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We study a time dependent partial differential equation (PDE) which arises from classic models in ecology

involving logistic growth with Allee effect by introducing a discrete weak solution. Existence, uniqueness and

stability of the discrete weak solutions are discussed. We use bivariate splines to approximate the discrete

weak solution of the nonlinear PDE. A computational algorithm is designed to solve this PDE. A convergence

analysis of the algorithm is presented. We present some simulations of population development over some

irregular domains. Finally, we discuss applications in epidemiology and other ecological problems.
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. Introduction

Empirical evidence shows that the structure of environments and

patial scale can systematically influence population development

nd interactions in a way that can be described by mathematical

odels [9,11]. The first serious attempt to model population dy-

amics is credited to Malthus in 1798 [23], who hypothesized that

uman populations grow geometrically while resources grow arith-

etically, thus eventually reaching a point in which the popula-

ion could not be sustained anymore; this linear growth model is

roblematic since it allows unbounded population increase. A ma-

or refinement was introduced by Verhulst in 1838 [30] by means

f a density-dependent logistic term in Malthus’ model, predicting

opulation growth if resources were available or population decay

f population surpassed resources; this model takes the form ṗ =
0 p(1 − p/k), where p represents population density, r0 is the rate

f growth, and k represents the carrying capacity. Fisher [8] used in

937 a diffusion operator to study the propagation of advantageous

enes in population; the same year, Kolmogorov and his collabora-

ors [14] studied the following reaction–diffusion equations in the
∗ Corresponding author. Tel.: +011 7065422065.
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ne-dimensional setting:

∂ p

∂t
= D

∂2 p

∂x2
+ kp(1 − p) and

∂ p

∂t
= D

∂2 p

∂x2
+ F(p), (1.1)

here F(p) satisfies F(p) ≥ 0, F(0) = F(1) = 0, F ′(0) > 0, F ′(1) < 0 for

∈ [0, 1].

The logistic model has been central to the modern study of pop-

lation dispersal in spatial domains [3,24]. Skellam’s influential pa-

er [27] in 1951 introduced a variation in Kolmogorov’s equation for

he study of phytoplankton; the resulting model was pt = d�p +
1(x, y)p − c2(x, y)p2. This basic form of population dispersal is ap-

licable in many notable cases ranging from population dispersal

o recent models of information diffusion in online social networks

31]. Nevertheless, Skellam’s model is too simplistic in most prac-

ical cases; it assumes a lack of interactions with other species,

nd that populations can grow at the same rate at low and high

ensities. An important refinement to Kolmogorov’s model was in-

roduced by Lewis and Kareiva in 1993 [21]. The correlation hy-

othesized by Allee in 1938 between population size and mean

ndividual fitness [1] was represented in Lewis and Kareiva’s model

y pt = d�p + r0 p(1 − p/k)(p − σ), where σ represents the popula-

ion below the carrying capacity below which the population growth

s negative. This is the foundation of the model we study in this paper.

More precisely, we are interested in solution of the following non-

inear time dependent partial differential equation: letting � ⊂ R
2 be

http://dx.doi.org/10.1016/j.mbs.2015.08.013
http://www.ScienceDirect.com
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a polygonal domain and �T = � × (0, T ]:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂ p(x, t)

∂t
= div (D(p, x)∇p(x, t))) + F(p(x, t)),

x = (x, y) ∈ �, t ∈ [0, T ]
p(x, t) ≥ 0, x ∈ �, t ∈ [0, T ]
p(x, t) = 0, x ∈ ∂�, t ∈ [0, T ]
p(x, 0) = p0, x ∈ �,

(1.2)

where D(p, x) is a diffusive term, e.g. D(p, x) = D > 0 and F(p) is

a growth function, e.g. F(p) = Ap(1 − p) which is a standard logis-

tic growth function with A being a nonnegative weighted function

over �. In this paper, we shall mainly study F(p) = Ap(1 − p)(p − σ),
where σ is a positive constant in [0, 1) and A(x, y) are nonnegative

functions on � × [0, T).

Exact solutions to Kolmogorov’s Eq. (1.1) have been found [22].

However, there does not appear to exist an exact solution to the dif-

fusion logistic model with Allee effect; while asymptotics and speed

of diffusion waves have been found analytically, the solutions to prob-

lem (1.2) over different domains remain mostly numerical. Lewis and

Kareiva [21] used finite differences. Roques et al. [26] used a second-

order finite elements method. Richter et al. [25] used finite elements

in a model that incorporated geographic features and population dis-

persal.

In this paper, we present in detail a numerical solution to the dif-

fusion logistic problem with Allee effect based on bivariate spline

functions over triangulations. Bivariate spline have been studied ex-

tensively in different contexts, see [2,10,16,17,19,20]. An advantage of

the use of bivariate splines is the ease to generate a smooth density

surface over a spatial domain. The differentiability can be useful for

some applications which involves the rate of changes of population

along different directions at any location inside the domain, as ex-

plained in the following section.

Our numerical solution of this PDE is slightly different from the

classic approach in a few ways. Instead of defining a weak solution

in terms of test functions defined on domain �T = � × (0, T ], we

define a discrete weak solution of the PDE using test functions de-

fined on � together with the first order divided difference in time. See

Definition 4.1. Another difference from the classic approach is that we

use an optimization approach to establish the existence, uniqueness,

stability and other properties of this discrete weak solution. We shall

use bivariate splines to approximate the discrete weak solution using

the discrete weak solution in the finite dimensional spline space. We

are able to show that spline discrete weak solution converges to the

discrete weak solution in H1(�) as the size of underlying triangula-

tion goes to zero.

It is clear that there are three nonlinearities in (1.2): the nonlinear

diffusive term D(p, x), the nonlinear growth function F(p) and non-

linearity condition 0 ≤ p(x, t) ≤ 1 for all x, t which is essential to the

theory presented. We have to design a convergent computational al-

gorithm to find bivariate spline solutions and establish how well our

bivariate spline solutions are close to the exact discrete weak solu-

tion. We implement our computational algorithm in MATLAB. With

the numerical solution, we are able to simulate how a population dis-

perses over the area � of interest. In particular, we are able to see how

the Allee constant σ plays a significant role in the population devel-

opment.

2. Biological motivation: vector-borne disease

The dispersal patterns of a species in a given environment de-

pends on the spatial scale considered, the temporal scale studied, the

physical size of the model organism, and the life history the species.

In most vector-borne disease dynamics, the dispersal of hosts and

vectors has to be considered independently. In the case of mosquito-

borne disease (e.g. malaria), human movement is a problem of a fun-

damentally different nature as compared to vector movement [4,28].
We focus in this paper on the dispersal of mosquitoes, which

an be characterized by the diffusion–reaction framework presented

n (1.2). Note that we propose Allee dynamics. The study of Allee

ffect in insects is common in the context of biological invasions

12,15]; however, the question of invasibility is not necessary to study

he density dependence of a dispersal process. There is evidence

hat supports the assumption of Allee dynamics in this context; it

as been shown that human-dependent mosquito populations (e.g.

osquito species that transmit malaria) can rapidly collapse when

he population is reduced below realistic non-zero thresholds [13].

Vector control is often the tool of choice to manage mosquito-

orne disease. When mosquitoes are removed from an area, or the

opulation is brought to a level that drives local extinction, it can

e repopulated by dispersal from neighboring areas. But landscapes

re not even; instead, there are transitions in the patterns of vege-

ation cover which determine diffusivity and the suitability of local

nvironments for the establishment and dispersal of mosquitoes. The

ffect of this spatial heterogeneity on population dispersal can be ac-

ounted for by (1.2), where D(p, x) allows individual consideration of

iffusivity in each segment of the spatial domain. The bivariate spline

olution results in a smooth density surface over the entire spatial do-

ain, which is very convenient to determine gradients of dispersal in

ll directions at all times.

Fig. 1 offers an example of the type of problem that could be

olved with the approach presented in this paper. It depicts a map

f vegetation cover for Colombia, in the Northwest corner of South

merica. The region on the right side of the map shows the location

here resistance to the insecticide DDT was recorded for the first

ime in Anopheles darlingi in 1990 [29]. There are two fundamental

uestions in public health that could be addressed using the meth-

ds presented in this paper: (i) what is the likely pattern of dispersal

f advantageous genes conferring Anopheles mosquito’s resistance

o insecticides and/or repellents, and (ii) what is the likely dispersal

nd re-population by mosquito of areas subject to vector control. In

rder to answer these questions with actionable recommendations,

e would need to consider multiple scales, the interaction between

ectors and hosts, and epidemiological data for calibration of mod-

ls. The scope of this paper is limited to the numerical solution of

1.2) via bivariate splines to solve one piece of this puzzle: vector

ispersal.

We present in Section 7.2 numerical simulations using the geom-

try of the City of Bandiagara, Mali, as a proof of concept. In this ex-

mple we did not consider a space-dependent diffusivity due to local

ariations in the landscape. We plan to undertake the calibration of

his model with actual malaria data in a posterior study using the

ame locality, since Bandiagara has been the subject of many model-

ng exercises [5,6].

. Preliminaries

For the sake of completeness, we list a number of lemmas used in

his paper, which are special cases of well-known results.

emma 3.1. For a, b ≥ 0 and any α > 0 we have

b ≤ α

2
a2 + 1

2α
b2

emma 3.2 (Ladyzhenskaya’s inequality). For any p ∈ H1
0
(�) for � ⊂

2 we have the following inequality.

p‖L4 ≤ C‖p‖1/2

L2 ‖∇p‖1/2

L2

heorem 3.1 (Rellich–Kondrachov). Suppose that � is bounded with

ipschitz boundary. Then we have the following compact injection:

1(�) ⊂ L2(�)

hat is, any bounded sequence in H1(�) has a subsequence which con-

erges to an L2(�) function in L2 norm.
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Fig. 1. Map of vegetation cover in Colombia. Each color represents a specific vegetation pattern, varying from grassland to jungle. Source: Ministry of Health of Colombia, 2014.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

T

t

F

|
w

o

s

M

t

4

t

f∫

a

∫

D

h

m

T

c

d∫

a

P

∫

∫

∫

∫

∫

heorem 3.2 (General Sobolev inequality). If p ∈ H2(�), then p ∈ C0, γ ,

he space of Hölder continuous functions with any exponent 0 < γ < 1.

urthermore,

|p||C0,γ (�) ≤ C||p||H2(�)

here C is a constant independent of p.

Preliminary on bivariate splines can be found in the Appendix A

f this paper. Mainly we use the theory in [19] and computational

chemes in [2]. As our PDE (1.2) is nonlinear, we have to extend the

ATLAB codes used in [2] to handle this nonlinear PDE discussed in

his paper.

. The basic properties of the discrete weak solution

Let us begin with a discrete weak solution of the partial differen-

ial equation Eq. (1.2). It is a standard calculation from (1.2) to have,

or any q ∈ H1
0
(�),

�

∂ p(x, t)

∂t
q(x)dx = −

∫
�

D(x)∇p(x, t) · ∇q(x)dx

+
∫
�

A(x)F(p(x, t))q(x)dx. (4.1)

Consider t ∈ [0, T] and 0 = t0 < t1 < t2 < · · · < tm < tm+1 = T . We

pproximate dp(x,t)
dt

by its divided difference, i.e.,
dp(x,ti)

dt
≈ (p(x, ti) −

p(x, ti−1))/h with h = ti − ti−1. The above equation becomes

�
p(x, ti)q(x)dx + h

∫
�

D(x)∇p(x, ti) · ∇q(x)dx

−h

∫
�

A(x)F(p(x, ti))q(x)dx

=
∫
�

p(x, ti−1)q(x)dx, ∀q ∈ H1
0(�). (4.2)

We introduce the following concept of the PDE solution.

efinition 4.1. Any solution to the above equation (4.2) for a fixed

> 0 is called a discrete weak solution of (1.2).

Let us first show that the discrete weak solution is a good approxi-

ation of the exact solution. Indeed, we have the following theorem.
heorem 4.1. Let p(x, t) be the classic solution and ph(x, t) be the dis-

rete weak solution dependent on h > 0. Suppose that p(x, t) is twice

ifferentiable with respect to t. Then

�
|p(x, ti) − ph(x, ti)|2dx ≤ Ch, ∀i = 0, · · · , m + 1, (4.3)

s h = T/(m + 1) → 0, where C > 0 is a constant independent of h.

roof. By Taylor expansion, we have

dp(x, ti)

dt
= p(x, ti) − p(x, ti−1)

h
+ O(h).

Using (4.1) and (4.2), we have

�

dp(x, ti)

dt
q(x)dx −

∫
�

ph(x, ti) − ph(x, ti−1)

h
q(x)dx = 0.

That is,

�

p(x, ti) − p(x, ti−1)

h
q(x)dx

−
∫
�

ph(x, ti) − ph(x, ti−1)

h
q(x)dx = O(h).

Letting q = p(x, ti) − ph(x, ti) in the above inequality, we have

�
|p(x, ti) − ph(x, ti)|2dx

= O(h2) +
∫
�

(p(x, ti−1) − ph(x, ti−1)(p(x, ti) − ph(x, ti))

≤ 1

2

∫
�

|p(x, ti) − ph(x, ti)|2dx + 1

2

∫
�

|p(x, ti−1)

−ph(x, ti−1)|2dx + O(h2).

It follows that

�
|p(x, ti) − ph(x, ti)|2dx ≤

∫
�

|p(x, ti−1)

− ph(x, ti−1)|2dx + O(2h2).

We add them together for i = 1, . . . , k to have

|p(x, tk) − ph(x, tk)|2dx ≤ O(2kh2)

�
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for k = 1, . . ., m + 1. Note that (m + 1)h = T . So we have
∫
� |p(x, tk) −

ph(x, tk)|2dx ≤ O(h) for all 0 ≤ k ≤ m + 1. This completes the

proof. �

Let A = {p ∈ H1
0
(�), 0 ≤ p(x, y) for a.e. (x, y) ∈ �} be the set of

admissible functions . Here � ⊂ R
2 is an open, bounded domain with

Lipschitz boundary. That is, we look for a population density in the

admissible set p ∈ A which satisfies the following equation:∫
�

pq dx + h

∫
�

D(x)∇p · ∇q dx

=
∫
�

p̂q dx + h

∫
�

pF(p)q dx ∀q ∈ H1
0(�) (4.4)

where 0 < K ≤ D(x) ≤ K2 is a diffusive factor and

F(p) = A(x)(1 − p)(p − σ) (4.5)

which models population growth with an Allee effect. Here A(x) is a

given nonnegative function bounded by M and σ ∈ (0, 1) and p̂ ∈ A is

a given admissible function.

We would like to see that Eq. (4.4) has a unique solution. In order

to do that, we note that the discrete weak formulation is the Euler–

Lagrange equation of the following energy minimization problem:

min
p∈A

E(p) = min
H1

0
(�),p≥0

∫
�

p2 dx + h

∫
�

D(x)|∇p|2 dx

− h

∫
�

G(p) dx −
∫
�

p̂p dx (4.6)

where

G(p) =
∫ p

0

ξF(ξ) dξ

In order to show that the functional has a minimizer, we need a

lower bound for its image.

Lemma 4.1. Suppose we choose h < 1
M . Then for any function p ∈ A the

energy functional given in (4.6) satisfies

E(p) ≥ C||p||2
H1

0
(�) −

∣∣∣∣p̂
∣∣∣∣2

2

for some constant C > 0. In particular, infp∈A E(p) ≥ −
∣∣∣∣p̂

∣∣∣∣2

2
> −∞.

Proof. First we will present an upper bound for one of the terms.

G(p) =
∫ p

0

ξF(ξ) dξ ≤ M

∫ p

0

ξ dξ

= M

2
p2

∫
�

G(p) dx ≤ M

2
||p||2

2

Now we prove the lower bound for the entire functional. We use

the Cauchy–Schwarz inequality, the upper bound for G(p) we just es-

tablished and D(x) ≥ K.

E(p) ≥ ||p||2
2 + hK||∇p||2

2 − hM

2
||p||2

2 −
∣∣∣∣p̂

∣∣∣∣
2
||p||2

=
(

1 − hM

2

)
||p||2

2 + hK||∇p||2
2 −

∣∣∣∣p̂
∣∣∣∣

2
||p||2

Use our assumption for h in this lemma and Lemma 3.1 on the last

term with α = 2.

≥ 1

2
||p||2

2 + hK||∇p||2
2 −

∣∣∣∣p̂
∣∣∣∣2

2
− 1

4
||p||2

2

≥ min

{
1

4
, hK

}
||p||2

H1
0
(�) −

∣∣∣∣p̂
∣∣∣∣2

2

�

Lemma 4.2. If h < 1/M, the energy functional in (4.6) is weakly lower

semi-continuous on H1(�). That is, if pk → p∗ weakly in H1(�), then

E(p∗) ≤ lim inf
k→∞

E(pk)
roof. Set m := lim infk→∞ E(pk). By passing to a subsequence we

an assume that E(pk) − m < 1/k. That is, limk→∞ E(pk) = m. Any

eakly convergent sequence is bounded in H1(�) norm, so by the

ellich–Kondrachov theorem (Theorem 3.1), we can pass to another

ubsequence which converges strongly in L2(�). Taking one last sub-

equence, we can assume that pk → p∗ a.e. in �.

Fix ε > 0. By Egoroff’s theorem there exists a measurable set Uε

uch that pk → p∗ uniformly on Uε and |� − Uε | < ε. Also write

ε =
{

x ∈ �

∣∣∣∣|p∗(x)| + |∇p∗(x)| <
1

ε

}
(4.7)

Then |� − Vε | → 0 as ε → 0. Let Oε = Uε ∩ Vε and note that

� − Oε | = |(� − Uε) ∪ (� − Vε)|
≤ |� − Uε | + |� − Vε | → 0 as ε → 0

Now

(pk) +
∫
�

p̂pk dx =
∫
�

p2
k + hD(x)|∇pk|2 − hG(pk) dx

From the proof of Lemma 4.1 we know that the right-hand side is

onnegative.

≥
∫

Oε

p2
k + hD(x)|∇pk|2 − hG(pk) dx

Since the function η : R
n → R given by η(x) = |x|2 is convex, it

ollows that∫
Oε

p2
k + hD(x)

(|∇p∗|2 + 2∇p∗ · (∇pk − ∇p∗)
)

(4.8)

− hG(pk) dx (4.9)

(pk) +
∫
�

p̂pk dx ≥
∫

Oε

p2
k + hD(x)|∇p∗|2 − hG(pk) dx

+
∫

Oε

2hD(x)∇p∗ · (∇pk − ∇p∗) dx (4.10)

Recall Eq. (4.7) and note that in the first integral every term is

ounded above. In addition, pk → p∗ uniformly on Oε and G is an

bsolutely continuous function, so G(pk) → G(p∗) uniformly on Oε .

hus,

lim
→∞

∫
Oε

p2
k + hD(x)|∇p∗|2 − hG(pk) dx

=
∫

Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx (4.11)

s for the second integral, note that ∇pk → ∇p∗ weakly in L2(�; R
n).

ince hD(x)∇p∗ ∈ L2(�; R
n) it follows that

lim
→∞

∫
Oε

2hD(x)∇p∗ · (∇pk − ∇p∗) dx = 0 (4.12)

We then take limits as k → ∞ on both sides of (4.10) and as a result

f (4.11) and (4.12), we have

+
∫
�

p̂p∗ dx ≥
∫

Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx

m ≥
∫

Oε

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) dx −
∫
�

p̂p∗ dx

Now we take the limit as ε → 0. Since the integrand is nonnegative

nd Oε↑�, the monotone convergence theorem guarantees that

≥
∫
�

(p∗)2 + hD(x)|∇p∗|2 − hG(p∗) − p̂p∗ dx

≥ E(p∗)

�

heorem 4.2. There exists a function p∗ ∈ A which minimizes the en-

rgy functional E(p) defined in (4.6).
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roof. Set m := infp∈A E(p) and choose a minimizing sequence {pk}.

hen E(pk) → m. As a result of Lemma 4.1 we know that

|pk||H1
0
(�) ≤ E(pk) +

∣∣∣∣p̂
∣∣∣∣2

2

(pk) → m, so supk E(pk) < ∞. Thus, the minimizing sequence is

ounded in H1
0
(�). Since H1

0
(�) is weakly compact, there exists

subsequence pk which converges weakly to some function p∗ ∈
1
0(�). We’d like to know that p∗ is also in the admissible set A. By

he Rellich–Kondrachov theorem (Theorem 3.1), we can pass to a sub-

equence which converges strongly in L2(�). By taking another sub-

equence, we can assume that pk → p∗ a.e., so we conclude that p∗ ≥
a.e. That is, p∗ is in the admissible set A.

It remains to show that p∗ is a minimizer of E(p). Lemma 4.2 as-

ures us that

(p∗) ≤ lim inf
k→∞

E(pk) = m (4.13)

Since p∗ ∈ A, we have m ≤ E(p). Together with (4.13), this implies

hat E(p∗) = m = minp∈A E(p). �

emma 4.3. If h is small enough so that

− hM − hM′ pmax > 0

hen the functional E(p) defined in (4.6) is μ-strongly convex. That is,

μ > 0 such that

(y) ≥ E(x) + 〈∇E(x), x − y〉 + μ

2
||x − y||2

2

here 〈∇E(x), x − y〉 is the Gâteaux derivative of E at the point x in the

irection x − y.

roof. We use an equivalent formulation of μ-strong convexity. It is

nough to show that ∀q ∈ O we have

2E(p, q) ≥ μ||q||2
2

e compute the second Gâteaux derivative. Let q ∈ H1
0
(�). Then the

econd derivative is given by F ′′(0).

F(t) = E(p + tq)

F ′(t) =
∫
�

2(p + tq)q dx + 2h

∫
�

D(x)∇(p + tq) · ∇q dx

− h

∫
�

(p + tq)F(p + tq)q dx −
∫
�

p̂q

F ′′(t) = 2

∫
�

q2 dx + 2h

∫
�

D(x)|∇q|2 dx − h

∫
�

F(p + qt)q2

+ (p + tq)F ′(p + tq)q2 dx

2E(p, q) = F ′′(0) = 2||q||2
2 + 2h

∫
�

D(x)|∇q|2 dx

− h

∫
�

F(p)q2 − h

∫
�

pF ′(p)q2 dx

≥ 2||q||2
2 − hM||q||2

2 − hM′ pmax||q||2
2

= (2 − hM − hM′ pmax)||q||2
2

s desired. �

heorem 4.3. The energy functional in (4.6) has a unique minimizer.

roof. Suppose p and p̃ are both minimizers of E(p). Then for any

∈ H1
0(�) we have

∇E(p, q)〉 = 〈∇E(p̃, q)〉 = 0

By Lemma 4.3 the following two inequalities hold:

(p) ≥ E(p̃) + μ

2
||p − p̃||2

2

(p̃) ≥ E(p) + μ ||p − p̃||2
2
2 s
Add the two inequalities.

≥ μ||p − p̃||2
2

hus, p = p̃ a.e. �

heorem 4.4. A function p ∈ A is the minimizer of (4.6) if and only if p

s a discrete weak solution to (4.4).

emark 4.1. Theorem 4.4 implies that there exists a unique discrete

eak solution to (4.4).

emma 4.4. The minimizer p∗ of the energy functional (4.6), hereby de-

oted by Ep̂, is stable with respect to perturbations in p̂. In particular, if

e let q∗ be the minimizer associated with the energy functional

q̂(q) =
∫
�

q2 dx + h

∫
�

D(x)|∇q|2 dx − h

∫
�

G(q) dx −
∫
�

q̂q dx

hen we are assured that

|p∗ − q∗||2 ≤ 1

μ

∣∣∣∣p̂ − q̂
∣∣∣∣

2

roof. Since p∗ is the minimizer, we know ∂Ep̂(p∗, ν) = 0 for all ν .

imilarly, ∂Eq̂(q∗, ν) = 0 for all ν . As a result of Lemma 4.3 we get the

ollowing two inequalities:

p̂(q∗) ≥ Ep̂(p∗) + μ

2
‖p∗ − q∗‖2

2

q̂(p∗) ≥ Eq̂(q∗) + μ

2
‖p∗ − q∗‖2

2

We add the two inequalities. After some cancellation we obtain

he following inequality:

〈p̂, q∗〉 − 〈q̂, p∗〉 ≥ −〈p̂, p∗〉 − 〈q̂, q∗〉 + μ‖p∗ − q∗‖2
2

〈p̂, p∗ − q∗〉 − 〈q̂, p∗ − q∗〉 ≥ μ‖p∗ − q∗‖2
2

〈p̂ − q̂, p∗ − q∗〉 ≥ μ‖p∗ − q∗‖2
2

We use the Cauchy–Schwarz’s inequality to conclude

p∗ − q∗‖2 ≤ 1

μ
‖p̂ − q̂‖2

hich is the desired inequality. �

. Bivariate spline approximation of the discrete weak solution

.1. The discrete weak solution in finite dimensional space

So far we have established that there exists a unique discrete weak

olution to the problem posed in (4.4). Our next goal is to find an

pproximate solution in a finite-dimensional spline space. That is, we

ill approximate p and p̂ by using the spline space Sr
d
(�) defined as

ollows.

efinition 5.1 (Spline space). Let � be a given triangulation of a do-

ain �. Then we define the spline space of smoothness r and degree

over � by,

r
d(�) = {s ∈ Cr(�) | s|T ∈ Pd, ∀ T ∈ �},
here Pd is the space of polynomials of degree at most d.

We shall denote the basis of this space as {φj}1 ≤ j ≤ n. We now set

ut to find p∗ ∈ Sr
d
(�) which satisfies the following equation:

�
pq dx + h

∫
�

D(x)∇p · ∇q dx

=
∫
�

p̂q dx + h

∫
�

pF(p)q dx ∀q ∈ Sr
d(�) (5.1)

heorem 5.1. If h is small enough, then there exists p∗ ∈ Sr
d
(�) which

atisfies (5.1).



268 J.B. Gutierrez et al. / Mathematical Biosciences 270 (2015) 263–277

�

T

s

|

|

w

|

P

|

a

|
|
|

m

|

R

u

I

R

s

t

|
T

h

w

a

|
w

P

e

Proof. The proof of this theorem is constructive and we only give

an overview of the construction here. The detail is contained in the

rest of this section and the next section. We first devise an iterative

computational scheme. Each iteration requires solving a simple linear

equation, for which we can guarantee the existence of such iterative

solution. We then show that this sequence of iterative solutions ac-

tually forms a Cauchy sequence. Thus, the sequence converges to a

spline in Sr
d
(�) which is a finite dimensional, and hence a complete

space. Finally, by simply taking limits as the number of iteration goes

to infinity, we demonstrate that we get a discrete weak spline solu-

tion satisfying (5.1). �

We shall need the following theorem.

Theorem 5.2. The weak solution of (5.1) is unique.

Proof. The proof is analogous to the one in Theorem 4.3. Detail is

omitted here. �

5.2. Our computational scheme

At each time step ti, we have to solve the nonlinear problem (5.1).

Our approach is to linearize the equation using a fixed-point method.

Algorithm 5.1. Writing p̂ = p(x, i − 1) or p̂ = p0(x), the initial value,

find p(k) := p(i, k), k ≥ 1 such that∫
�

p(k)q + hD

∫
�

∇p(k) · ∇q

= 〈p̂, q〉 + h

∫
�

p(k)F
(

p(k−1)
)
q dx ∀q ∈ Sr

d(�) (5.2)

for k = 1, 2, . . . , until a given accuracy for ‖p(k) − p(k−1)‖ is met.

Remark 5.1. We stated in the outline of the proof for Theorem 5.1

that we will show the sequence of p(k) is Cauchy and hence converges

to a limit p∗ ∈ Sr
d
(�). Note that in (5.2), we can take the limit as k →

∞ of both sides and obtain precisely (5.1). This requires the use of the

Dominated Convergence Theorem and so we prove boundedness of

all the iterates in Theorem 5.3.

Lemma 5.1. Given splines p(k−1) and p̂, there exists a unique spline so-

lution for p(k) in equation (5.2).

Proof. Let φj be any spline basis function. Any spline function in

Sr
d
(�) can be written as

∑n
i=1 ciφi. Let φj be any spline basis func-

tion. Let �c be the vector of coefficients for p(k) and �p be the vector of

coefficients for p̂. Define the following matrices:

M(i, j) :=
∫
�

φiφ j dx

KD(i, j) :=
∫
�

D(x)∇φi · ∇φ j dx

MF(p(k−1))(i, j) :=
∫
�

F(p(k−1))φiφ j dx

Note that all these matrices are symmetric. In addition, M is

positive-definite.

We have to solve (5.2) for each q ∈ Sr
d
(�), but it is sufficient to

solve for each basis spline φj. Thus, we have n equations and n un-

knowns in the coefficient vector, which is equivalent to the following

linear system:

M�c + hKD�c = M�p + hMF(p(k−1))�c(
M + hKD − hMF(p(k−1))

)
�c = M�p

Let L = M + hKD − hM
F(p(k−1)). M is positive-definite and invert-

ible. If h is small enough, L is also invertible. Thus, we can solve for

c, the spline coefficients of p(k). �
heorem 5.3. If h < 1/M, then the successive solutions p(k) of Eq. (5.2)

atisfy

|p(k)||2 ≤ 1

1 − hM
||p̂||2 (5.3)

|∇p(k)||2 ≤ 1√
hK

√
||p(k)||2(||p̂||2 − (1 − hM)||p(k)||2) (5.4)

If we substitute the estimate from (5.3) into (5.4), we obtain a bound

hich is less sharp but is independent of k.

|∇p(k)||2 ≤ 1√
hK

√
||p(k)||2||p̂||2 ≤ 1√

hK(1 − hM)
||p̂||2

roof. Substitute q = p into (5.2). Then

|p(k)||2
2 + h

∫
�

D(x)|∇p(k)|2 dx︸ ︷︷ ︸
≥0

= 〈p̂, p(k)〉

+h

∫
�

F(p(k−1))(p(k))2 dx

Use the Cauchy–Schwarz inequality and the fact that F(p) ≤ M for

ny p.

|p(k)||2
2 ≤ ||p̂||2||p(k)||2 + hM||p(k)||2

2

|p(k)||2 ≤ ||p̂||2 + hM||p(k)||2

|p(k)||2 ≤ 1

1 − hM
||p̂||2

Now we prove the bound for ∇p(k) by substituting q = p once

ore into (5.2).

|p(k)||2
2 + h

∫
�

D(x)|∇p(k)|2 dx

= 〈p̂, p(k)〉 + h

∫
�

F(p(k−1))(p(k))2 dx

||p(k)||2
2 + hK||∇p(k)||2

2 ≤ ||p̂||2||p(k)||2 + hM||p(k)||2
2

hK||∇p(k)||2
2 ≤ ||p̂||2||p(k)||2 − ||p(k)||2

2 + hM||p(k)||2
2

hK||∇p(k)||2
2 ≤ ||p(k)||2(||p̂||2 − (1 − hM)||p(k)||2)

||∇p(k)||2 ≤ 1√
hK

√
||p(k)||2(||p̂||2 − (1 − hM)||p(k)||2)

�

emark 5.2. The constant in the bound for ∇p(k), which can be found

nder the square root, is non-negative as a result of the bound for p(k).

n fact, it can be very close to zero.

emark 5.3. Since we are now working within a finite-dimensional

pace, all norms are equivalent. As a result, we have just established

hat p and its derivatives are bounded functions. That is,

|p(k)||∞ ≤ C

1 − hM
||p̂||2

heorem 5.4. If h is small enough so that

L
C

(1 − hM)2
||p̂||2 < 1

here C is the constant from Remark 5.3, then successive iterates of (5.2)

re Cauchy in L2(�). That is,

|p(k) − p(k−1)||2 ≤ α||p(k−1) − p(k−2)||2

here 0 < α < 1.

roof. Take two successive solutions which satisfy the following

quations:
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�
p(k)q dx + h

∫
�

D(x)∇p(k) · ∇q dx

=
∫
�

p̂q dx + h

∫
�

p(k)F(p(k−1))q dx

�
p(k−1)q dx + h

∫
�

D(x)∇p(k−1) · ∇q dx

=
∫
�

p̂q dx + h

∫
�

p(k−1)F(p(k−2))q dx

Subtract the two equations and substitute q = p(k) − p(k−1).

|p(k) − p(k−1)||2
2 + h

∫
�

D(x)|∇p(k) − ∇p(k−1)|2 dx︸ ︷︷ ︸
≥0

= h

∫
�

(
F(p(k−1))p(k) − F(p(k−2))p(k−1)

)
(p(k) − p(k−1)) dx

Add and subtract F(p(k−1)) and rearrange.

|p(k) − p(k−1)||2
2 ≤ h

∫
�

F(p(k−1))
(

p(k) − p(k−1)
)2

+ h

∫
�

(
F(p(k−1)) − F(p(k−2))

)
p(k−1)(p(k) − p(k−1)) dx

Use remark 5.3 to bound |p(k−1)|.∣∣p(k) − p(k−1)
∣∣∣∣2

2

≤ hM
∣∣∣∣p(k) − p(k−1)

∣∣∣∣2

2

+ h
C

1 − hM

∣∣∣∣p̂
∣∣∣∣

2

∫
�

∣∣F(p(k−1)) − F(p(k−2))
∣∣∣∣p(k) − p(k−1)

∣∣ dx

1 − hM)
∣∣∣∣p(k) − p(k−1)

∣∣∣∣2

2

≤ h
C

1 − hM

∣∣∣∣p̂
∣∣∣∣

2

∫
�

∣∣F(p(k−1)) − F(p(k−2))
∣∣∣∣p(k) − p(k−1)

∣∣ dx

F(p) is a differentiable function and by Remark 5.3, it has a

ounded derivative on the compact interval [0, supk ||p(k)||∞]. Thus,

(p) is Lipschitz continuous with constant LF.

≤ hLF
C

1 − hM

∣∣∣∣p̂
∣∣∣∣

2

∫
�

∣∣p(k−1) − p(k−2)
∣∣∣∣p(k) − p(k−1)

∣∣ dx

Apply the Cauchy–Schwartz inequality.

1 − hM)||p(k) − p(k−1)||2
2 ≤ hLF

C

1 − hM
||p̂||2

×||p(k−1) − p(k−2)||2||p(k) − p(k−1)||2

||p(k) − p(k−1)||2 ≤ hLF
C

(1 − hM)2
||p̂|| ||p(k−1) − p(k−2)||2

We can choose an h small enough so that α = hL C
(1−hM)2 satisfies

< α < 1. �

.3. Bivariate spline approximation to the discrete weak solution in

obolev space

In this section, we show that the spline solutions obtained above

re a good approximation to the weak solution in (4.4). Let p∗ be

he weak solution of (4.4) and let S∗ be the spline solution which

s the limit of the iterative solutions from Algorithm 5.1. By using

emma 4.3 and noting that ∇E(p∗, q) = 0 for any q ∈ H1
0(�), we have

(S∗) − E(p∗) ≥ μ

2
||S∗ − p∗||2

2 (5.5)

Let Sp∗ be the quasi-interpolant of p∗ in the spline space Sr
d
(�) as

n Appendix A. Since S∗ is the minimizer of (4.6) with respect to all
∈ Sr
d
(�), we conclude that E(Sp∗) > E(S∗). Together with (5.5) we

an write
μ

2
||S∗ − p∗||2

2 ≤ E(Sp∗) − E(p∗) (5.6)

heorem 5.5. Suppose that h > 0 is small enough and p∗, the weak

olution of (4.4), is in Hm+1(�) with m ≥ 1. Then S∗, the limit of the

terative solutions from Algorithm 5.1, approximates p∗ in the following

ense:

|S∗ − p∗||2 ≤ C|�|m|p∗|m+1,2,� (5.7)

here C is a constant.

roof. We rewrite Eq. (5.6)

μ

2
||S∗ − p∗||2

2 ≤
∫
�

S2
p∗ − (p∗)2 dx

+ h

∫
�

D(x)
(|∇Sp∗ |2 − |∇p∗|2

)
dx + h

∫
�

G(p∗) − G(Sp∗) dx

=
∫
�

(Sp∗ − p∗)(Sp∗ + p∗) dx

+ h

∫
�

D(x)(∇Sp∗ − ∇p∗) · (∇Sp∗ + ∇p∗) dx

+ h

∫
�

G(p∗) − G(Sp∗) dx

G is a differentiable function by construction. Since p∗ ∈ H2(�), by

heorem 3.2 we conclude that p∗ is Hölder continuous and hence it

as some maximal value M∗ on the compact set �. Analogously, we

an conclude the same for Sp∗ . As a result, G′(p) has a maximum value

n the compact set [0, M∗] and so G is Lipschitz continuous with some

onstant LG. Continuing where we left off above, we use the Cauchy–

chwarz inequality and LG:

||Sp∗ − p∗||2||Sp∗ + p∗||2

+ hK2||∇Sp∗ − ∇p∗||2||∇Sp∗ + ∇p∗||2

+ hLG

∫
�

|p∗ − Sp∗ | dx

C1||Sp∗ − p∗||2 + hK2C2||∇Sp∗ − ∇p∗||2

+ hLG|�|1/2||p∗ − Sp∗ ||2

here C1 =
∣∣∣∣Sp∗

∣∣∣∣
2

+ ||p∗||2, C2 =
∣∣∣∣∇Sp∗

∣∣∣∣
2

+ ||∇p∗||2.

By the approximation property of bivariate spline spaces,

heorem 9.1 in Appendix A, we can write

|Sp∗ − p∗||2 ≤ C3|�|2|p∗|2,2,�

|∇Sp∗ − ∇p∗||2 ≤ C4|�||p∗|2,2,�

here |�| is the length of the longest edge in the triangulation and C3

nd C4 are constants independent of p∗. �

As a corollary, we have that E(Sp∗) − E(p∗) → 0 as |�| → 0.

. Materials and methods

We have implemented the computational scheme discussed in the

revious section in MATLAB 2014a. In this section we will show some

f our computational results. Since no exact solutions to this PDE

ere known, we modify the equation by adding an appropriate forc-

ng term. By doing so we can force any twice differentiable function

(x, t) to be a solution. Then we can make sure our algorithm recov-

rs it for any given just p(x, 0), the initial condition. In this way, we

re able to verify that our MATLAB code works. Then we remove the

orcing term and use the resulting MATLAB code to numerically solve

1.2) for various initial conditions, various diffusive factor D(x), and

llee constant σ .

Although in this paper we focused on the theory for Dirichlet

ero boundary condition, the theory holds equally well for Neumann

oundary conditions. We tested both boundary conditions numeri-

ally.
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Fig. 2. Two domains with triangulation for numerical simulations.

Table 1

d = 5, T = 5, p(t, x) = 13x(x−1)y(y−1)
1+t

,D(x) = 1/200.

h\|�| 2 8 32 128 512

5 × 10−2 0.039429 0.032977 0.034431 0.034433 0.034433

5 × 10−3 0.054059 0.0041368 0.0033432 0.0033453 0.0033454

5 × 10−4 0.055708 0.0055911 3.3120e−004 3.3343e-004 3.3353e−004

5 × 10−5 0.055873 0.0057463 3.1034e−005 3.3341e−005

Table 2

d = 5, T = 1, p(t, x) = 13x(x−1)y(y−1)
1+t

,D(x, y) = 1
200

e−(x−.5)2−(y−.5)2
.

h\|�| 2 8 32 128

5 × 10−2 0.019157 0.016883 0.016599 0.016599

5 × 10−3 0.0046455 0.0019749 0.0016833 0.0016832

5 × 10−4 0.0043546 4.7506e−04 1.6861e−04 1.6852e−04

Table 3

d = 5, T = 1, p(t, x) = sin (πx) sin (πx)
1+t

,D(x) = 1/200.

h\|�| 2 8 32 128

5 × 10−2 0.01982 0.019187 0.018405 0.018398

5 × 10−3 0.005989 0.0026479 0.0018789 0.0018710

5 × 10−4 0.005609 9.6351e−04 1.962e−04 1.8732e−04
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7. Computational results

7.1. Dirichlet boundary with forcing

In order to make sure that our implementation works, we use

a few test functions over a rectangular domain � = [0, 1] × [0, 1].

These test functions are not weak solutions to the PDE in (4.4), but

instead they are the exact solutions to the following modified PDE

with forcing term.

∂ p(x, t)

∂t
= div (D(x)∇p(x, t))) + p(x, t)F(p(x, t)) + f (x, t),

(7.1)

where x = (x, y) ∈ � ⊂ R
2, t ≥ 0, and f(x, t) can be computed with a

CAS. The weak solution p satisfies∫
�

p(x, ti)q(x)dx + h

∫
�

D(x)∇p(x, ti) · ∇q(x)dx

=
∫
�

p(x, ti−1)q(x)dx +
∫
�

p(x, ti)F(p(x, ti)dx

+
∫
�

f (x, ti)q(x)dx. (7.2)

We then ran our MATALB code to recover the function p using bi-

variate splines of degree d and recorded the maximal error in popu-

lation density at some fixed time on a 100 by 100 grid. The numerical

results are given in Tables 1 and 2, where d is the spline degree and

|�| is the number of triangles in the triangulation, h is the size of the
ime step, T refers to how far in time we have evolved. In all cases

(x) = 1 and the domain is � = [0, 1] × [0, 1].

In Table 1, we see that in order to reduce the error, it is necessary

o reduce both h and the size of the triangulation. A refinement in

ust one of these parameters, usually has diminishing returns. The er-

or decreases roughly like O(h). In Table 2 we complicate the model

urther by using diffusion which varies inside �. In Table 3 we use

solution which is not a polynomial and hence is not exactly repre-

entable in spline space.

.2. Several simulations of population development

From the previous subsection, we have seen that our MATLAB

ode works well. Thus we removed the forcing terms and ran sim-

lations of the solution of (1.2) for various initial conditions and pa-

ameters. We shall use the following two domains shown with a tri-

ngulation in Fig. 2

We provide several examples to show how various growth func-

ions affect the rate at which the solution reaches the asymptotically

table constant solution of p(x, y) = 1 or p(x, y) = 0.

Figs. 3–6 show several 3D renders of how solutions grow over

ime over two domains indicated in Fig. 2. Each subfigure shows four

qually-spaced time slices, plotted on the same xy-axes, one on top

f each other, allowing the reader to observe how the solution grows

ver time. In addition, each figure shows the effect of varying the

llee threshold σ . In order to make the difference in the behavior

f the solution clearer, each figure ranges from t = 0 to t = T, where

is a specified final time.
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(a) σ = 0.1 (b) σ = 0.2

(c) σ = 0.3 (d) σ = 0.5
Fig. 3. Donut-shape domain. Constant growth and diffusion. Various Allee effect thresholds σ . The vertical axis shows population density p ∈ [0, 1] at 4 points in time: t ∈ {0, 30,

60, 90}, where the bottom manifold represents t = 0, and the top manifold represents t = 90 in each case. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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(a) σ = 0.02 (b) σ = 0.05

(c) σ = 0.1 (d) σ = 0.15
Fig. 4. City of Bandiagara, Mali. Constant growth and diffusion. Various Allee effect thresholds σ . The vertical axis shows population density p ∈ [0, 1] at 4 points in time: t ∈ {0,

5, 15, 20}, where the bottom manifold represents t = 0, and the top manifold represents t = 20 in each case. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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(a) σ = 0.02 (b) σ = 0.05

(c) σ = 0.1 (d) σ = 0.15
Fig. 5. City of Bandiagara, Mali. Constant diffusion. Various Allee effect thresholds. Growth function is piecewise-constant with triple magnitude for patches near the city’s river.

The vertical axis shows population density p ∈ [0, 1] at 4 points in time: t ∈ {0, 5, 15, 20}, where the bottom manifold represents t = 0, and the top manifold represents t = 20 in

each case. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(a) σ = 0.02 (b) σ = 0.05

(c) σ = 0.1 (d) σ = 0.15
Fig. 6. City of Bandiagara, Mali. The same as Fig. 5 but the initial condition has a much higher total population. The vertical axis shows population density p ∈ [0, 1] at 4 points in

time: t ∈ {0, 5, 15, 20}, where the bottom manifold represents t = 0, and the top manifold represents t = 20 in each case. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)
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(a) Average population plot for sim-
ulations in Figure 3.

(b) Average population plot for sim-
ulations in Figure 4.

(c) Average population plot for sim-
ulations in Figure 5.

(d) Average population plot for sim-
ulations in Figure 6.

Fig. 7. Average population density in � plotted over time for each of the four preceding figures. (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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Fig. 7 shows average population over time over the city of Ban-

iagara, Mali. Each subfigure corresponds to a certain set of initial

onditions for the PDE, while separating the cases by the choice for

, emphasizing the effect σ has on the rate at which the population

eaches an asymptotically stable solution.

We can observe some expected behavior from the solutions pre-

ented in Fig. 3. The initial condition is uniformly p = 0.1 on a large

ortion of � with an isolated bump function in one corner. In Fig. 3b

he second time slice shows the population has become extinct on

he area where p = 0.1. At the same time the bump grows to popu-

ation capacity and eventually spreads life into formerly dead areas.

e observe similar results in Fig. 3c, but the rate at which the popu-

ation grows has been severely diminished. In Fig. 3d, the threshold σ
s so high that the population becomes extinct everywhere and very

uickly.

. Discussion

The results presented in this paper show that a problem of diffu-

ive population growth with Allee effect has a unique bivariate spline

olution, based on a discrete formulation using test functions defined

n � with the first order divided difference in time. Arbitrary do-

ains can be easily studied with this approach; while the method

f finite-elements has been traditionally used to study arbitrary do-

ains, here we propose a relatively simple alternative that can easily

e applied in many cases.
The study of diffusion over arbitrary domains is the necessary link

etween theoretical and applied population dynamics. As geographic

ata sets become increasingly available, it has become easier to au-

omate the segmentation of spatial domains into subdomains with

pecific properties. This type of approach makes it possible to con-

uct numerical studies on the global behavior of complex ecological

ystems, something extremely hard to accomplish with purely theo-

etical approaches.

A direction of future work is related to the interaction between

ithin-host dynamics and between-host dynamics. Due to a host’s

mmune response, exposure to low levels of a pathogen may not

esult in infection; furthermore, pathogens may be unable to find

within-host substrate before degradation. Therefore, the onset of

nfection requires the direct or indirect (vector-driven) uptake of

minimum dose of infectious agents (virus, bacteria, protozoa, or

elminths). Once the host has been colonized above the minimum

nfectious dose, the pathogen’s virulence and the host-pathogen in-

eraction determine pathogen environmental shedding, which in

urn determines the dynamics of epidemics. Therefore, we can now

ake into account within-host dynamics to determine environmen-

al pathogen population density, and the dynamics of interaction be-

ween pathogen, vectors and hosts. Such formulation results in very

omplicated segmentations of the spatial domain for each species

onsidered, and it is in this context that bivariate spline solutions can

roduce informative numerical results.

Diffusive models in ecology are usually limited to the study of

opulation dispersal occurring when the underlying process is a
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random walk with a step-length size following a normal distribution.

But not all dispersal of organisms follow this pattern. However, it is

possible to create patterns of dispersal that are orders of magnitude

different on the same domain by carefully controlling the function

D(p, x) in (1.2). This direction is other natural extension of the present

work.

We have shown specific examples of regular and irregular do-

mains for which bivariate spline calculations can easily be obtained to

study populations with Allee effect dynamics. Note that the proper-

ties of the discrete weak solution were determined with the generic

form pt = div (D(p, x)∇p(x, t))) + F(p(x, t)), that is to say, with a

generic F(p(x, t)). Nevertheless, we focused on the dynamics of the

Allee effect because of its intrinsic relationship with the ecological

problems we are interested in. Hence the results presented here are

of ample applicability and can be extended beyond the problem of

Allee dynamics, and outside the realm of ecology.
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Appendix A. Preliminary on bivariate splines

In this section, we explain bivariate spline functions of any degree

d and smoothness r ≥ 1 over arbitrary triangulation �. Most of the

following discussion can be found in [19]. We outline these functions

here just for convenience. Let � be a polygonal domain in R
2 and �

a triangulation of �. That is, � is a finite collection of triangles T ⊂�

such that ∪T∈�T = � and the intersection of any two triangles is ei-

ther the empty set, a common edge, or a common vertex. For each T

∈ �, let |T| denote the length of the longest edge of T, and let ρT be

the radius of the inscribed circle of T. The longest edge length in the

triangulation � is denoted by |�| and is referred to as the size of the

triangulation. For any triangulation � we define its shape parameter

by

κ� := |�|
ρ�

, (9.1)

where ρ� is the minimum of the radii of the in-circles of the triangles

of �. The shape parameter for a single triangle, κT, satisfies

κT := |T |
ρT

≤ 2

tan (θT /2)
≤ 2

sin (θT /2)
, (9.2)

where θ T is the smallest angle in the triangle T. The shape of a given

triangulation affects how well we can approximate a function over

the triangulation. Hence we have the following definition of a β-

quasi-uniform triangulation.

Definition 9.1 (β-Quasi-uniform triangulation). Let 0 < β < ∞. A tri-

angulation � is a β-quasi-uniform triangulation provided that

|�|
ρ�

≤ β.

Once we have a triangulation, we define the spline space of degree

d and smoothness r over that triangulation as follows.

Definition 9.2 (Spline space). Let � be a given triangulation of a do-

main �. Then we define the spline space of smoothness r and degree

d over � by,

Sr
d(�) = {s ∈ Cr(�) | s|T ∈ Pd, ∀ T ∈ �},

where P is the space of polynomials of degree at most d.
d
We next explain how to represent a spline function in Sr
d
(�). Let

= 〈(x1, y1), (x2, y2), (x3, y3)〉. For any point (x, y), let b1, b2, b3 be

he solution of

x = b1x1 + b2x2 + b3x3

y = b1y1 + b2y2 + b3y3

= b1 + b2 + b3.

b1, b2, b3) is the so-called barycentric coordinates of (x, y) with re-

pect to T. Note that bi is a linear polynomial of (x, y) for i = 1, 2, 3. Fix

degree d > 0. For i + j + k = d, let

T
i jk(x, y) = d!

i! j!k!
bi

1bj
2
bk

3

hich is called Bernstein–Bézier polynomial. Let

|T =
∑

i+ j+k=d

cT
i jkBT

i jk(x, y).

We use s = (cT
i jk

, i + j + k = d, T ∈ �) to represent the coefficient

ector for spline function S ∈ S−1
d

(�). In order to make S ∈ S0
d
(�), we

ave to construct a smoothness matrix H such that Hs = 0 ensure that

is a continuous function. Such a smoothness matrix is known and in

act it is known for any smoothness r ≥ 0 (cf. [7]).

Note that Bernstein–Bézier representation of spline functions is

ery convenient for basic evaluation, derivatives and integration. We

se the de Casteljau algorithm to evaluate a Bernstein–Bézier polyno-

ial at any point inside the triangle. It is a simple and stable compu-

ation. See [19]. Let T = 〈v1, v2, v3〉 and S|T = ∑
i+ j+k=d ci jkBi jk(x, y).

hen the directional derivative Dv2−v1
S|T is

v2−v1
S|T = d

∑
i+ j+k=d−1

(ci, j+1,k − ci+1, j,k)Bi jk(x, y).

Similar for Dv3−v1
S|T . Dx and Dy are linearly combinations of

hese two directional derivatives. Let s be a spline with s|T =
i+ j+k=d cT

i jk
Bi jk(x, y), T ∈ � in Sr

d
(�). Then

�
s(x, y)dxdy =

∑
T∈�

AT

(d+2
2 )

∑
i+ j+k=d

cT
i jk.

If p = ∑
i+ j+k=d ai jkBi jk(x, y) and q = ∑

i+ j+k=d bi jkBi jk(x, y) over a

riangle T, then

T

p(x, y)q(x, y)dxdy = a�Mdb,

here a = (ai jk, i + j + k = d)�, b = (bi jk, i + j + k = d)�, Md is a

ymmetric matrix with known entries (a formula for these entries

s known (cf. [19]). These elementary operations have been imple-

ented in MATLAB. See [2]. Many different linear and nonlinear par-

ial differential equations have been solved by using these bivariate

pline functions. See [2,10,20].

When d ≥ 3r + 2 the spline space Sr
d
(�) possesses an optimal

pproximation order which is achieved by the use of a quasi-

nterpolation operator. Let ‖ f‖Lp(�) denote the usual Lp norm of f over

, |f|m, p, � denotes the Lp norm of the mth derivatives of f over �, and
m+1
p (�) stands for the usual Sobolev space over �.

To define the quasi-interpolation operator, we need linear func-

ionals {λi jk,T }i+ j+k=d, T ∈ � which are based on values of f at the set

f domain points over triangles in �, that is

i jk,T ( f ) =
∑
|ν|=d

ai jk
ν f (ξ T

ν ), (9.3)

here ξ T
ν = (ivT

1 + jvT
2 + kvT

3)/d for ν = (i, j, k) with i + j + k = d and

i, i = 1, 2, 3 are vertexes of triangle T.

A quasi-interpolation operator of f is defined by

f :=
∑
T∈�

∑
i+ j+k=d

λi jk,T ( f )BT
i jk. (9.4)

http://dx.doi.org/10.13039/100000060
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ow, we are ready to state a theorem on optimal approximation order

cf. [18,19]).

heorem 9.1 (Optimal approximation order). Assume d ≥ 3r + 2 and

et � be a triangulation of �. Then there exists a quasi-interpolatory op-

rator Q f ∈ Sr
d
(�) mapping f ∈ L1(�) into Sr

d
(�) such that Qf achieves

he optimal approximation order: if f ∈ W m+1
p (�),

Dα
x D

β
y (Q f − f )‖Lp(�) ≤ C|�|m+1−α−β | f |m+1,p,� (9.5)

or all α + β ≤ m + 1 with 0 ≤ m ≤ d, where Dx and Dy denote the

erivatives with respect to the first and second variables and the con-

tant C depends only on the degree d and the smallest angle θ� and may

e dependent on the Lipschitz condition on the boundary of �.

We sometimes need to use the so-called Markov inequality to

ompare the size of the derivative of a polynomial with the size of

he polynomial itself on a given triangle t. As a spline function is a

iecewise polynomial function, this inequality can be also applied to

ny spline function. See [19] for a proof.

heorem 9.2. Let t := 〈v1, v2, v3〉 be a triangle, and fix 1 ≤ q ≤ ∞.

hen there exists a constant K depending only on d such that for every

olynomial p ∈ Pd, and any nonnegative integers α and β with 0 ≤ α +
≤ d,

Dα
1 D

β
2

p‖q,t ≤ K

ρα+β
t

‖p‖q,t , 0 ≤ α + β ≤ d, (9.6)

here ρt denotes the radius of the largest circle inscribed in t.
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