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Abstract. Recently M. Dritschel proved that any positive multivariate Lau-
rent polynomial can be factorized into a sum of square magnitudes of polyno-
mials. We first give another proof of the Dritschel theorem. Our proof is based
on the univariate matrix Fejér-Riesz theorem. Then we discuss a computational
method to find approximates of polynomial matrix factorization. Some numer-
ical examples will be shown. Finally we discuss how to compute nonnegative
Laurent polynomial factorizations in the multivariate setting.

§1. Introduction

We are interested in computing factorizations of nonnegative Laurent polynomials
into sum of squares of polynomials. That is, let

P (z) =

n∑

k=−n

pkzk

be a Laurent polynomial, where z = eiθ. Suppose that P (z) ≥ 0 for |z| = 1. One

would ask if there exists a polynomial Q(z) =

n∑

k=0

qkzk such that

P (z) = Q(z)∗Q(z), (1)

where Q(z)∗ denotes the complex conjugate of Q(z). This is the well-known Fejér-
Riesz factorization problem and it was resolved by Fejér [F’15] and by Riesz [R’15].
A natural question is whether the results of Fejér and Riesz can be extended to the
multivariate setting. More generally, given a nonnegative multivariate trigonomet-
ric polynomial P (z) := P (z1, z2, · · · , zd) of coordinate degrees ≤ n, does there exist
a finite number of polynomials Qk(z) such that

P (z) =
∑

k

Q∗
k(z)Qk(z), (2)
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i.e., can P (z) be written as a sum of square magnitudes (sosm) of polynomials.
There is a vast amount of literature related to the study of this problem and the
results relevant to this paper may be summarized as follows:
1◦ When P (z) is nonnegative on the multi-torus |z1| = |z2| = · · · = |zd| = 1 and

the coordinate degrees of Qk are less than or equal to n, then the answer to
the question is negative. (See [Calderon and Perpinsky’52] and [Rudin’63].)

2◦ When P (z) is strictly positive on the multi-torus and the coordinate degrees
of Qk are not specified, Dritschel has shown that the answer to the question is
positive([Dritschel’04]). However the nonnegative case remains unresolved.

3◦ In the bivariate setting, Geronimo and Woerdeman gave a necessary and suffi-
cient condition in order for P (z) = |Q(z)|2, where Q(z) is a stable polynomial,
i.e., Q(z) 6= 0 inside and on the bi-torus ([Geronimo and Woerdeman’04]).

4◦ In the bivariate setting, there exist rational Laurent polynomials Qk(z) such
that (2) holds. Furthermore, Qk can be so chosen that the determinants of Qk

are only one variable Laurent polynomials (cf. [Basu’01]).
5◦ In [McLean and Woerdeman’01], an algorithm was proposed to find polynomi-

als Pk such that P =
∑

k |Pk|2. The algorithm uses semi-definite programming.

Although the mathematical problem appears to be theoretical, it has many
applications in engineering, e.g., the design of autoregressive filters, construction of
orthonormal wavelets (cf. [Daubechies’92]), construction of tight wavelet framelets
(cf. [Lai and Stoeckler’04]), spectral estimation in control theory (cf. [Sayed and
Kailath’01]) and many other engineering applications mentioned in [McLean and
Woerdeman’01]. Thus, how to compute such factorization polynomials Q1, Q2, · · · ,
is interesting and useful for applications.

In this paper, we iteratively reduce the problem of factorization of multi-
variate positive Laurent polynomials to a problem of factorization of univariate
positive definite polynomial matrices and thus present a new elementary proof of
Dritschel’s Theorem. The proof suggests a computational method (a Bauer type
method [Bauer’55,’56]) for computing the above factorization. The Bauer method
has been studied and generalized to the multivariate and operator settings by many
researchers, e.g., [Youla and Kazanjian’78], [Goodman, Micchelli, Rodriguez, and
Seatzu’97,’00], [van der Mee, Rodriguez, Seatzu’01], [Sayed and Kailath’01]. It was
proved by [Bauer’56] that his method converges exponentially fast. See [Lai’94] and
[Goodman, Micchelli, Rodriguez, and Seatzu’95] for different proofs of the expo-
nential convergence of their Bauer type methods. The Bauer method was extended
to the multivariate case in [Goodman, Micchelli, Rodriguez and Seatzu’00] and [van
der Mee, Rodriguez, Seatzu’02]. For the factorization of univariate positive definite
polynomial matrix, a linear convergence of the Bauer type method was proved in
[Youla and Kazanjian’78]. Later [van der Meer, Rodriguez and Seatzu’98]) used
Banach algebra techniques to show that the method converges exponentially fast
for real matrices. For the convenience of the reader we present a different proof
based on an extension of the method in [Lai’94].

The paper is organized as follows. In Section 2, we first give a different proof
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of Dritschel’s Theorem. As mentioned above the key to the proof is to iteratively
reduce the factorization of a multivariate strictly positive Laurent polynomial to a
problem of factorizing a positive definite univariate matrix of Laurent polynomials.
In Section 3, we explain a Bauer type method to compute the factorization of
positive definite Laurent polynomial matrices. The convergence of the method is
shown to be exponentially fast. Then in Section 4, some numerical examples are
computed following the procedure in §2 and §3. In Section 5 the factorization of
nonnegative Laurent polynomials is considered and the paper is concluded with
some remarks in Section 6.

§2. Dritschel’s Theorem

We begin with reviewing the concept of the symbol of a bi-infinite Toeplitz matrix
and discussing its properties [Grenander and Szego’58, p. 16]. For a given univariate

Laurent polynomial P (z) =

n∑

k=−n

pkzk, we may view P (z) as the symbol of a bi-

infinite Toeplitz matrix P := (pi−j)i,j∈Z. Indeed, for any absolutely summable

sequence x = (xi)i∈Z, i.e.,
∑

i∈Z

|xi| < ∞, let F (x) =
∑

j∈Z
xjz

j be the discrete

Fourier transform (or z-transform) of x. Let y = Px, then it is easy to see that

F (y) = P (z)F (x).

If the matrix P has a factorization Q which is a banded upper triangular Toeplitz
matrix such that

P = Q†Q,

the discrete Fourier transform of y = Q†Qx is F (y) = Q(z)∗Q(z)F (x), where
Q† denotes the complex conjugate transpose of matrix Q and Q(z)∗ the complex
conjugate of the Laurent polynomial Q(z). Thus, finding P (z) = Q(z)∗Q(z) is
equivalent to finding a banded upper triangular Toeplitz matrix Q such that P =
Q†Q.

It is easy to show that if P (z) ≥ 0 for all |z| = 1, then P is Hermitian and
nonnegative definite. Clearly, P is Hermitian since P (z) is real. Furthermore for
any absolutely summable sequence x, we need to show that x†Px ≥ 0. Again
writing y = Px, we know that

x†y =
1

2π

∫ 2π

0

F (x)F (y)dθ

where z = eiθ and it follows that

x†Px =
1

2π

∫ 2π

0

|F (x)|2P (z)dθ ≥ 0

3



for any nonzero sequence x. In particular, for

x = (· · · , 0, x−N , · · · , x0, · · · , xN , 0, · · ·)T ,

the left-hand side in the above inequality gives x†PNx, where PN is a central section
of P. The above argument shows that PN is nonnegative definite.

In the following we will assume that P (z) is strictly positive, in the sense that
there exists a positive number ε > 0 such that P (z) ≥ ε. When P (z) is a matrix,
we mean that P (z) ≥ εI, where I is the identity matrix of the same size as that of
P (z). When P (z) is strictly positive, we have

x†Px =
1

2π

∫ 2π

0

|F (x)|2P (z)dθ ≥ ε‖x‖2.

It follows that if P (z) ≥ ε > 0, then PN ≥ ε > 0.
We now consider the factorization of multivariate Laurent polynomials. Let us

begin with a bivariate Laurent polynomial P (z1, z2). That is, let

P (z1, z2) =

n∑

j=−n

n∑

k=−n

pjkzj
1z

k
2 ≥ 0

be a Laurent polynomial of coordinate degrees ≤ n. We would like to find a finite
number of polynomials Qk’s such that

P (z1, z2) =
∑

k

|Qk(z1, z2)|2.

Denote by z1 = [1, z1, z
2
1 , · · · , zn

1 ]T and write

P (z1, z2) = z1
†P̃ (z2)z1

for a Hermitian matrix P̃ (z2) =

n∑

k=−n

p̃kzk
2 , where each pk is an (n + 1) × (n + 1)

Toeplitz matrix. With a slight modification of an observation of [McLean and

Woerdeman’01, Theorem 2.1], we note that there are many ways to write P̃ (z2).

If there is one P̃ (z2) which is nonnegative definite then we can use the matrix
Fejér-Riesz factorization theorem (cf. e.g., in [Helson’64], [Rosenblum’68], [Rosen-

blatt’58], [McLean and Woerdeman’01], see also Section 3) to find Q̃(z2) such that

P̃ (z2) = Q̃†(z2)Q̃(z2).

That is, we have
P (z1, z2) = (Q̃(z2)z1)†Q̃(z2)z1
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which is clearly a sum of squares of polynomials.
The above discussion can be generalized to the multivariate setting and using

an observation of [Dritschel’04] to the case that the size of P̃ (z2) is larger than
(n + 1) × (n + 1). For simplicity, let us consider a trivariate Laurent polynomial
P (z1, z2, z3) in z1 = eiθ1 , z2 = eiθ2 , z3 = eiθ3 of coordinate degrees ≤ n. We first
write P (z1, z2, z3) in a matrix format:

P (z1, z2, z3) =

n∑

k=−n

pk(z2, z3)z
k
1 = z1

†P̂ (z2, z3)z1,

with
z1 = [1, z1, . . . , z

m1

1 ]T (3)

and m1 ≥ n. There are many ways to write P̂ (z2, z3). To capture this define the
set of matrices

F = {(pi,j(z2, z3)) 0 ≤ i, j ≤ m1 :
∑

i−j=k

|k|≤m1

pi,j(z2) = pk(z2), }.

Note that the matrices in F are banded since pk = 0, |k| > n. We look for a matrix

P̂ (z2, z3) in F that is positive definite for |z2| = 1 = |z3|. The polynomial matrix

P̂ (z2, z3) can be written as

P̂ (z2, z3) =

n∑

k=−n

P̃k(z3)z
k
2 ,

where each P̃k(z3) is an (m1 + 1) × (m1 + 1) Toeplitz matrix. Thus we can write

P̂ (z2, z3) = z2
†P̄ (z3)z2,

where
z2 = [Im1

, z2Im1
, . . . , zm2

2 Im1
]T ,

with Im1
being the (m1+1)×(m1+1) identity matrix and m2 ≥ n. The polynomial

P̄ (z3) is a matrix polynomial of size (m1 + 1)(m2 + 1) × (m1 + 1)(m2 + 1). If
it is nonnegative definite we can factor it into a polynomial matrix Q(z3), i.e.,
P̄ (z3) = Q(z3)Q(z3)

† by the matrix Fejér-Riesz theorem then we have

P (z1, z2, z3) = (Q(z3)z2z1)
†
(Q(z3)z2z1)

which is a sum of square magnitudes of polynomials in z1, z2, z3.
Our task then is to produce a positive definite polynomial matrix for any given

positive multivariate Laurent polynomial. We resume our discussion on the two
variable case again and rewrite P (z1, z2) as follows:

P (z1, z2) =

n1∑

k=−n1

pk(z2)z
k
1 = zm1

†Pm1
(z2)zm1
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where m1 ≥ n1, zm1
= [1, z1, z

2
1 , · · · , zm1

1 ]T , and

Pm1
(z2) = [pjk(z2)]0≤j,k≤m1

with polynomial entries pj,k(z2) given by

pjk(z2) =
1

m1 + 1 − |j − k|pk−j(z2), ∀j, k = 0, · · · , m1.

Note that pjk(z2) = 0 for |j − k| > n1. Under this decomposition we can show
that for some m1 large enough, the matrix P1(z2) will be positive definite when
P (z1, z2) is positive definite. To see this note that P (z1, z2) is the symbol of the
following bi-infinite Toeplitz matrix,




. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . p0(z2) p−1(z2) · · · p−n(z2) 0 · · ·
. . . p1(z2) p0(z2)

. . .
. . .

. . .
. . .

. . . p2(z2) p1(z2)
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . pn(z2) pn−1(z2) · · · . . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .




. (4)

The positivity of P (z1, z2) implies that any central section of the this matrix, i.e.,
any square block with the diagonal consistent with the main diagonal

diag(· · · , p0(z2), p0(z2), p0(w2), · · ·)
is positive as explained at the beginning of this section. Typically, we have

p0(z2) > 0,

[
p0(z2) p−1(z2)
p1(z2) p0(z2)

]
> 0,




p0(z2) p−1(z2) p−2(z2)
p1(z2) p0(z2) p−1(z2)
p2(z2) p1(z2) p0(z2)



 > 0, · · · .

For convenience, we denote by P2 and P3 to be the 2× 2 and 3× 3 matrices above,
respectively. In general, we use Pk to denote the k × k central block matrix from
the bi-infinite Toeplitz matrix (4) above.

Now look at the matrix Pm1
(z2) given by,




1
m1+1

p0(z2)
1

m1

p−1(z2) · · · 1
m1+1−n1

p−n1
(z2) 0 · · ·

1
m1

p1(z2)
1

m1+1
p0(z2)

1
m1

p−1(z2)
. . .

. . .
. . .

1
m1−1p2(z2)

1
m1

p1(z2)
. . .

. . .
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

1
m1+1−n1

pn1
(z2)

. . . · · · . . .
. . .

. . .

0
. . .

. . .
. . .

. . .
. . .

...
. . .

. . .
. . .

. . . 1
m1+1

p0(z2)




.
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With x = [x0, x1, · · · , xm1
]T , we need to prove that x∗Pm1

(z2)x > 0. First write

x†Pm1
x =

1

m1 + 1
x†Pm1

x +
1

m1 + 1
x†Rm1

x

with a remainder matrix Rm1
. The `2 norm of Rm1

can be estimated directly to
give

‖Rm1
‖2 ≤ 2n1(n1 + 1)C1√

3(m1 − n1)
,

where we have used the fact that Rm1
is a banded matrix and

C1 = sup
i=1,···,n1,

|z2|=1

|pi(z2)|. (5)

If P (z1, z2) ≥ ε then x†Pm1
x ≥ ε‖x‖2, so that if

2n1(n1 + 1)C√
3(m1 − n1)

< ε, then x†Pm1
(z2)x >

0. Thus an application of the matrix Fejér-Riesz Theorem yields

Theorem 2.1. Let P (z1, z2) =

n1∑

k=−n1

pk(z2)z
k
1 ≥ ε > 0 be strictly positive on

bi-torus |z1| = 1 = |z2|. Then P (z1, z2) can be factored into a sum of square
magnitudes of polynomials in z1 and z2. The total number of terms in the sum is
less than or equal to m1 + 1 with m1 being an integer such that

2n1(n1 + 1)C1√
3(m1 − n1)

< ε,

where C1 is the positive constant given in (5). The degrees of each of the polyno-
mials is bounded by m1 in z1 and n2 in z2.

We remark that when P (z1, z2) has different coordinate degrees n1, n2, it may
be worthwhile depending upon C1 to choose the smaller among n1 and n2 in order
to have a fewer terms in the sum of square magnitudes of polynomials for P (z1, z2).

Next we generalize the result in Theorem 2.1 to the multivariate setting which
is known from [Dritschel’04].

Theorem 2.2(Dritschel). Let P (z1, · · · , zd) be a multivariate Laurent polyno-
mial which is strictly positive on the multivariate torus |z1| = |z2| = · · · = |zd| = 1,
where d ≥ 2 is an integer. Then P (z1, · · · , zd) can be expressed as a sum of square
magnitudes of polynomials in z1, · · · , zd.

Proof: We shall use the arguments in the proof of the previous Theorem. Write
P (z1, z2, . . . , zd) = P (z1, z) =

∑n1

j=−n1
pj(z)zj

1 > 0, where z is the usual multi-
variable notation beginning with z2. We know that P (z1, z) is the symbol of the
bi-infinite Toeplitz matrix given by (4) with z2 replaced by the multi-variable z.
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It follows that any central section along the main diagonal is strictly positive
definite as explained before. Write

P (z1, z) = z1
†Pm1

(z)z1, (6)

where z1 given by equation (3) and Pm1
(z) = [pj,k]0≤j,k≤m is a matrix of size

(m1 + 1) × (m1 + 1) with entries

pjk =
1

m1 + 1 − |j − k|pj−k(z), ∀j, k = 0, 1, · · · , m1.

If P > ε the argument in Theorem 2.1 shows that for m1 large enough there is an

ε1 > 0 such that x†Pm1
(z)x > ε1‖x‖2 on the d − 1 torus if

2n1(n1 + 1)Ĉ1√
3(m1 − n1)

< ε,

where in this case Ĉ1 = sup
i,|zj |=1,j=2,...,d

|pi(z)|. Write Pm1
(z2, z

′) =

n2∑

k=−n2

p̃k(z′)zk
2 ,

where p̃k are (m1 + 1)× (m1 + 1) Toeplitz matrices and z′ = (z3, . . . , zd). Now set

p̂jk =
1

m2 + 1 − |j − k| p̃j−k(z′), ∀j, k = 0, · · · , m2

with m2 ≥ m1 and Pm2
(z′) = [p̂j,k]0≤j,k≤m2

. As above we have that

x†Pm2
x =

1

m2 + 1
x†Pm2

x +
1

m2 + 1
x†Rm2

x.

As above the norm of Rm2
can be bounded by

‖Rm2
‖2 ≤ 2n2(n2 + 1)C2√

3(m2 − n2)
,

where C2 = sup
i,|z2|=···|zd|=1

‖p̃i(z
′)‖2, we find for m2 sufficiently large, Pm2

is a pos-

itive matrix polynomial. We continue the process until we arrive at the positive
trigonometric matrix polynomial Pmd−1

(zd) which can be factored by the matrix
Fejér-Riesz theorem. We have thus established the proof.

Note that the number of factors will be (m1 + 1)(m2 + 1) · · · (md−1 + 1) and
the degrees of the polynomials at most m1 for z1 ... md−1 for zd−1 and nd for zd.
We note that we could have avoided the use of the matrix Fejér-Riesz theorem by
eliminating all variables then using a square root of a positive matrix (see [McLean
and Woerdeman’01]). We will consider an alternative computationally attractive
method for computing factorizations in the next section.
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§3. Computing Approximate Factorizations

As shown in the previous section, an important step in the factorization of multivari-
ate Laurent polynomials is to compute the factorization of univariate polynomial
matrices. Recall a computational algorithm for factorization of one variable Lau-
rent trigonometric polynomials was developed in [Lai’94]. (This is a Bauer type
method. See Remark 6.1 for differences.) This method can be extended to fac-
torize positive definite polynomial matrices in the univariate setting. Let us first
introduce some necessary notation and definitions in order to explain the method
in more detail.

Let `2 stand for the space of all bi-infinite square summable sequences. Let
‖x‖2 denote the standard norm on `2. We note that any bounded operator A from
`2 7→ `2 can be expressed by a bi-infinite matrix.

Definition 3.1. A bi-infinite matrix A = (aik)i,k∈Z is said to be of exponential
decay off its diagonal if

‖aik‖2 ≤ Kr|i−k|

for some constant K and r ∈ (0, 1), where Z is the collection of all integers. A is
banded with band width b if aik = 0 for all i, k ∈ Z with |i − k| > b.

We suppose that A is a bounded operator throughout this section. If A is a
positive operator, then there exists the unique positive bounded bi-infinite square
root matrix Q of A such that Q2 = A. If A = B†B for bi-infinite Cholesky
factorization B of A with positive entries on its diagonal, then there exists a unitary
matrix U such that B = UQ.

Recall from the previous section that given any Laurent polynomial P (z), we
can view P (z) to be the symbol of a bi-infinite Toeplitz matrix P. The computa-
tional scheme introduced in [Lai’94] roughly speaking is to choose a central section

PN = (pj−k)−N≤j,k≤N

of matrix P and compute a Cholesky factorization, i.e. PN = C†
NCN with CN

being an upper triangular matrix with positive diagonal entries if PN is positive
definite. If PN is nonnegative definite use the singular value decomposition (SVD)
to first find QN such that PN = Q2

N and then find a Householder matrix HN such
that CN = HNQN is upper triangular. The nonzero entries in the middle row of
CN approximate those in the middle row (in fact any row) of C whose symbol C(z)
is a factorization of P (z), i.e., P (z) = C(z)∗C(z).

For the extension of this method to polynomial matrices, let

`m
k = {x = {xi}i∈Z, xi ∈ Rm, ‖x‖k < ∞}, k = 1, 2

and B(`m
2 ) be the set of bounded linear operators on `m

2 . Let ΠN ∈ B(`m
2 ) be the

projection given by

ΠNx = y, y = {yi : yi = 0, |i| > N, yi = xi, |i| ≤ N}.
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If P ∈ B(`m
2 ) is positive definite we will be interested in considering the (2N +

1)m × (2N + 1)m sub-matrix of P centered at the index zero which will be called
the Nth central section. Note that the Nth central section is positive definite. We
will also be interested in extensions of various finite matrices AN to B(`m

2 ) given
by 


0 0 0
0 AN 0
0 0 0


 ,

which with a slight abuse of notation will also be called AN .
Consider the matrix polynomial P (z) =

∑n
j=−n pjz

j with matrix coefficients
pk’s of size m × m, then P = (pi−j)i,j∈Z ∈ B(`m

2 ) defined by m × m matrix blocks
pk,−n ≤ k ≤ n is a bi-infinite block Toeplitz matrix whose symbol is P (z). As
shown earlier if P (z) is Hermitian nonnegative definite, so is P. Let C(z) be a
factorization of P (z) i.e., P (z) = C(z)† C(z), then P = C†C, where C is a bi-infinite
upper triangular banded block Toeplitz matrix associated with C(z). On the other
hand, if P = C†C for a upper triangular banded block Toeplitz matrix, then the
symbol C(z) of C satisfies P (z) = C(z)†C(z). If P (z) is positive definite then
it follows from the matrix Fejér-Riesz theorem (cf. [Helson’64], [Rosenblatt’58],
[Rosenblum’68], [McLean and Woerdeman’01]) that it is possible to choose C so
that it has positive diagonal entries. We shall prove the following,

Theorem 3.1. Let P (z) =
∑n

−n pkzk be an m×m matrix polynomial that is pos-

itive definite for |z| = 1. Let P = (pi−j)i,j,∈Z = C†C where C is an upper triangular
banded block Toeplitz with positive diagonal entries, PN be the Nth central section
of P, and CN the Cholesky factor of PN (which we extend as described above).
Then

‖(CN − CN )δ‖2 ≤ KρN ,

for some ρ ∈ (0, 1), where δ ∈ `m
2 is any vector with a finite number of nonzero

entries.

For the numerical computation in the next section we will choose δ with zero com-
ponents except for δ0 = Im, the m × m identity matrix.

The proof of Theorem 3.1 is based upon the following Theorem 3.2 and Lemmas
3.3 and 3.4.

Theorem 3.2. Suppose that A ∈ B(`2) is a positive banded operator such that
‖A − I‖2 < 1. Let Q be the unique positive square root of A, AN be a central

section of A, and Q̂N be the positive matrix such that Q̂2
N = AN . Then

‖(Q − Q̂N )δ‖2 ≤ KλN (7)

for some λ ∈ (0, 1) and a positive constant K. In equation (7) δ is any vector with
a fixed number of nonzero entries.

To prove the above Theorem 3.2, we begin with the following lemmas.
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Lemma 3.3. Suppose that A is banded with bandwidth b and ‖A − I‖2 ≤ r < 1.

If Q2 = A with Q = (qik)i,k∈Z, then |ql,k| ≤ Kr
|l−k|

b . If A is invertible, then the
entries of Q−1 satisfy a similar bound.

Proof: We only prove the exponential decay property of Q. The proof of that of
Q−1 is similar. The uniqueness of Q and the convergence of the following series

∞∑

i=0

(−1)i (2i − 3)!!

(2i)!!
(A − I)i

implies that

Q =
√

A =
√

I + (A − I) =

∞∑

i=0

(−1)i (2i − 3)!!

(2i)!!
(A − I)i.

A is banded and so is A− I. If A− I has bandwidth b, then (A− I)i is also banded
with bandwidth ib. Thus,

qjk =
∞∑

i≥|j−k|/b

(−1)i (2i − 3)!!

(2i)!!
(A − I)i

jk,

where (A − I)jk denotes the (j, k)th entry of A − I and similar for (A − I)i
jk. It

follows that
|qjk| ≤ Kr|j−k|/b

for some constant K. This finishes the proof.
Let us write

Q =




α1 B α2

B† QN C†

α†
2 C α4


 and A =




β1 a β2

a† AN c†

β†
2 c β4


 .

Note that Q2 = A implies AN = Q2
N + B†B + C†C or Q̂2

N − Q2
N = B†B + C†C

where Q̂2
N = AN . Thus, we have

(QN + Q̂N )(Q̂N − QN ) = Q̂2
N − Q2

N + QN Q̂N − Q̂NQN = B†B + C†C + R, (8)

where R is defined in the following,

Lemma 3.4. (cf. [Lai’94]) Let R = (rjk)−N≤j,k≤N := QN Q̂N − Q̂NQN . Then
rjk = O(rN/(4b)) for k = −N/4 + 1, · · · , N/4− 1 and j = −N, · · · , N .

Proof of Theorem 3.2: From equation (8) we find that, (Q̂N − QN ) = (QN +

Q̂N )−1(B†B + C†C + R). By Lemma 3.3., we can prove that the entries of B†B +
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C†C have the exponential decay property: (B†B+C†C)jk = O(rN−|k|),−N ≤ k ≤
N .

The positivity of A implies that Q is positive and so is QN . It follows that
‖Q−1

N ‖2 is uniformly bounded. Thus, we have

‖(QN + Q̂N )−1‖2 ≤ ‖Q−1
N ‖2 ≤ K1 < ∞

for a positive constant K1 independent of N , where we have used the fact that Q̂N

is nonnegative. Therefore, we conclude that

‖(Q̂N − QN )δN‖2 ≤‖(QN + Q̂N )−1‖‖(B†B + C†C + R)δN‖2

≤K1‖(B†B + C†C + R)δN‖2

where δN is the finite vector whose entries match those of δ. The proof is completed
by extending QN , Q̂N , replacing δN by δ, and noticing that by Lemma 3.3, ‖(QN −
Q)δ‖2 < K1λ

N , λ < 1.
Proof of Theorem 3.1: Suppose that

sup
|z|=1

‖P (z)‖2 < 1. (9)

Otherwise divide P by a sufficiently large constant so that (9) holds. Let Q be the

unique positive square root of P, and Q̂N the positive square root of PN . From
Theorem 3.2 we know that ‖(Q̂N −Q)δ‖2 ≤ KρN with ρ < 1. Let U be the unitary
matrix such that C = UQ which is upper triangular. Then

‖(Q̂N − Q)δ‖2 = ‖(UQ̂N − C)δ‖2.

The above equation implies that the diagonal elements of UQ̂N tend exponentially
fast to the positive diagonal entries of C. Moreover, let (q̃i,0)i∈ZZ be the central

column of UQ̂N . Since C is upper triangular and banded with bandwidth b, we
have ∑

i<0

|q̃i,0|2 +
∑

i>b

|q̃i,0|2 ≤ ‖(UQ̂N − C)δ‖2.

Thus,
∑

i<0 |q̃i,0|2 +
∑

i>b |q̃i,0|2 ≤ K2ρ2N by Theorem 3.2. We shall use this fact
two times below.

Write UQ̂N = Q̃N +L1
N , where Q̃N is upper triangular and L1

N is strictly lower

triangular. Then UQ̂N = qN + lN , where qN = ΠN Q̃NΠ†
N and lN = L1

N +Q̃N −qN .
Since C is upper triangular and banded, Theorem 3.2 shows that ‖lNδ‖2 tends to
zero exponentially fast because ‖lNδ‖2

2 =
∑

i<0 |q̃i,0|2 +
∑

i>N |q̃i,0|2. Here we have

used the above fact. Furthermore since Q̂N is symmetric,

PN =Q̂2
N = Q̂†

N Q̂N = (UQ̂N )†(UQ̂N )

=(qN + lN )†(qN + lN )

=q†NqN + l†NqN + q†N lN + l†N lN .

12



That is, we have

C†
NCN − q†NqN = l†NqN + q†N lN + l†N lN .

Since QN is uniformly bounded so is qN and we find that ‖l†N lNδ‖2 and ‖q†N lNδ‖2

go to zero exponentially fast. Also, we claim that ‖l†NqNδ‖2 < K3λ
N . Indeed, as

we know ‖lNδ‖2 ≤ KρN so are ‖lNδi‖2 ≤ KρN for δi which is a zero vector except
for the ith component which is 1, where i = 1, 2, · · · , b. Write lN = (`ij)−N≤i,j≤N

with `ij = 0 for i > j. (Note that we arrange the indices so that `N,N is on the top
left corner of matrix lN while `−N,−N is the low right corner of lN .) We know that∑

i<j |`ij |2 < KρN for j = 0, 1, · · · , b. Also, let (qN,i) be the central column of qN .
Note that qN,i = q̃i,0 for i = −N, · · · , N and q̃i,0 = 0 for i < 0. It follows that the

only nonzero entries of l†NqNδ are those with j ≥ 0,

N∑

i=−N

`ij q̃i,0 =
N∑

i=0

`ij q̃i,0 =
b∑

i=0

`ij q̃i,0 +

j∑

i=b+1

`ij q̃i,0.

Hence, we have

‖l†NqNδ‖2
2 ≤2

N∑

j=0

(|
b∑

i=0

q̃i,0`ij |2 + |
j∑

i=b+1

`ij q̃i,0|2)

≤
b∑

i=0

|q̃i,0|2
b∑

i=0

‖lNδi‖2
2 +

N∑

i=0

|q̃i,0|2
N∑

j=0

j∑

i=b+1

|`ij |2

≤K1ρ
2N + (N + 1)‖Q̂N‖2

2ρ
2N

≤K2λ
2N

for another λ ∈ (0, 1) and constant K2 > 0, where we have used the above fact
again. Thus, we have the claim. Therefore,

‖(C†
NCN − q†NqN )δ‖2 < K3λ

N ,

where we recall that CN = [cij ]−N≤i,j≤N is the Cholesky factorization of the central
section PN of P. Restricting the above quantities to their finite matrices we note
because of the strict positivity of P , ‖qN‖2 is uniformly bounded from below hence
q−1
N is uniformly bounded. Furthermore since CN has the same size as qN ,

‖(I − (q†N )−1C†
NCNq−1

N )δN‖2 < K4λ
N ,

where δN = qNδ for any δ with finitely many nonzero entries. The above inequality
shows that ‖(CNq−1

N −I)δN‖2 ≤ K4λ
N . Indeed, writing (aN,ij)−N≤i,j≤N = CNq−1

N ,
we note that aij = 0 for i < j since both CN and qN are upper triangular and each
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entry aN,i,i on the diagonal is bounded below by the uniform boundedness of C−1
N

and qN .

‖(I − (q†N )−1C†
NCNq−1

N )δ‖2
2 =

N∑

j=−N

|
N∑

i=j

aN,i,jaN,i,0 − δj0|2 ≤ K2
4λ2N .

¿From the above inequality, we conclude |aN,N,0| ≤ K4λ
N for j = N . By induction

we can show that |aN,j,0| ≤ K4λ
N for j = 1, · · · , N − 1. For j = 0, we have

|
N∑

i=0

a2
N,i,0 − 1|2 ≤ K2

4λ2N .

It follows that |aN,0,0 − 1| ≤ K4NλN . Hence, we have

‖(CNq−1
N − I)δ‖2 ≤ K5ν

N

for another real number ν ∈ (0, 1). Therefore,

‖(CN − UQ̂N )δ‖2 ≤ ‖(CN − qN )δ‖2 + ‖`Nδ‖2 ≤ K6ν
N

and hence,

‖(CN − C)δ‖2 ≤ ‖(CN − UQ̂N )δ‖2 + ‖(UQ̂N − C)δ‖2 ≤ K7ν
N .

This completes the proof.

§4. Numerical Examples

In this section we give three examples to illustrate how the computational
method works for polynomial matrix factorizations.
Example 4.1. We first consider a univariate polynomial matrix

P (z) :=

[
8 + z + 1/z 1 + z

1 + 1/z 1

]
.

It is clear that the matrix is Hermitian and positive definite. We write

P (z) =

[
8 1
1 1

]
+

[
1 1
0 0

]
z +

[
1 0
1 0

]
/z.

We assemble a bi-infinite Toeplitz matrix whose 10 × 10 block is as shown below.



8 1 1 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 0 8 1 1 1 0 0 0 0
1 0 1 1 0 0 0 0 0 0
0 0 1 0 8 1 1 1 0 0
0 0 1 0 1 1 0 0 0 0
0 0 0 0 1 0 8 1 1 1
0 0 0 0 1 0 1 1 0 0
0 0 0 0 0 0 1 0 8 1
0 0 0 0 0 0 1 0 1 1




.
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We use the Cholesky factorization method to a 40×40 central block and get a lower
triangular matrix F . Let P0 be the 2× 2 block from the middle rows and columns
of F (e.g., (Fij)19≤i,j≤20 which is

P0 :=

[ √
385
7

0

6√
385

√
2310
55

]
.

Choose the 2 × 2 block next to P0 in the same rows as that of P0 as P1. That is,

P1 :=

[ √
385
55

−
√

2310
385

√
385
55

−
√

2310
385

]
.

Define Q†(z) = P0 + P1/z and then we have P (z) = Q(z)†Q(z).
Example 4.2. We next consider a bivariate polynomial

P (x, y) = 41 + 5x2 + 5y2 + 15/x + 20/y + 5/x2 + 5/y2 + 15x + 20y + 5xy

+ 8y/x + 5/(xy) + 8x/y + 2x/y2 + 3y/x2 + 3x2/y + x2/y2 + 2y2/x + y2/x2.

It is a positive polynomial since P (x, y) = p(x, y)p(1/x, 1/y) with p(x, y) = 5 +
2x + 3y + xy + x2 + y2. Let us write

P (x, y) = [1, 1/x, 1/x2]P̃ (y)




1
x
x2



 ,

with

P̃ (y) :=



41
3

+ 5y2

3
+ 20

3y
+ 5

3y2 + 20
3

y 15
2

+ 5
2
y + 4

y
+ 1

y2 5 + 3
y

+ 1
y2

15
2 + 4y + 5

2y + y2 41
3 + 5

3y2 + 20
3y + 5

3y2 + 20
3 y 15

2 + 5
2y + 4

y + 1
y2

5 + 3y + y2 15
2 + 4y + 5

2y + y2 41
3 + 5

3y2 + 20
3y + 5

3y2 + 20
3 y


 .

The above matrix polynomial can be rewritten as P̃ (y) =
∑2

j=−2 pjy
j with p−2, · · · , p2

being given below:

p0 =




41
3

15
2

5
15
2

41
3

15
2

5 15
2

41
3


 , p1 =




20
3

5
2

0

4 20
3

5
2

3 4 20
3


 , p−1 = p†1,

p2 =




5
3 0 0

1 5
3 0

1 1 5
3


 , p−2 = p†2.
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We now assemble a bi-infinite Toeplitz matrix whose 9 × 9 central block is shown
as follows: 



41
3

15
2 5 20

3
5
2 0 5

3 0 0
15
2

41
3

15
2

4 20
3

5
2

1 5
3

0

5 15
2

41
3 3 4 20

3 1 1 5
3

20
3

4 3 41
3

15
2

5 20
3

5
2

0
5
2

20
3 4 15

2
41
3

15
2 4 20

3
5
2

0 5
2

20
3 5 15

2
41
3 3 4 20

3
5
3 1 1 20

3 4 3 41
3

15
2 5

0 5
3 1 5

2
20
3 4 15

2
41
3

15
2

0 0 5
3

0 5
2

20
3

5 15
2

41
3




.

We use the Cholesky factorization of a central block matrix of size 120 × 120. Let
F be the lower triangular factorization. Then choose Q0 to be the 3 × 3 block at
the middle rows and columns of F (e.g., (Fij)58≤i,j≤60), Q1 the 3× 3 block next to
Q1 in the same rows of Q1 and Q2 the 3 × 3 block next to Q1 in the same rows of
Q1. That is

Q0 =




3.185602126 0 0

1.873651218 2.539725049 0

1.524622962 1.128505745 2.269126602


 ,

Q1 =




1.797364251 0.08381502303 −0.0003518239229

0.7675275947 1.633796832 0.06150315980

0.00008111923034 0.9665117592 1.856367398




Q2 =




0.5231873284 0.007768330871 0.08530594055

0 0.6562390159 0.1143305535

0 0 0.7344969935


 .

Let Q(y)† = Q0 +Q1/y+Q2/y2 and then Q(y)†Q(y) ≈ P̃ (y). In fact the maximum

error of each entry of Q(y)Q(y)∗ − P̃ (y) is less than or equal to 10−8.
Example 4.3. Let us consider a bivariate polynomial which has a zero on the
bi-torus:

P (x, y) = 30 + 14/x + 11/y + 4/x/y + 14x + 6x/y + 11y + 6y/x + 4xy.

It is the product of P (x, y) = (4 + 3x + 2y + 1)(4 + 3/x + 2/y + 1) which is zero at
x = −1, y = −1. We write

P (x, y) = p0(y) + p1(y)x + p−1(y)/x
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for p0(y) = 30 + 11/y + 11y, p1(y) = 14 + 6y + 4/y, and p−1(y) = 14 + 4y + 6/y.
It is the symbol of an bi-infinite Toeplitz matrix. One of its central section is as
shown below.




11/y + 30 + 11y 4/y + 14 + 6y 0 0
6/y + 14 + 4y 11/y + 30 + 11y 4/y + 14 + 6y 0

0 6/y + 14 + 4y 11/y + 30 + 11y 4/y + 14 + 6y
0 0 6/y + 14 + 4y 11/y + 30 + 11y


 .

Since P (x, y) has no simple factors (see the next section), any central sections of the
bi-infinite Toeplitz matrix is positive by Lemma 5.1. We consider several central
sections Pm of size m = 32 × 32, 64 × 64, 128 × 128 and 256 × 256. For each of
these central sections, Pm is a univariate polynomial in y with matrix coefficients
and Pm(y) is positive. Thus, Pm(y) = Qm(y)†Qm(y). To compute Qm(y), we use
the computational method in §3 to yield an approximation Q̃m of Qm. As the size
of central sections increases, the Qm converges to the corresponding entries in the
bi-infinite Toeplitz matrix. We use the entries in the center of the middle rows of
Q̃m to construct an approximation of Qm(y) and hence the factorization of P (x, y)
and listed below.




size factorization

16 × 16 4.01207952 + 2.984741799x + 2.000226870y + 0.996712925xy

32 × 32 4.004041536 + 2.994924757x + 2.000034879y + 0.998949058xy

64 × 64 4.001381387 + 2.998269650x + 2.000005690y + 0.999648058xy

128 × 128 4.00069369 + 2.999134582x + 1.99999896y + 0.999821915xy




.

As we know that the factorization is 4 + 3x + 2y + 1, the approximations are very
good.

§5. Nonnegative Bivariate Trigonometric Polynomials

Finally we consider the problem of factorization of nonnegative multivariate poly-
nomials. Let us start with P (z, w) ≥ 0. If for some z0 with |z0| = 1, P (z0, w) = 0
for all w with |w| = 1, we say that P (z, w) has a simple factor at z0. If P (z, w) has
a simple factor at z0, then P (z, w) has factors (z − z0) and (1/z − 1/z0). Let us
factor them out. Then P (z, w)/((z−z0)(1/z−1/z0)) is still nonnegative. Similarly,
if P (z, w0) = 0 for all z with |z| = 1, P (z, w) has a simple factor at w0. In this
case, P (z, w) has two factors (w−w0) and (1/w−1/w0) which can be factored out
from P (z, w). Without loss of generality, we may assume that P (z, w) ≥ 0 does not

have any simple factors. Writing P (z, w) =

n∑

j=−n

pj(w)zj , we view that P (z, w) is

a polynomial of z and it is the symbol of a bi-infinite Toeplitz matrix in (4) with
w in place of z2. We have the following
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Lemma 5.1. Suppose that P (z, w) ≥ 0 does not have any simple factors. Then any
central section of the bi-infinite Toeplitz matrix in (4) is strictly positive definite.

Proof: Since P (z, w) ≥ 0, we know that any central section of the matrix in (4)
is nonnegative definite. Suppose that a central section Tm(w) of the matrix in
(4) is not positive definite for w = w0. Then there exists a vector x such that
Tm(w0)x = 0, i.e., x†Tm(w0)x = 0. Thus, we have, for z = eiθ,

0 = x†Tm(w0)x =
1

2π

∫ 2π

0

F (x)∗P (z, w0)F (x)dθ.

It follows that
|F (x)|2P (z, w0) = 0, a.e.

and hence, P (z, w0) ≡ 0 since |F (x)| 6= 0, a.e. and P (z, w0) is a Laurent polynomial.
That is, P (z, w) has a simple factor at w0. This contradicts the assumption on
P (z, w).

Thus, for a central section Pm of size m × m in the matrix in (4), Pm is
positive. Since Pm is a polynomial matrix in w, by the matrix Fejér-Riesz fac-
torization theorem (cf. [Helson’64], [Rosenblatt’58], [Rosenblum’68], and [McLean
and Woerdeman’01]), Pm can be factorized into Qm, i.e., Pm(w) = Qm(w)†Qm(w).
Intuitively, the polynomial Qm is a good approximation of the factorization of the
bi-infinite Toeplitz matrix P in (4) for m sufficiently large. In the previous section,
we presented an example (Example 4.3.) of P (z, w) which is nonnegative without
simple factors. Using our symbol approximation method, we compute an approx-
imation of the factorization of Pm for m = 16, 32, 64, and 128. The numerical
computation shows the factorizations converge.

Let us now discuss the convergence a little bit more in detail. For simplicity, let
A be a bi-infinite Toeplitz matrix associated with a univariate Laurent polynomial
A(z) and AN = (ajk)−N≤j,k≤N be a central section of size (2N + 1) × (2N + 1)
for a positive integer N . Suppose that each AN is strictly positive. Thus we can
obtain a factorization AN = B∗

NBN by Cholesky factorization with positive entries
on its diagonal of B.

Lemma 5.2. For any x,y ∈ `2, x†ANy := x†
NANyN converges to x†Ay as N −→

+∞, where xN = (x−N , · · · , x0, · · · , xN )† is the central section of size 2N + 1 of x
around the index 0 and similar for yN .

Proof: For an integer N > 0,

x†ANy − x†Ay

=
1

2π

∫ 2π

0

(F (xN )∗A(z)F (yN ) − F (x)∗A(z)F (y))dθ

=
1

2π

∫ 2π

0

(F (xN ) − F (x))
∗
A(z)F (yN )dθ

+
1

2π

∫ 2π

0

F (x)∗A(z) (F (yN ) − F (y)) dθ
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where z = eiθ. In the first equality we used the fact that x†ANx = (ΠNx)†AΠNx
where ΠN is the projection defined in Section 3. Thus

|x†ANy − x†Ay|
≤‖x − xN‖2‖A(z)‖∞‖y‖2 + ‖y − yN‖2‖A(z)‖∞‖x‖2

→0

as N → +∞. Here, ‖A(z)‖∞ denotes the maximum norm of A(z) over the circle
|z| = 1. This completes the proof.

A consequence of the above Lemma 5.2 is that ‖BNx‖2
2 converges to x†Ax. If

A can be factored to A = B†B. Then ‖BNx‖2 −→ ‖Bx‖2. The following is another
consequence of Lemma 5.2.

Lemma 5.3. Let BN be a factorization of AN , i.e., AN = B†
NBN . Then ‖BN‖ is

bounded independent of N .

Proof: By Lemma 5.2, there exists a constant C such that for N large enough,

‖BNx‖2
2 = x†ANx ≤ x†Ax + C = ‖x‖2

2‖A(z)‖∞ + C.

Hence, ‖BN‖ := max
x∈`2

‖x‖2=1

‖BNx‖2 is bounded.

Note that for every N , BN banded with the same band width as that of A.
Thus, each row (or column) of BN has finitely many nonzero entries. Lemma 5.3
implies that each row (or column) of BN is bounded in `2 norm and hence each
entry in any row is bounded. Therefore there exists a subsequence of BNj

such that
each entry with indices (j, k) in BNi

converges as i −→ +∞. That is, for any vector
x = (xi)i∈z ∈ `2 with finitely many nonzero entries, we have

BNi
x −→ Bx.

for a bi-infinite matrix B. By Lemma 5.3 again, we have x†B†By = x†Ay. Then
B†B = A. Note that B is an upper triangular matrix with the same band width
as that of A. If B is a Toeplitz matrix, we immediately know that A(z) has a
factorization such that A(z) = B(z)∗B(z). Therefore, we end with

Theorem 5.4. Let P (z, w) be a nonnegative Laurent polynomial with no simple
zeros. Let P be a bi-infinite Toeplitz matrix with Laurent polynomial entries in w.
Then P naturally induces a nonnegative operator B on `2 such that P = B†B and
there is a subsequence of BN convergent to B entrywise, where BN is a factorization
of a central section PN of P, i.e., B†

NBN = PN . If B is Toeplitz, then P (z, w) can
be factored into a sum of square magnitudes of finitely many polynomials in z and
w.

Theorem 5.4 provides a computational method to check if a nonnegative Lau-
rent polynomial P (z, w) can be factorized. That is, we compute Cholesky factoriza-
tion of central sections of the bi-infinite Toeplitz matrix P associated with P (z, w)
and observe if the factorization matrices converge to a Toeplitz matrix or not. If
they converge, P (z, w) has a factorization.
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§6. Remarks

1. It is interesting to point out that the symbol approximation method dis-
cussed in [Lai’94] is very much like the Bauer method in [Bauer’55]. One
slight difference is that the singular value decomposition (SVD) instead of
the Cholesky decomposition is used to factorize the matrices associated with
Laurent polynomial P (z) ≥ 0. Another slight difference is that the central
section PN = (pij)−N≤i,j≤N in [Lai’94] is used instead of PN = (pij)0≤i,j≤N

in [Bauer’55].
2. When P (z) is a matrix polynomial in the univariate setting [Hardin, Hogan and

Sun’04] have demonstrated a constructive method to factor P (z) = Q(z)†Q(z)
when P (z) has a nonzero monomial determinant.

Acknowledgement: The authors would like to thank referees for providing refer-
ences [8–11, 14, 17–19, 22, 23] which are directly related to the topic of the research
presented in this paper.
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2. F. L. Bauer, Beiträge zur Einwicklung numerischer Verfahren für programm-
mgeteuerte Rechenanlagen II. Direkte Faktorizierung eines Polnoms, Sitz. Ber.
Bayer. Akad. Wiss. (1956), pp. 163–203.

3. S. Basu, A constructive algorithm for 2D spectral factorization with rational
spectral factors, IEEE Trans. on Circuits and Systems, 47(2000), 1309–1318.

4. A. Calderon and R. Perpinsky, On the phases of Fourier coefficients for positive
real periodic functions, Computing Methods and Phase Problem in X-Ray
Crystal Analysis, edited by R. Perpinsky, 1952, pp. 339–346.

5. I. Daubechies, Ten Lectures on Wavelets, SIAM Publications, Philadelphia,
1992.

6. M. A. Dritschel, On factorization of trigonometric polynomials, Integral Equa-
tions and Operator Theory, 49(2004), 11–42.

7. J. Geronimo and H. J. Woerdeman, Positive extentions, Fejér-Riesz factor-
ization and autoregressive filters in two variables, Ann. Math, 160, (2004),
839-906.

8. T. N. T. Goodman, C. A. Micchelli, G. Rodrigues, and S. Seatzu, On the
Cholesky factorization of the Gram matrix of locally supported functions, BIT
35(1995), pp. 233-257.

9. T. N. T. Goodman, C. A. Micchelli, G. Rodrigues, and S. Seatzu, Spectral
factorization of Laurent polynomials, Adv. Comp. Math., 7(1997), pp. 429–
454.

10. T. N. T. Goodman, C. A. Micchelli, G. Rodrigues, and S. Seatzu, On the
Cholesky factorization of the Gram matrix of multivariate functions, SIAM J.
Matrix Ana. Appl. 22(2000), pp. 501–526.

20



11. U. Grenender and G. Szego, Toeplitz forms and their applications, 1958, Chelsea,
New York.
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