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Abstract This paper introduces a parallel and distributed algorithm for solving the following
minimization problem with linear constraints:

minimize f1(x1) + · · · + fN (xN )

subject to A1x1 + · · · + ANxN = c,

x1 ∈ X1, . . . , xN ∈ XN ,

where N ≥ 2, fi are convex functions, Ai are matrices, and Xi are feasible sets for variable
xi . Our algorithm extends the alternating direction method of multipliers (ADMM) and
decomposes the original problem into N smaller subproblems and solves them in parallel
at each iteration. This paper shows that the classic ADMM can be extended to the N -block
Jacobi fashion and preserve convergence in the following two cases: (i) matrices Ai are
mutually near-orthogonal and have full column-rank, or (ii) proximal terms are added to
the N subproblems (but without any assumption on matrices Ai ). In the latter case, certain
proximal terms can let the subproblem be solved in more flexible and efficient ways. We
show that ‖xk+1 − xk‖2M converges at a rate of o(1/k) where M is a symmetric positive
semi-definte matrix. Since the parameters used in the convergence analysis are conservative,
we introduce a strategy for automatically tuning the parameters to substantially accelerate
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our algorithm in practice. We implemented our algorithm (for the case ii above) on Amazon
EC2 and tested it on basis pursuit problems with >300 GB of distributed data. This is the
first time that successfully solving a compressive sensing problem of such a large scale is
reported.

Keywords Alternating direction method of multipliers · ADMM · Parallel and distributed
computing · Convergence rate

1 Introduction

Let N ≥ 2 be an integer. We consider the following convex optimization problem with N
blocks of variables:

min
x1,x2,...,xN

N∑

i=1

fi (xi ) s.t.
N∑

i=1

Aixi = c, (1.1)

where xi ∈ R
ni , Ai ∈ R

m×ni , c ∈ R
m , and fi : Rni → (−∞,+∞] are closed proper convex

functions, i = 1, 2, . . . , N . If an individual block is subject to constraint xi ∈ Xi , where
Xi ⊆ R

ni is a nonempty closed convex set, it can be incorporated in the objective function
fi using the indicator function:

IXi (xi ) =
{

0 if xi ∈ Xi ,

+∞ otherwise.
(1.2)

In this study, we do not impose any additional assumptions such as strict convexity or differ-
entiability on the objective functions fi .

Such optimization problems arise from a broad spectrum of applications including signal
and image processing, compressive sensing, statistics and machine learning. See [1–4,15,
16,29,31,35] for example.

In this paper, we focus on parallel and distributed optimization algorithms—Jacobi
ADMM (Algorithm 3) and Jacobi-Proximal ADMM (Algorithm 4) below – for solving (1.1).
Since both of the objective function and constraints of (1.1) are sums of terms on individual
xi ’s (they are separable), the problem can be decomposed into N smaller subproblems, which
is solved in a parallel and distributed manner.

1.1 Literature Review

A simple distributed algorithm for solving (1.1) is dual decomposition [13], which is essen-
tially a dual ascent method or dual subgradient method [34] as follows. Consider the
Lagrangian for problem (1.1):

L(x1, . . . , xN , λ) =
N∑

i=1

fi (xi ) − λ�
(

N∑

i=1

Aixi − c

)
(1.3)

where λ ∈ R
m is the Lagrange multiplier or the dual variable. The method of dual decom-

position iterates as follows: for k ≥ 1,
⎧
⎨

⎩

(xk+1
1 , xk+1

2 , . . . , xk+1
N ) = arg min{xi } L(x1, . . . , xN , λk),

λk+1 = λk − αk

(∑N
i=1 Aix

k+1
i − c

)
,

(1.4)
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where αk > 0 is a step-size. Since all the xi ’s are separable in the Lagrangian function (1.3),
the x-update step reduces to solving N individual xi -subproblems:

xk+1
i = arg min

xi
fi (xi ) − 〈λk, Aixi 〉, for i = 1, 2, . . . , N , (1.5)

and thus they can be carried out in parallel.With suitable choice ofαk and certain assumptions,
dual decomposition is guaranteed to converge to an optimal solution [34]. However, the
convergence of such subgradient method often tends to be slow in practice. Its convergence
rate for general convex problems is O(1/

√
k). The dual smoothing method [30] can be

applied under certain conditions and improve the rate to O(1/k).
Another effective distributed approach is based on the alternating direction method of

multipliers (ADMM). ADMMwas introduced in [14,16] to solve the special case of problem
(1.1) with two blocks of variables (N = 2). It utilizes the augmented Lagrangian for (1.1):

Lρ(x1, . . . , xN , λ) =
N∑

i=1

fi (xi ) − λ�
(

N∑

i=1

Aixi − c

)
+ ρ

2

∥∥∥∥∥

N∑

i=1

Aixi − c

∥∥∥∥∥

2

2

, (1.6)

which incorporates a quadratic penalty of the constraints (with a parameter ρ > 0) into
the Lagrangian. In each iteration, the augmented Lagrangian is minimized over x1 and x2
separately, one after the other, followed by a dual update for λ. The iterative scheme of
ADMM is outlined below:

⎧
⎪⎪⎨

⎪⎪⎩

xk+1
1 = arg minx1Lρ(x1, xk

2, λ
k),

xk+1
2 = arg minx2Lρ(xk+1

1 , x2, λk),

λk+1 = λk − ρ(A1x
k+1
1 + A2x

k+1
2 − c).

(1.7)

To solve the problem (1.1) with N ≥ 3 using ADMM, one can first convert the multi-block
problem into an equivalent two-block problem via variable splitting [2]:

min{xi },{zi }

N∑

i=1

fi (xi ) + IZ (z1, . . . , zN )

s.t.Aixi − zi = c

N
, ∀i = 1, 2, . . . , N , (1.8)

where IZ is a indicator function defined by (1.2), and the convex set Z is given by

Z =
{

(z1, . . . , zN ) :
N∑

i=1

zi = 0

}
.

The variables in (1.8) can be grouped into two blocks: x := (x1, . . . , xN ) and z :=
(z1, . . . , zN ), so that ADMM can directly apply. The augmented Lagrangian for (1.8) is
given by

Lρ(x, z, λ) =
N∑

i=1

fi (xi ) + IZ (z) −
N∑

i=1

λ�
i

(
Aixi − zi − c

N

)
+ ρ

2

N∑

i=1

∥∥∥Aixi − zi − c

N

∥∥∥
2

2
.

Since all the xi ’s are now fully decoupled, the resulting x-subproblem decomposes into N
individual xi -subproblems, which can be carried out in parallel.
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Algorithm 1: Variable Splitting ADMM (VSADMM)

Initialize x0, λ0, ρ > 0;
for k = 0, 1, . . . do

Update zi then xi for i = 1, . . . , N in parallel by:

zk+1
i =

(
Aix

k
i − c

N − λk
i
ρ

)
− 1

N

{
∑N

j=1 A jx
k
j − c

N − λk
j

ρ

}
;

xk+1
i = arg minxi

fi (xi ) + ρ
2

∥∥∥∥Aixi − zk+1
i − c

N − λk
i
ρ

∥∥∥∥
2

2
;

Update λk+1
i = λk

i − ρ
(

Aix
k+1
i − zk+1

i − c
N

)
, ∀i = 1, . . . , N .

The resulting z-subproblem is a simple quadratic problem:

zk+1 = arg min{z:∑N
i=1 zi =0}

N∑

i=1

ρ

2

∥∥∥∥∥Aixi − zi − c

N
− λk

i

ρ

∥∥∥∥∥

2

2

, (1.9)

which admits a closed-form solution.
The distributed ADMM approach based on (1.8), by introducing splitting variables, sub-

stantially increases the number of variables and constraints in the problem, especially when
N is large. Thus, it is clear that this approach will not be very efficient. Another extension
is to replace the two-block alternating minimization scheme by a sweep of Gauss–Seidel
update, namely, update xi for i = 1, 2, . . . , N sequentially as follows:

xk+1
i = arg minxi

Lρ

(
xk+1
1 , . . . , xk+1

i−1 , xi , xk
i+1, . . . , x

k
N , λk

)

= arg minxi
fi (xi ) + ρ

2

∥∥∥∥∥∥

∑

j<i

A jx
k+1
j + Aixi +

∑

j>i

A jxk
j − c − λk

ρ

∥∥∥∥∥∥

2

2

. (1.10)

Algorithm 2: Gauss–Seidel ADMM

Initialize x0, λ0, ρ > 0;
for k = 0, 1, . . . do

Update xi for i = 1, . . . , N sequentially by:

xk+1
i = minxi fi (xi ) + ρ

2

∥∥∥
∑

j<i A jx
k+1
j + Aixi + ∑

j>i A jx
k
j − c − λk

ρ

∥∥∥
2

2
; Update

λk+1 = λk − ρ
(∑N

i=1 Aix
k+1
i − c

)
.

Such Gauss–Seidel ADMM (Algorithm 2) has been considered lately, e.g., in [22,25].
However, it has been shown that the algorithm may not converge for N ≥ 3 [5]. Although
lack of convergence guarantee, some empirical studies show that Algorithm 2 is still very
effective at solving many practical problems (see, e.g., [31,35,36]). Recent work has shown
that additional assumptions (involving at least one strongly convex objective function) can
guarantee convergence for N = 3 with certain modifications to the algorithm [6,11,18,26,
27]. A disadvantage of Gauss–Seidel ADMM is that the blocks are updated one after another,
which is not amenable for parallelization.
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1.2 Jacobi-Type ADMM

The sequential nature of Gauss–Seidel ADMMmotivates us to consider using a Jacobi-type
scheme that updates all the N blocks in parallel:

xk+1
i = arg minxi

Lρ

(
xk
1, . . . , x

k
i−1, xi , xk

i+1, . . . , x
k
N , λk

)

= arg minxi
fi (xi ) + ρ

2

∥∥∥∥∥∥
Aixi +

∑

j =i

A jxk
j − c − λk

ρ

∥∥∥∥∥∥

2

2

, ∀i = 1, . . . , N . (1.11)

We present it in Algorithm 3 below.
The parallelization comes with a cost: this scheme is more likely to diverge than the

Gauss–Seidel scheme when using the same parameter ρ. In fact, it may diverge even in the
two-block case; see [21] for such an example. To guarantee its convergence, either additional
assumptions or modifications to the algorithm must be made.

Algorithm 3: Jacobi ADMM

Initialize x0, λ0, ρ > 0;
for k = 0, 1, . . . do

Update xi for i = 1, . . . , N in parallel by:

xk+1
i = arg minxi

fi (xi ) + ρ
2

∥∥∥Aixi +∑
j =i A jxk

j − c − λk

ρ

∥∥∥
2

2
;

Update λk+1 = λk − ρ
(∑N

i=1 Aix
k+1
i − c

)
.

In Sect. 4, we show that if matrices Ai are mutually near-orthogonal and have full column-
rank, thenAlgorithm 3 converges globally. For general cases, a few variants of Jacobi ADMM
with additional corrections were proposed in [20,21].

In this paper, we propose Jacobi-Proximal ADMM (Algorithm 4). Compared with Algo-
rithm 3, we make no assumption to the problem data but add a proximal term 1

2‖xi − xk
i ‖2Pi

for each xi -subproblem and a damping parameter γ > 0 for the update of λ. Here Pi � 0 is
a symmetric and positive semi-definite matrix and we let ‖xi‖2Pi

:= x�
i Pixi . We will show

how to choose Pi that ensure the convergence of Algorithm 4.

Algorithm 4: Jacobi-Proximal ADMM

Initialize: x0i (i = 1, 2, . . . , N ) and λ0;
for k = 0, 1, . . . do

Update xi for i = 1, . . . , N in parallel by:

xk+1
i = arg minxi

fi (xi ) + ρ
2

∥∥∥Aixi +∑
j =i A jxk

j − c − λk

ρ

∥∥∥
2

2
+ 1

2

∥∥xi − xk
i

∥∥2
Pi
;

Update λk+1 = λk − γρ(
∑N

i=1 Aix
k+1
i − c).

The proposed algorithm has a few advantages. First of all, as wewill show, it enjoys global
convergence as well as an o(1/k) convergence rate of ‖xk+1−xk‖2M under certain conditions
on Pi and γ . Secondly, when the xi -subproblem is not strictly convex, adding the proximal
term canmake the subproblem strictly or strongly convex,making it to have a unique solution.
Thirdly, there aremultiple choices for matrices Pi with which the subproblems become easier
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to solve. Specifically, the xi -subproblem contains a quadratic term ρ
2 x

�
i A�

i Aixi .When A�
i Ai

is ill-conditioned or computationally expensive to invert, one can let Pi = Di − ρ A�
i Ai ,

which cancels the quadratic term ρ
2 x

�
i A�

i Aixi and adds 1
2x

�
i Dixi , where the matrix Di can

be chosen as some well-conditioned and simple matrix (e.g., a diagonal matrix), thereby
leading to an easier subproblem.

Let us mention two commonly used choices of Pi :

– Pi = τi I (τi > 0): This corresponds to the standard proximal method.
– Pi = τi I − ρ A�

i Ai (τi > 0): This corresponds to the prox-linear method [7], which
linearizes the quadratic penalty term of augmented Lagrangian at the current point xk

i
and adds a proximal term. The xi -subproblem is given by

xk+1
i = arg minxi

fi (xi ) +
〈
ρ A�

i (Axk − c − λk/ρ), xi

〉
+ τi

2

∥∥∥xi − xk
i

∥∥∥
2
. (1.12)

It essentially uses an identity matrix τi I to approximate the Hessian ρ A�
i Ai of the

quadratic term.

More choices of Pi have also been discussed in [12,38].

1.3 Summary of Contributions

This paper introduces novel results from the following perspectives. Firstly, we propose
Jacobi-Proximal ADMM (Algorithm 4), which is suitable for parallel and distributed com-
puting.

The flexible use of proximal terms makes it possible to solve subproblems in different
ways, important for easy coding and fast computation. We establish its convergence at a rate
of o(1/k) for ‖xk+1 − xk‖2M . We also provide an adaptive parameter tuning scheme which
updates the important parameters at little extra cost. Our numerical results on the exchange
problem and �1-minimization problem show that the algorithm achieves competitive perfor-
mance.

The second contribution is a condition that guarantees the convergence of Jacobi ADMM
(Algorithm 3). The condition is applied to the coefficient matrices Ai , without assumptions
on the objective functions fi or penalty parameter ρ.

A minor contribution is the improvement of the established convergence rate of O(1/k)

for the standard ADMM to o(1/k). The improvement requires showing a certain sequence is
monotonically nonincreasing, which can be applied to improve the existing rate of O(1/k)

of several other algorithms to o(1/k), e.g. [21].
Finally we have experimented Algorithm 4 numerically based on the Amazon Elastic

Computing Cloud (EC2) to demonstrate its effectiveness of solving a compressive sensing
problem of huge size.

1.4 Notation, Assumptions and Preliminary Results

To simplify the notation in this paper, we introduce

x :=
⎛

⎜⎝
x1
...

xN

⎞

⎟⎠ ∈ R
n, A := (

A1, . . . , AN
) ∈ R

m×n, u :=
(
x
λ

)
∈ R

n+m,

where n = ∑N
i=1 ni . We let 〈·, ·〉 and ‖ · ‖ denote the standard inner product and �2-norm

‖ · ‖2, respectively, in the Euclidean space. For a matrix M ∈ R
l×l , ‖M‖ denotes the spectral
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norm, i.e., the largest singular value of M . For a positive definite matrix G ∈ R
l×l , we define

the G-norm as follows:

‖z‖G :=
√
z�Gz, ∀z ∈ R

l . (1.13)

If the matrix G is positive semi-definite, then ‖ · ‖G is a semi-norm.
Throughout the paper, we make the following standard assumptions.

Assumption 1 Functions fi : R
ni → (−∞,+∞] (i = 1, 2, . . . , N ) are closed proper

convex.

Assumption 2 There exists a saddle point u∗ = (x∗
1, x

∗
2, . . . , x

∗
N , λ∗) to the problem (1.1),

that is, u∗ satisfies the KKT conditions:

A�
i λ∗ ∈ ∂ fi (x∗

i ), for i = 1, . . . , N , (1.14a)

Ax∗ =
N∑

i=1

Aix∗
i = c. (1.14b)

The conditions (1.14a) and (1.14b) can be written in a more compact form using variational
inequality [21]:

f (x) − f (x∗) + (u − u∗)�F(u∗) ≥ 0, ∀u, (1.15)

where f (x) := ∑
i fi (xi ) and F(u) := [−A�

1 λ , . . . , −A�
N λ , Ax − c]�.

Let ∂ fi (xi ) denote the subdifferential of fi at xi :

∂ fi (xi ) :=
{

si ∈ R
ni : s�

i (yi − xi ) ≤ fi (yi ) − fi (xi ), ∀yi ∈ dom fi

}
, (1.16)

which is nonempty under Assumption 1. We recall that a subdifferential map of a convex
function is monotone, which will be used several times in later sections.

Proposition 1.1 Under Assumption 1, for any xi , yi ∈ dom fi , we have

(si − ti )
�(xi − yi ) ≥ 0, ∀si ∈ ∂ fi (xi ), ti ∈ ∂ fi (yi ), i = 1, 2, . . . , N . (1.17)

In addition, we use an elementary argument to improve the convergence rate from O(1/k)

to o(1/k). Intuitively, the harmonic sequence 1/k is not summable, so a summable, nonneg-
ative, monotonic sequence shall converge faster than 1/k.

Lemma 1.1 If a sequence {ak} ⊆ R obeys: (1) ak ≥ 0; (2)
∑∞

k=1 ak < +∞; (3) ak is
monotonically non-increasing, then we have ak = o(1/k).

Proof Since k · a2k ≤ ak+1 + ak+2 + · · · + a2k → 0 as k → +∞, ak = o(1/k). ��
More study on the o(1/k) rate, its tightness, and other results for splitting schemes including
the standard ADMM can be found in [10].

1.5 Organization

The rest of the paper is organized as follows. In Sect. 2, we establish the convergence as
well as an o(1/k) rate of convergence for the Jacobi-Proximal ADMM (Algorithm 4). We
also propose a practical parameter tuning method, which updates important parameters on
the fly at little extra cost and makes the algorithm run faster. In Sect. 3, we present several
numerical results to demonstrate the efficiency of Algorithm 4 in comparison with some
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existing parallel algorithms. In Sect. 4, we show that the Jacobi ADMM (Algorithm 3),
though lack of convergence in the general case, will still converge under certain conditions
on the matrices Ai . It is interesting to point out that the Jacobi-Proximal ADMM can be
derived based on the classical proximal point method(PPA). See Sect. 5. Finally, we conclude
the paper in Sect. 6. For convenience, we include some detail on how to use Lemma 1.1 to
improve some existing convergence rates from O(1/k) to o(1/k) in “Appendix”.

2 Convergence Analysis of the Jacobi-Proximal ADMM

In this section, we study the convergence of Jacobi-Proximal ADMM (Algorithm 4). We first
show its convergence and establish an o(1/k) convergence rate for a quantity that is also
used in [24]. Furthermore, we show how to automatically update the parameter in order to
make Jacobi-Proximal ADMM more practical.

2.1 Convergence

To simplify the notation, we let

Gx :=
⎛

⎜⎝
P1 + ρ A�

1 A1
. . .

PN + ρ A�
N AN

⎞

⎟⎠ , G :=
(

Gx
1

γρ
I

)
,

and

Q :=

⎛

⎜⎜⎜⎜⎝

P1 + ρ A�
1 A1

1
γ

A�
1

. . .
...

PN + ρ A�
N AN

1
γ

A�
N

1
γ

A1 . . . 1
γ

AN
2−γ

ργ 2 I

⎞

⎟⎟⎟⎟⎠
, (2.1)

where I is the identity matrix of size m × m. In the rest of the section, we let {uk =
(xk

1, . . . , x
k
N , λk), k ≥ 1} denote the sequence generated by Jacobi-Proximal ADMM from

any initial point. The analysis is based on bounding the error ‖uk − u∗‖2G and estimating its
decrease, motivated by the works [12,21,23].

Lemma 2.1 For k ≥ 1, we have
∥∥∥uk − u∗‖2G − ‖uk+1 − u∗

∥∥∥
2

G
≥
∥∥∥uk − uk+1

∥∥∥
2

Q
, (2.2)

where ‖uk −uk+1‖2Q := ‖xk −xk+1‖2Gx
+ 2−γ

ργ 2 ‖λk −λk+1‖2+ 2
γ
(λk −λk+1)� A(xk −xk+1).

Proof Recall that in Algorithm 4, we solve the following xi -subproblem:

xk+1
i = arg minxi

fi (xi ) + ρ

2

∥∥∥∥∥∥
Aixi +

∑

j =i

A jxk
j − c − λk

ρ

∥∥∥∥∥∥

2

+ 1

2

∥∥∥xi − xk
i

∥∥∥
2

Pi
.

Its optimality condition is given by

A�
i (λk − ρ

⎛

⎝Aix
k+1
i +

∑

j =i

A jxk
j − c)

⎞

⎠ + Pi

(
xk

i − xk+1
i

)
∈ ∂ fi

(
xk+1

i

)
. (2.3)
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For convenience, we let λ̂ := λk − ρ
(

Axk+1 − c
)
. Then (2.3) can be rewritten as

A�
i (λ̂ − ρ

∑

j =i

A j

(
xk

j − xk+1
j )

)
+ Pi

(
xk

i − xk+1
i

)
∈ ∂ fi

(
xk+1

i

)
. (2.4)

By Lemma 1.1, it follows from (1.14a) and (2.4) that

〈Ai

(
xk+1

i − x∗
i

)
, λ̂ − λ∗ − ρ

∑

j =i

A j

(
xk

j − xk+1
j

)
〉 + (xk+1

i − x∗
i )� Pi (xk

i − xk+1
i ) ≥ 0.

Summing the above inequality over all i and using the following equality for each i :
∑

j =i

A j

(
xk

j − xk+1
j

)
= A

(
xk − xk+1

)
− Ai

(
xk

i − xk+1
i

)
,

we obtain

〈A
(
xk+1 − x∗) , λ̂ − λ∗〉 +

N∑

i=1

(xk+1
i − x∗

i )�
(

Pi + ρ A�
i Ai

) (
xk

i − xk+1
i

)

≥ ρ〈A
(
xk+1 − x∗) , A

(
xk − xk+1

)
〉. (2.5)

Note that A
(
xk+1 − x∗) = 1

γρ

(
λk − λk+1

)
and

λ̂ − λ∗ =
(
λ̂ − λk+1

)
+
(
λk+1 − λ∗) = γ − 1

γ

(
λk − λk+1

)
+
(
λk+1 − λ∗) .

With the above two equations, the inequality (2.5) can be rewritten as

〈 1

γρ

(
λk − λk+1

)
, λk+1 − λ∗〉 +

N∑

i=1

(
xk+1

i − x∗
i

)� (
Pi + ρ A�

i Ai

) (
xk

i − xk+1
i

)

≥ 1 − γ

γ 2ρ

∥∥∥λk − λk+1
∥∥∥
2 + 1

γ

(
λk − λk+1)� A(xk − xk+1

)
, (2.6)

or more compactly,
(
uk − uk+1

)�
G
(
uk+1 − u∗) ≥ 1 − γ

γ 2ρ

∥∥∥λk − λk+1
∥∥∥
2

+ 1

γ

(
λk − λk+1

)�
A
(
xk − xk+1

)
. (2.7)

Since ‖uk −u∗‖2G −‖uk+1 −u∗‖2G = 2(uk −uk+1)�G(uk+1 −u∗)+‖uk −uk+1‖2G , using
the above inequality (2.7) yields (2.2) immediately. ��

If the matrix Q is positive definite, there exists some η > 0 such that
∥∥∥uk − uk+1

∥∥∥
2

Q
≥ η · ‖uk − uk+1‖2 ≥ 0. (2.8)

Then Lemma 2.1 indicates that

‖uk − u∗‖2G − ‖uk+1 − u∗‖2G ≥ η · ‖uk − uk+1‖2, (2.9)

i.e., the iterative sequence {uk} is strictly contractive. In particular, the error ‖uk − u∗‖2G is
monotonically non-increasing and thus converging, as well as ‖uk − uk+1‖2 → 0. Then the
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convergence of the algorithm (‖uk − u∗‖2G → 0) follows immediately from the standard
analysis for contraction methods (see, e.g., [19]). We omit the details of the proof for the
sake of brevity and state our convergence theorem as follows.

Theorem 2.1 Under Assumptions 1 and 2, one can find parameters in Algorithm 4 such that
its sequence {uk} converges to a solution u∗ to the problem (1.1). Specifically, if one chooses
some εi > 0 such that the parameters ρ, γ and Pi (i = 1, 2, . . . , N ) satisfy the following
condition:

{
Pi � ρ( 1

εi
− 1)A�

i Ai , i = 1, 2, . . . , N
∑N

i=1 εi < 2 − γ,
(2.10)

then Q in (2.1) is positive definite and {uk} converges to u∗.
Furthermore, by letting each εi <

2−γ
N , the condition (2.10) can be simplified to

Pi � ρ

(
N

2 − γ
− 1

)
A�

i Ai , i = 1, 2, . . . , N . (2.11)

For special choices of Pi :

– Pi = τi I (standard proximal), condition (2.11) reduces to τi > ρ
(

N
2−γ

− 1
)

‖Ai‖2;

– Pi = τi I − ρ A�
i Ai (prox-linear), condition (2.11) reduces to τi >

ρN
2−γ

‖Ai‖2.

Note that one can normalize Ai so that ‖Ai‖ ≤ 1 and further simplify the above sufficient
conditions.

Proof For any u = (x; λ) ∈ R
n+m , we have

‖u‖2Q := ‖x‖2Gx
+ 2 − γ

ργ 2 ‖λ‖2 + 2

γ
λ� Ax. (2.12)

Using the following basic inequality:

2

γ
λ� Ax =

N∑

i=1

2

γ
λ� Aixi ≥ −

N∑

i=1

(
εi

ργ 2 ‖λ‖2 + ρ

εi
‖Aixi‖2

)
, (2.13)

for any εi > 0 (i = 1, 2, . . . , N ), we have

‖u‖2Q ≥
N∑

i=1

‖xi‖2Pi +ρ A�
i Ai − ρ

εi
A�

i Ai
+ 2 − γ − ∑N

i=1 εi

ργ 2 ‖λ‖2. (2.14)

The condition (2.10) guarantees that Pi +ρ A�
i Ai − ρ

εi
A�

i Ai � 0 and 2− γ −∑N
i=1 εi > 0,

and thus ‖u‖Q > 0. Hence, Q is positive definite. The rest follows immediately. ��
2.2 Rate of Convergence

Next, we shall establish the o(1/k) convergence rate of Jacobi-Proximal ADMM. We use
the quantity ‖uk −uk+1‖2M as a measure of the convergence rate motivated by [21,24]. Here,
we define the matrix M by

M :=
(

Mx
1

γρ
I

)
and Mx := Gx − ρ A� A.
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Theorem 2.2 If Q � 0 and Mx � 0, then ‖uk−uk+1‖2M = o(1/k). Hence, ‖xk−xk+1‖2Mx
=

o(1/k) and ‖λk − λk+1‖2 = o(1/k).

We need the following monotonic property of the iterations:

Lemma 2.2 If Mx � 0 and 0 < γ < 2, then ‖uk − uk+1‖2M ≤ ‖uk−1 − uk‖2M .

Proof Let�xk+1
i = xk

i −xk+1
i , i = 1, . . . , N ,�xk+1 = xk −xk+1, and�λk+1 = λk −λk+1.

By Lemma 1.1, the optimality conditions (2.4) at k-th and (k + 1)-th iterations yield
〈

Ai�xk+1
i ,�λk − ρ A�xk+1 − ρ

∑

j =i

A j (�xk
j − �xk+1

j )

〉

+(�xk+1
i )� Pi

(
�xk

i − �xk+1
i

)
≥ 0.

Summing up over all i and rearranging the terms, we have
〈
A�xk+1,�λk〉 ≥ ‖�xk+1

∥∥∥
2

Gx
− (�xk)�

(
Gx − ρ A� A

)
�xk+1. (2.15)

Since Mx := Gx − ρ A� A � 0, we have 2(�xk)�(Gx − ρ A� A)�xk+1 ≤ ‖�xk‖2Mx
+

‖�xk+1‖2Mx
, and thus

2〈A�xk+1,�λk〉 ≥ ‖�xk+1‖22Gx −Mx
− ‖�xk‖2Mx

= ‖�xk+1‖2Gx +ρ A� A − ‖�xk‖2Mx
.

Note that �λk+1 = �λk − γρ A�xk+1. It follows that

1

γρ
‖�λk‖2 − 1

γρ
‖�λk+1‖2 = 2〈A�xk+1,�λk〉 − γρ‖A�xk+1‖2

≥ ‖�xk+1‖2Gx +(1−γ )ρ A� A − ‖�xk‖2Mx
,

i.e.,
(

‖�xk‖2Mx
+ 1

γρ
‖�λk‖2

)
−
(

‖�xk+1‖Mx + 1

γρ
‖�λk+1‖2

)
≥ ‖�xk+1‖2

(2−γ )ρ A� A ≥ 0,

which completes the proof. ��
Proof of Theorem 2.2 By Theorem 2.1, there exists some η > 0 such that

∥∥∥uk − u∗
∥∥∥
2

G
−
∥∥∥uk+1 − u∗

∥∥∥
2

G
≥
∥∥∥uk − uk+1

∥∥∥
2

Q
≥ η

∥∥∥uk − uk+1
∥∥∥
2

M
. (2.16)

Summing (2.16) over k gives
∑∞

k=1 ‖uk − uk+1‖2M < ∞. On the other hand, Lemma

2.2 implies the monotone non-increasing of
∥∥uk − uk+1

∥∥2
M . By Lemma 1.1, we have

∥∥uk − uk+1
∥∥2

M = o(1/k). ��
2.3 Adaptive Parameter Tuning

The parameters satisfying the condition (2.10) may be rather conservative, because the
inequality (2.13) for bounding ‖u‖2Q is usually very loose. In practice, we can compute

‖uk −uk+1‖2Q exactly at very little extra cost. If ‖uk −uk+1‖2Q > 0, then Lemma 2.1 assures
the decreasing of the solution error (in the G-norm) so that the current parameters are accept-
able. On the other hand, if ‖uk − uk+1‖2Q < 0, then the matrix Q is not positive definite,
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meaning that the current parameters Pi , i = 1, 2, . . . , N may be too small. So we should
make {Pi } bigger until ‖uk − uk+1‖2Q > 0 holds. Therefore, we propose a practical strategy

for adaptively adjusting the matrices {Pi } based on the value of ‖uk − uk+1‖2Q :

Initialize with small P0
i � 0 (i = 1, 2, . . . , N ) and a small η > 0;

for k = 1, 2, . . . do
if ‖uk−1 − uk‖2Q > η · ‖uk−1 − uk‖2 then

Pk+1
i ← Pk

i , ∀i ;
else

Increase Pi : Pk+1
i ← αi Pk

i + βi Qi (αi > 1, βi ≥ 0, Qi � 0),∀i ;
Restart: uk ← uk−1;

The above strategy starts with relatively small proximal parameters {Pi } and gradually
increase them. By Theorem 2.1, we know that when the parameters {Pi } are large enough
for (2.10) to hold, the condition (2.8) will be satisfied (for sufficiently small η). Therefore,
the adjustment of {Pi } cannot occur infinite times. After a finite number of iterations, {Pi }
will remain constant and the contraction property (2.9) of the iterations will hold. Therefore,
the convergence of such an adaptive parameter tuning scheme follows immediately from our
previous analysis.

Theorem 2.3 When the matrices Pi (i = 1, 2, . . . , N ) in Algorithm 4 are adaptively adjusted
in the above scheme, the algorithm converges to a solution to the problem (1.1).

Empirical evidence shows that the parameters {Pi } typically adjust themselves only dur-
ing the first few iterations and then stay constant. Alternatively, one may also decrease the
parameters after every few iterations or after they have not been updated for a certain number
of iterations. But the total times of decrease should be bounded to guarantee convergence.
By using this adaptive strategy, the resulting parameters {Pi } are usually much smaller than
those required by the condition (2.10), thereby leading to substantially faster convergence in
practice.

3 Numerical Experiments

In this section, we present numerical results to compare the following parallel splitting algo-
rithms:

– Prox-JADMM proposed Jacobi-Proximal ADMM (Algorithm 4);
– VSADMM Variable Splitting ADMM (Algorithm 1);
– Corr-JADMM Jacobi ADMMwith correction steps [21]. At every iteration, it first gener-

ates a “predictor” ũk+1 by an iteration of Jacobi ADMM (Algorithm 3) and then corrects
ũk+1 to generate the new iterate by:

uk+1 = uk − αk(uk − ũk+1), (3.1)

where αk > 0 is a step size. In our experiments, we adopt the dynamically updated step
size αk according to [21], which is shown to converge significantly faster than using a
constant step size, though updating the step size requires extra computation.
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– YALL1 one of the state-of-the-art solvers for the �1-minimization problem.

In Sects. 3.1 and 3.2, all of the numerical experiments are run in MATLAB (R2011b) on
a workstation with an Intel Core i5-3570 CPUs (3.40GHz) and 32 GB of RAM. Section 3.3
gives two very large instances that are solved by a C/MPI implementation on Amazon Elastic
Compute Cloud (EC2).

3.1 Exchange Problem

Consider a network of N agents that exchange n commodities. Let xi ∈ R
n (i = 1, 2, . . . , N )

denote the amount of commodities that are exchanged among the N agents. Each agent i has
a certain cost function fi : Rn → R. The exchange problem (see, e.g., [3] for a review) is
given by

min{xi }

N∑

i=1

fi (xi ) s.t.
N∑

i=1

xi = 0, (3.2)

which minimizes the total cost among N agents subject to an equilibrium constraint on the
commodities. This is a special case of (1.1) where Ai = I and c = 0.

We consider quadratic cost functions fi (xi ) := 1
2‖Cixi − di‖2, where Ci ∈ R

p×n and
di ∈ R

p . All the compared algorithms solve the following type of subproblem:

xk+1
i = arg minxi

1

2
‖Cixi − di‖2 + ρ

2
‖xi − bk

i ‖2, ∀i = 1, 2, . . . , N , (3.3)

except that Prox-JADMM also adds a proximal term 1
2‖xi −xk

i ‖2Pi
. Here bk

i ∈ R
m is a vector

independent of xi and takes different forms in different algorithms. For Prox-JADMM, we
simply set Pi = τi I (τi > 0). Clearly, each xi -subproblem is a quadratic program that can
be computed efficiently using various methods.

In our experiment, we randomly generate x∗
i , i = 1, 2, . . . , N −1, following the standard

Gaussian distribution, and let x∗
N = −∑N−1

i=1 x∗
i . MatricesCi are randomGaussian matrices,

and vectors di are computed by di = Cix∗
i . Apparently, x

∗ is a solution (not necessarily
unique) to (3.2), and the optimal objective value is 0.

The penalty parameter ρ is set to be 0.01, 1 and 0.01 for Prox-JADMM, VSADMM and
Corr-JADMM, respectively. They are nearly optimal for each algorithm, picked out of a
number of different values. Note that the parameter for VSADMM is quite different from
the other two algorithms because it has different constraints due to the variable splitting. For
Prox-JADMM, the proximal parameters are initialized by τi = 0.1(N − 1)ρ and adaptively
updated by the strategy in Sect. 2.3; the parameter γ is set to be 1.

The size of the test problem is set to be n = 100, N = 100, p = 80. Letting all the algo-
rithms run 200 iterations, we plot their objective value

∑N
i=1 fi (xi ) and residual ‖∑N

i=1 xi‖2.
Note that the per-iteration cost (both computation and communication) is roughly the same
for all the compared algorithms. Figure 1 shows the comparison result, which is averaged
over 100 random trials. We can see that Prox-JADMM is clearly the fastest one among the
compared algorithms.

3.2 �1-Minimization

We consider the �1-minimization problem for finding sparse solutions of an underdetermined
linear system:

min
x

‖x‖1 s.t. Ax = c, (3.4)
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Fig. 1 Exchange problem (n = 100, N = 100, p = 80)

where x ∈ R
n , A ∈ R

m×n and c ∈ R
m (m < n). It is also known as the basis pursuit problem,

which has been widely used in compressive sensing, signal and image processing, statistics,
andmachine learning. Suppose that the data is partitioned into N blocks:x = [x1, x2, . . . , xN ]
and A = [A1, A2, . . . , AN ]. Then the problem (3.4) can be written in the form of (1.1) with
fi (xi ) = ‖xi‖1.
In our experiment, a sparse solution x∗ is randomly generated with k (k � n) nonzeros

drawn from the standard Gaussian distribution. Matrix A is also randomly generated from
the standard Gaussian distribution, and it is partitioned evenly into N blocks. The vector c
is then computed by c = Ax∗ + η, where η ∼ N (0, σ 2I) is Gaussian noise with standard
deviation σ .

Prox-JADMM solves the xi -subproblems with Pi = τi I − ρ A�
i Ai (i = 1, 2, . . . , N ) as

follows:

xk+1
i = arg minxi

‖xi‖1 + ρ

2

∥∥∥∥∥∥
Aixi +

∑

j =i

A jxk
j − c − λk

ρ

∥∥∥∥∥∥

2

+ 1

2

∥∥∥xi − xk
i

∥∥∥
2

Pi

= arg minxi
‖xi‖1 +

〈
ρ A�

i

(
Axk − c − λk

ρ

)
, xi

〉
+ τi

2

∥∥∥xi − xk
i

∥∥∥
2
. (3.5)

Here, we choose the prox-linear Pi ’s to linearize the original subproblems, and thus (3.5)
admits a simple closed-form solution by the shrinkage (or soft-thresholding) formula. The
proximal parameters are initialized as τi = 0.1Nρ and are adaptively updated by the strategy
discussed in Sect. 2.3.

Recall that VSADMM needs to solve the following xi -subproblems:

xk+1
i = arg minxi

‖xi‖1 + ρ

2

∥∥∥∥∥Aixi − zk+1
i − c

N
− λk

i

ρ

∥∥∥∥∥

2

. (3.6)

Such subproblems are not easily computable, unless xi is a scalar (i.e., ni = 1) or A�
i Ai is

a diagonal matrix. Instead, we solve the subproblems approximately using the prox-linear
approach:
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xk+1
i = arg minxi

‖xi‖1 +
〈
ρ A�

i

(
Aixk

i − zk+1
i − c

N
− λk

i

ρ

)
, xi − xk

i

〉
+ τi

2

∥∥∥xi − xk
i

∥∥∥
2
,

which can be easily computed by the shrinkage operator. We set τi = 1.01ρ‖Ai‖2 in order
to guarantee the convergence, as suggested in [36].

Corr-JADMM solves the following xi -subproblems in the “prediction” step:

x̃k+1
i = arg minxi

‖xi‖1 + ρ

2

∥∥∥∥∥∥
Aixi +

∑

j =i

A jxk
j − c − λk

ρ

∥∥∥∥∥∥

2

. (3.7)

Because the correction step in [21] is based on exact minimization of the subproblems, we
do not apply the prox-linear approach to solve the subproblems approximately. Instead, we
always partition x into scalar components (i.e., N = n) so that the subproblems (3.7) can
still be computed exactly. The same penalty parameter ρ = 10/‖c‖1 is used for the three
algorithms. It is nearly optimal for each algorithm, selected out of a number of different
values.

We also include the YALL1 package [37] in the experiment, which is one of the state-
of-the-art solvers for �1 minimization. Though YALL1 is not implemented in parallel, the
matrix-vector multiplication by A and A� in the code can be parallelized (see [32]). Since
all the compared algorithms have roughly the same amount of per-iteration cost (in terms
of both computation and communication), we simply let all the algorithms run for a fixed

number of iterations and plot their relative error ‖xk−x∗‖2‖x∗‖2 .
Figure 2 shows the comparison result where n = 1000, m = 300, k = 60 and the

standard deviation of noise σ is set to be 0 and 10−3, respectively. For Prox-JADMM and
VSADMM, we set N = 100; for Corr-JADMM, we set N = 1000. The results are aver-
age of 100 random trials. We can see that Prox-JADMM and Corr-JADMM achieve very
close performance and are the fastest ones among the compared algorithms. YALL1 also
shows competitive performance. However, VSADMM is far slower than the others, probably
due to inexact minimization of the subproblems and the conservative proximal parame-
ters.
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Fig. 2 �1-problem (n = 1000, m = 300, k = 60). a Noise-free (σ = 0), b noise added (σ = 10−3)
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Table 1 Two large datasets m n RAM

dataset 1 1.0 × 105 2.0 × 105 150 GB

dataset 2 1.5 × 105 3.0 × 105 337 GB

3.3 Distributed Large-Scale �1-Minimization

We now use Algorithm 4 to solve two very large instances of the �1-minimization problem
(3.4) using a C code with MPI (for inter-process communication) and the GNU Scientific
Library (GSL) (for BLAS operations). The experiments were carried out on Amazon EC2.

We generate two test instances as shown in Table 1. Specifically, a sparse solution x∗ is
randomly generated with 5% and 15% nonzeros drawn from the standard Gaussian distri-
bution. Matrix A is also randomly generated from the standard Gaussian distribution with
m rows and n columns, and it is partitioned evenly into N = 80 blocks. Vector c is then
computed by c = Ax∗. Note that A is dense and has double precision. For Test 1 it requires
over 150 GB of RAM and has 20 billion nonzero entries, and for Test 2 it requires over 337
GB of RAM. Those two tests are far too large to process on a single PC or workstation. We
want to point out that we cannot find a dataset of similar or larger size in the public domain.
We are willing to try a larger problem per reader’s request. Note that this is the first time that
an alternating direction type of algorithm has ever been tested on problems of such a large
scale.

We solve the problem on a cluster of 10 machines, where each machine is a “memory-
optimized instance” with 68 GB RAM and 1 eight-core Intel Xeon E5-2665 CPU. They run
Ubuntu 12.04 and are connected with 10 Gigabit ethernet network. Since each has 8 cores,
we run the code with 80 processes so that each process runs on its own core. Such a setup is
charged for under $17 per hour.

We solve the large-scale �1 minimization problems with a C code that matches ourMatlab
code. The C code has about 300 lines and it is available for download on authors’ website.1

The breakdown of the wall-clock time is summarized in Tables 2 and 3. We can observe
that Jacobi ADMM is very efficient in obtaining a relative low accuracy, which is usually
sufficient for large-scale problems. We want to point out that the basic BLAS operations in
our implantation can be further improved by using other libraries such as hardware-optimized
BLAS libraries produced by ATLAS, Armadillo, etc. Those libraries might lead to several
times of speedup.2 We use GSL due to its ease of use and easy adaptation to other problems.

4 A Sufficient Condition for Convergence of Jacobi ADMM

In this section, we provide a sufficient condition to guarantee the convergence of Jacobi
ADMM (Algorithm 3), which does not use proximal terms or any correction step. The
condition only depends on the matrices Ai , without imposing further assumptions on the
objective functions fi or the penalty parameter ρ. For the Gauss–Seidel ADMM (Algorithm
2), a sufficient condition for convergence is provided in [5] for the special case N = 3,
assuming two of the three coefficient matrices are orthogonal. Our condition does not require

1 https://github.com/ZhiminPeng/Jacobi-ADMM.
2 http://nghiaho.com/?p=1726.
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Table 2 Time results for large scale �1 minimization examples (sparsity 5%)

150 GB test 337 GB test

Itr Time (m) Cost ($) Itr Time (m) Cost ($)

Data generation – 0.7 0.2 – 1.6 0.5

CPU per iteration – 1.3 – – 2.9 –

Comm. per iteration – 0.07 – – 0.15 –

Reach 10−1 46 1.0 0.2 56 2.8 0.4

Reach 10−2 176 3.9 0.6 203 10.0 1.6

Reach 10−3 791 17.5 2.9 880 43.5 7.1

Table 3 Time results for large scale �1 minimization examples (sparsity 15%)

150 GB test 337 GB test

Itr Time (m) Cost ($) Itr Time (m) Cost ($)

Reach 10−1 115 2.5 0.4 181 8.8 1.4

Reach 10−2 614 13.4 2.1 745 36.2 5.9

Reach 10−3 1000 21.8 3.6 1000 48.5 7.9

(reach 5.0 × 10−3) (reach 6.0 × 10−3)

exact orthogonality. Instead, we mainly assume that the matrices Ai , i = 1, 2, . . . , N are
mutually “near-orthogonal” and have full column-rank.

Theorem 4.1 If there exists δ ≥ 0 such that

‖A�
i A j‖ ≤ δ, ∀ i = j, and λmin(A�

i Ai ) > 3(N − 1)δ, ∀ i, (4.1)

where λmin(A�
i Ai ) denotes the smallest eigenvalue of A�

i Ai , then the sequence {uk} gener-
ated by Algorithm 3 converges to a solution u∗ to the problem (1.1).

The proof technique is motivated by the contraction analysis of the sequence {uk} under
some G-norm (e.g., [12,21,23]). We first need the following lemma:

Lemma 4.1 Let

G0 :=

⎛

⎜⎜⎜⎝

ρ A�
1 A1

. . .

ρ A�
N AN

1
ρ
I

⎞

⎟⎟⎟⎠ , Q0 :=

⎛

⎜⎜⎜⎝

ρ A�
1 A1 A�

1
. . .

...

ρ A�
N AN A�

N
A1 . . . AN

1
ρ
I

⎞

⎟⎟⎟⎠ ,

where I is the identity matrix of size m × m. For k ≥ 1, we have

‖uk − u∗‖2G0
− ‖uk+1 − u∗‖2G0

≥ ‖uk − uk+1‖2Q0
, (4.2)

where

‖uk − uk+1‖2Q0
:= ‖uk − uk+1‖2G0

+ 2(λk − λk+1)� A(xk − xk+1). (4.3)
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This lemma follows directly from Lemma 2.1 since it is a special case with γ = 1 and
Pi = 0, ∀i . Now we are ready to prove the theorem.

Proof of Theorem 4.1 By the assumption ‖A�
i A j‖ ≤ δ, i = j , we have

|
∑

i = j

〈Aiai , A jb j 〉| ≤
∑

i = j

δ‖ai‖‖b j‖ ≤ δ

2
(N − 1)(‖a‖2 + ‖b‖2), ∀ a,b (4.4)

To simplify the notation, we let ak
i := xk

i − x∗
i , i = 1, 2, . . . , N . Note that λk − λk+1 =

ρ Aak+1, xk − xk+1 = ak − ak+1. Then, we can rewrite (4.3) as

1

ρ
‖uk − uk+1‖2Q0

=
∑

i

‖Ai (ak
i − ak+1

i )‖2 + ‖Aak+1‖2 + 2〈Aak+1, A(ak − ak+1)〉

=
∑

i

‖Aiak
i ‖2 + 2

∑

i = j

〈Aia
k+1
i , A jak

j 〉 −
∑

i = j

〈Aia
k+1
i , A ja

k+1
j 〉

≥
∑

i

‖Aiak
i ‖2 − (N − 1)δ(‖ak+1‖2 + ‖ak‖2) − (N − 1)δ‖ak+1‖2

=
∑

i

‖Aiak
i ‖2 − (N − 1)δ‖ak‖2 − 2(N − 1)δ‖ak+1‖2,

where the inequality comes from (4.4). By Lemma 4.1, we have

‖uk − u∗‖2G0
− 2(N − 1)δρ‖ak‖2 ≥ ‖uk+1 − u∗‖2G0

− 2(N − 1)δρ‖ak+1‖2
+ ρ

∑

i

‖Aiak
i ‖2 − 3(N − 1)δρ‖ak‖2. (4.5)

We further simplify (4.5) as

bk − bk+1 ≥ dk, (4.6)

where the sequences {bk} and {dk} are defined by
bk := ‖uk − u∗‖2G0

− 2(N − 1)δρ‖ak‖2, (4.7)

dk := ρ
∑

i

‖Aiak
i ‖2 − 3(N − 1)δρ‖ak‖2. (4.8)

By the definition of G0, we have

bk = ρ
∑

i

‖Aiak
i ‖2 − 2(N − 1)δρ‖ak

i ‖2 + 1

ρ
‖λk − λ∗‖2. (4.9)

Since we assume λmin(A�
i Ai ) > 3(N − 1)δ, it follows that

‖Aiak
i ‖2 ≥ 3(N − 1)δ‖ak

i ‖2, ∀i. (4.10)

Then it is easy to see that bk ≥ 0 and dk ≥ 0. By (4.6), the nonnegative sequence {bk}
is monotonically non-increasing. Hence, {bk} converges to some b∗ ≥ 0. By (4.6), it also
follows that dk → 0. Therefore, ak → 0, i.e., xk → x∗.
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Next we show λk → λ∗. By taking limit of (4.9) and using ak → 0, we have

b∗ = lim
k→∞ bk = lim

k→∞
1

ρ
‖λk − λ∗‖2. (4.11)

To show λk → λ∗, it thus suffices to show b∗ = 0.
By (4.11), {λk} is bounded and must have a convergent subsequence λk j → λ̄. Recall the

optimality conditions for the xi -subproblems (1.11):

A�
i

⎛

⎝λk − ρ(Aix
k+1
i +

∑

j =i

A jxk
j − c)

⎞

⎠ ∈ ∂ fi (x
k+1
i ). (4.12)

By Theorem 24.4 of [33], taking limit over the subsequence {k j } on both sides of (4.12)
yields: A�

i λ̄ ∈ ∂ fi (x∗
i ), ∀ i. Therefore, (x∗, λ̄) satisfies the KKT conditions of the problem

(1.1). Since (x∗, λ∗) is any KKT point, now we let λ∗ = λ̄. By (4.11) and ‖λk j − λ∗‖2 → 0,
we must have b∗ = 0, thereby completing the proof. ��

Similar to Theorem 2.2, we can find the convergence rate. That is,

Theorem 4.2 Let W be blockly diagonal matrix diag(ρδ(N −1)I1, · · · , ρδ(N −1)IN , 1
ρ

I ).

Under the assumptions in Theorem 4.1, ‖uk − uk+1‖2W = o(1/k). That is, ‖xk − xk+1‖2 =
o(1/k) and ‖λk − λk+1‖2 = o(1/k).

Under the similar near-orthogonality assumption on the matrices Ai , i = 1, 2, . . . , N ,
we have the following convergence result for Jacobi-Proximal ADMM:

Theorem 4.3 Suppose there exists δ ≥ 0 such that ‖A�
i A j‖ ≤ δ for all i = j , and the

parameters in Algorithm 4 satisfy the following condition: for some α, β > 0 and 0 < γ < 2,

{
Pi � ρ( 1

α
− 1)A�

i Ai + ρ
β
δ(N − 1)I

λmin(A�
i Ai ) >

2−γ+β
2−γ−α

δ(N − 1)
for i = 1, . . . , N . (4.13)

Then Algorithm 4 converges to a solution to the problem (1.1).

Proof Let

H :=
⎛

⎜⎝
A�
1 A1

. . .

A�
N AN

⎞

⎟⎠ .

If ‖A�
i A j‖ ≤ δ for all i = j , then it is easy to show the following: for any x and y,

‖Ax‖2 =
N∑

i=1

‖Aixi‖2 +
∑

i = j

x�
i A�

i A jx j ≥
N∑

i=1

‖Aixi‖2 − δ
∑

i = j

‖xi‖‖x j‖

≥
N∑

i=1

‖Aixi‖2 − δ(N − 1)‖x‖2 = ‖x‖2[H−δ(N−1)I],

and
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2x� A� Ay = 2
N∑

i=1

x�
i A�

i A jy j + 2
∑

i = j

x�
i A�

i A jy j ≥2
N∑

i=1

x�
i A�

i A jy j − 2δ
∑

i = j

‖xi‖‖y j‖

≥ −
N∑

i=1

α‖Aixi‖2 − βδ(N − 1)‖x‖2 −
N∑

i=1

1

α
‖Aiyi‖2 − 1

β
δ(N − 1)‖y‖2

= −‖x‖2[αH+βδ(N−1)I] − ‖y‖2[ 1
α

H+ 1
β

δ(N−1)I], ∀α, β > 0,

Using the above inequalities, we have

2

γ

(
λk − λk+1

)�
A
(
xk − xk+1

)
= 2ρ

(
xk+1 − x∗) A� A

(
xk − xk+1

)

≥ − ρ‖xk+1 − x∗‖2[αH+βδ(N−1)I] − ρ‖xk − xk+1‖2[ 1
α

H+ 1
β

δ(N−1)I],

and ‖λk − λk+1‖2 = γ 2ρ2‖A(xk+1 − x∗)‖2 ≥ γ 2ρ2‖xk+1 − x∗‖2[H−δ(N−1)I]. Therefore,

‖uk − uk+1‖2Q ≥‖xk − xk+1‖2Gx
+ (2 − γ )ρ‖xk+1 − x∗‖2[H−δ(N−1)I]

− ρ‖xk+1 − x∗‖2[αH+βδ(N−1)I] − ρ‖xk − xk+1‖2[ 1
α

H+ 1
β

δ(N−1)I].

As long as the following holds:
{

Gx � ρ
α

H + ρ
β
δ(N − 1)I,

(2 − γ )ρ[H − δ(N − 1)I] � ρ[αH + βδ(N − 1)I],
which is equivalent to the condition (4.13), there exists some η > 0 such that (2.8) and (2.9)
hold. Then the convergence of Algorithm 4 follows immediately from the standard analysis
of contraction methods [19]. ��
Remark 4.1 The conditions in Theorem 4.1 and Theorem 4.3 guarantee that (2.8) holds, i.e.,
there exists some η > 0 such that ‖uk − uk+1‖2Q ≥ η · ‖uk − uk+1‖2. But the matrix Q (or

Q0) is not necessarily positive semi-definite. Also, the term
2 − γ + β

2 − γ − α
δ(N − 1) in (4.13)

may be negative for some α. Then, λmin(A�
i Ai ) is allowed to be 0, in other words, Ai may

not be of full column rank. As long as the conditions in (4.13) are satisfied, Algorithm 4 will
converge.

5 Connections between the Prox-JADMM Algorithm and the Proximal
Point Algorithm

The Jacobi-Proximal ADMM is equivalent to the proximal point algorithm (PPA) applied to
the following optimal condition of (1.1):

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎦
∈

⎡

⎢⎢⎢⎢⎢⎣

∂ f1(x1)
∂ f2(x2)

...

∂ fN (xN )

0

⎤

⎥⎥⎥⎥⎥⎦
+

⎡

⎢⎢⎢⎢⎢⎣

0 0 · · · 0 −AT
1

0 0 · · · 0 −AT
2

...
...

...
...

...

0 0 · · · 0 −AT
N

A1 A2 · · · AN 0

⎤

⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

⎡

⎢⎢⎢⎢⎢⎣

x1
x2
...

xN

λ

⎤

⎥⎥⎥⎥⎥⎦
−

⎡

⎢⎢⎢⎢⎢⎣

0
0
...

0
c

⎤

⎥⎥⎥⎥⎥⎦
. (5.1)
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Note that x is an optimal solution if and only if x1, . . . , xm , and λ satisfy (5.1). Define z :=
(x1, . . . , xN , λ), F(z) := ∑N

i=1 fi (xi ), and let Sz = Bz − c, then finding z satisfying (5.1)
is equivalent to

findingzsuch that 0 ∈ ∂ F(z) + Sz. (5.2)

Introducing a symmetric positive definite matrix W , and applying PPA to (5.2) gives

zk+1 = JW−1(∂ F+S)(z
k), (5.3)

where JA := (I + A)−1 is the resolvent of the operator A. Next, we show that (5.3) is
equivalent to Prox-JADMM with a proper choice of W . Let

W =
[

Q − ρ AT A 0
0 1

ρ
I

]
, (5.4)

where Q = diag(Q1, . . . , QN ), Qi are symmetric matrices and A = (A1, . . . , AN ). We
require Q � ρ AT A so that W is symmetric positive definite. The reason for choosing such
a W is to decouple x1, . . . , xN and λ. Based on the definition of the resolvent operator, we
have

Wzk+1 = Wzk − ∇̃F(zk+1) − Szk+1, (5.5)

where ∇̃F(zk+1) ∈ ∂ F(zk+1). Substituting (5.4) to (5.5) gives the following update

∇̃ fi

(
xk+1

i

)
+ Qi

(
xk+1

i − xk
)

+ ρ AT
i

(
Axk − λk

ρ
− c

)
= 0, (5.6)

λk+1 = λk − ρ
(

Axk+1 − c
)

. (5.7)

where (5.6) corresponds to the optimal condition of the following problem

xk+1
i = arg minxi

fi (xi ) + 〈ρ AT
i

(
Axk − λk

ρ
− c

)
, xi 〉 + 1

2
‖xi − xk

i ‖2Qi
. (5.8)

To show the equivalence, we distinguish two cases:

1. Let Qi = τi I , then (5.8) and (5.7) correspond to Prox-JADMMwith Pi = τ I −ρ AT
i Ai .

2. Let Qi = τi I + ρ AT
i Ai , then (5.8) is equivalent to

xk+1
i = arg minxi

fi (xi ) +
〈
ρ AT

i

(
Axk − λk

ρ
− c

)
, xi

〉
+ 1

2
‖xi − xk

i ‖2τi I+ρ AT
i Ai

= arg minxi
fi (xi ) + ρ

2

∥∥∥∥∥∥
Aixi +

∑

j =i

Aixk
i − λk

ρ
− c

∥∥∥∥∥∥

2

2

+ τi

2

∥∥∥xi − xk
i

∥∥∥
2
,

which is the primal update of Prox-JADMM with Pi = τi I .

6 Conclusion

Due to the dramatically increasing demand for dealing with big data, parallel and distrib-
uted computational methods are highly desirable. ADMM, as a versatile algorithmic tool,
has proven to be very effective at solving many large-scale problems and well suited for
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distributed computing. Yet, its parallelization still needs further investigation and improve-
ment. This paper proposes a simple parallel and distributed ADMM for solving problems
with separable structures. The algorithm framework introduces more flexibility for solving
the subproblems due to the use of proximal terms ‖xi − xk

i ‖2Pi
with wisely chosen Pi . Its

theoretical properties such as global convergence and an o(1/k) rate are established. Our
numerical results demonstrate the efficiency of the proposed method in comparison with
several existing algorithms. The code is available online for further studies.
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Appendix: On o(1/k) Convergence Rate of ADMM

The convergence of the standard two-blockADMMhas been long established in the literature
[14,16]. Its convergence rate has been actively studied; see [9,10,12,17,23–25,28] and the
references therein. In the following, we briefly review the convergence analysis for ADMM
(N = 2) and then improve the O(1/k) convergence rate established in [24] slightly to o(1/k)

by using the same technique as in Sect. 2.2.
As suggested in [24], the quantity ‖wk − wk+1‖2H can be used to measure the optimality

of the iterations of ADMM , where

w :=
(
x2
λ

)
, H :=

(
ρ A�

2 A2
1
ρ
I

)
,

and I is the identity matrix of size m × m. Note that x1 is not part of w because x1 can
be regarded as an intermediate variable in the iterations of ADMM, whereas (x2, λ) are the
essential variables [3]. In fact, if ‖wk − wk+1‖2H = 0 then wk+1 is optimal. The reasons are
as follows. Recall the subproblems of ADMM:

xk+1
1 = arg minx1 f1(x1) + ρ

2

∥∥∥A1x1 + A2xk
2 − λk/ρ

∥∥∥
2
, (6.1)

xk+1
2 = arg minx2 f2(x2) + ρ

2

∥∥∥A1x
k+1
1 + A2x2 − λk/ρ

∥∥∥
2
. (6.2)

By the formula for λk+1, their optimality conditions can be written as:

A�
1 λk+1 − ρ A�

1 A2

(
xk
2 − xk+1

2

)
∈ ∂ f

(
xk+1
1

)
, (6.3)

A�
2 λk+1 ∈ ∂ f2

(
xk+1
2

)
. (6.4)

In comparison with the KKT conditions (1.14a) and (1.14b), we can see that uk+1 =(
xk+1
1 , xk+1

2 , λk+1
)
is a solution of (1.1) if and only if the following holds:

rk+1
p := A1x

k+1
1 + A2x

k+1
2 − c = 0 (primal feasibility), (6.5)

rk+1
d := ρ A�

1 A2

(
xk
2 − xk+1

2

)
= 0 (dual feasibility). (6.6)
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By the update formula for λk+1, we can write rp equivalently as

rk+1
p = 1

ρ

(
λk − λk+1

)
. (6.7)

Clearly, if ‖wk −wk+1‖2H = 0 then the optimality conditions (6.5) and (6.6) are satisfied, so
wk+1 is a solution. On the other hand, if ‖wk − wk+1‖2H is large, then wk+1 is likely to be
far away from being a solution. Therefore, the quantity ‖wk − wk+1‖2H can be viewed as a
measure of the distance between the iteration wk+1 and the solution set. Furthermore, based
on the variational inequality (1.15) and the variational characterization of the iterations of
ADMM, it is reasonable to use the quadratic term ‖wk −wk+1‖2H rather than ‖wk −wk+1‖H

to measure the convergence rate of ADMM (see [24] for more details).
The work [24] proves that ‖wk −wk+1‖2H converges to zero at a rate of O(1/k). The key

steps of the proof are to establish the following properties:

– the sequence {wk} is contractive:
‖wk − w∗‖2H − ‖wk+1 − w∗‖2H ≥ ‖wk − wk+1‖2H , (6.8)

– the sequence ‖wk − wk+1‖2H is monotonically non-increasing:

‖wk − wk+1‖2H ≤ ‖wk−1 − wk‖2H . (6.9)

The contraction property (6.8) has been long established and its proof dates back to [14,16].
Inspired by [24], we provide a shorter proof for (6.9) than the one in [24].

Proof (Proof of (6.9)) Let �xk+1
i = xk

i − xk+1
i and �λk+1 = λk − λk+1. By Lemma

1.1, i.e., (1.17), the optimality condition 6.3 at the k-th and (k + 1)-th iterations yields:
〈�xk+1

1 , A�
1 �λk+1 − ρ A�

1 A2(�xk
2 − �xk+1

2 )〉 ≥ 0. Similarly for (6.4), we obtain
〈�xk+1

2 , A�
2 �λk+1〉 ≥ 0. Adding the above two inequalities together, we have

(
A1�xk+1

1 + A2�xk+1
2

)�
�λk+1 − ρ

(
A1�xk+1

1

)�
A2

(
�xk

2 − �xk+1
2

)
≥ 0. (6.10)

Using the equality according to (6.7):

A1�xk+1
1 + A2�xk+1

2 = 1

ρ

(
�λk − �λk+1

)
, (6.11)

(6.10) becomes 1
ρ

(
�λk − �λk+1

)�
�λk+1 −

(
�λk − �λk+1 − ρ A2�xk+1

2

)�
A2

(
�xk

2

−�xk+1
2

)
≥ 0. After rearranging the terms, we get

(√
ρ A2�xk

2 + 1√
ρ

�λk
)� (√

ρ A2�xk+1
2 + 1√

ρ
�λk+1

)
−
(

A2�xk
2

)�
�λk

−
(

A2�xk+1
2

)�
�λk+1

≥ 1

ρ

∥∥∥�λk+1
∥∥∥
2 + ρ

∥∥∥A2�xk+1
2

∥∥∥
2 = ‖wk − wk+1‖2H . (6.12)

By the Cauchy-Schwarz inequality, we have (a1 + b1)�(a2 + b2) ≤ (‖a1 + b1‖2 +‖a2 +
b2‖2)/2, or equivalently, (a1 + b1)�(a2 + b2)− a�

1 b1 − a�
2 b2 ≤ (‖a1‖2 +‖b1‖2 +‖a2‖2 +
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‖b2‖2)/2. Applying this inequality to the left-hand side of (6.12), we have

‖wk − wk+1‖2H ≤
(

ρ‖A2�xk
2‖2 + 1

ρ
‖�λk‖2 + ρ‖A2�xk+1

2 ‖2 + 1

ρ
‖�λk+1‖2

)
/2

=
(
‖wk−1 − wk‖2H + ‖wk − wk+1‖2H

)
/2,

and thus (6.9) follows immediately.

We are now ready to improve the convergence rate from O(1/k) to o(1/k).

Theorem 6.1 The sequence {wk} generated by Algorithm 2 (for N = 2) converges to a
solution w∗ of problem (1.1) in the H-norm, i.e., ‖wk −w∗‖2H → 0, and ‖wk −wk+1‖2H =
o(1/k). Therefore,

∥∥∥A1xk
1 − A1x

k+1
1

∥∥∥
2 +

∥∥∥A2xk
2 − A2x

k+1
2

∥∥∥
2 +

∥∥∥λk − λk+1
∥∥∥
2 = o(1/k). (6.13)

Proof Using the contractive property of the sequence {wk} (6.8) along with the optimality
conditions, the convergence of ‖wk − w∗‖2H → 0 follows from the standard analysis for
contraction methods [19].

By (6.8), we have

n∑

k=1

‖wk − wk+1‖2H ≤ ‖w1 − w∗‖2H − ‖wn+1 − w∗‖2H , ∀n. (6.14)

Therefore,
∑∞

k=1 ‖wk − wk+1‖2H < ∞. By (6.9), ‖wk − wk+1‖2H is monotonically non-
increasing and nonnegative. So Lemma 1.1 indicates that ‖wk − wk+1‖2H = o(1/k), which
further implies that ‖A2xk

2 − A2x
k+1
2 ‖2 = o(1/k) and ‖λk − λk+1‖2 = o(1/k). By (6.11),

we also have ‖A1xk
1 − A1x

k+1
1 ‖2 = o(1/k). Thus (6.13) follows immediately. ��

Remark 6.1 The proof technique based on Lemma 1.1 can be applied to improve some other
existing convergence rates of O(1/k) (e.g., [8,21]) to o(1/k) as well.
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