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Abstract We present an alternate mathematical technique1

than contemporary spherical harmonics to approximate the2

geopotential based on triangulated spherical spline functions,3

which are smooth piecewise spherical harmonic polynomials4

over spherical triangulations. The new method is capable of5

multi-spatial resolution modeling and could thus enhance6

spatial resolutions for regional gravity field inversion using7

data from space gravimetry missions such as CHAMP,8

GRACE or GOCE. First, we propose to use the minimal9

energy spherical spline interpolation to find a good approxi-10

mation of the geopotential at the orbital altitude of the satel-11

lite. Then we explain how to solve Laplace’s equation on the12

Earth’s exterior to compute a spherical spline to approximate13

the geopotential at the Earth’s surface. We propose a domain14

decomposition technique, which can compute an approxi-15

mation of the minimal energy spherical spline interpolation16

on the orbital altitude and a multiple star technique to com-17

pute the spherical spline approximation by the collocation18

method. We prove that the spherical spline constructed by19

means of the domain decomposition technique converges20

to the minimal energy spline interpolation. We also prove21

that the modeled spline geopotential is continuous from the22
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satellite altitude down to the Earth’s surface. We have 23

implemented the two computational algorithms and applied 24

them in a numerical experiment using simulated CHAMP 25

geopotential observations computed at satellite altitude 26

(450 km) assuming EGM96 (nmax = 90) is the truth model. 27

We then validate our approach by comparing the compu- 28

ted geopotential values using the resulting spherical spline 29

model down to the Earth’s surface, with the truth EGM96 30

values over several study regions. Our numerical evidence 31

demonstrates that the algorithms produce a viable alterna- 32

tive of regional gravity field solution potentially exploiting 33

the full accuracy of data from space gravimetry missions. 34

The major advantage of our method is that it allows us to 35

compute the geopotential over the regions of interest as well 36

as enhancing the spatial resolution commensurable with the 37

characteristics of satellite coverage, which could not be done 38

using a global spherical harmonic representation. 39

Keywords Geopotential · Spherical splines · Minimal 40

energy interpolation · Domain decomposition technique 41

1 Introduction 42

Advances in the measurement of the gravity have with 43

modern free-fall methods have reached accuracies of 10−9 g 44

(1mGal or 10 nm/s2), allowing the observations of mass 45

transports within the Earth’s interior to be measured a com- 46

mensurate accuracy, and surface height change (Forsberg 47

et al. 2005). As a result and during this Decade of the Geo- 48

potential, satellite missions launched to exploit the gravity 49

measurement accuracy include the challenging minisatellite 50

payload (CHAMP) (Reigber et al. 2004), the gravity recovery 51

and climate experiment (GRACE) (Tapley et al. 2004) gravi- 52

metry missions, and the Gravity field and steady-state ocean 53
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M. J. Lai et al.

circulation explorer (GOCE) satellite gradiometry mission54

(to be launched October 2008) (Rummel et al. 1999). These55

satellite missions provide global synoptic mapping of geody-56

namic processes and climate-sensitive mass transports within57

the Earth, providing a tool to study Earth sciences including58

climate change.59

The geopotential function V is defined on R3 such that60

the gradient ∇V is the gravitational field. Traditionally, V61

is reconstructed by using spherical harmonic functions62

(cf., e.g., Tapley et al. 2004 to model data from the GRACE63

mission). Recently, several new methods have been64

proposed. Spherical wavelet methods were studied in Freeden65

et al. (1998, 2002) and results were surveyed in Freeden66

et al. (2003), Freeden and Schreiner (2005), and Fengler et al.67

(2007). Other spherical wavelet techniques include Poisson68

multipole wavelets (cf. Chambodut et al. 2005), wavelet fra-69

mes (cf. Panet et al. 2005, 2006) and Blackman spherical70

wavelets (cf. Schmidt et al. 2005a,b,c).71

Other techniques have been developed and they are72

distinct from the classical gravity field inversion approach73

(cf. Lehmann and Klees 1999) and resulted in global spheri-74

cal harmonic geopotential monthly solutions using GRACE75

data (Tapley et al. 2004). These techniques include the pro-76

cessing of GRACE intersatellite range-rate data using the77

Fredholm integral approach (Mayer-Gürr et al. 2006), the78

mass concentrations (mascon) approach (Rowlands et al.79

2005), and the energy conservation approach to compute80

satellite in situ geopotential (CHAMP) or the disturbance81

potential (GRACE) data (Han et al. 2006). The second step of82

some of the above mentioned techniques, for example, used83

a regional inversion approach with stochastic least squares84

collocation and 2D-FFT which achieved enhanced spatial85

resolution than that of solutions based on global spherical86

harmonics (Han et al. 2003). Spherical splines were conside-87

red as a technique for geodetic inverse problem in Schneider88

(1996). Several spline functions including triangulated sphe-89

rical splines were suggested for the forward modeling of the90

geopotential (Jekeli 2005).91

In this paper, we propose to use triangulated spherical92

splines to compute an approximation of the geopotential. The93

triangulated spherical splines over the unit sphere S
2 were94

introduced and studied by Alfeld, Neamtu and Schumaker95

in a series of three papers (Alfeld et al. 1996a,b,c). These96

spline functions are smooth piecewise spherical harmonic97

polynomials over triangulation of the unit spherical surface98

S
2. Basic properties of triangulated spherical splines are sum-99

marized in Lai and Schumaker (2007). They can have locally100

supported basis functions, which are completely different101

from the spherical splines defined in Freeden et al. (1998). A102

straightforward computational method to use these triangu-103

lated spherical splines for scattered data fitting and interpo-104

lation is given in our earlier paper (Baramidze et al. 2006).105

We explain how to use triangulated spherical splines directly106

without constructing locally supported basis functions like 107

finite elements for constructing fitting and/or interpolating 108

spherical spline functions from any given data locations and 109

values. In this direct method, we explain how to use an itera- 110

tive method to solve some constraint minimization problems 111

with smoothness conditions and interpolation conditions as 112

constraints. In addition, the approximation property of mini- 113

mal energy spherical spline interpolation can be found in 114

Baramidze (2005). The approximation property implies that 115

the triangulated spherical spline interpolation by using the 116

minimal energy method gives an excellent approximation 117

of sufficiently smooth functions over the surface of the unit 118

sphere. However, when using the minimal energy method 119

to find spherical spline interpolation of the geopotential, the 120

matrix associated with the method is relatively large for the 121

given large amount of the data from a spaceborne gravime- 122

try satellite. In this paper we propose a new computational 123

method called a domain decomposition technique to com- 124

pute an approximation of the global minimal energy spline 125

interpolation. This technique is a generalization of the same 126

technique in the planar setting (cf. Lai and Schumaker 2008). 127

It enables us to do the computation in parallel and hence, 128

effectively reduce the computational time. 129

In this study, we choose, in a demonstration study, to use 130

the simulated satellite data of in situ geopotential measure- 131

ments (in m2/s2) which was computed for the gravity mission 132

satellite, The CHAllenging Minisatellite Payload (CHAMP) 133

(cf. Reigber et al. 2004). CHAMP is a German geodetic satel- 134

lite, launched on July 15, 2000, with a circular orbit at an 135

altitude of 450 km and orbital inclination of 87◦. In Figs. 1 136

and 2, we show a set of CHAMP potential data coverage 137

for a 2-day period (two methods for these data locations are 138

shown to illustrate the fact that seemingly equally distributed 139

measurement locations shown in Fig. 1 are corresponding to 140

scattered locations in Fig. 2 which indicates that it is hard 141

to find an interpolation using a tensor product of two trigo- 142

nometric polynomials. In this study, we used a truncated (at 143

nmax = 90) EGM96 geopotential model to generate simu- 144

lated geopotential measurements (with noise at 1 m2/s2) at 145

the CHAMP orbital altitude (450 km) over a time period of 146

30 days. The total amount of simulated data is 86,400 (2,880 147

measurements per day for 30 days). We intend to demons- 148

trate the validity of the spherical spline modeling using the 149

CHAMP geopotential measurements (at the orbital altitude), 150

and using the resulting spherical spline modeled gravity field 151

to predict (and compare with) the “truth” geopotential values 152

(computed using EGM96, nmax = 90) at the Earth’s surface. 153

Since the purpose of the research to reconstructing the 154

geopotential is to find a good approximation of the geo- 155

potential values on the Earth’s surface, we use the above 156

approximation of the geopotential on the satellite orbit to 157

approximate the geopotential on the Earth’s surface. To this 158

end, we recall the classic theory of geopotential (cf., e.g., 159
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Triangulated spherical splines for geopotential reconstruction

Fig. 1 Geopotential data locations

Heiskanen and Moritz 1967). The geopotential function V160

defined on the R3 space outside of the Earth satisfies the161

Laplace’s equation with Dirichlet boundary condition on the162

Earth’s surface. If the boundary values V (u) or V (Re, θ, λ)163

are known for all u = (x, y, z) over the surface of the ima-164

ginary sphere with mean Earth’s radius Re = 6, 371.138 km165

with x = Re sin θ cos λ, y = Re sin θ sin λ, and z = Re cos θ ,166

the solution of Laplace’s equation outside the sphere can be167

explicitly given in terms of spherical harmonics or in terms168

of Poisson integral. That is, the solution V to the exterior169

problem (|u| =
√

x2 + y2 + z2 > Re) can be represented in170

terms of an infinite sum:171

V (u) =

∞∑

n=0

(
Re

|u|

)n

Yn(θ, λ), (1.1)172

where 173

Yn(θ, λ) =
2n + 1

4π

2π∫

λ′=0

π∫

θ ′=0

V (Re, θ
′, λ′)Pn(cos ψ) 174

× sin θ ′dθ ′dλ′ (1.2) 175

are spherical harmonics, Pn are Legendre polynomials, and 176

cos ψ = cos θ cos θ ′ + sin θ sin θ ′ cos(λ − λ′). 177

It is known that when |u| = Re, the series in (1.1) does not 178

converge uniformly and thus one does not know how many 179

terms on the right-hand side needed to approximate V (u) for 180

any fixed point u. 181

In addition to (1.1), we also know Poisson integral repre- 182

sentation of the solution V for |u| > Re, i.e., 183

V (u) = Re

|u|2 − R2
e

4π

2π∫

λ′=0

π∫

θ ′=0

V (Re, θ
′, λ′)

ℓ3
sin θ ′dθ ′dλ′, 184

(1.3) 185

where ℓ =
√

|u|2 − 2|u|Re cos ψ + R2
e is the distance from 186

u to v with |v| = Re and angles θ ′, λ′. 187

It is known that the geopotential V is infinitely diffe- 188

rentiable. By the approximation property of the minimal 189

energy spline interpolation (cf. Baramidze 2005) based on 190

the approximation properties of spherical spline functions 191

(cf. Neamtu and Schumaker 2004), the spherical interpola- 192

tory spline SV of the geopotential measurement data at the 193

in situ orbital surface at Ro := Re + 450 km altitude is a 194

very good approximation of the geopotential V (see Sect. 2). 195

Intuitively, we may replace V by SV in (1.3). That is, 196

SV (u)≈ Re

|u|2 − R2
e

4π

2π∫

λ′=0

π∫

θ ′=0

V (Re, θ
′, λ′)

ℓ3
sin θ ′dθ ′dλ′, 197

(1.4) 198

Fig. 2 Planar view of

geopotential data locations
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M. J. Lai et al.

where ≈ means that SV (u) = V (u) at measurement locations199

and SV (u) is very closed to V (u) at other locations.200

Next we approximate V on the surface of the Earth in201

the above formula by using triangulated spherical splines.202

Let S0
d (△e) be the space of all continuous spherical splines203

of degree d over △e which is induced by the underlying204

triangulation △ of SV . We find sV ∈ S0
d (△e) solving the205

following collocation method:206

SV (u)= Re

|u|2−R2
e

4π

2π∫

λ′=0

π∫

θ ′=0

sV (Re, θ
′, λ′)

ℓ3
sin θ ′dθ ′dλ′,207

(1.5)208

for u ∈ D
d
△, where D

d
△ is a set of domain points on the orbi-209

tal surface (to be precise later). The reason we use S0
d (△e)210

is that the geopotential on the surface of the Earth may not211

be a very smooth function. It should be approximated by212

spherical splines in S0
d (△e) better than by spline functions in213

Sr
d(△e) with r ≥ 1. We need to show that the linear system214

(1.5) above is invertible for certain triangulations. Then we215

continue to prove that sV yields an approximation of the geo-216

potential V on the Earth’s surface (see Sect. 4). To compute217

sV , we shall use a so-called multiple star technique so that218

the computation can be done in parallel. In Sect. 4 we shall219

explain this technique and show that the numerical solution220

from the multiple star technique converges.221

The above discussions outline a theoretical basis for222

approximating geopotential at any point on the surface ReS
2

223

by using triangulated spherical splines. Our triangulated224

spherical spline approach is certainly different from the tra-225

ditional and classic approach by spherical harmonic poly-226

nomials. For example, in Han et al. (2002), a least squares227

method is used to determine the coefficients in the sphe-228

rical harmonic expansion up to degree n = 70 to fit the229

CHAMP measurements. The total number of coefficients is230

70 × 71/2 = 4, 970. The rigorous estimation of these coef-231

ficients potentially requires many hours of CPU time of a232

supercomputer back to 10 years ago. When evaluating the233

geopotential at any point, all these 4,970 terms have to be234

evaluated since each harmonic basis function Yn is globally235

supported over the sphere. This requires a lot of computa-236

tion time. As the degree n of spherical harmonics increases,237

spherical harmonic polynomials Yn oscillate more and more238

frequently and the evaluation of Yn with large degree n is239

very sensitive to the accuracy of the locations.240

The advantages of triangulated spherical splines over the241

method of spherical harmonic polynomials are as follows:242

(1) Our spherical spline solution is an interpolation of the243

given geopotential data measurements instead of a least244

squares data fitting. Due to computer capacity, we are245

not able to interpolate the data values within the machine246

epsilon. In our computation, the root mean square error 247

over these 86,400 values is 0.018 m2/s2 while the least 248

square fit has the root mean square value about 0.5 m2/s2. 249

(2) Our solution is solved in parallel in the sense that the 250

solution is divided into many small blocks and each 251

small block is solved independently while in the least 252

squares method, the observation matrix is dense and of 253

large size and hence, is relatively expensive to solve; 254

(3) Our solution can be efficiently evaluated at any point 255

since only a few terms which maybe nonzero at the 256

point. For example, for a spherical spline of degree 257

d = 5, there are only 21 terms of spherical Bernstein 258

Bézier polynomials (cf. 2.2 in the next section) which 259

are nonzero over the triangle where a point of interest 260

locates. However, for a spherical harmonic expansion, 261

there are about n2 terms of the Legendre polynomials. 262

The their calculation require a lot of computation time. 263

(4) Our algorithms allow us to compute an approximation 264

of the geopotential over any region ω on the Earth’s 265

surface directly from the measurements of a satellite 266

on the orbital level. That is, to compute sV over ω ⊂ 267

ReS
2, we need SV (u) for u ∈ � on RoS

2 (see Sect. 4). 268

Note that � is corresponding to an enlarged region on 269

ReS
2 covering ω. To compute SV over � on the orbital 270

surface, we use the measurements from a satellite over 271

a larger region starq(�) (see Sect. 3). 272

Let us summarize our approach as follows: First we com- 273

pute a spherical spline interpolation SV of geopotential values 274

at these 86, 400 data locations over the orbital surface by 275

using the minimal energy method. Since computing a mini- 276

mal energy interpolant for such a large data set requires a 277

significant memory storage and high speed computer resou- 278

rces, we shall use a domain decomposition technique to 279

overcome this difficulty. We shall explain the technique and 280

computation in Sect. 3. Secondly we shall solve (1.5) to find a 281

spherical spline approximation sV on the surface of the Earth. 282

We begin with showing that sV is a good approximation of 283

V and then discuss how to compute sV by using a multiple 284

star technique (another version of our domain decomposi- 285

tion technique). All these will be given in Sect. 4. Finally in 286

Sect. 5 we conclude that our triangular spherical splines are 287

effective and efficient for computing the geopotential on the 288

Earth’s surface. 289

2 Preliminaries 290

2.1 Spherical spline spaces 291

Given a set P of points on the sphere of radius 1, we can form 292

a triangulation △ using the points in P as the vertices of △ 293

by using the Delaunay triangulation method. Alternatively, 294
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Triangulated spherical splines for geopotential reconstruction

Fig. 3 A uniform triangulation of the sphere

we can use eight similar spherical triangles to partition the295

unit sphere S
2 and denote the collection of triangles by △0.296

Then we uniformly refine △0 by connecting the midpoints297

of three edges of each triangle in △0 to get a new refined298

triangulation △1. Then we repeat the uniform refinement to299

get △2,△3, . . .. See Fig. 3 for a uniform triangulation over300

a surface of the Earth. In this paper, we will assume that301

the triangulation △ is regular in the sense that: (1) any two302

triangles do not intersect each other or share either a common303

vertex or a common edge; (2) every edge of △ is shared by304

exactly two triangles.305

Let306

Sr
d(�) = {s ∈ Cr (S2), s|τ ∈ Hd , τ ∈ �}307

be the space of homogeneous spherical splines of degree d308

and smoothness r over �. Here Hd denotes the space of309

spherical homogeneous polynomials of degree d (cf. Alfeld310

et al. 1996a). This spline space can be easily used for inter-311

polation and approximation on sphere if any spline func-312

tion in Sr
d(�) is expressed in terms of spherical Bernstein313

Beziér polynomials and the computational methods in314

Baramidze et al. (2006) are adopted.315

To be more precise, we write each spline function s ∈316

Sr
d(�) by317

s =
∑

T ∈�

∑

i+ j+k=d

cT
i jk BT

i jk, (2.1)318

where BT
i jk is called spherical Bernstein basis function which319

is only supported on triangle T and cT
i jk are coefficients asso-320

ciated with BT
i jk . More precisely, let T = 〈v1, v2, v3〉 be a321

spherical triangle on the unit sphere with nonzero area. Let 322

b1(v), b2(v), b3(v) be the trihedral barycentric coordinates 323

of a point v ∈ S2 satisfying 324

v = b1(v)v1 + b2(v)v2 + b3(v)v3. 325

We note that the linear independence of the vectors v1, v2 326

and v3 ∈ R3 imply that b1(v), b2(v), and b3(v) are uniquely 327

determined. Clearly, b1(v), b2(v), and b3(v) are linear func- 328

tions of v. It was shown in Alfeld et al. (1996a) that the set 329

BT
i jk(v)=

d!

i ! j !k!
b1(v)i b2(v) j b3(v)k, i + j + k = d (2.2) 330

of spherical Bernstein-Bézier (SBB) basis polynomials of 331

degree d forms a basis for Hd restricted to the unit spherical 332

surface S2. Note that when d = 5, there are 21 basis polyno- 333

mials BT
i jk, i + j + k = 5. More about spherical splines can 334

be found in Lai and Schumaker (2007). 335

2.2 Minimal energy spline interpolations 336

Next we briefly explain one of the computational methods 337

presented in Baramidze et al. (2006). Suppose we are given 338

values { f (v), v ∈ P} of an unknown function f on a set P . 339

Let 340

U f := {s ∈ Sr
d(△) : s(v) = f (v), v ∈ P} 341

be the set of all splines in S ⊆ Sr
d(△) that interpolate f at 342

the points of P . Then a commonly used way (cf. Freeden and 343

Schreiner 1998) to create an approximation of f is to choose 344

a spline S f ∈ U f such that 345

Eδ(S f ) = mins∈U f
Eδ(s), (2.3) 346

where Eδ is an energy functional: 347

Eδ( f ) =

∫

S2

(∣∣∣∣
∂2

∂x2
fδ

∣∣∣∣
2

+

∣∣∣∣
∂2

∂y2
fδ

∣∣∣∣
2

+

∣∣∣∣
∂2

∂z2
f δ

∣∣∣∣
2

+

∣∣∣∣
∂2

∂x∂y
fδ

∣∣∣∣
2

+

∣∣∣∣
∂2

∂x∂z
fδ

∣∣∣∣
2

+

∣∣∣∣
∂2

∂y∂z
fδ

∣∣∣∣
2
)

dθdφ, 348

(2.4) 349

where, since f is defined only on S
2, we first extend f into 350

a function fδ defined on R3 to take all partial derivatives 351

and then restrict them on the unit spherical surface S
2 for 352

integration. Here, we use Eδ for δ = 0 or δ = 1 to denote 353

the even and odd homogeneous extensions of f . In the rest 354

of the paper, we should fix δ = 1. 355

We refer to S f in Eq. (2.3) the (global) minimal energy 356

interpolating spline. To compute S f , we use the coefficient 357

vector c consisting of cT
i jk, i + j + k = d, T ∈ △ (see 358

2.1) to represent each spline function s ∈ S−1
d (△), where 359

S−1
d (△) denotes the space of piecewise spherical polyno- 360

mials of degree d over triangulation △ without any 361
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M. J. Lai et al.

smoothness. To ensure the Cr continuity across each edge362

of △, we impose the smoothness conditions over every edge363

of △. Let M denote the smoothness matrix such that364

Mc = 0365

if and only if s ∈ Sr
d(△). Note that we can assemble interpo-366

lation conditions into a matrix K , according to the order in367

which the coefficient vector c is organized. Then K c = F is368

the linear system of equations such that the coefficient vector369

c of a spline s interpolates f at the data sites P .370

The problem of minimizing (2.3) over Sr
d(△) can be for-371

mulated as follows (cf. Baramidze et al. 2006):372

minimize Eδ(s), subject to Mc = 0 and K c = F.373

To simplify the data management we linearize the triple374

indices of SBB-coefficients ci jk as well as the indices of375

the basis functions Bd
i jk . By using the Lagrange multipliers376

method, we solve the following linear system377

⎡
⎣

E K ′ M ′

K 0 0

M 0 0

⎤
⎦

⎡
⎣

c

η

γ

⎤
⎦ =

⎡
⎣

0

F

0

⎤
⎦ . (2.5)378

Here γ and η are vectors of Lagrange multipliers, K ′ and379

M ′ denotes the transposes of K and M , respectively, and the380

energy matrix E is defined as follows. E = diag381

(ET ,382

T ∈ �) is a diagonally block matrix. Each block383

ET = (emn)1≤m,n≤d(d+1)/2 is associated with a triangle384

T ∈ △ and contains the following entries385

emn :=

∫

T

(♦BT
m (v)) · ♦(BT

n (v))dσ(v), (2.6)386

where Bm and Bn denote SBB polynomial basis functions387

BT
i jk of degree d corresponding to the order of the linearized388

triple indices (i, j, k), i + j + k = d. Here, ♦ denotes the389

second order derivative vector, i.e.,390

♦ f =

(
∂2

∂x2
f,

∂2

∂y2
f,

∂2

∂z2
f,

∂2

∂x∂y
f,

∂2

∂x∂z
f,

∂2

∂y∂z
f

)
391

(2.7)392

and · denotes the dot product of two vectors in Eq. (2.6).393

Note that E is a singular matrix. The special linear sys-394

tem is now solved by using the iterative method: Writing the395

above singular linear system Eq. (2.5) in the following form396

[
A L ′

L 0

] [
c

λ

]
=

[
F

G

]
,397

where A = E and L = [K ; M] are appropriate matrices.398

The system can be successfully solved by using the following399

iterative method (cf. Awanou and Lai 2005)400

[
A L ′

L −ǫ I

] [
c(ℓ+1)

λ(ℓ+1)

]
=

[
F

G − ǫλ(ℓ)

]
,401

for l = 0, 1, 2, . . ., where ǫ > 0 is a fixed number, e.g., 402

ǫ = 10−4, λ(ℓ) is iterative solution of a Lagrange multiplier 403

with λ0 = 0 and I is the identity matrix. The above matrix 404

iterative steps can in fact be rewritten as follows: 405

(
A +

1

ǫ
L ′L

)
c(l+1) = AFc(l) +

1

ǫ
L ′G 406

with c(0) = 0. It is known that under the assumption that A is 407

symmetric and positive definite with respect to L , the vectors 408

c(ℓ) converge to the solution c in the following sense: there 409

exists a constant C such that 410

‖c(k+1) − c‖ ≤ Cǫ‖c(k) − c‖ 411

for all k (cf. Awanou and Lai 2005). Since A may be of 412

large size, we shall introduce a new technique to make the 413

computational method more affordable in the next section. 414

The approximation properties of minimal energy interpo- 415

lating spherical splines are studied in (cf. Baramidze 2005). 416

Let us state here briefly that for the homogeneous spherical 417

splines of degree d under certain assumptions on triangula- 418

tion △ we have 419

‖S f − f ‖∞,S2 ≤ C |△|2| f |2,∞,S2 420

for f ∈ C2(S2) and d odd, and 421

‖S f − f ‖∞,S2 ≤ C ′|△|2| f |2,∞,S2 + C ′′|△|3| f |3,∞,S2 422

for f ∈ C3(S2) and d even, where | f |2,∞,S2 stands for the 423

maximum norm of all second order derivatives of f over 424

the sphere S
2 (cf. Neamtu and Schumaker 2004) and simi- 425

lar for | f |3,∞,S2 which is the maximum norm of all third 426

order derivatives of f over S
2. Here |△| denotes the size of 427

triangulation, i.e., the largest diameter of the spherical cap 428

containing triangle T for T ∈ △. Since geopotential V is the 429

solution of Laplace’s equation, it is infinitely many differen- 430

tiable. It follows that SV approximates V very well as long 431

as |△| goes to zero. 432

3 Approximation of geopotential over the orbital surface 433

3.1 Explanation of the domain decomposition technique 434

Since the given simulated set of in situ geopotential mea- 435

surements collected by CHAMP during 30 days amounts to 436

86, 400 locations and values, computing a minimal energy 437

interpolant for such a large set requires a significant amount 438

of computer memory storage and high speed computer res- 439

ources. To overcome this difficulty, we use a domain decom- 440

position technique which will be used to approximate the 441

minimal energy spline interpolant. 442

The domain decomposition method can be explained as 443

follows. Divide the spherical domain S
2 into several smal- 444

ler non-overlapping subdomains �i , i = 1, . . . , n along the 445
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Triangulated spherical splines for geopotential reconstruction

edges of existing triangulation △ of �. For example, we may446

choose each triangle of △ is a subdomain. Fix q ≥ 1. Let447

starq(�i ) be a q-star of subdomain �i which is defined recur-448

sively by letting star0(�i ) = �i and449

starq(�i ) := ∪{T ∈ △, T ∩ starq−1(�i ) �= ∅} (3.1)450

for positive integers q = 1, 2, . . . .451

Instead of solving the minimal energy interpolation pro-452

blem over the entire spherical surface, we solve the mini-453

mal energy spherical spline interpolation problem over each454

q-star domain starq(�i ) by using the spherical spline space455

Si,q := Sr
d(starq(�i )) for i = 1, 2, . . . , n. Let s f,i,q be the456

minimal energy solution over starq(�i ). That is, let457

U f,i,q := {s ∈ Si,q , s(v) = f (v),∀v ∈ starq(�i ) ∩ P}.458

Then s f,i,q ∈ U f,i,q is the spline satisfying459

Ei,q(s f,i,q) = min{Ei,q(s), s ∈ U f,i,q}, (3.2)460

where461

Ei,q(s) :=
∑

T ∈starq
(�i )

∫

T

♦(s) · ♦(s)dσ (3.3)462

with ♦ being defined in (2.7). It can be shown that s f,i,q |�i
463

approximates the global minimal energy spline (2.3) S f |�i
464

very well. That is, we have465

Theorem 3.1 Suppose we are given data values f (v) over466

scattered data locations v ∈ P for a sufficiently smooth func-467

tion f over the unit sphere. Let S f be the minimal energy468

interpolating spline satisfying (2.3). Let s f,i,k be the minimal469

energy interpolating spline over starq(�i ) satisfying (3.2).470

Then there exists a constant σ ∈ (0, 1) such that for q ≥ 1471

||S f − s f,i,q ||∞,�i
≤ C0σ

q

(
tan

|△|

2

)2

472

×(C1| f |2,∞,S2 + C2|| f ||∞,S2), (3.4)473

if f ∈ C2(S2) and d is odd. Here C0, C1 and C2 are constants474

depending on d and β = |△|/ρ△, where ρ△ denotes the475

smallest radius of the inscribed caps of all triangles in △. If476

f ∈ C3(S2) and d is even477

||S f − s f,i,q ||∞,�i
≤ C0σ

q

(
tan

|△|

2

)2

478

×(C3| f |2,∞,S2 + C4| f |3,∞,S2 + C3|| f ||∞,S2), (3.5)479

for positive constants C4 and C5 depending on d and β.480

One significant advantage of the domain decomposition481

technique is that s f,i,q can be computed over subdomain482

starq(�i ) independent of s f, j,q for j �= i . Thus, the com-483

putation can be done in parallel. Usually, we choose each484

triangle in △ as a subdomain. We use s f,i,q to approximate485

S f over �i . The collection of s f,i,q |�i
is a very good approxi-486

mation of S f over �. If the computation for each subdomain487

requires a reasonable time, so is the approximation of the 488

global solution. 489

The proof of Theorem 3.1 is quite technique in mathema- 490

tics. We omit the detail here. For the interested reader (see 491

Baramidze 2005; Lai and Schumaker 2008). In the follo- 492

wing subsection we present some numerical experiments to 493

demonstrate the convergence of local minimal energy inter- 494

polatory splines to the global one. 495

3.2 Computational results on the orbital surface 496

We have implemented our domain decomposition technique 497

for the reconstruction of geopotential over the orbital sur- 498

face in both MATLAB and FORTRAN. To make sure that 499

our computational algorithms work correctly, we first choose 500

several spherical harmonic functions to test and verify the 501

accuracy of the computational algorithm. Then we apply our 502

algorithm to the CHAMP simulated data set (geopotential 503

observations computed at orbital altitude assuming that the 504

truth model is EGM96, nmax = 90). The following numeri- 505

cal evidence demonstrate the effectiveness and efficiency of 506

our algorithm. 507

First of all we illustrate the convergence of the minimal 508

energy interpolating spline to some given test functions: 509

f1(x, y, z) = r−9 sin8(θ) cos(8φ),

f2(x, y, z) = r−11 sin10(θ) sin(10φ),

f3(x, y, z) = r−16 sin15(θ) sin(15φ),

f4(x, y, z) = 789/r + f3(x, y, z),

510

where r =
√

x2 + y2 + z2. All of them are harmonic. Let 511

△ be a triangulation of the unit sphere which consists of 512

8 congruent spherical triangles obtained by restricting the 513

spherical surface over each octant of the three dimensio- 514

nal coordinate system. We then uniformly refine it seve- 515

ral times as described in Sect. 2 to get new triangulations 516

△1,△2,△3, . . . . That is, △n is the uniform refinement of 517

△n−1. Thus, △1 consists of 18 vertices and 32 triangles, △2 518

contains 66 vertices and 128 triangles, △3 has 258 vertices 519

and 512 triangles, △4 consists of 1,026 vertices and 2,048 520

triangles and △5 contains 4,098 vertices and 8,172 triangles. 521

Recall that S1
5(△n) is the C1 quintic spherical spline space 522

over triangulation △n . We choose 523

r = 1.05 ≈
Re + 450

Re

, 524

where Re = 6, 371.388 km is the radius of the Earth and 525

450 km represents the CHAMP orbital height above the sur- 526

face of the Earth. 527

The minimal energy spline functions in S1
5(△n) with 528

n = 4 and n = 5 interpolates 16,200 points equally spaced 529

grid points over [−π, π ] × [0, π ]. To compute these spline 530

interpolants, we use the domain decomposition technique. 531
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M. J. Lai et al.

Table 1 Maximum errors of C1 quintic interpolatory splines for various

functions

�4 �5

rms Maximum errors rms Maximum errors

f1 5.091e − 04 1.242e − 02 6.566e − 06 1.269e − 04

f2 6.959e − 04 1.715e − 02 9.556e − 06 1.827e − 04

f3 1.2313 × e − 03 3.011e − 02 2.756e − 05 3.549e − 04

f4 1.213 × e − 03 3.010e − 02 2.753e − 05 3.549e − 04

The following numerical results are based on the domain532

decomposition technique with q = 3 and �i being triangles533

in △n as described in Sect. 3.1.534

Then we estimate the accuracy of the method by evaluating535

the spline interpolants and the exact functions over 28,796536

points almost evenly distributed over the sphere and then537

computing the maximum absolute value of the differences538

and computing the root mean square (rms)539

rms =

√∑28796
i=1 (s(pi ) − f (pi ))2

28796
,540

where s and f stand for spline interpolant and function to be541

interpolated and pi stands for points over the surface at the542

orbital level. The root mean square and maximum errors are543

listed in Table 1.544

From Table 1, we can see that the spherical interpolatory545

splines approximate these functions very well on the spheri-546

cal surface with radius r = 1.05. This example also shows547

that our domain decomposition technique works very well.548

The computing time is 30 min for finding spline interpolants549

in S1
5(�4) and 2 h for S1

5(△5) using a SGI computer (Tezro)550

with four processes with 2G memory each.551

Let us make a remark. Although these functions may be552

approximated by using spherical harmonics better than sphe-553

rical splines, the main point of the table is to show how well554

spherical splines can approximate. Intuitively, the geopoten-555

tial does not behave nicely as these test functions and it is hard556

to approximate by one spherical harmonic polynomial. Ins-557

tead, by breaking the spherical surface S
2 into many triangles,558

triangulated spherical splines, piecewise spherical harmonics559

may have a hope to approximate the geopotential better.560

Next we compute interpolatory splines SV over the given561

set of data measurements of the geopotential on the orbital562

surface. We first compute an minimal energy interpolatory563

spline using the data locations and values over the 2-day564

period. The spline space S1
5(△4) is used, where triangulation565

△4 consists of 1,026 points and 2,048 triangles. Although the566

interpolatory spline fits the first 2 day’s measurements (5,760567

locations and values) to the accuracy 10−6, the root mean568

square of the spline over the 30-day measurement values is569

0.60 m2/s2.570

Fig. 4 Normalized geopotential values over the Earth and C1 quintic

spherical spline interpolatory surface

Furthermore we compute the minimal energy interpolatory 571

spline in S1
5(△5) which interpolates 23,032 data locations 572

and values over an 8-day period. The root mean square error 573

of the spline at all 86,400 data locations and values of 30 days 574

is 0.018 m2/s2. This shows that the minimal energy spline fits 575

the geopotential over the orbital surface very well. 576

In Fig. 4, we show the geopotential measurements (after a 577

normalization such that the normalized geopotential values 578
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Triangulated spherical splines for geopotential reconstruction

are all bigger than the mean radius of the Earth) and the579

interpolatory spline surface around the Earth. The norma-580

lized geopotential and the spline surface are plotted in 3D581

view.582

4 Approximation of geopotential on the Earth’s surface583

4.1 The inverse problem584

Let SV be the spherical spline approximation of the geopo-585

tential V on the orbit. Recall from the previous section that586

SV approximates V very well. We now discuss how we can587

compute spline approximation sV of the geopotential V on588

the Earth’s surface.589

Let △e be a triangulation on the unit sphere induced by590

the triangulation △ on the orbital spherical surface used in591

the previous section. Let sV ∈ S0
d (△e) be a spline function592

sV =
∑

T ∈△e

∑
i+ j+k=d cT

i jk BT
i jk solving the following col-593

location problem594

SV (u) = Re

|u|2 − R2
e

4π

2π∫

λ′=0

π∫

θ ′=0

sV (θ ′, λ′)

ℓ3
sin θ ′dθ ′dλ′,595

for u ∈ D
d
△, (4.1)596

where D
d
△ is the collection of domain points of degree d on597

△, i.e.,598

D
d
△ := {ξlmn =

lv1 + mv2 + nv3

‖lv1 + mv2 + nv3‖2
,599

T = 〈v1, v2, v3〉 ∈ △, l + m + n = d}.600

More precisely, Eq. (4.1) can be written as follows: Find601

coefficients cT
i jk such that602

∑

T ∈△

∑

i+ j+k=d

cT
i jk Re

|u|2 − R2
e

4π

∫

T

BT
i jk(θ

′, λ′)

ℓ3
603

× sin θ ′dθ ′dλ′ = SV (u), u ∈ D
d
�. (4.2)604

Note that we use continuous spherical spline space S0
d (△e)605

since the geopotential is not very smooth on the surface of606

the Earth.607

We need to show that the collocation problem (4.1) above608

has a unique solution as well as sV is a good approximation609

of V on the Earth’s surface. To this end, we begin with the610

following611

Lemma 4.1 Let f be a function in L2(S
2). Define612

F(|u|, θ, φ) =
|u|2 − 1

4π

2π∫

θ ′=0

π∫

φ′=0

f (θ ′, φ′)

ℓ3
sin θ ′dθ ′dφ′,613

∀θ, φ. (4.3)614

Suppose that for all |u| = R > 1, F(u) = 0. Then f = 0. 615

Proof It is clear that F is a harmonic function which decays 616

to zero at ∞. We can express F in an expansion of spherical 617

harmonic functions as in (1.1) and (1.2). Now F(u) ≡ 0 618

implies that the coefficients in the expansion have to be zero. 619

That is, by using (1.2), 620

2n + 1

4π

2π∫

θ ′=0

π∫

φ′=0

f (θ ′, φ′)Pn(cos ψ) sin θ ′dθ ′dφ′ = 0, 621

∀n ≥0. 622

Thus, f ≡ 0. This completes the proof. ⊓⊔ 623

This is just say that if a solution of the exterior Poisson 624

equation is zero over whole layer |u| = R0, it is a zero 625

harmonic function. 626

Theorem 4.2 There exists a triangulation △e such that the 627

minimization (4.1) has a unique solution. 628

Proof If the minimization (4.1) has more than one solution, 629

then the observation matrix associated with (4.1) is singular. 630

Thus there exists a spline s0 ∈ Sr
d(�e) such that 631

2π∫

θ ′=0

π∫

φ′=0

s0(θ
′, φ′)

ℓ3
sin θ ′dθ ′dφ′ = 0, (4.4) 632

for all θ, φ which are associated with the domain points D
d
△ of 633

degree d. That is, the points u ∈ R3 with length Ro and angle 634

coordinates (θ, φ) are domain points in D
d
△1

. Without loss 635

of generality, we may assume that ‖s0‖2 = 1. Let us refine 636

△ uniformly to get △1. Write △e,1 to be the triangulation 637

induced by △1. If the linear system in (4.1) replacing △ by 638

△1 is not invertible, there exists a spline s1 ∈ S0
d (△e,1) such 639

that ‖s1‖2 = 1 and 640

2π∫

θ ′=0

π∫

φ′=0

s1(θ
′, φ′)

ℓ3
sin θ ′dθ ′dφ′, (4.5) 641

for those angle coordinates (θ, φ) such that vectors u ∈ 642

R3 with length Ro and angle coordinates (θ, φ) are domain 643

points in D
d
△1

. 644

In general, we would have a bounded sequence s0, s1, . . . , 645

in L2(ReS
2). It follows that there exists a subsequence sn′ 646

which converges weakly to a function s∗ ∈ L2(ReS
2). Then 647

0 =

2π∫

θ ′=0

π∫

φ′=0

s∗(θ
′, φ′)

ℓ3
sin θ ′dθ ′dφ′, ∀(θ, φ). (4.6) 648

By Lemma 4.1, we would have s∗ ≡ 0 which contradicts to 649

‖s∗‖2 = 1. This completes the proof. ⊓⊔ 650
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M. J. Lai et al.

Using the above Theorem 4.2, we can compute a spline651

approximation sV of V over certain triangulations. Next we652

need to show sV is a good approximation of V on the Earth’s653

surface. Recall Ro = Re + 450 km with Re being the mean654

radius of the Earth. Let655

Ṽ (Ro, θ, φ)656

= Re

R2
o − R2

e

4π

2π∫

θ ′=0

π∫

φ′=0

sV (θ ′, φ′)

ℓ3
sin θ ′dθ ′dφ′, (4.7)657

for all (θ, φ). In particular, Ṽ (Ro, θ, φ) agrees SV (θ, φ) for658

those angle coordinates (θ, φ) that their associated vectors659

u ∈ D
d
△ by Eq. 4.1. That is, SV is also an interpolation of Ṽ .660

Thus SV is a good approximation of Ṽ by Lemma 4.3 to be661

discussed later and thus,662

‖V − Ṽ ‖∞,RoS2 ≤ ‖V − SV ‖∞,RoS2 + ‖SV − Ṽ ‖∞,RoS2663

is very small, where the maximum norm ‖ · ‖∞,Ro is taken664

over the surface of the sphere with radius Ro.665

In addition, we shall prove that666

‖V − sV ‖∞,ReS
2 ≤ C‖V − Ṽ ‖∞,RoS2 . (4.8)667

by using the open mapping theorem (cf. Rudin 1967). Indeed,668

define a smooth function669

L( f )(θ, φ) := Re

R2
o − R2

e

4π

2π∫

θ ′=0

π∫

φ′=0

f (Re, θ
′, φ′)

ℓ3
670

× sin θ ′dθ ′dφ′ (4.9)671

for all (θ, φ). Let H = {L( f )(θ, φ), f ∈ L2(ReS
2)}, where672

L2(ReS
2) is the space of all square integrable functions on673

the surface of the sphere ReS
2. It is clear that H be a linear674

vector space. If we equip H with the maximum norm, H is675

a Banach space.676

Then L( f ) is a bounded linear map from L2(ReS
2) to677

H which is 1 to 1 by Lemma 4.1. Since L is also an onto678

map from L2(ReS
2) to H . By the open mapping theorem679

(cf. Rudin 1967), L has a bounded inverse. Thus, we have680

Eq. (4.8). We remark that this is different from the integral681

operator. Indeed, our SV at the orbital surface and sV at the682

surface of the Earth have no radial part. They are just defined683

on the subdomain with |u| = Ro and |u| = Re respectively.684

That is, from SV we can not downward continuation to get sV685

at r = Re or Re/r = 1. We have to solve (4.1) in order to get686

the approximation on the surface of the Earth. Certainly, the687

constant for the boundedness in the discussion above may be688

dependent on 450 km.689

By Theorem 3.4, we have690

‖V − SV ‖∞,RoS2 ≤ C |△|2,691

where |△| denotes the size of triangulation △. Thus we only692

need to estimate ‖SV − Ṽ ‖∞,RoS2 . To this end, we first note693

that Ṽ (u) = SV (u) for u ∈ D
d
△. The following Lemma 694

(see Baramidze and Lai 2005 for a proof) ensures the good 695

approximation property of SV to Ṽ . 696

Lemma 4.3 Let T be a spherical triangle such that |T | ≤ 1 697

and suppose f ∈ W 2,p(T ) vanishes at the vertices of T , that 698

is f (vi ) = 0, i = 1, 2, 3. Then for all v ∈ T , 699

| f (v)| ≤ C tan2

(
|T |

2

)
| f |2,∞,T (4.10) 700

for some positive constant C independent of f and T . 701

It follows that 702

|SV (u) − Ṽ (u)| ≤ C tan2

(
|�|

2

)
(‖SV ‖2,∞,RoS2 703

+‖Ṽ ‖2,∞,RoS2). 704

Recall that‖SV ‖2,∞,RoS2 ≤ C‖V ‖2,∞,RoS2 and‖Ṽ ‖2,∞,RoS2 705

≤ C‖SV ‖2,∞,RoS2 . Therefore we conclude the following 706

Theorem 4.4 There exists a spherical triangulation △ of the 707

surface of the sphere ReS
2 such that the solution sV of the 708

linear system (4.1) approximates the geopotential V on 709

the surface of Earth in the following sense 710

‖sV − V ‖∞,ReS
2 ≤ C |△|2 (4.11) 711

for a constant C dependent on the geopotential V on the 712

orbital surface. 713

4.2 A computational method for the solution of the inverse 714

problem 715

Finally we discuss the numerical solution of the linear system 716

(4.1). Clearly, when the number of data locations increases, 717

so is the size of linear system. It is expensive to solve such 718

a large linear and dense system. Let us describe the mul- 719

tiple star technique as follows. For each triangle T ∈ △e, let 720

starℓ(T ) be the ℓ-star of triangle T . We solve cT
i jk, i + j + 721

k = d by considering the sublinear system which involves 722

all those coefficients ct
i jk, i + j + k = d and t ∈ starℓ(T ) for 723

a fixed ℓ > 1 using the domain points u ∈ starℓ(T ). That is, 724

we solve 725

∑

t∈starℓ
(T )

∑

i+ j+k=d

c̃t
i jk Re

|u|2 − R2
e

4π
726

×

∫

t

Bt
i jk(v)

|u − Rev|3
dσ(v) = SV (u), (4.12) 727

for u ∈ D
d
△ ∩ starℓ(T ). We solve (4.12) for each T ∈ △e. 728

Clearly this can be done in parallel. Let us now show that 729

the solution from the multiple star technique converges to 730

the original solution as ℓ increases. To explain the ideas, we 731

express the system in the standard format: 732

Ax = b 733
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Triangulated spherical splines for geopotential reconstruction

with A = (ai j )1≤i, j≤n, x = (x1, . . . , xn)T and b =734

(b1, . . . , bn)T . Note that entries ai j have the following pro-735

perty:736

ai j = O

(
1

|i − j |3 + 1

)
737

since coefficients in (4.2) is
∫

T

BT
i jk

|u−v|3
dσ(v) for some triangle738

T and (i, j, k) with i + j + k = d. For domain points u on △739

of degree d, the distance |u −v| is increasing when u locates740

far away from v ∈ T . Our numerical solution (4.12) can be741

expressed simply by742

∑

|i−i0|≤Nℓ

ai j x̃i = b j , | j − i0| ≤ Nℓ743

for i0 = 1, . . . , n, where Nℓ is an integer dependent on ℓ. If744

ℓ increases, so does Nℓ. We need to show that x̃i converges745

to xi as ℓ increases. To this end, we assume that ‖x‖∞ is746

bounded and the submatrices747

[
ai j

]
|i−i0|≤Nℓ,| j− j0|≤Nℓ

748

have uniform bounded inverses for all i0. Letting ei = xi −x̃i ,749

∑

|i−i0|≤Nℓ

ai j ei = −
∑

|i−i0|>Nℓ

ai j xi , | j − i0| ≤ Nℓ.750

Then the terms in the right-hand side can be bounded by751

∣∣∣∣∣∣

∑

|i−i0|>Nℓ

ai j xi

∣∣∣∣∣∣
≤ C

∞∑

j=Nℓ+1

1

1 + | j |3
≤ C

1

1 + N 2
ℓ

752

and hence,753

|ei | ≤ MC
1

1 + N 2
ℓ

754

for all i . The above discussions lead to the following755

Theorem 4.5 Let c̃T
i jk be the solution in (4.12) using the756

multiple star technique. Then c̃T
i jk converge to cT

i jk as the757

number ℓ of the starℓ(T ) increases.758

4.3 Computational results on the Earth’s surface759

In this subsection we use spherical splines to solve the inverse760

problem as described in Sect. 4. We first wrote a FORTRAN761

program to solve Eq. (4.2) directly. We tested our program762

for the following spherical harmonic functions763

f1(x, y, z) = sin8(θ) cos(8φ),

f2(x, y, z) = sin15(θ) sin(15φ),

f3(x, y, z) = 789 + sin15(θ) sin(15φ)764

in spherical coordinates. Clearly, F1(x, y, z) = r−9 f1(x,765

y, z), F2(x, y, z) = r−16 f2(x, y, z), and F3(x, y, z) =766

789/r +r−16 f2(x, y, z) are natural homogeneous extension767

of f1, f2, and f3, where r2 = x2 + y2 + z2. We use the768

Table 2 Maximum errors of C1 cubic splines over various

triangulations

�0 �1 �2

f1 0.35138 0.06905 0.003720

f2 1.36733 0.22782 0.049460

f3 2.13489 0.81975 0.165639

Table 3 Maximum errors of C1 quartic splines over various triangula-

tions

�0 �1 �2

f1 3.3684e − 01 4.63305e − 02 3.72039e − 03

f2 1.423358 1.2708e − 01 1.4788e − 02

f3 1.49262 0.41301 0.11598

Table 4 Maximum errors of C1 quintic splines over various triangula-

tions

�0 �1 �2

f1 1.5857e − 01 1.2766e − 02 9.19161e − 04

f2 4.5208e − 01 2.9861e − 02 2.3973e − 03

f3 1.99722 0.18698 0.10227

triangulations △n over the unit sphere as explained in the 769

previous section and spherical spline spaces S1
d(△n) and 770

n = 0, 1, 2 and d = 3, 4, 5. Suppose that the function values 771

of Fi at r = 1.05 with domain points of △n are given. We 772

compute the spline approximation si on the surface of the 773

sphere by 774

Fi (u) =
1

4π

∫

S

si (v)

|u − v|3
dσ(v), 775

where u = 1.05(cos θ sin φ, sin θ sin φ, cos φ) for (θ, φ) as 776

we explained in Sect. 4. We then evaluate si at 5,760 points 777

almost evenly distributed over the sphere and compare them 778

with the function values of fi at these points. The maxi- 779

mum errors are given in Tables 2, 3, and 4 for d = 3, 4, 5. 780

From these tables we can see that the numerical values from 781

our program approximate these standard spherical harmonic 782

polynomials pretty well. 783

We are not able to compute the approximation over refined 784

triangulations △n with n = 4 and 5 since the linear system is 785

too large for our computer when we solve (4.2) directly. Thus 786

we have to implement the multiple star method described in 787

Sect. 4.2. That is, we implemented (4.12) in FORTRAN and 788

we can solve (4.12) for each triangle T . Let us explain our 789

implementation a little bit more. To make each submatrix 790

associated with a triangle is invertible for any triangulation, 791

we actually used a least squares technique. That is, we solves 792

AT Ax = AT b, 793
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Table 5 Errors of C0 cubic splines over T158

ℓ = 4 ℓ = 5 ℓ = 6

f1(maximum errors) 0.0270 0.00587 0.01018

f2(maximum errors) 0.0429 0.0388 0.0367

f3(maximum errors) 65.19 20.31 16.04

f3(relative errors) 8.26% 2.57% 2.03%

Table 6 Errors of C0 cubic splines over T209

ℓ = 4 ℓ = 5 ℓ = 6

f1(maximum errors) 0.0892 0.0403 0.0114

f2(maximum errors) 0.0594 0.0633 0.0669

f3(maximum errors) 247.9 56.66 37.68

f3(relative errors) 31.4% 7.18% 4.77%

with rectangular matrix A. In fact we choose more domain794

points in each triangle than the domain points of degree d.795

Our discussion of the multiple star method in Sect. 4 can be796

applied to this new linear system. That is, Theorem 4.5 holds797

for this situation.798

In the following we report the numerical experiments799

based on the multiple star technique for computing the geopo-800

tential one triangle at a time. We first present the convergence801

for the three test functions f1, f2, and f3. We consider △3802

with 258 vertices and 512 triangles and choose 5 triangles803

T65, T158, T209, T300, T400. We use C0 cubic spline functions804

and ring number ℓ = 4, 5, 6. By feeding Fi (x, y, z) with805

r = 1.05 into the FORTRAN program we compute spline806

approximation si of fi at r = 1. In Table 5 we list the maxi-807

mum errors and maximal relative errors which are computed808

based on 66 almost equally spaced points over triangle T158.809

Similarly, we list the maximal absolute errors and maximal810

relative errors over triangle T209 in Table 6. The maximal811

absolute and relative errors are computed based on 66 almost812

equally spaced points over triangle T209.813

The maximal absolute and relative errors over other T65,814

T300, T400 have the similar behaviors. We omit them to save815

space here.816

Next we compute the geopotential on the Earth’s surface817

using the simulated in situ geopotential measurements gene-818

rated for the gravity mission satellite, CHAMP (cf. Reigber819

et al. 2004). In order to check the accuracy of our numeri-820

cal solution, we compare it with the solution obtained from821

the traditional spherical harmonic series with degree 90. We822

used the CHAMP data (from EGM96 model with 1 m2/s2
823

random noises) at a fixed satellite orbit 450 km above the824

mean equatorial radius of the Earth. Using the traditional825

spherical harmonic series with radius Re/r = 1, we com-826

pute the geopotential at the Earth’s surface at (θi , φ j ) with827

θi = −89◦ + 2◦(i − 1), i = 1, . . . , 90 and φ j = −180◦ +828

0 20 40 60 80 100 120 140 160
0

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 5 Values of relative errors

2◦( j − 1), j = 1, 2, . . . , 180 which we refer as the “exact” 829

solution. 830

We first use our FORTRAN program to compute a spline 831

approximation based on the given measurements from the 832

CHAMP (in the model EGM’96 with 1 m2/s2 noises) and 833

compute a spline solution at the surface of the Earth (the 834

surface of the mean radius of the Earth) to compare with the 835

“exact” solution. We compute the spline solution restricted 836

to 8 triangles T65, T156, T158, T159, T160, T209, T300, T400. We 837

have to use the multiple star method in order to solve the large 838

linear system. Consider the numerical result from ℓ = 6 as 839

our spline solution of the geopotential at the surface of the 840

Earth. 841

There are 157 (θi , φ j )’s fell in these 8 triangles and the 842

relative errors of spline approximation against the “exact” 843

solution are plotted in Fig. 5. The horizontal axis is for the 844

indices of these 157 (θi , φ j )’s and the vertical axis is for the 845

values of the relative errors of the geopotential in m2/s2. We 846

can see that most of these relative errors are within 5%. 847

Let us take a closer look at triangle T158. By using standard 848

statistical arguments (cf. Mendenhall and Sincich 2003) we 849

justify how good our spline method is. There are 19 of these 850

(θ j , φ j )’s fell in T158. The root mean square error s of the 851

spline approximation against the “exact” solution is 852

s =

√√√√ 1

19

19∑

i=1

(yi − ŷi )2 = 6.288, 853

where yi and ŷi stand for the exact values and spline values 854

of the geopotential at those locations (θm, φn) which are in 855

T158. The maximum of the relative errors is 856

max
i=1,...,19

|yi − ŷi |

|yi |
= 3.84%. 857
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Triangulated spherical splines for geopotential reconstruction

The coefficients of determination R2 (cf. Mendenhall and858

Sincich 2003, p. 124) is859

R2 = 1 −
SSE

SSyy

=

∑19
i=1(ŷi − ȳ)2

∑19
i=1(yi − ȳ)2

= 98.1%,860

where ȳ is the mean of the exact values. That is, 98.1% of861

the sample variation is explained by the spline model. In862

addition, we also find out that 63.16% of the “exact” values863

yi lie within one s of their respective spline predicted values864

ŷi and 100% of the “exact” values of yi are within two s865

of their respective spline predicted values ŷi . These indicate866

that the errors are normally distributed. The coefficient of867

variation(CV), the ratio of the root mean square error s to the868

mean ȳ is 1.79%. This shows that the coefficient of variation869

is very small and hence, the spline values lead to accurate870

prediction. Thus the spline method is reasonably accurate871

for prediction of the geopotential values at other locations872

within the triangle. Similar for the other triangles.873

It should be noted that the “truth” solution is directly874

computed from spherical harmonic coefficients (EGM96)875

at the Earth’s surface. A more fair comparison would have876

been generating the “truth” solution using a regional down-877

ward continuation from orbital altitude (e.g., using Poisson878

integrals), to compare with the spline regional solutions.879

The comparisons done here is for convenience and proof880

of concept of the proposed alternate gravity field inversion881

numerical methodology.882

5 Conclusion883

In this paper we proposed to use triangular spherical splines to884

approximate the geopotential on the Earth’s surface to assess885

its feasibility as an alternate method for regional gravity field886

inversion using data from satellite gravimetry measurements.887

A domain decomposition technique and a multiple star tech-888

nique are proposed to realize the computational schemes for889

approximating the geopotential. In particular, our compu-890

tational algorithms are parallalizable and hence enables us891

to model regional gravity field solutions over the triangular892

regions of interest. Thus our algorithms are efficient. The893

computational results show that triangular spherical splines894

for the geopotential over the orbital surface at the height of895

a satellite is reasonable accuracy. The computational results896

for the geopotential at the Earth’s surface are effective in897

approximation the “exact” geopotential over some triangles.898

These computational algorithms can be adapted to model the899

gravity field using GRACE and GOCE measurements (e.g.,900

disturbance potential and gravity gradient measurements at901

orbital altitude, respectively). However, over other triangles,902

the approximation are relatively worse, indicating our com-903

parison studies may not be fair to the spline technique and904

that further improvement in both the theory and numerical 905

computation is warranted. 906
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