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Abstract We study the regularity of the solution of Dirichlet problem of Poisson equations over

a bounded domain. A new sufficient condition, uniformly positive reach is introduced. Under the

assumption that the closure of the underlying domain of interest has a uniformly positive reach, the

H2 regularity of the solution of the Poisson equation is established. In particular, this includes all

star-shaped domains whose closures are of positive reach, regardless if they are Lipschitz domains

or non-Lipschitz domains. Application to the strong solution to the second order elliptic PDE in

non-divergence form and the regularity of Helmholtz equations will be presented to demonstrate the

usefulness of the new regularity condition.
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1 Introduction

Developing efficient numerical methods for solving second order elliptic equations, e.g., Poisson

equation, has drawn a lot of interest for many years. For example, numerical methods for the

following second order elliptic equations in non-divergence form are recently studied in [25, 30]

and [21]: Find u = u(x) satisfying

n∑

i,j=1

aij∂
2
iju = f, in Ω ⊂ R

n, (1.1)

u = 0, on ∂Ω, (1.2)

where Ω is an open bounded domain with a Lipschitz continuous boundary ∂Ω, aij ∈ L∞(Ω),

and ∂2ij are standard second order differentiation operators. Because the coefficients aij are only

in L∞(Ω), the PDE in (1.1) cannot be rewritten in a divergence form. The study is motivat-

ed by numerical solution of Hamilton–Jacob–Bellman equation which characterizes the value
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functions of stochastic control problems for applications in engineering, physics, economics, and

finance [26].

The study of the second order elliptic PDE in nondivergence form requires the H2 regularity

condition in order to have a strong solution. Usually, researchers use the convexity of the domain

Ω ⊂ R
n as an assumption, e.g. in [23, 25, 30], or assume a C2 smooth boundary ∂Ω to ensure

the H2 regularity of the solution of the Poisson equation, e.g. in [6] or [12].

For many practical problems, the domain of interest does not have a C2 boundary nor is

convex. One definitely needs to know the H2 regularity for more general domains to ensure the

existence of a strong solution of the PDE in (1.1).

Our goal of this paper is to establish H2 regularity for more general domains. Among

many existing generalizations of convexity is the concept called positive reach first introduced

by Federer [11]. See [28] for a recent survey.

Definition 1.1 Let K ⊂ R
n be a non-empty set. Let rK be the supremum of the number r

such that every points in

P = {x ∈ R
n : dist(x,K) < r}

has a unique projection in K. The set K is said to have a positive reach if rK > 0.

It is easy to see that a closed convex set is of positive reach with r = ∞. We shall explain

later that a domain with C2 boundary has a positive reach. Figure 1 illustrates some non-

convex planar sets with positive reach. As Figure 1 illustrates, sets of positive reach are much

more general than convex sets.

��

��

Figure 1 Domains (shaded) with positive reach

Next we introduce a new concept on domains of interest. Let B(0, ε) be the closed ball

centering at 0 with radius ε > 0, and let Kc stand for the complement of the set K in R
n. For

any ε > 0, the set

Eε(K) := (Kc +B(0, ε))c ⊂ K (1.3)

is called an ε-erosion of K.

Definition 1.2 A set K ⊂ R
n is said to have a uniformly positive reach r0 if there exists

some ε0 > 0 such that for all ε ∈ [0, ε0], Eε(K) has a positive reach at least r0.

It is easy to check that any closed convex set has an uniformly positive reach. Indeed, any

ε-erosion of a convex set is also a closed convex set. Also, a domain with C2 boundary has a

uniformly positive reach. One can see that each of the three sets in Figure 1 has a uniformly

positive reach.
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Next let us give an example to show that a set K has a positive reach, but not a uniformly

positive reach.

Example 1.3 Consider the closed set (on the left) in Figure 2. The set has a positive reach.

However, at one of the boundary points, the center of the circle in red in Figure 2 violates the

definition of the uniformly positive reach. As shown in Figure 2, the set Eε(K) in red is an

ε-erosion of K. As ε → 0, the boundary of Eε(K) is getting close to the boundary of K. The

reach of Eε(K) will go to 0. That is why K does not have a uniformly positive reach.

Figure 2 The set K on the left (in-between the square and the circle) has a positive reach, but does

not have uniformly positive reach. The graph (on right) shows the set K (in blue), its ε-erosion

Eε(K) (in red), and a small circle (in red). As ε becomes smaller, the reach of Eε(K) gets smaller.

In addition, from the definition of the uniformly positive reach, we can see that if a bounded

domain Ω ⊂ R
n has a uniformly positive reach, then Ω is of positive reach as the ε-erosions of

Ω converge to Ω. Thus, if a domain does not have a positive reach, it can not be of uniformly

positive reach.

The main purpose of this paper is to establish the following

Theorem 1.4 Let Ω ⊂ R
n be a bounded domain. Suppose the closure of Ω is of uniformly

positive reach rΩ. For any f ∈ L2(Ω), let u ∈ H1
0 (Ω) be the unique weak solution of the Dirichlet

problem:
⎧
⎨

⎩
−Δu = f, in Ω

u = 0, on ∂Ω.
(1.4)

Then u ∈ H2(Ω) in the sense that

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

≤ C0

∫

Ω

(f)2dx (1.5)

for a positive constant C0 dependent on rΩ, but independent of f and u.

We comment that the domain does not have to be a Lipschitz domain to have the H2

regularity based on Theorem 1.4. To see this, we can look at the domain in the middle graph

of Figure 1 and image that at one of the four tips, the two boundary curves have the same

tangent line, and hence the domain is not Lipschitz. By Theorem 1.4, this domain has the H2

regularity. Thus, a domain does not need to have a Lipschitz boundary in order to have the

H2 regularity.
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Next we explain that the assumption of positive reach in Theorem 1.4 is necessary. An

example is the solution u = (1 − r2)r2/3 sin(2θ/3) of the Poisson equation (1.4) over a domain

Ω = {(r, θ) : 0 < r < 1, 0 < θ < 2π/3}, where r =
√
x2 + y2 and θ = arctan(y/x). It is

easy to see that u is the solution of a Poisson equation with zero boundary and a uniform

bounded function f = 4(2/3 + 1)r2/3 sin(2θ/3) ∈ L2(Ω) satisfying (1.4). One can check that

u is not H2(Ω), see, e.g. [4]. Also see [14] for another example. It is easy to see that the

closure of the domain above does not have a positive reach nor uniform positive reach. For

the higher dimensional setting, when a bounded domain has a sharp inward cusp, e.g. the

well-known Lebesgue spine, the Dirichlet problem has no classic solution. For example, when

n = 3, consider the following domain

Ω = {(x, y, z) ∈ R
3 : x2 + y2 + z2 < 1, x2 + y2 > e−1/(2z) if z > 0}. (1.6)

The inward cusp at (0, 0, 0) is called a Lebesgue spine. At this cusp, the domain does not have

a positive reach, and the corresponding solution does not have H2 regularity. That is, in order

to have H2 regularity, the domain must have a positive reach.

Nevertheless, with some extra assumptions on the domain, one indeed may replace the

assumption of uniform positive reach by simply positive reach. In particular, we will see in the

next section that the conclusion of Theorem 1.4 remains true if Ω is star-shaped and the closure

of Ω is of positive reach.

Before proving Theorem 1.4, let us review some classic results on the H2 regularity property

of the solution to Dirichlet problem of the Poisson equation first. In [15], the concept of domain

with a cusp was introduced which is called turning points in [13]. An example from [13] was

shown in Figure 3.

Figure 3 Domain with a turning point [13]

The following result was established in [13]. See also some similar result in [15].

Theorem 1.5 Let f ∈ L2(Ω). Then there exists a unique u ∈ H2(Ω)∩H1
0 (Ω) satisfying (1.4)

provided

lim sup
x→0

(|φ′′1 (x)| + |φ′′2 (x)|)(φ2(x) − φ1(x))

(φ′2(x) − φ′1(x))2
< 2. (1.7)

with the assumption that 0 is a turning point, where φ1, φ2 are indicated in Figure 3.

As explained in [13], when φ1(x) ≡ 0 and φ2(x) = xα with α > 1, the sufficient condition

in (1.7) is satisfied. However, when φ1(x) ≡ 0 and φ2(x) = x2/4, the sufficient condition (1.7)
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will not be fulfilled. Nevertheless, we can see that a domain with such a turning point as in

Figure 3 has a uniformly positive reach and hence, our Theorem 1.4 can be used to establish

the H2 regularity even φ2(x) = x2/4. That is, the condition in Theorem 1.4 is more general.

We next recall the following

Theorem 1.6 (Adolfsson, 1992 [1]) Suppose that Ω is a uniformly Lipschitz domain in R
n of

finite width. If Ω satisfies an outer ball condition of uniform radius, then the unique solution

u ∈ H1
0 (Ω) of the Dirichlet problem (1.4) has all its second order derivatives in L2(Ω), i.e.,

u ∈ H2(Ω).

The outer ball condition mentioned above is that at each point p on ∂Ω there exists an

exterior ball B, i.e. B ⊂ Ωc of radius r touch at p, i.e. tangent to ∂Ω, where Ωc stands for the

complement of Ω. When Ω is bounded, Ω is of finite width. When Ω is a bounded Lipschitz

domain, it is a uniformly Lipschitz domain. These explain all the notational questions in

Theorem 1.6. It is easy to see that any convex domain satisfies the uniform outer ball condition.

Also, a convex domain is a Lipschitz domain [2]. Thus, Theorem 1.6 is applicable to convex

domains. Recently, the Lipschitz domains satisfying a uniform exterior ball condition is called

semi-convex domains (e.g. [24] and [9]).

We will show that when Ω is of positive reach, Ω satisfies an outer ball condition for a

uniform radius as explained in Lemma 2.1 (see the following section). On the other hand, if

Ω satisfies a uniform outer ball condition, Ω may not have a uniformly positive reach. See the

domain in the left panel of Figure 2. (Note that the domain is not Lipschitz. Both Theorems 1.4

and 1.6 fail to establish the regularity for such a domain.) These show that our condition and

the one in Theorem 1.6 are two different conditions to ensure the H2 regularity of the solution

to Dirichlet problem.

Let us also note that if a set K ⊂ R
m ⊂ R

n is of positive reach in R
n, then it is also of

positive reach in R
m for m < n. This is not the case for the outer ball condition: indeed, any

planar set satisfies a uniform outer ball condition of any radius in R
3. Let us also emphasize

that the main difference between Theorems 1.4 and 1.6 is that in Theorem 1.4, the domain Ω

does not need to have a Lipschitz boundary.

Because a set Ω satisfies an outer ball condition for a uniform radius whenever Ω is of

positive reach (Lemma 2.1) we may simply replace the outer ball condition in Theorem 1.6 by

the positive reach condition, and restate the result as a part of Theorem 1.7. The other part

of Theorem 1.7 is a precise relation of the constant C0 in (1.5) with the positive reach rΩ of Ω.

Theorem 1.7 Suppose that Ω ⊂ R
n is a bounded domain with Lipschitz boundary. Suppose

that the closure of Ω has a positive reach rΩ > 0. For any f ∈ L2(Ω), let u ∈ H1
0 (Ω) be the

unique weak solution of the Dirichlet problem (1.4). Then u ∈ H2(Ω) in the sense of (1.5).

Moreover, the constant in (1.5) depends only on the positive reach rΩ.

In Section 2, we first use the concept of star-shaped domain to establish a proof of H2

regularity over a star-shaped domain which has a positive reach. See Theorem 2.7. Then, we

devote our effort to proving Theorem 1.4. In Section 3.1, we address two applications of the

new H2 regularity condition.
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2 Proofs

We shall prove Theorem 1.7 before proving Theorem 1.4. Let us begin with some properties of

sets with positive reach.

Lemma 2.1 Let Ω be a bounded domain in R
n. If Ω is of positive reach rΩ, then the following

are true:

(i) For every 0 < r < rΩ, and every y ∈ R
n with dist(y,Ω) < rΩ, if x is the projection of

y onto Ω, then, the closed ball B(z, r) centering at z with radius r intersects Ω precisely at x,

where

z = x+
r

‖y − x‖ (y − x). (2.1)

(ii) For every 0 < r < rΩ, every point on the boundary of Ω is touchable by a closed ball of

radius r from outside, that is, for every 0 < r < rΩ and every x0 ∈ ∂Ω, there exists a w ∈ R
n,

such that the closed ball B(w, r) intersects Ω precisely at x0.

Proof We prove (i) by contradiction. Suppose (i) is false, then there exist a y ∈ R
n with

0 < dist(y,Ω) < rΩ, and an x ∈ Ω with ‖y − x‖ = dist(y,Ω), and 0 < r < rΩ such that the

closed ball B(z, r) does not intersect Ω uniquely at x with z in (2.1). Since Ω is of positive

reach, we must have

‖z− x‖ > dist(z,Ω). (2.2)

This implies that

0 < 1 ≤ τ := sup{t : dist(x+ t(y − x),Ω) = t‖(y − x)‖} ≤ r

‖y − x‖ <∞.

We have

r = dist(z,x) =

∥∥∥∥
r

‖y− x‖ · (y − x)

∥∥∥∥ ≥ τ‖y − x‖ ≥ rΩ

by applying (6) of Theorem 4.8 in Federer [11]. This contradicts to the assumption r < rΩ.

Hence, (i) is proved.

Now, we use (i) to prove (ii). Because x0 is on the boundary of Ω, there exists N0 > 0 such

that for every integer m ≥ N0, we can choose a point ym outside Ω so that ‖ym − x0‖ < r/m.

Let xm be the projection of ym onto Ω. Let

wm = xm +
r

‖ym − xm‖(ym − xm).

By i), the closed ball B(wm, r) intersects Ω precisely at xm. Since

‖wm − x0‖ ≤ ‖wm − xm‖+ ‖xm − x0‖ ≤ (1 + 1/m)r

for all m ≥ N0, the sequence {wm} is bounded in R
n. Hence it contains a subsequence that

converges to some w0 ∈ R
n. Clearly, we have

‖w0 − x0‖ = r = dist(w0,Ω).

Since r < rΩ, the closed ball B(w0, r) intersects Ω precisely at x0. This finishes the proof of

(ii). �
We are now ready to establish the first part of Theorem 1.7. By using part (ii) of Lemma 2.1

above, we can see the positive reach rΩ implies the outer ball condition of uniform radius rΩ
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in Theorem 1.6. Thus, the first part of Theorem 1.7 is established by Theorem 1.6. We shall

continue the investigation of the second part of Theorem 1.7 in the next. The proof is the same

as the one for Theorem 1.4. We leave it to when we prove Theorem 1.4.

We now investigate how large the constant C0 in (1.5) is. We shall connect it to the positive

reach rΩ. To do so, we shall use the following standard formula [13, Theorem 3.1.1.1]: Suppose

that u ∈ H2(Ω) ∩ H1
0 (Ω) over a bounded domain Ω ⊂ R

n with C1,1 smooth boundary. Then

we have
∫

Ω

|div v|2dx−
n∑

i,j=1

∫

Ω

∂ivj∂jvidx

= −2

∫

∂Ω

vT∇T (v · n)dσ −
∫

∂Ω

[B(vT ,vT ) + tr(B)(v · n)2], (2.3)

where B is a symmetric matrix of size (n− 1)× (n− 1), tr is the trace operator of the bilinear

form: tr(B) = −∑n−1
i=1

∂n
∂si

· τi, and T = [τ1, . . . , τn−1] and n are the tangent vectors and the

outward normal direction vector of ∂Ω, respectively. Letting v = ∇u in (2.3) leads to
n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

=

∫

Ω

(Δu)2dx+ 2

∫

∂Ω

∇Tu∇T (∇u · n)dσ

+

∫

∂Ω

[B(∇u|T ,∇u|T ) + tr(B)(∇u · n)2]dσ. (2.4)

See a detailed proof of (2.4) in [13] or [5]. When the underlying domain Ω is convex, we

have tr(B) ≤ 0 and B(vT ,vT ) ≤ 0. Thus we have C0 = 1 in (1.5). We can also use the

so-called Miranda–Talenti estimate. In [22] and [27] the following equality was calculated: for

any u ∈ H2(Ω),
∫

Ω

n∑

i,j=1

(
∂2u

∂x2i

∂2u

∂x2j
−
(

∂2u

∂xi∂xj

)2)
dx = −(n− 1)

∫

∂Ω

H(x)‖∇u‖2dσ, (2.5)

where H(x) is the mean curvature of ∂Ω which is C2 boundary. In the setting of the convex

domain Ω, H(x) is non-positive, we use (2.5) and the following identity:
n∑

i,j=1

(
∂2u

∂xi∂xj

)2

+

n∑

i,j=1

(
∂2u

∂x2i

∂2u

∂x2j
−
(

∂2u

∂xi∂xj

)2)
= (Δu)2 (2.6)

to conclude the inequality in (1.5) with C0 ≡ 1. When the domain Ω has a positive reach rΩ,

the mean curvature H(x) at each x can be bounded above by (n−1)/rΩ. This is quantitatively

established in the following lemma.

Lemma 2.2 Suppose that Ω is a bounded open set with C1,1 boundary ∂Ω. Suppose that

tr(B) ≤ c for a fixed real number c > 0, e.g. c = (n − 1)/r over ∂Ω. Then the inequality in

(1.5) holds for a constant C0 = (1+(cK)2C2)/(1−cKε), where C is a constant in the Poincaré

inequality (2.7) and K is the constant in the trace inequality in (2.10).

Proof Using Poincaré inequality, we have

‖u‖L2(Ω) ≤ C‖∇u‖L2(Ω) (2.7)

for a positive constant C dependent only on the size of Ω. As u is a weak solution, we have
∫

Ω

|∇u|2dx = −
∫

Ω

(Δu)udx.
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We use Cauchy–Schwarz inequality to get

‖u‖2L2(Ω) ≤ C2‖∇u‖2L2(Ω) ≤ C2‖Δu‖L2(Ω)‖u‖L2(Ω).

That is, we have

‖u‖L2(Ω) ≤ C2‖Δu‖L2(Ω) (2.8)

and

‖∇u‖L2(Ω) ≤ C‖Δu‖L2(Ω). (2.9)

In addition, we need the standard Sobolev trace inequality:
∫

∂Ω

|u|2dσ ≤ K

(
ε

∫

Ω

|∇u|2dx+
1

ε

∫

Ω

|u|2dx
)

(2.10)

for any ε ∈ (0, 1), where K > 0 is a constant independent of u. The second term in (2.4) can

be estimated by
∫

∂Ω

tr(B)(∇u · n)2dσ ≤ c

∫

∂Ω

(∇u · n)2dσ ≤ c‖∇u‖2L2(∂Ω).

We then use the trace inequality to the right-hand side of the above inequality to get

c‖∇u‖2L2(∂Ω) ≤ cKε

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

+
cK

ε

∫

Ω

|∇u|2dx. (2.11)

Indeed, we first consider an open set Vε ⊂ Ω with C1,1 boundary. Using the interior regularity

of u, we have the above inequality with Ω replaced by Vε. Then we let Vε → Ω to have (2.11).

Returning to (2.4), we have

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

≤
∫

Ω

(Δu)2dx+ cKε

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

+
cK

ε

∫

Ω

|∇u|2dx

By choosing ε = 1/(cK) < 1 and using (2.9),

(1− εcK)

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

≤
∫

Ω

(Δu)2dx+ (cK)2C2

∫

Ω

(Δu)2dx.

The desired inequality (1.5) follows with C0 = (1 + (cK)2C2)/(1− cKε). �
Let us make a remark that the result in the lemma above is not new. A similar result can

be found in [18]. That is, when the domain with boundary ∂Ω consists of piecewise C2 smooth

surfaces with curvature bounded below by a constant c > 0, one has the property (1.5). See

[18, Lemma 8.1]. When the domain Ω has a positive reach, we can estimate c in terms of the

reach r = reach(Ω) as in the following lemma.

Lemma 2.3 Let Ω be a bounded set in R
n with a C1,1 boundary. Suppose that the closure of

Ω has a positive reach. If reach(Ω) ≥ r, then tr(B) ≤ n−1
r .

Proof Let Γ be the boundary of Ω. For any point P on Γ, we choose a coordinate system

{y1, y2, . . . , yn} with origin at P such that the hyperplane yn = 0 is tangent to Γ at P , and

choose a rectangular box

V = {(y1, y2, . . . , yn) : −aj ≤ yj ≤ aj , 1 ≤ j ≤ n},
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and a function φ of class C1,1 in the closure of

V ′ = {(y1, y2, . . . , yn−1) : −aj ≤ yj ≤ aj , 1 ≤ j ≤ n− 1},
such that |φ(y1, y2, . . . , yn−1)| ≤ an

2 for every (y1, y2, . . . , yn−1) ∈ V ′, and

Ω ∩ V = {(y1, y2, . . . , yn) ∈ V : yn ≤ φ(y1, . . . , yn−1)},
Ω ∩ Γ = {(y1, y2, . . . , yn) ∈ V : yn = φ(y1, . . . , yn−1)}.

Then,

tr(B) =
n−1∑

j=1

∂2φ

∂y2i
(0, 0, . . . , 0).

Note that by Lemma 2.1, for any δ < r, there exists a ball of radius δ which intersects Ω only

at the point P . Because the hyperplane yn = 0 is the tangent plane of Ω at the origin P , this

ball must lie entirely above the tangent hyperplane yn = 0. Consequently, for |h| < min{a1, δ},
we have φ(h, 0, . . . , 0) ≤ δ −√

δ2 − h2. Since φ(0, . . . , 0) = 0 and ∂φ
∂y1

(0, . . . , 0) = 0, we obtain

∂2φ

∂y21
(0, . . . , 0) = lim

h→0

φ(h, 0, . . . , 0) + φ(−h, 0, . . . , 0)
h2

≤ lim
h→0

2δ − 2
√
δ2 − h2

h2

=
1

δ
.

Similarly, we have ∂2φ
∂y2

j
(0, . . . , 0) ≤ 1

δ for all 2 ≤ j ≤ n − 1. Because δ < r is arbitrary, the

statement of the lemma follows. �
Combining the results above, we obtain the following:

Corollary 2.4 Let Ω be a bounded set in R
n with a C1,1 boundary. Suppose that Ω̄ has a

positive reach(Ω) ≥ r. Then

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

≤ C1

∫

Ω

(Δu)2dx (2.12)

for a constant C1 = (1+((n−1)K/r)2C2)/(1− ε(n−1)K/r), where C is the Poincaré constant

in (2.7) and K is the constant in the trace inequality in (2.10).

Next we extend Theorem 1.7 to a more general setting. In particular, we need to remove

the assumption of C1,1 boundary in Corollary 2.4. Let us start with a well-known concept of

star-shaped domains [4]. See Figure 4 for such an example.

Definition 2.5 Let Ω ⊂ R
n be a bounded domain. We say Ω is a star-shaped domain if there

exists a point, say x0 ∈ Ω such that the line segment from x0 to any point x ∈ Ω is completely

contained in Ω. x0 is called the center of Ω.

Clearly, we can extend the definition of star-shaped domains to the following way.

Definition 2.6 Let Ω ⊂ R
n be a bounded domain. We say Ω is a multiple-star-shaped domain

if there exist finitely many points, say x1, . . . ,xk ∈ Ω such that for any point x ∈ ∂Ω, there

exists an index i ∈ {1, . . . , k} such that the line segment [x,xi] is completely contained in Ω.

x1, . . . ,xk are called the centers of Ω.
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Typically, a bounded domain with Lipschitz boundary is a multiple-star-shaped domain. A

multiple-star-shaped domain may have a uniformly positive reach. See Figure 4 for an example.

�
�
��

Figure 4 Left: A star-shaped domain which is not Lipschitz at one corner (the bottom one). Right:

A multi-star shaped domain with uniform positive reach

We now state the H2 regularity of the solution to the Dirichlet problem of Poisson equations

over a general domain.

Theorem 2.7 Suppose that Ω ⊂ R
n is a bounded a star-shaped domain. Suppose that the

closure of Ω is of positive reach r. For any f ∈ L2(Ω), let u ∈ H1
0 (Ω) be the unique weak solution

of the Dirichlet problem (1.4). Then u ∈ H2(Ω) satisfies (1.5) with constant C0 dependent on

r.

To prove the above theorem, we need a few preparatory results. The lemma below shows

that for any ε > 0 there is an open subset Uε ⊃ Ω such that Uε has a C1,1 smooth boundary

and dist(Uε,Ω) < ε.

Lemma 2.8 If Ω ⊂ R
n is of positive reach r0 = reach(Ω), then for any 0 < ε < r0, the

boundary of Ωε := Ω + B(0, ε) containing Ω is of C1,1. Furthermore, Ωε has a positive reach

≥ r0 − ε.

Proof Because the boundary B(0, ε) is of C∞, it is known (see [16]) that the boundary of Ωε

is of C1,1 if Ω is convex. We now extend the result to the setting that Ω is a domain whose

closure has a positive reach.

For any x ∈ ∂Ωε, there exists y ∈ ∂Ω such that ‖x − y‖ = dist(x,Ω) = ε since Ω is of

positive reach and ε < r0. Also, for any ε < r < r0, there exists a closed ball of radius r that

intersects Ω only at y. Denote this ball by B(c, r). Then the ball B(c, r− ε) intersects Ωε only

at x.

On the other hand, the closed ball B(y, ε) is contained in Ωε and intersect ∂Ωε only at x.

Hence, ∂Ωε intersects two tangent balls B(y, ε) and B(c, r− ε) at x. Without loss of generality,

we may assume x = 0 and the tangent hyperplane at 0 is xn = 0, where x = (x1, . . . , xn). The

boundary of Ωε can be expressed as xn = φ(x1, . . . , xn−1) by the implicit function theorem.

Note that φ(0, 0, . . . , 0) = 0. Letting x̄ = (x1, . . . , xn−1) be the first part of x ∈ ∂Ω, for

‖x̄‖ < min{ε, r − ε}, we have

√
ε2 − ‖x̄‖2 − ε ≤ φ(x̄) = φ(x1, x2, . . . , xn−1) ≤ r − ε−

√
(r − ε)2 − ‖x̄‖2. (2.13)
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We claim that φ is differentiable at 0. Indeed, we have

φ(x̄)− φ(0)

‖x̄‖ ≤ r − ε−√
(r − ε)2 − ‖x̄‖2
‖x̄‖ =

‖x̄‖
r − ε+

√
(r − ε)2 − ‖x̄‖2 (2.14)

and
φ(x̄)− φ(0)

‖x̄‖ ≥ − ‖x̄‖
ε+

√
ε2 − ‖x̄‖2 (2.15)

by using the inequalities in (2.13). It follows that φ is differentiable at 0 and ∇φ(0) = 0.

Similar analysis for all point in Ω implies that Ω has a C1 boundary.

We next claim that the gradient of φ is bounded from above and below. Using the notations

above, we have

φ(x̄) + φ(−x̄)− φ(0)

2‖x̄‖2 ≤ r − ε −√
(r − ε)2 − ‖x̄‖2
‖x̄‖2 =

1

r − ε +
√
(r − ε)2 − ‖x̄‖2 (2.16)

and similarly,

φ(x̄) + φ(−x̄)− φ(0)

2‖x̄‖2 ≥ − 1

ε+
√
ε2 − ‖x̄‖2 . (2.17)

Therefore, for all ‖x̄‖ ≤ min{r − ε, ε}, we have

−1

ε
<
φ(x̄) + φ(−x̄)− 2φ(0)

2‖x̄‖2 <
1

r − ε
. (2.18)

We now apply a known result Lemma 2.9 to finish the proof of C1,1.

Finally, we show Ω is of reach r − ε. For any point q �∈ Ωε, if dist(q,Ωε) < r − ε, we know

dist(q,Ω) = δ < r. Since the reach of Ω is at least r, there exists a closed ball centering at q

with radius δ > 0 which intersects Ω only at one point p, say. Now the closed ball centered at

q with radius δ− ε intersects Ωε only at one point, namely the point p+ ε(q− p)/δ. Therefore,

Ωε is of reach δ − ε. This holds for all δ < r. Thus, Ωε has a reach of δ − ε. In general, r − ε is

the best one can hope for. Indeed, if Ω is the complement of an open ball with radius r which

has a positive reach r, then Ωε is the complement of an open ball with radius r − ε which has

a reach r − ε. �

Lemma 2.9 Assume that the function f is bounded on a neighborhood of x0 ∈ ∂Ω. f is of

class C1,1 at x0 if and only if there exists a neighborhood U of x0 such that the central difference

Δ2f(x;h) = f(x+ hd)− 2f(x) + f(x− hd) (2.19)

is bounded on U for all h ∈ (−δ, δ) for a fixed δ > 0 and d ∈ Sn−1 which is the unit sphere in

R
n.

Proof See [29, Corollary 2.1] for a proof. �
Next we show that if Ω is a star-shaped domain whose closure is of positive reach, then for

any ε > 0, there exists an open set Uε ⊂ Ω with C1,1 boundary with dist(Ω, Uε) < ε.

Lemma 2.10 Let Ω be a bounded domain with a positive reach in R
n. Suppose that Ω is

a star-shaped domain. Then, for each ε > 0, there exists an open set Uε with C1,1 smooth

boundary such that Uε ⊂ Ω and dist(Ω, Uε) ≤ ε.
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Proof Let x0 ∈ Ω be the center of the star-shaped domain Ω. By Lemma 2.8, we have Ωε

containing Ω with C1,1 boundary for any ε < r, where r stands for the reach of Ω. Letting ∂Ωε

be the boundary of Ωε, we define

Uε =

{
y = x0 + t(x− x0) : 0 ≤ t ≤

(
1− 2ε

‖x− x0‖
)
, x ∈ ∂Ωε

}
. (2.20)

We claim that Uε ⊂ Ω is a domain with C1,1 boundary. Indeed, at the center x0 ∈ Ω, we fix

a spherical coordinate system. For any point x ∈ ∂Ωε, we define a function φ of the angle of

the ray from x0 to x with value to be the length ‖x− x0‖. Then φ is a function describing the

boundary of Ωε. Since Ωε has a C1,1 boundary by Lemma 2.8, φ is a C1,1 function. Next we

define a new function ψ over the same spherical coordinate system as φ by

ψ

(
x0 +

(
1− 2ε

‖x− x0‖
)
(x− x0)

)
= φ(x), ∀x ∈ Ωε

which is the function which can describe the boundary of Uε. Clearly, ψ(x) is a C1,1 function

for x ∈ Uε and hence, Uε has a C
1,1 boundary. �

We are now ready to prove Theorem 2.7 under an assumption that Ω is a star-shaped

domain.

Proof of Theorem 2.7 We use Lemma 2.10 to select a sequence of sets Uε ⊂ Ω with dist(Ω, Uε)

≤ ε with ε→ 0.

For a function f ∈ L2(Ω). Then, we define uε ∈ H1
0 (Uε) to be the weak solution of

⎧
⎨

⎩
−Δu = f, in Uε,

u = 0, on ∂Uε.
(2.21)

We claim that uε ∈ H2(Uε). Indeed, using Lemma 2.10 again, we take an open set Vη ⊂ Uε.

The interior regularity of uε [10] and the C1,1 boundary of Vη allows us to have

n∑

i,j=1

∫

Vη

(
∂2

∂xi∂xj
uε

)2

=

∫

Vη

f2dx+

∫

∂Vη

∇Tuε∇T (∇uε · n)dσ

+

∫

∂Vη

[B(∇uε|T ,∇uε|T ) + tr(B)(∇uε · n)2]dσ (2.22)

by using (2.4), where T and n stand for the tangential and normal direction of ∂Vη. As the

above equation in (2.22) holds for all Vη, hence it holds for Uε. Using the boundary condition

uε|∂Ω = 0, we have ∇Tuε = 0 and

n∑

i,j=1

∫

Uε

(
∂2

∂xi∂xj
uε

)2

=

∫

Uε

f2dx+

∫

∂Uε

tr(B)(∇uε · n)2dσ, (2.23)

Since the domain Uε has C1,1 boundary and a positive reach, we use Corollary 2.4, i.e. (2.12)

to have
n∑

i,j=1

∫

Uε

(
∂2

∂xi∂xj
uε

)2

≤ C1‖f‖2L2(Ω)

with C1 ≥ 1 being a positive constant dependent on the reach.
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Let us extend uε by zero outside Uε to Ω, also denote it by uε. Then uε belongs to H
2(Ω)∩

H1
0 (Ω) for all ε > 0 sufficiently small and

‖uε‖H2(Uε) ≤ C2‖f‖L2(Ω) (2.24)

for another positive constant C2. By Rellich’s theorem, there is ũ ∈ H2(Ω) and a subsequence,

without loss of generality, we may assume that uε → ũ strongly in L2(Ω), strongly in H1(Ω),

and weakly in H2(Ω).

We now claim that u = ũ. Since u ∈ H1
0 (Ω), for any φ ∈ C∞

0 (Ω), we have

∫

Ω

∇u∇φdx = −
∫

Ω

fφdx. (2.25)

Since φ is compactly supported in Ω, Lemma 2.10 shows that there is ε > 0 such that supp(φ)

⊂ Uε for all ε > 0 sufficiently small. Since uε ∈ H2(Uε) ∩ H1
0 (Uε) solves the Poisson equation

over Uε and uε → ũ in H1
0 (Ω) weakly, we get

∫

Ω

∇ũ∇φdx = limε→0+

∫

Ω

∇uε∇φdx

= limε→0+ −
∫

Uε

fφdx

= −
∫

Ω

fφdx

=

∫

Ω

∇u∇φdx (2.26)

by using (2.25). It follows that ∇u ≡ ∇ũ since (2.26) holds for all φ ∈ C∞
0 (Ω). Then u ≡ ũ

because of the zero boundary condition for both u and ũ. Therefore, u ∈ H2(Ω).

Remark 2.11 Based on the proof above, we can remove the C1,1 assumption in Corollary 2.4

to have (2.12) when the underlying domain Ω is a star-shaped domain.

Finally let us proceed to establish Theorem 1.4.

Proof of Theorem 1.4 The proof of Theorem 1.4 is similar to that of Theorem 2.7 in the

following senses. Indeed, instead of defining Uε ⊂ Ω by using the formula in (2.20), we let

Eε(Ω) = (Ωc +B(0, ε))c ⊂ Ω be an ε-erosion of Ω and

Uε = E2ε(Ω) +B(0, ε) ⊂ Ω. (2.27)

By the assumption of Theorem 1.4, i.e. the uniformly positive reach, we know the domain

E2ε(Ω) has a positive reach r0 for sufficiently small ε. Then by Lemma 2.8, Uε has C1,1

boundary. Then the rest of the proof is the same as that of Theorem 2.7. These finish the

proof. �

3 Some Applications

In this section, we apply the new regularity conditions to two examples of PDE and establish

the H2 regularity.
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3.1 The Strong Solution to Second Order PDE in Non-divergence Form

In this section we study the solution to the second order PDE in non-divergence form in (1.1).

For simplicity, we let

L(u) =
n∑

i,j=1

ai,j(x)
∂2

∂xi∂xj
u (3.1)

be the differential operator associated with the model problem (1.1). Next we assume that

Definition 3.1 The PDE coefficients aij (i, j = 1, . . . , n) satisfy the Cordés condition [23]:
∑n

i,j=1 a
2
ij

(
∑n

i=1 aii)
2
≤ 1

n− 1 + ε
, in Ω, (3.2)

for a positive number ε ∈ (0, 1].

Following the studies in [25, 26], and [23], we assume that

γ =

∑n
i=1 aii∑n
i,j=1 a

2
ij

> 0. (3.3)

For example, the ellipticity of the PDE in (1.1) will imply (3.3) when n = 2. The following

result is known.

Lemma 3.2 ([23, 25]) Suppose that the PDE coefficients aij , (i, j = 1, . . . , n) satisfy the

Cordés condition. Then

|γL(u)−Δu| ≤ √
1− ε

( n∑

i,j=1

(
∂2

∂xi∂xj
u

)2)1/2

. (3.4)

With this preparation, we are able to prove one of our main results in this section.

Theorem 3.3 Suppose that Ω has a uniformly positive reach. If the PDE coefficients aij

satisfy the Cordés condition with an ε close to 1 such that
√
(1 − ε)C0 < 1, then there exists a

unique strong solution u ∈ H2(Ω) to the PDE in (1.1), where C0 appears in Theorem 1.4, i.e.

in (1.5).

Proof We mainly follow the approach in [25]. First of all, it is easy to see that ‖Δu‖L2(Ω) is

a norm on H . By Theorem 1.4, ‖Δu‖L2(Ω) = 0 implies

n∑

i,j=1

(
∂2

∂xi∂xj
u

)2

= 0

by using (1.5). Thus, u is a linear polynomial over Ω. The zero boundary condition of u implies

u ≡ 0. The other norming properties can be established in a standard fashion.

Next let us consider an equivalent PDE: find u ∈ H2(Ω) ∩H1
0 (Ω) satisfying the following:

γL(u) = γf, ∈ Ω. (3.5)

Write H = H2(Ω) ∩H1
0 (Ω) and define a bilinear form [25].

A(u, v) =

∫

Ω

γL(u)Δvdx (3.6)

We now claim that the bilinear form A(u, v) is continuous in the sense that there is a positive

constant β > 0 such that

|A(u, v)| ≤ β‖Δu‖L2(Ω)‖Δv‖L2(Ω) (3.7)
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for all u, v ∈ H and coercive, i.e.

A(u, u) ≥ α‖Δu‖2L2(Ω), ∀u ∈ H (3.8)

for ε ∈ (0, 1) large enough, where α > 0 is a constant independent of u. Indeed, we use

Lemma 3.2 to have
∣∣∣∣A(u, u)−

∫

Ω

(Δu)2dx

∣∣∣∣ ≤
∫

Ω

|γL(u)−Δu||Δu|dx

≤
∫

Ω

√
1− ε

( n∑

i,j=1

(
∂2

∂xi∂xj
u

)2)1/2

|Δu|dx

≤ √
1− εC

1/2
0

∫

Ω

(Δu)2dx

by Cauchy–Schwarz inequality and the inequality in (2.12). If ε ∈ (0, 1) is large enough such

that
√
C0

√
1− ε < 1, we have (3.7) and (3.8) with β = 1+

√
1− ε

√
C0 and α = 1−√

1− ε
√
C0.

Now Lax–Milgram theorem implies that there exists a unique weak solution in H satisfying

A(u, v) =

∫

Ω

γfΔvdx.

That is, u is a weak solution in H satisfying (3.5). Since u ∈ H2(Ω), u is a strong solution.

This finishes the proof of Theorem 3.3. �

3.2 The Regularity of the Solution to the Helmholtz Problem

We are interested in the regularity of the solution of the following Helmholtz problem:
⎧
⎨

⎩
−Δu− k2u = f, in Ω ⊂ R

2

∂

∂n
u+ iku = 0, on ∂Ω,

(3.9)

where Ω is a bounded domain with Lipschitz boundary, i =
√−1 denotes the imaginary unit,

n is the normal to ∂Ω, and k ≥ 1 is the wave number. This Helmholtz problem arises from

many application areas: acoustic scattering, electromagnetic fields, etc. In the literature, the

solution to Helmholtz problem (3.9) will be H2 if Ω is convex or Ω has a C2 smooth boundary

(see [8]). We now show that the unique solution u is of H2 regularity when Ω has a uniform

positive reach.

Theorem 3.4 Let Ω ⊂ R
n be a bounded domain. Suppose the closure of Ω is of uniformly

positive reach rΩ > 0. For any f ∈ L2(Ω), let u ∈ H1
0 (Ω) be the unique weak solution of the

Helmholtz problem (3.9). Then u ∈ H2(Ω) satisfying (1.5) for a positive constant C0 dependent

on rΩ, but independent of f and u.

Proof The ideas for this proof are similar to that of Theorem 1.4. We first prove that the

solution u satisfies (1.5) if u ∈ H2(Ω). Then we find a sequence of subdomains Uε ⊂ Ω which

has C1,1 boundary with uniform positive reach rΩ/2 and solve uε ∈ H2(Ωε) satisfying (1.5) with

a constant C0 dependent on rΩ/2. Finally, we use Rellich theorem to find a limit u ∈ H2(Ω) of

uε strongly in L2(Ω) and strong in H1(Ω) and weakly in H2(Ω).

The major proof is to show the boundedness of u in H2(Ω) semi-norm. Let us start with
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the the following identity [13]: when Ω has C1,1 boundary and u ∈ H
2(Ω), u satisfies

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

=

∫

Ω

(Δu)2dx+

∫

Γ

∇Tu∇T (∇u · n)dσ

+

∫

Γ

[B(∇u|T ,∇u|T ) + tr(B)(∇u · n)2]dσ (3.10)

for n ≥ 2, where tr is the standard trace operator, B is a bilinear form associated with the

curvature of boundary surface Γ of Ω as defined in [13], and n is the unit outward normal

direction of Γ = ∂Ω and T is the unit tangential direction of Γ.

Since u is the solution of (3.9), we use the boundary condition to get
∫

Γ

∇Tu∇T (∇u · n)dσ = −k
∫

Γ

∇Tu∇Tudσ = −k
∫

Γ

|∇Tu|2dσ ≤ 0. (3.11)

Next we split Γ into three portions according the symmetric Hessian matrix B, i.e. Γ =

Γp ∪ Γn ∪ Γi such that B ≥ 0 for x ∈ Γp, B < 0 for x ∈ Γn and B is indefinite when x ∈ Γi.

The last term in (3.10) can be rewritten as
∫

Γ

[B(∇u|T ,∇u|T ) + tr(B)(∇u · n)2]dσ ≤
∫

Γp∪Γi

[B(∇u|T ,∇u|T ) + tr(B)(∇u · n)2]dσ.

When the underlying domain Ω has a positive reach rΩ, we have tr(B) ≤ (n − 1)/rΩ over the

boundary Γ by Lemma 2.3. Also, over Γp, we B(∇u|T ,∇u|T ) ≤ ‖∇u‖2Γ‖B‖ ≤ |∇u‖2Γ(n−1)/rΩ.

Thus,
∫

Γp

[B(∇u|T ,∇u|T ) + tr(B)(∇u · n)2]dσ ≤ n− 1

rΩ

∫

Γp

[|∇uT |2 + (∇u · n)2]dσ.

Over Γi, we rewrite B = Bp − Bn with symmetric nonnegative definite matrices Bp and Bn.

Thus,
∫

Γi

[B(∇u|T ,∇u|T ) + tr(B)(∇u · n)2] dσ ≤
∫

Γi

Bp(∇u|T ,∇u|T )dσ +

∫

Γi

tr(Bp)(∇u · n)2dσ.

By the same argument as the proof of Lemma 2.3, we have tr(Bp) ≤ (n − 1)/rΩ and hence,

‖Bp‖ ≤ tr(Bp). That is, we also have
∫

Γi

Bp(∇u|T ,∇u|T )dσ +

∫

Γi

tr(Bp)(∇u · n)2dσ ≤ n− 1

rΩ

∫

Γp

[|∇uT |2 + (∇u · n)2]dσ.

We summarize the discussion above to have
2∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

≤
∫

Ω

(Δu)2dx+
n− 1

rΩ

(∫

Γp

+

∫

Γi

)
[|∇uT |2 + (∇u · n)2]dσ

=

∫

Ω

(Δu)2dx+
n− 1

rΩ

∫

Γ

|∇u|2dσ

≤
∫

Ω

(f − k2u)2 + cKε

n∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

+
cK

4ε

∫

Ω

|∇u|2dx

for some ε > 0, where c = (n− 1)/rΩ for convenience. Choosing εKc < 1/2, we obtain

2∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

≤ 4‖f‖2 + 4k4
∫

Ω

u2 +
cK

2ε

∫

Ω

|∇u|2dx. (3.12)
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Next we use [19, Theorem 1] to have

2∑

i,j=1

∫

Ω

(
∂2

∂xi∂xj
u

)2

≤ C(1 + k2)‖f‖2 (3.13)

for a positive constant C independent of f and k. Therefore, in the semi-norm of H
2(Ω),

|u|2,Ω ≤ C(1 + k)‖f‖. We have thus established Theorem 3.4. �

4 Remarks

We present a few remarks on domains with uniformly positive reach. Let us start with the

following example

Remark 4.1 There is a bounded domain Ω which satisfies the uniform outer ball condition,

but does not have a positive reach. See Figure 5.

Figure 5 The solid domain has a uniform outer ball condition while does not have a positive reach.

However, it is not a Lipschitz boundary and hence, Theorem 1.6 can not be applied.

Remark 4.2 It is known that a domain Ω ⊂ R
n with C2 boundary, Ω has a positive reach by

[17, Lemma 1.2.5]. Also, in [17], there is an example, a C1,α domain does not have a positive

reach for some α > 0.

Remark 4.3 Let us give a sufficient condition to ensure that the uniform outer ball condition

implies the condition of positive reach.

Lemma 4.4 If a set Ω satisfies a uniform outer ball condition with radius r0 and Ω is a C1

boundary, then it is of positive reach r0.

Proof For any p ∈ Ω̄c with 0 < dist(p, Ω̄) < r0, let q ∈ Ω̄ be a projection of p on ∂Ω. Because

Ω̄ has an out-ball of radius r0 at q, let B(w, r0) be the ball touched at q. Then p must lie on the

line segment between w and q. This is because the both vectors �qp and �qw orthogonal to the

tangent hyperplane of Ω at q and dist(p, Ω̄) < r0 = dist(w, q). Now B(p, ‖p− q‖) ⊂ B(w, r0),

B(p, ‖p− q‖) can only touch ¯(Ω) at q. Hence, p has a unique projection. That is, the reach of

Ω̄ is greater or equal to r0. �
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Remark 4.5 It is known that if Ω has a C2 boundary, then Ω has a positive reach by [17,

Lemma 1.2.5]. We now show that Ω has a uniformly positive reach.

Lemma 4.6 Suppose that a bounded domain Ω has a C2 boundary. Then Ω has a uniformly

positive reach.

Proof By [17, Lemma 1.2.5], Ω has a positive reach. In fact, according to the proof, there

exists an open set V containing the boundary ∂Ω such that any point v ∈ V has a unique

projection on ∂Ω. That is, both Ω and Ωc have a positive reach.

Next we claim that if Ω is of positive reach r0 and Ωc is of positive reach r1, then for

any ε < r1, the ε-erosion Ωε has a positive reach ≥ r0 + ε. Indeed, for any x ∈ ∂Ωε, by the

definition of Ωε, there exists p ∈ ∂Ω such that ‖x − p‖ = dist(x, ∂Ω) = ε. Because Ω has a

tangent hyperplane at p, we have x = p + ε �np, where �np is the unit inward normal vector of

Ω at p. On the other hand, for any p ∈ ∂Ω, the point p + ε �np is clearly at a distance ε away

from Ωc. Because Ωc is of positive reach r1 > ε, the distance between p + ε �np and any point

q ∈ ∂Ω\{p} is larger than ε, thus we must have p+ε �np ∈ ∂Ωε. Therefore, we have the following

characterization of ∂Ωε:

∂Ωε = {p+ ε �np : p ∈ ∂Ω}.
For any w satisfying dist(w,Ωε) ≤ r0 + ε. If w ∈ Ω, we let p be a point on Ω that is closest

to w. Because dist(w, ∂Ω) ≤ ε, by the assumption that Ωc is of positive reach r1 > ε, the point

p is uniquely determined by w. We show that x = p + ε �np is the unique point on Ω that is

closest to p. Indeed, suppose u ∈ Ωε satisfies ‖u− p‖ ≤ ε. Since dist(Ωε, ∂Ω) = ε, p is a point

on ∂Ω that is closest to u. This means that u = p+ ε �np = x. Hence, x = p+ ε �np is the unique

point on Ω that is closest to p. In particular, this implies that the closed ball centering at p

with radius ε intersects Ωε only at the point x. Since w lies between p and x, the closed ball

centering at w with radius ‖x − w‖ intersects Ωε only at the point x. Thus, x is the unique

point in Ωε that is closest to w.

If w /∈ Ω. Let x be a point in Ωε that is closest to w. We show that x is uniquely determined

by w. Indeed, let p be the intersection of the line segment xw with ∂Ω. Because for any u ∈ Ωε,

‖u− p‖+ ‖p− w‖ ≥ ‖u− w‖ ≥ ‖x− w‖ = ‖x− p‖+ ‖p− w‖,
x is a point on Ω that is closest to p. By the characterization proved above, we have x = p+ε �np.

Consequently, w = p− ‖w − p‖ �np. Since

‖w − p‖ = ‖w − x‖ − ‖p− x‖ = ‖w − x‖ − ε = dist(w,Ωε)− ε < r0,

by the assumption that Ω is of positive reach r0, the point p is uniquely determined by w.

Hence, x = p+ε �np is also uniquely determined by w. Therefore, Ωε is of positive reach ≥ r0+ε

and the claim is prove. �
Thus, the solution to the Dirichlet problem of the Poisson equation is inH2(Ω) with constant

C0 in (1.5) dependent on the positive reach. When the boundary is C2, we can find the positive

reach rΩ and hence we know how large the regularity constant C0 in (1.5).
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