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Abstract

For an m × N underdetermined system of linear equations with
independent pre-Gaussian random coefficients satisfying simple mo-
ment conditions, it is proved that the s-sparse solutions of the sys-
tem can be found by `1-minimization under the optimal condition
m ≥ c s ln(eN/s). The main ingredient of the proof is a variation of
a classical Restricted Isometry Property, where the inner norm be-
comes the `1-norm and where the outer norm depends on the prob-
ability distributions.

1 Introduction

The field of Compressed Sensing, which has generated a wealth of research

activity in recent years, asks for some concrete protocols that make it pos-

sible to reconstruct sparse vectors x ∈ RN from the mere knowledge of

measurement vectors y = Ax ∈ Rm with m� N . In other words, one seeks

m × N measurement matrices A and recovery algorithms that enable to
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find the sparsest solutions of the underdetermined linear system Ax = y.

The groundbreaking works of Donoho [D] and of Candès and Tao [CT] suc-

cessfully tackled these questions. The problem of choosing suitable matrices

was settled using probabilistic arguments, with the conclusion that most

matrices chosen at random allow for an efficient reconstruction of sparse

vectors. The reconstruction in question consists in solving the computa-

tionally tractable convex optimization problem

(P1) minimize
z∈RN

‖z‖1 subject to Az = y,

in place of the unpractical combinatorial problem

(P0) minimize
z∈RN

‖z‖0 subject to Az = y.

Here ‖z‖1 =
∑N

j=1 |zj| stands for the usual `1-norm of a vector z ∈ RN , while

‖z‖0 represents its sparsity, i.e., the number of its nonzero components. The

vector z is called k-sparse if ‖z‖0 ≤ k. A much favored tool in the study of

the equivalence between (P0) and (P1) was introduced by Candès and Tao

in [CT]. It is said that a matrix A ∈ Rm×N has the kth order Restricted

Isometry Property if there is a constant δ ≥ 0 such that

(1.1) (1− δ)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ)‖x‖22 for all k-sparse x ∈ RN .

The smallest such constant, denoted by δk, is called the kth order Restricted

Isometry Constant of A. There are many conditions on the δk’s that guar-

antee the recovery of all s-sparse vectors x ∈ RN as solutions of (P1) with

y = Ax. The arguably most natural ones are only in terms of δ2s. For in-

stance, Candès established the sufficient condition δ2s <
√

2−1 ≈ 0.4142 in

[C]. This was later improved in [FL, CWX] to arrive at the sufficient condi-

tion δ2s < 3/(4 +
√

6) ≈ 0.4652 in [F]. Regardless of the sufficient condition

called upon, the crucial point is that it is met with overwhelming probability

for certain random matrices whose number m of rows scales like the sparsity

s times a power of the log factor ln(eN/s), with N denoting the number

of columns. An important example for practical applications is the case of

partial Fourier matrices, where m ≥ c s ln4(N) rows of an N × N Fourier

matrix are drawn uniformly at random, see [RV]. For Gaussian random ma-

trices, i.e., matrices whose entries are independent copies of a zero-mean

Gaussian random variable, the number of measurements can be reduced

to m ≥ c s ln(eN/s), see [CT]. This bound cannot be reduced further if

searching for stable sparse recovery algorithms, as shown by considerations
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about Gelfand widths, see e.g. [FPRU]. Sparse recovery by `1-minimization,

deduced from the Restricted Isometry Property (1.1), is also possible with

m ≥ c s ln(eN/s) when considering random matrices satisfying a concen-

tration inequality, see [BDDW] for a simple proof, or sub-Gaussian random

matrices, see [MPT]. For pre-Gaussian random matrices, sparse recovery

by `1-minimization was established in [ALPT] under the stronger condition

m ≥ c s ln2(eN/s). This was again deduced from the Restricted Isometry

Property (1.1). The latter actually necessitates such a strong condition on

the number of measurements in the pre-Gaussian setting, see [ALPT].

This paper aims to show that sparse recovery using pre-Gaussian random

matrices is still possible under the optimal condition on the number of mea-

surements. Indeed, we show in Theorem 6.1 that, given an m × N matrix

populated by independent pre-Gaussian random variables obeying simple

moment conditions, it is overwhelmingly probable that every s-sparse vec-

tor is recovered by `1-minimization, provided m ≥ c s ln(eN/s). Note that

we are following the terminology of [BK] in calling a random variable pre-

Gaussian when it has a subexponential tail decay. This meaning is made

precise in Definition 2.1, where an alternative view in terms of the moment

growth E
(
|ξ|2k

)
≤ (2k)! θ2k is given. For instance, the Laplace random vari-

ables η, whose probability density functions are exp(−|t|/λ)/(2λ) for λ > 0,

are pre-Gaussian since E
(
|η|r
)

= Γ(r + 1)λr for all r > 0. Pre-Gaussian

random variables are also often called ψ1 random variables because they

are characterized by the finiteness of their Orlicz norm

‖ξ‖ψ1 := inf
{
t > 0 : E exp(|ξ|/t) ≤ 2

}
.

The arguments of this paper rely on a variation of the classical Restricted

Isometry Property (1.1). Its formulation involves the quantity

�x�ν :=

∫ ∞
−∞
· · ·
∫ ∞
−∞

∣∣∣ N∑
j=1

tjxj

∣∣∣dν1(t1) · · · dνN(tN), x ∈ RN ,

relative to a vector ν of centered probability measures. It is easy to verify

that such an expression, appearing e.g. in [BMMP, GlM, Pa], defines a

norm on RN provided the first absolute moment of each νj is finite. A sum of

such norms will replace the outer norm in (1.1), while the inner norm will be

replaced by the `1-norm. Some variations of the classical Restricted Isometry

Property (1.1) are already present in the Compressed Sensing literature —

for Gaussian matrices, the inner norm is the `1-norm in Definition 4.1 of [D];

for adjacency matrices of lossless expanders, both inner and outer norms are
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`1-norms in [BGIKS] — but it is the dependency of the outer norm on the

probability distributions that constitutes the novelty of our approach. Thus,

for random matrices whose entries ai,j are distributed according to centered

probability measures νi,j, we set

(1.2) �x� :=
m∑
i=1

�x�νi , νi := [νi,1, . . . , νi,N ].

If the entries ai,j were independent standard centered Gaussian random vari-

ables, for instance, an explicit computation would give �x� = m
√

2/π ‖x‖2,
and we would retrieve Definition 4.1 of [D]. We are interested in the Modified

Restricted Isometry Constant δ
�·�
k defined as the smallest constant δ ≥ 0

such that

(1.3) (1− δ) � x� ≤ ‖Ax‖1 ≤ (1 + δ) � x � for all k-sparse x ∈ RN .

In Section 4, we prove that this Modified Restricted Isometry Constant can

be made sufficiently small. This is deduced from the concentration inequal-

ity, relative to the norm (1.2), that we establish in Section 3. In Section 5,

we then show that a Modified Restricted Isometry Property such as (1.3)

implies sparse recovery by `1-minimization so long as the norm � ·� is com-

parable to the Euclidean norm. In Section 6, we finally combine the previous

results to arrive at our main theorem. As a prelude to all this, we collect

in Section 2 some auxiliary results needed in our arguments. Note that

we chose to deal only with recovery of exactly sparse vectors from perfect

measurements for the sake of clarity. However, in the spirit of Compressed

Sensing, one needs to control the error between a nearly sparse vector and a

vector recovered from slightly flawed measurements. A reader familiar with

Compressed Sensing could easily perform the appropriate modifications in

order to establish such a result here.

2 Preliminary Results

We start with the definition of pre-Gaussian random variables.

Definition 2.1. A random variable ξ is pre-Gaussian if one of the following

equivalent conditions holds:

1. E(ξ) = 0 and there exist constants b > 0 and c > 0 such that

P(|ξ| > t) ≤ b exp(−c t) for all t > 0,
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2. E(ξ) = 0 and there exists a constant θ > 0 such that

θ(ξ) := sup
k≥1

[
E|ξ|2k

(2k)!

]1/2k

≤ θ.

The justification of the equivalence is found in Theorems 3.1 and 3.2 of

[BK, p 21–23]. In fact, Theorem 3.2 is stated with θ(ξ) replaced by

θ′(ξ) := sup
k≥1

[
E|ξ|k

k!

]1/k

,

but the two statements are similar in view of the inequalities

θ(ξ) ≤ θ′(ξ) ≤ 2θ(ξ).

The lower inequality is clear, while the upper inequality is a simple conse-

quence of E(|ξ|k) ≤ E(|ξ|2k)1/2. The quantity θ(ξ) turns out to be of more

convenient usage, because of the following result, see Theorem 3.6 of [BK,

p 61].

Proposition 2.2. If ξ1, . . . , ξn are independent pre-Gaussian random vari-

ables, then

θ2(x1ξ1 + · · ·+ xnξn) ≤ x2
1 θ

2(ξ1) + · · ·+ x2
n θ

2(ξn).

The next result claims that the norm � ·�ν is comparable to a Euclidean

norm.

Proposition 2.3. Suppose that ξ1, . . . , ξN are independent zero-mean ran-

dom variables satisfying

E
(
|ξj|
)
≥ µ and E

(
ξ2
j

)
≤ σ2 for all j = 1, . . . , N.

Then, with ν1, . . . , νN denoting the centered probability measures associated

to ξ1, . . . , ξN ,

µ√
8
‖x‖2 ≤ �x�ν ≤ σ‖x‖2 for all x ∈ RN .

Proof. Let us observe first that

�x�ν = E
∣∣ N∑
j=1

xjξj
∣∣.

For the upper estimate, the independence of the ξj’s simply yields

E
∣∣ N∑
j=1

xjξj
∣∣ ≤ (E

( N∑
j=1

xjξj
)2)1/2

=
( N∑
j=1

x2
j E(ξj)

2
)1/2

≤ σ‖x‖2.
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As for the lower estimate, we use the symmetrization procedure, see Lemma

6.3 of [LT], to write

(2.1) E
∣∣ N∑
j=1

xjξj
∣∣ ≥ 1

2
E
∣∣ N∑
j=1

εjxjξj
∣∣ =

1

2
EξEε

∣∣ N∑
j=1

εjxjξj
∣∣,

where (ε1, . . . , εN) is a Rademacher sequence independent of (ξ1, . . . , ξN).

Next, using Khintchine’s inequality with optimal constants due to Haagerup

[H], we have

Eε

∣∣ N∑
j=1

εjxjξj
∣∣ ≥ 1√

2

( N∑
j=1

x2
j ξ

2
j

)1/2

=
‖x‖2√

2

( N∑
j=1

x2
j

‖x‖22
ξ2
j

)1/2

.

Then, using the concavity of the function t 7→ t1/2, we derive

(2.2) Eε

∣∣ N∑
j=1

εjxjξj
∣∣ ≥ ‖x‖2√

2

N∑
j=1

x2
j

‖x‖22
|ξj|.

The desired estimate follows from (2.1), (2.2), and E(|ξj|) ≥ µ.

Finally, we state Bernstein’s inequality as in Lemma 2.2.11 of [vdVW]

for easy reference.

Theorem 2.4. Let Y1, . . . , Ym be independent zero-mean random variables

for which there exist positive constants M, v1, . . . , vm such that

E
(
|Yi|k

)
≤ k!

2
Mk−2vi for all integers k ≥ 2,

then, for all t > 0,

P
(
|Y1 + . . .+ Ym| > t

)
≤ 2 exp

(
− t2

2(v1 + . . .+ vm + tM)

)
.

3 Subexponential Tail Decay

In order to establish the Modified Restricted Isometry Property (1.3) for all

sparse vectors, we consider first individual vectors x ∈ RN and we bound

the tail probability

P
(∣∣‖Ax‖1 − �x �

∣∣ > ε � x �
)
.



Sparse Recovery with Pre-Gaussian Random Matrices 7

Theorem 3.1. Suppose the entries of a matrix A ∈ Rm×N are independent

pre-Gaussian random variables satisfying

E
(
|ai,j|

)
≥ µ and E

(
|ai,j|2k

)
≤ (2k)! θ2k, k ≥ 1.

If � · � denotes the norm defined in (1.2) for the centered probability mea-

sures νi,j associated to the entries ai,j, then

(3.1) P
(∣∣‖Ax‖1 − �x �

∣∣ > ε � x �
)
≤ 2 exp

(
−κε2m

)
for any x ∈ RN and any ε ∈ (0, 1), where the constant κ depends only on

θ/µ.

Proof. Setting Yi := |(Ax)i| − �x�νi , we observe that Y1, . . . , Ym are inde-

pendent zero-mean random variables, and that

‖Ax‖1 − �x� =
m∑
i=1

Yi.

Then, since θ(ai,j) ≤ θ, Proposition 2.2 yields

θ
(
(Ax)i

)
= θ
(∑N

j=1xjai,j
)
≤ θ‖x‖2, hence θ′

(
(Ax)i

)
≤ 2θ‖x‖2.

For an integer k ≥ 2, it follows from the inequality |Yi|≤max{|(Ax)i|,�x�νi}
that

E
(
|Yi|k

)
≤ max{E

(
|(Ax)i|k

)
,�x�k

νi} ≤ max{k!
(
θ′
(
(Ax)i

))k
,�x�k

νi}

≤ max{k!

2
2k/2

(
θ′
(
(Ax)i

))k
,
k!

2
� x�k

νi}

≤ k!

2
max{

√
8 θ‖x‖2,�x�νi}k.

Since Proposition 2.3 implies µ‖x‖2/
√

8 ≤ �x�νi ≤
√

2 θ‖x‖2, we can apply

Bernstein’s inequality with

M = max{
√

8 θ‖x‖2,
√

2 θ‖x‖2} =
√

8 θ‖x‖2, vi = M2,

t = ε � x� ≥ εmµ‖x‖2/
√

8,

to obtain

P
(∣∣‖Ax‖1 − �x�

∣∣ > εm � x �ν

)
≤ 2 exp

(
− ε2m2µ2 � x �2 /8

2
(
8mθ2‖x‖22 + εmµ θ‖x‖22

))
= 2 exp

(
− ε2m

16
(
8(θ/µ)2 + ε(θ/µ)

)).
Since ε ≤ 1, the result follows with κ := 1/

(
128(θ/µ)2 + 16(θ/µ)

)
.
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Remark 3.2. The advantage of taking the `1-norm rather than the `2-norm

as the inner norm in the Modified Restricted Isometry Property (1.3) is

apparent at this point. If we had used the `2-norm, we would have considered

the random variable Yi = (Ax)2
i − E

(
(Ax)2

i

)
, and we would have tried to

bound the kth moment of (Ax)2
i by k!Mk for some M > 0 in order to apply

Bernstein’s inequality. However, we will not be able to obtain more than

E
(
(Ax)2k

i

)
≤ (2k)!

(
θ(Ax)i

)2k ≤ (2k)!
(
θ‖x‖2

)2k
.

Remark 3.3. The methods and results of Sections 2 and 3 are standard

in geometry of Banach spaces, see e.g. [GiM]. They have been spelled out

with the Compressed Sensing reader in mind.

4 Modified Restricted Isometry Property

In this section, we show how to pass from the concentration inequality (3.1)

for individual vectors to the Modified Restricted Isometry Property (1.3)

for all sparse vectors. In fact, we prove that (1.3) fails with exponentially

small probability. We essentially follow the ideas of [BDDW], which go back

to a general strategy developed in [FLM]. The details are included for the

reader’s convenience.

Theorem 4.1. Let A ∈ Rm×N be a random matrix and let � ·� be a norm

on RN . Suppose that, for any x ∈ RN and any ε ∈ (0, 1),

(4.1) P
(∣∣‖Ax‖1 − �x �

∣∣ > ε � x �
)
≤ 2 exp

(
− κε2m

)
.

Then there exist constants c1, c2 > 0 depending only on κ such that, for any

δ ∈ (0, 1),

P
(∣∣‖Ax‖1−�x�

∣∣ > δ�x� for some s-sparse x ∈ RN
)
≤ 2 exp

(
−c1δ2m

)
provided

m ≥ c2
δ3
s ln

(eN
s

)
.

Proof. We start by considering a fixed index set S ⊆ {1, . . . , N} of cardi-

nality s. Let S denote the unit sphere of the space RS of vectors supported

on S embedded with the norm � · �. According to Lemma 4.10 of [Pi], we

can find a subset U of S such that

min
u∈U

�x− u� ≤ γ :=
δ

3
for all x ∈ S and card(U) ≤

(
1 +

2

γ

)s
.
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The concentration inequality (4.1), together with a union bound, gives

P
(∣∣‖Au‖1−�u�

∣∣>γ � u � for some u ∈ U
)
≤
(

1 +
2

γ

)s
2 exp

(
− κγ2m

)
≤ 2 exp

(
− κγ2m+

2s

γ

)
= 2 exp

(
− κδ2m

9
+

6s

δ

)
.

This means that the matrix A is drawn with high probability in such a way

that

(4.2) (1− γ) � u� ≤ ‖Au‖1 ≤ (1 + γ) � u � for all u ∈ U .

Let δ̃ be the smallest positive constant such that

(4.3) ‖Ax‖1 ≤ (1 + δ̃) � x � for all x ∈ S.

Given x ∈ S, picking u ∈ U with �x− u� ≤ γ, we derive

‖Ax‖1 ≤ ‖Au‖1 +‖A(x−u)‖1 ≤ 1+γ+(1+ δ̃)�x−u� ≤ 1+γ+(1+ δ̃)γ.

The minimality of δ̃ implies that

1 + δ̃ ≤ 1 + γ + (1 + δ̃)γ ≤ 1 + 2γ + δ̃/3, so that δ̃ ≤ 3γ = δ.

Substituting into (4.3), we obtain the upper estimate

(4.4) ‖Ax‖1 ≤ (1 + δ) � x � for all x ∈ RS.

Subsequently, for x ∈ S and u ∈ U with �x− u� ≤ γ, we have

‖Ax‖1 ≥ ‖Au‖1 − ‖A(x− u)‖1 ≥ 1− γ − (1 + δ) � x− u�

≥ 1− γ − (1 + δ)γ ≥ 1− 3γ = 1− δ.

Thus, we obtain the lower estimate

(4.5) ‖Ax‖1 ≥ (1− δ) � x � for all x ∈ RS.

Since both upper and lower estimates (4.4) and (4.5) hold as soon as (4.2)

holds, we obtain

P
(∣∣‖Ax‖1 −�x �

∣∣ > δ � x � for some x ∈ RS
)
≤ 2 exp

(
− κδ2m

9
+

6s

δ

)
.

We now take into account that the set of s-sparse vectors is the union of(
N
s

)
≤ (eN/s)s spaces RS to deduce, using a union bound, that

P
(∣∣‖Ax‖1 − �x�

∣∣ > δ � x � for some s-sparse x ∈ RN
)

≤
(
N

s

)
2 exp

(
− κδ2m

9
+

6s

δ

)
≤ 2 exp

(
− κδ2m

9
+

6s

δ
+ s ln

(eN
s

))
≤ 2 exp

(
− κδ2m

9
+

7s

δ
ln
(eN
s

))
.
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By imposing, say,

7s

δ
ln
(eN
s

)
≤ κδ2m

18
, i.e., m ≥ 126

κδ3
s ln

(eN
s

)
,

we ensure that

P
(∣∣‖Ax‖1−�x�

∣∣ > δ�x� for some s-sparse x ∈ RN
)
≤ 2 exp

(
−κδ

2m

18

)
.

This is the desired result with c1 = κ/18 and c2 = 126/κ.

5 Sparse Recovery

In this section, we verify that the Modified Restricted Isometry Property

(1.3) implies sparse recovery by `1-minimization.

Theorem 5.1. Let � · � be a norm on RN satisfying

c ‖x‖2 ≤ �x� ≤ C ‖x‖2 for all x ∈ RN .

If a matrix A ∈ Rm×N has a Modified Restricted Isometry Constant

(5.1) δ
�·�
s+t <

√
t/s− C/c√
t/s+ C/c

for some integer t,

then any s-sparse vector x ∈ RN is exactly recovered as a solution of (P1)

with y = Ax.

Proof. As is well known, see e.g. [GN], it is necessary and sufficient to

establish the null space property in the form

(5.2) ‖vS‖1 < ‖vS‖1

for all v ∈ kerA \ {0} and all S ⊆ {1, . . . , N} with card(S) = s. Given

v ∈ kerA \ {0}, we notice that it is enough to prove the latter for an

index set S0 of s largest absolute-value components of v. We partition the

complement of S0 in {1, . . . , N} as S0 = S1 ∪ S2 ∪ . . ., where

S1 is an index set of t largest absolute-value components of v in S0,

S2 is an index set of t next largest absolute-value components of v in S0,
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etc. Setting δs+t := δ
�·�
s+t , we obtain from the Modified Restricted Isometry

Property (1.3)

�vS0 + vS1� ≤
1

1− δs+t
‖A(vS0 + vS1)‖1 =

1

1− δs+t
‖A(−

∑
k≥2

vSk
)‖1

≤ 1

1− δs+t

∑
k≥2

‖AvSk
‖1 ≤

1 + δs+t
1− δs+t

∑
k≥2

�vSk
�

≤ C
1 + δs+t
1− δs+t

∑
k≥2

‖vSk
‖2.

For k ≥ 2, the inequalities |vi| ≤ |vj|, i ∈ Sk, j ∈ Sk−1, averaged over j,

raised to the power 2, and summed over i, yield

‖vSk
‖2 ≤

1√
t
‖vSk−1

‖1.

We therefore have

(5.3) �vS0 + vS1� ≤
C√
t

1 + δs+t
1− δs+t

∑
k≥2

‖vSk−1
‖1 ≤

C√
t

1 + δs+t
1− δs+t

‖vS0
‖1.

Next, we observe that

(5.4) ‖vS0‖1 ≤
√
s ‖vS0‖2 ≤

√
s ‖vS0 + vS1‖2 ≤

√
s

c
� vS0 + vS1 � .

Combining (5.3) and (5.4), we obtain

‖vS0‖1 ≤
C

c

√
s

t

1 + δs+t
1− δs+t

‖vS0
‖1.

The null space property (5.2) follows when rewriting Condition (5.1) in the

form (C
√
s (1 + δs+t))/

(
c
√
t (1− δs+t)

)
< 1. The proof is now complete.

6 Main Theorem

We finally combine the results of the previous sections to prove that m×N
pre-Gaussian random matrices allow for the reconstruction of all s-sparse

vectors by `1-minimization with overwhelming probability provided m ≥
c s ln(eN/s). Note that the distributions of the entries of the matrix need

not be related, so long as they obey simple moment conditions, which are

automatically fulfilled when the entries are identically distributed.
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Theorem 6.1. Suppose the entries of a matrix A ∈ Rm×N are independent

pre-Gaussian random variables satisfying

E
(
|ai,j|

)
≥ µ and E

(
|ai,j|2k

)
≤ (2k)! θ2k, k ≥ 1.

Then, with probability at least

1− 2 exp(−C1m),

any s-sparse vector x ∈ RN is exactly recovered as a solution of (P1) with

y = Ax, provided

m ≥ C2 s ln(eN/s),

where the constants C1, C2 > 0 depend only on θ/µ.

Proof. Let νi,j denotes the centered probability measure associated to the

entry ai,j and let � · � be the norm defined in (1.2). According to Proposi-

tion 2.3, we have

m
µ√
8
‖x‖2 ≤ �x� ≤ m

√
2 θ‖x‖2 for all x ∈ RN .

Theorem 5.1 then guarantees s-sparse recovery by `1-minimization as soon

as

δ
�·�
s+t <

√
t/s− 4θ/µ√
t/s+ 4θ/µ

for some integer t.

Let us choose an integer t such that 64 (θ/µ)2 s < t ≤
(
64 (θ/µ)2 + 1

)
s.

Since then √
t/s− 4θ/µ√
t/s+ 4θ/µ

>
8θ/µ− 4θ/µ

8θ/µ+ 4θ/µ
=

1

3
,

s-sparse recovery by `1-minimization is guaranteed as soon as δ
�·�
s+t ≤ 1/3.

According to Theorems 3.1 and 4.1 with κ := 1/
(
128(θ/µ)2 + 16(θ/µ)

)
and

δ = 1/3, this is guaranteed with probability at least

1− 2 exp
(
− c1m

9

)
, c1 =

κ

18
,

provided

m ≥ 27 c2 (s+ t) ln
( eN

s+ t

)
, c2 =

126

κ
.

This holds as soon as

m ≥ 27 c2
(
64 (θ/µ)2 + 2

)
s ln

(eN
s

)
.

The constants of the theorem are explicitly given by C1 = 1/
(
20736 (θ/µ)2+

2592 (θ/µ)
)

and C2 =
(
435456 (θ/µ)2 + 54432 (θ/µ)

)(
64 (θ/µ)2 + 2

)
.
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