
‖Sα − ̂Sα,ρ,n‖

‖Sα‖ ≥ δ

)
≤ 4m2 exp

(
− nγ 2δ2

32κ(A)2m2M2

)
+ 2m exp

(
− nγ 2δ2

128κ(A)2M2
b

)

+ 2m exp

(
− nγ 2δ2

128κ(A)2M2
ε

)
. (8)

Proof The basis spline functions φj can be chosen to be bounded in L2(D) for all j

independent of triangulation � (Lai and Schumaker 2007). The ξ
(1)
i,j,
 are bounded. Indeed,
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let M = maxij max
 |〈φi, X
〉〈φj , X
〉| ≤ maxij max
 ‖φi‖‖φj‖‖X
‖2. For each i, j , |ξ (1)
i,j,
| ≤

M < ∞ almost surely. We can apply Lemma 3.9 to get

P(‖[aij ]1≤i,j≤m‖∞ ≥ δ) ≤ 2m2 exp

(
− nδ2

2m2M2

)
. (9)

By Lemma 3.9, we also have P(|b1
j | ≥ δ/2) ≤ 2 exp(−nδ2/8M2

b ), where Mb = maxj |f (X
)

〈φj , X
〉| ≤ F‖X
‖‖φj‖ ‖X
‖ which is a finite quantity since ‖X
‖ is bounded almost surely.
Regarding the second term b2

j , since the random noises ε
 are bounded almost surely, we
apply Lemma 3.9 to ξ 3

j,
 and it yields: P(|b2
j | ≥ δ/2) ≤ 2 exp(−nδ2/8M2

ε ) where Mε = maxj

|〈φj , ε
X
〉| ≤ maxj ‖φj‖|ε
|‖X
‖ which is finite under the assumption that both ‖X
‖ and |ε
|
are bounded almost surely.

Thus, we have by Lemma 3.8

P(‖b − b̂n‖∞ ≥ δ) ≤ 2m exp

(
− nδ2

8M2
b

)
+ 2m exp

(
− nδ2

8M2
ε

)
. (10)

We combine the estimates (9) and (10) to get Equation (8). �

As an example, if we choose m = n1/4, we get a convergence rate of n1/2 exp(−√
nγ 2δ2/32

κ(A)2M2) which is the slower of the terms.
We are now ready to consider the case where ε
 is a Gaussian noise N(0, σ 2


 ) for 
 = 1, . . . , n.
Instead of Lemma 3.9, it is easy to prove.

Lemma 3.11 Suppose that ε
 is a Gaussian noise N(0, σ 2

 ) for 
 = 1, . . . , n. Then

P

(∣∣∣∣∣1

n

n∑

=1

ε


∣∣∣∣∣ > δ

)
≤ exp

(
− n2δ2

2
∑n


=1 σ 2



)
.

Theorem 3.12 Suppose that X
, 
 = 1, . . . , n are independent and identically distributed ran-
dom variables and X1 is bounded almost surely. Suppose ε
 are independent and identically
distributed as a Gaussian noise N(0, σ 2) and f (X) is a bounded linear functional. Then ̂Sα,ρ,n

converges to Sα in probability with the convergence rate:

P

(
‖Sα − ̂Sα,ρ,n‖

‖Sα‖ ≥ δ

)
≤ 4m2 exp

(
− nγ 2δ2

32κ(A)2m2M2

)
+ 2m exp

(
− nγ 2δ2

128κ(A)2M2
b

)

+ 2m exp

(
− nγ 2δ2

128κ(A)2σ 2C2

)
. (11)

Proof By Lemma 3.11, P(|(1/n)
∑n


=1(ε
Z
))| ≥ δ) ≤ exp(−nδ2/2σ 2C2) for δ > 0, under the
assumption that Z
 are independent random variables which are bounded by C, i.e. ‖Z
‖ ≤ C.
Similar to the proof of Theorem 3.10, with Z
 = 〈φj , X
〉 in that case, we obtain the convergence
rate in Equation (11). �

We now extend the results to the case where both the explanatory variables Xn and noise εn

are dependent and unbounded. We state two types of results based on dependence conditions of
either association or mixing types that involve making moment assumptions on the variables of
interest.
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10 S. Guillas and M.-J. Lai

By definition, a sequence of real-valued variables Y1, Y2, . . . is positively associated (PA)
(Esary, Proschan, and Walkup 1967) if, for every integer n, and every function f, g Rn → R
is coordinatewise increasing, we have:

Cov(f (Y1, . . . , Yn), g(Y1, . . . , Yn)) ≥ 0.

The resulting rates are usually not exponential but geometric in the ‘exponential’ inequalities
(Oliveira 2005, Theory 5.1). We note that Henriques and Oliveira (2005) relate assumptions of
positive association for a transformation of a process. We could try to set up a new definition of
positive association for Hilbert-valued random variables and see what it implies on the variables
ξ

(p)

l (we drop for convenience the other indices i, j in the sequel.) However, it would require a
thorough study of these quantities ξ

(p)

l for p = 1, 2, 3, and is beyond the scope of this paper. We
have the following result.

Theorem 3.13 Suppose that for p = 1, 2, 3, the time series ξ
(p)

l , 
 = 1, . . . , n, are strictly sta-
tionary and PA. Suppose that they all satisfy the following assumptions uniformly in i, j. Suppose
that Oliveira (2005), Equation (13) is satisfied as follows:

1

pn log n
exp

((
τn log n

2pn

)1/2
) ∞∑

l=pn+2

Cov(ξ
(p)

1 , ξ
(p)

l ) ≤ C0 < ∞, (12)

where pn = nε2/54τ log3 n, for ε > 0 small enough. Assume also that there exists λ > τ such
that sup|t |≤λE[exp(tξ

(p)

1 )] ≤ Mλ < ∞.Then ̂Sα,ρ,n converges to Sα in probability, for δ > 0 small
enough and n large enough:

P

(
‖Sα − ̂Sα,ρ,n‖

‖Sα‖ ≥ δ

)
≤ m2

(
2

(
1 + 4

τ
C0

)
+ 192Mλm

2κ(A)2

τ‖A‖2γ 2δ2

)
n1−τ

+2m

(
2

(
1 + 4

τ
C0

)
+ 768Mλκ(A)2

τ‖b‖2γ 2δ2

)
n1−τ . (13)

As a result, ̂Sα,ρ,n converges to Sα in probability with convergence rate in Equation (13).

Proof We use Lemmas 3.6–3.8 and then employ Oliveira (2005), Theory 5.1 for PA unbounded
variables to get an exponential inequality in these cases. �

An example of this situation is the autoregressive case, when Cov(ξ
(p)

1 , ξ
(p)

l ) = ρ0ρ
n, for some

ρ0 > 0 and 0 < ρn < 1. See the discussion in Oliveira (2005, Section 5).
Another possibility is to consider mixing assumptions. However, these are more difficult to

check than covariance-based conditions, see Doukhan and Louhichi (1999) for a discussion. Clas-
sical autoregressive moving average (ARMA) processes have mixing coefficients which decrease
to zero at an exponential rate. For a strictly stationary time series (Xn), the strong mixing (or
α-mixing) coefficient of order k is

α(k) = sup
B∈σ(Xs,s≤n), C∈σ(Xs,s≥n+k)

|P(B ∩ C) − P(B)P (C)|
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We apply Bosq (1998), Theory 1.4 in the strictly stationary case to derive the following result:

Theorem 3.14 Suppose that for p = 1, 2, 3, the time series ξ
(p)

l , 
 = 1, . . . , n, are strictly
stationary, and there exists c > 0 such that

E[|ξ (p)

1 |] ≤ ck−2k!E[(ξ (p)

1 )2] < ∞,

for all k ≥ 3. Then for n ≥ 2, each integer q ∈ [1, n/2], for all δ > 0, k ≥ 3,

P

(
‖Sα − ̂Sα,ρ,n‖

‖Sα‖ ≥ δ

)
≤ 2m2

(
a1(ε1) exp

(
− qε2

1

25m2
2 + 5cε1

)
+ a2(ε1, k)α

([
n

q + 1

]))

+ 2m

(
a1(ε2) exp

(
− qε2

2

25m2
2 + 5cε2

)
+ a2(ε2, k)α

([
n

q + 1

]))
,

(14)

where

a1(ε) = 2
n

q
+ 2

(
1 + ε2

25m2
2 + 5cε

)

a2(ε, k) = 11n

(
1 + 5m

k/(2k+1)

k

ε

)

with ε1 = ‖A‖γ δ/4mκ(A), ε2 = ‖b‖γ δ/8κ(A), m2
2 = E[(ξ (p)

1 )2] and mk = (E[(ξ (p)

1 )k])1/k.

As a result, ̂Sα,ρ,n converges to Sα in probability with convergence rate in Equation (14).

Proof We use Lemmas 3.6–3.8 and then employ Bosq (1998), Theory 1.4 for unbounded
variables with mixing assumptions to get an exponential inequality in these cases. �

By choosing say q = log n or q = n/4, we could achieve an explicit convergence rate if the
strong mixing coefficients converge to zero.And depending on the case, one could find optimal val-
ues for q to achieve the best rates possible balancing the terms in the right-hand side. Note also that
Bosq (2000), Theory 2.13 gives a similar result but for Hilbert-valued random variables directly.
As a remark for future research, one could make assumptions on the Hilbert-valued processes
themselves to retrieve similar rates. Furthermore, we could mix the various cases covered in this
section, for instance by assuming that some of the processes ξ

(p)

l , 
 = 1, . . . , n satisfy the assump-
tions of Theorem 3.13 or 3.14, leading to various combined rates of convergence. Finally, one could
derive almost sure convergence theorems as well via Borel–Cantelli’s lemma in a straightforward
way in these cases, assuming that the stronger conditions on the probabilities are met.

4. Approximation of linear functionals based on discrete observations

In practice, we do not know X completely over the domain D. Instead, we have observations of X

over some designed points sk, k = 1, . . . , N over D. Let SX be the discrete least square fit spline
approximation (Awanou et al. 2006) of X, assuming that sk, k = 1, . . . , N are evenly distributed
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12 S. Guillas and M.-J. Lai

over � of D with respect to Sr
d(�).We consider αS that solves the following minimisation problem:

αS = arg min
β∈H

E[(Y − 〈β, SX〉)2] + ρ‖β‖2
r . (15)

Also we look for an approximation SαS
∈ Sr

d(�) of αS such that

SαS
= arg min

β∈Sr
d (�)

E[(Y − 〈β, SX〉)2] + ρ‖β‖2
r . (16)

We first analyse how αS approximates α. It is easy to see that

F(β) = E[(Y − 〈β, X〉)2]
is a strictly convex function and so is FS(β) = E

[
(Y − 〈β, SX〉)2

] + ρ‖β‖2
r . Note that SX approx-

imates X very well as in Theorem 2.1 as |�| → 0. Thus, FS(β) approximates F(β) for each
β. Since the strictly convex function has a unique minimiser and both F(β) and FS(β) are
continuous, αS approximates α. Indeed, if αS → β �= α, then F(α) < F(β) = FS(β) + η1 =
FS(αS) + η1 + η2 ≤ FS(α) + η1 + η2 = F(αS) + η1 + η2 + η3 for arbitrary smallη1 + η2 + η3.

Thus, we would get the contradiction F(α) < F(α).
We now begin to analyse how SαS

approximates αS in terms of the size |�| of triangulation.
Recall that {φ1, . . . , φm} forms a basis for Sr

d(�).We write SαS
= ∑m

j=1 cS,jφj . Then its coefficient
vector cS = (cS,1, . . . , cS,m)T satisfies AScS = bS with AS being a matrix of size m × m with
entries E(〈φi, SX〉〈φj , SX〉) for i, j = 1, . . . , m and bS being a vector of length m with entries
E((Y )〈φj , SX〉) for j = 1, . . . , m. We can show that AS converges to A as |�| → 0 because
E(〈φi, SX〉〈φj , SX〉) → E(〈φi, X〉〈φj , X〉) as SX → X by Theorem 2.1. That is, we have ‖SX −
X‖∞,D ≤ C|�|ν |X|ν,∞,D for X ∈ Wν

2 (D) with ν ≥ r > 0.
To see that SαS

is a good approximation of αS , we let {φj , j = m + 1, m + 2, . . .} be a basis of
the orthogonal complement space of Sr

d(�) in H as before. Then we can write αS = ∑∞
j=1 cS,jφj .

Note that the minimisation in Equation (15) yields E(〈α, SX〉〈φj , SX〉) = E((Y )〈φj , SX〉) for all
j = 1, 2, . . . while the minimisation in Equation (16) gives

E(〈SαS
, SX〉〈φj , SX〉) = E(Y 〈φj , SX〉)

for all j = 1, 2, . . . , m. It follows that

E(〈αS − SαS
, SX〉〈φj , SX〉) = 0, (17)

for all j = 1, 2, . . . , m. Let Qα be the quasi-interpolatory spline in Sr
d(�) which achieves the

optimal order of approximation of αS from Sr
d(�) as in the preliminary section. Then Equation (17)

implies that

E((〈αS − SαS
, SX〉)2) = E(〈Sα − SαS

, SX〉〈αS − QαS
, SX〉)

≤ (E((〈αS − SαS
, SX〉)2))1/2E((〈αS − QαS

, SX〉)2)1/2.

It yields E((〈αS − SαS
, SX〉)2) ≤ E((〈αS − QαS

, SX〉)2) ≤ ‖αS − QαS
‖2

HE(‖SX‖2). The conver-
gence of SX to X implies that E(‖SX‖2) is bounded by a constant dependence on E(‖X‖2). The
approximation of the quasi-interpolant QαS

of αS (Theorem 2.1) gives:

Theorem 4.1 Suppose that E(‖X‖2) < ∞ and suppose α ∈ Cr(D) for r ≥ 0. Then the solu-
tion SαS

from the minimisation problem (16) approximates αS in the following sense: E((〈αS −
SαS

, SX〉)2) ≤ C|�|2r for a constant C dependent on E(‖X‖2), where |�| is the maximal length
of the edges of �.
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Next we consider the empirical estimate of Sα based on discrete observations of random surfaces
Xi, i = 1, . . . , n. The empirical estimate ˜Sα,ρ,n ∈ Sr

d(�) is the solution of

˜Sα,ρ,n = arg min
β∈Sr

d (�)

1

n

n∑
i=1

(Yi − 〈β, SXi
〉)2 + ρ‖β‖2

r .

In fact the solution of the above minimisation is given by ˜Sα,ρ,n = ∑m
i=1 c̃n,iφi with coefficient

vector c̃n = (c̃n,i , i = 1, . . . , m) satisfying Ãnc̃n = b̃n, and

Ãn =
[

1

n

n∑

=1

〈φi, SX

〉〈φj , SX


〉 + ρEr (φi, φj )

]
i,j=1,...,m

,

where SX

is the discrete least squares fit of X
 and

b̃n =
[

1

n

n∑

=1

Y
〈φj , SX

〉
]

j=1,...,m

.

Recall the definition of Ân in Section 3. We have

Ãn − Ân =
[

1

n

n∑

=1

〈φi, SX

〉〈φj , SX


〉 − 1

n

n∑

=1

〈φi, X
〉〈φj , X
〉
]

i,j=1,...,m

.

As SX

converges X
 as |�| → 0, i.e. SX


− X
 = O(|�|ν), we can show that ‖Ãn − Ân‖∞ =
O(|�|ν−2) and hence, ‖Ãn − Ân‖∞ → 0 if ν > 2. Likewise, b̃n − b̂n converges to 0. We consider
here the case with no penalty for convenience. Lemma 3.5 implies that ˜Sα,ρ,n converges to Ŝα,ρ,n

as |�| → 0 under certain assumptions on X
, 
 = 1, . . . , n with n > m and ν > 4. Indeed, let us
assume that the surfaces X
, 
 = 1, . . . , n are orthonormal and span a space which contains Sr

d(�)

(or form a tight frame of a space which contains Sr
d(�).) Then we can show that the condition

numbers κ(Ân) are bounded by n. Note that the condition number of κ(Ân) can be computed as
the modulus of the ratio of the largest and smallest eigenvalues of the matrix. It is known that the
largest eigenvalue λmax and smallest eigenvalue λmin of the matrix Ân satisfy

λmin = min
c∈Rm

cTÂncT

cTc
≤ max

c∈Rm

cTÂncT

cTc
= λmax.

Writing c = (c1, . . . , cm)T, we let S = ∑m
i=1 ciφi ∈ Sr

d(�). Then by Lemma 3.4, λmax and λmin

are equivalent to

max
S∈Sr

d (�)

1

n‖S‖2
2

n∑

=1

|〈S, X
〉|2 ≤ 1

n

n∑

=1

‖X
‖2
2 = 1

and

min
S∈Sr

d (�)

1

n‖S‖2
2

n∑

=1

|〈S, X
〉|2 = 1

n
.

Let us further assume that n = Cm for some fixed constant C > 1. Next, we note that the dimen-
sion of Sr

d(�) is strictly less than (d + 2/2)N with N being the number of triangles in � while
N can be estimated as follows. Let AD be the area of the underlying domain D and assume
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14 S. Guillas and M.-J. Lai

that the triangulation � is quasi-uniform (cf. Lai and Schumaker 2007). Then N ≤ C1AD/|�|2
for a positive constant C1. Thus, the condition number κ(Ân) ≤ Cm ≤ CC1AD|�|−2. That is,
κ(Ân)‖Ãn − Ân‖∞/‖Ân‖∞ = O(|�|ν−4). Therefore, Lemma 3.5 implies that the coefficients of
˜Sα,ρ,n converges to that of Ŝα,ρ,n as |�| → 0 when ν > 4. With Lemma 3.4, we conclude that
˜Sα,ρ,n converges to Ŝα,ρ,n.

A similar analysis can be carried out for the approximation with a penalised term. The details
are omitted here. Instead, we shall present the convergence based on our numerical experimental
results in the next section.

5. Numerical simulation and experiments

5.1. Simulations

In this subsection, we present a simulation example on a complicated domain, delimited by the US
frontiers, which has been scaled into [0, 1] × [0, 1], see Figure 1. With bivariate spline functions,
we can easily carry out all the experiments.

We illustrate the consistency of our estimators using the linear functional: Y = 〈g, X〉 with
known function g(x, y) = sin(2π(x2 + y2)) over the (scaled) US domain. The purpose of the
simulation is to estimate g from the value Y based on random surfaces X. The bivariate spline
space we employed is S1

5(�), where � consists of 174 triangles (Figure 1).
We choose a sample size n = 5, 20, 100, 200, 500 and 1000. For each i = 1, . . . , n, we first

randomly choose a vector ci of size m which is the dimension of S1
5(�). This coefficient vector

ci defines a spline function Si . We evaluate Si over the (scaled) locations of 969 stations from
the US EPA around the USA, and add a small noise with zero mean and standard deviation 0.4
at each location. We compute a least squares fit S̃i of the resulting 969 values by using the spline
space S1

5(�) and compute the inner product of g and S̃i . We add a small noise of zero mean and
standard deviation 0.0002 to get a noisy value Yi of the functional.

Figure 1. Locations of EPA stations and a triangulation.
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Second, we build the associated matrix Ãn as in Section 4 and the right-hand side vector b̃n, for
which we use a penalty of ρ = 10−9. Finally, we solve the linear equation to get the solution vector
c and spline approximation ˜Sg,ρ,n of g. We then evaluate g and ˜Sg,ρ,n at locations which are the
101 × 101 equally spaced points over [0, 1] × [0, 1] that fall into the US domain, to compute their
differences and find their maximum as well as L2 norm. We carry out a Monte Carlo experiment
over 20 different random seeds. The numerical results show that we approximate well the linear
functional, see Table 1. An example of Sg,ρ,500 is shown in Figure 2. Note that in this study, the
signal-to-noise ratio is around 10. We tried various large signal-to-noise ratios, with satisfying
results not reported here. Further theoretical and applied studies of how the results of the estimation
varies according to the signal-to-noise ratio are interesting. We leave them for future research.

Table 1. Errors for the differences ˜Sα,ρ,n − Sα for the simu-
lation and sample sizes n =5, 20, 100, 200, 500 and 1000 based
on 20 Monte Carlo simulations and 174 triangles.

L2 error

Sample size (n) Min Mean Max

5 0.671 2.195 31.821
20 0.427 0.564 0.666

100 0.080 0.115 0.153
200 0.048 0.060 0.081
500 0.036 0.040 0.044

1000 0.029 0.032 0.035

L∞ error

5 1.242 1.988 3.086
20 1.398 2.221 3.584

100 0.336 0.468 0.717
200 0.158 0.254 0.534
500 0.112 0.136 0.207

1000 0.092 0.102 0.123

Figure 2. The surface of spline approximation Sg,n.
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5.2. Ozone concentration forecasting

In this application, we forecast the ground-level ozone concentration at the center of Atlanta using
the random surfaces over the entire US domain based on the measurements at various EPA stations
from the previous days. Assume that the ozone concentration in Atlanta on one day at a particular
time is a linear functional of the ozone concentration distribution over the US continent on the
previous day. Also we may assume that the linear functional is continuous. These are reasonable
assumptions as the concentration in Atlanta is proportional to the concentration distribution over
the entire US continent and a small change in the concentration distribution over the US continent
results in a small change of the concentration at Atlanta under a normal circumstance. Thus, we
build one regression model of the type (1), where f (X) is the ozone concentration value at the
centre of Atlanta at one hour of one day, X is the ozone concentration distribution function over
the entire US continent at the same hour but on the previous day, and g is estimated using the
penalised least squares approximation with penalty (=10−2) presented in the previous section.
Let us outline our computational scheme as follows.

Step 1. Based on the observations X over 969 EPA station around the US at a given hour of a
given day, we compute a penalised least squares fit spline SX with penalised parameter = 10−2,
where SX is a spline function of degree 5 and smoothness 1 over the triangulation given in the
previous subsection. Let fX be the ozone concentration at Atlanta at the given hour of the day
after the given day.

Step 2. We find a spline function SA of degree 5 and smoothness 1 over the same triangulation
which solves the following minimisation problem

min
s∈S1

5 (�)

1

24N

24N∑
i=1

(fXi
− 〈s, SXi

〉)2

for N days. To predict the ozone value at Atlanta on September 8, we use all the observations
over N days before and on September 6 as well as ozone values fXi

at Atlanta on September 7.

Step 3. Based on the ozone values Z over the USA at a given hour on September 7, we compute
a penalised least squares fit SZ and then compute the inner product SZ with SA to predict the
ozone value at the given hour on September 8. We compute the predictions based on N day
learning period along these lines for various values of N . We use a penalised least squares fit SX

of X instead of the discrete least squares fit in the previous subsection to carry out the empirical
estimate ˜Sα,ρ,n for Sg . See Awanou et al. (2006) for an explanation and discussion of bivariate
splines for data fitting.

For computational efficiency, we actually used only one quarter of the triangulations of the
whole US continent to generate the predictions. The triangulation of this region (southeastern
region of the US) is shown in Figure 3. From Figures 4–10, it is easy to see that our spline
predictions are very close to the true measurements. In particular, they are consistent for various
learning periods. For more experimental results based on various size of triangulations and regions,
see Ettinger (2009).

This may be compared with the univariate functional autoregressive ozone concentration pre-
diction method (Damon and Guillas 2002), but here with no exogenous variables. The idea is to
consider a time series of functions which correspond to the ozone concentrations at the location
of interest over 24 hours, and then build an autoregressive Hilbertian model for this time series.
The estimation of the autocorrelation operator in a reduced subspace enables predictions. We
selected only five functional principal components in the dimension reduction process to keep
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Figure 3. Locations of EPA stations and a triangulation of the Southeastern US. The star is the location of the Atlanta
observation station used for predictions.

Figure 4. Ozone concentrations in Atlanta on 8 September 2005. Observations (black), forecast 1D (red), forecast 2D
(green).

parsimony in our model, due to sample sizes (i.e number of days considered) of 7–14. As we see
on Figures 5–8, the forecasts provided by the 2D spline strategy outperforms the univariate func-
tional autoregressive method based on the same sizes of samples. This may be explained by the
fact that the 2D approach uses more information to construct its forecasts. The comparisons show
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Figure 5. Ozone concentrations in Atlanta on 9 September 2005. Observations (black), forecast 1D (red), forecast 2D
(green).

Figure 6. Ozone concentrations in Atlanta on 11 September 2005. Observations (black), forecast 1D (red), forecast 2D
(green).

that our bivariate spline technique almost consistently predicts the ozone concentration values
which are closer to the observed values for these 5 days for various learning periods, especially
near the peaks. The 1D method presented in this paper, which is considered to be among the best
of many 1D forecasting methods (Damon and Guillas 2002), is not consistent for various learning
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Figure 7. Ozone concentrations in Atlanta on 12 September 2005. Observations (black), forecast 1D (red), forecast 2D
(green).

Figure 8. Ozone concentrations in Atlanta on 13 September 2005. Observations (black), forecast 1D (red), forecast 2D
(green).

periods and the patterns based on the 1D method are not as close to the exact measurements as
those based on the bivariate spline method most of the time. This could be explained by the very
small sample size. The 2D method naturally borrows strength across space and does not suffer as
much from the lack of data.
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Figure 9. Ozone concentrations in Atlanta on 14 September 2005. Observations (black), forecast 1D (red), forecast 2D
(green).
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Figure 10. Ozone concentrations in Atlanta on 15 September 2005. Observations (black), forecast 1D (red), forecast
2D (green).

Finally, we remark that we are currently studying the autoregressive approach using orthonormal
expansion in a bivariate spline space for the ozone concentration prediction (cf. Ettinger 2009)
and numerical results as well as comparison of both approaches will be available soon. Our study
shows that to determine how many eigenvalues and eigenfunctions should be used for the best
prediction is not easy.
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