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Abstract

We explain a level curve method to construct 2D smooth interpolatory and/fitting curve from
any given 2D data set by using bivariate splines over triangulation. Similarly, we explain a level
surface method to construct 3D smooth interpolatory/fitting surfaces from any given 3D point
cloud by using trivariate splines over tetrahedralization. The theory and implementation of these
splines functions are matured nowadays and hence they can be used for constructing smooth 2D
curves and 3D surfaces rather easily as demonstrated in this paper. In addition to the convenience
of generating fitting curves and surfaces, one significance of our methods is to use spline functions of
high order smoothness to interpolate or fit current G1 or C1 surfaces which are already constructed
so that one can obtain their counterpart of C2 or smoother surfaces.

1 Introduction

We are interested in constructing a smooth, e.g. C2 interpolatory or fitting surface of a given point
cloud in the 3D setting. One of our motivations is to be able to connect the wings to the body of
airplane in C2 fashion. The smooth boundary of the exterior domain of the airplane enables smooth
air flows. Also the smoother surface of the airplane reduces more air friction and hence produces more
fuel efficiency. Mathematically, we would like to have C2 smooth surfaces to interpolate and/or fit
these given data sets in Figure 1.

During last several decades, a lot of theories and computational methods have been proposed to
find desired smooth and interpolated curves and surfaces. The literature are too many to survey in
this article. A quick and easy on-line research on this topic will be much more convenient to the
reader. Typically, one starts with a piecewise linear curve L and construct a smooth curve fitting or
interpolating the given points in parametric form (cf. e.g. [6] and [13]). For example, one uses B-spline
functions and tensor products of B-splines to construct desired curves and surfaces. Aerospace and
car companies adopt the B-spline technology ( [6] and [13]), and more generally nonuniform rational
B-splines (NURB) to create their desired curves and surfaces due to their nice properties (cf. [25]).
The concept of G1 continuity instead of C1 continuity for connecting smooth surfaces together was
introduced and studied (cf. e.g. [26]). T -splines make B-spline surfaces more convenient to use (cf.[31]
and [32]). IGA introduced in [11] combined the surface design and PDE modeling togehter to speed
up the computation for engineering experimentation. Poly-splines are recently used to generate 3D
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Figure 1: A bunny-like data set (courtesy Meng Mu), an intestine data set (courtesy Bree Ettinger),
a human head data set (courtesy Scott Kersey)

surfaces and solids (cf. e.g. [27]). Another popular technique is to use subdivision schemes. One
can use interpolatory subdivision schemes, e.g. butterfly scheme to interpolate the given gridded data
data points directly or compute a control mesh whose limit surface interpolates the given data points
(cf. e.g. [12]). Also, when a space surface, more precisely, a triangulated surface of the given data
is centeralizable, or is of star-like shape, one can use spherical splines to interpolate or fit the given
data locations. Here a data set is centeralizable or of star-like shape if the interior of the triangulated
surface is a star-like domain, i.e. there exists a center v0 such that all line segment from v0 to any point
on the triangulated surface is completely contained in the closure of the interior of the triangulated
surface. We refer to [3], [4], [10], [17], [9] and the references therein. However, these tools are not
flexible enough in connection of two smooth surface patches together in a smooth, say C2 fashion. In
particular, a major difficulty is to ensure the water tight and in C1 or even in C2 joint fashion between
two smooth surface patches over some extraordinary points(EP), construct pants-like surfaces and
double-torus like surfaces.

In this paper, we propose to use multivariate spline functions to construct interpolatory surfaces
in Cr smooth fashion, where r ≥ 1. Notice that the theory of multivariate splines and their implemen-
tation are matured enough nowadays. We refer to [20] for theory and [5] and [29] for implementation
and applications to numerical solution of partial differential equations. Although multivariate spline
functions based on triangulation or tetrahedral partition have been used for data fitting which can be
viewed as a construction of curve or surface as explained in [5], they have not been used to construct
more complicated curves like figure 8 curve, double-torus like surface and arbitrary 3D surfaces as the
data sets shown in Figure 1. That is, to the best of the authors’ knowledge, the bivariate splines have
not been used for constructing smooth 2D closed curves and the trivariate splines have not been used
for constructing 3D closed surfaces in the literature so far.

Due to the power of computer nowadays and the effort of the authors of this paper who make
the implementation of multivariate splines much efficient and effective to use (cf. [5], [24], [33]), we
are able to use them easily for curve and surface construction as demonstrated in this paper. For
convenience, we explain our approach in detail. The ideas of the approach discussed in this paper are
simple and well-known. Any desired smooth curve can be viewed as a contour or a part of contour of
the smooth spline function defined on a 2D polygon including the given data locations and any smooth
surface can be treated an iso-surface of a smooth spline function defined over a 3D solid including all
given data locations. For example, consider a planar closed curve C : {(x(t), y(t)), 0 ≤ t ≤ 1} first.
Let us assume that C is a smooth curve. We can image that there is a function z = z(x, y) such that
the level curve {(x, y) : z(x, y) = c} is C or a good approximation of C. In practice, we are given a set
of points D = {(xi, yi), i = 1, · · · , n} and interested in constructing a Cr smooth curve S : {(s1, s2)}
such that S interpolates the given points D, where r ≥ 1. Our approach is to start with a polygonal
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domain Ω, say a rectangle which contains all the given data points in D. For example, one can use an
enlarged rectangle of the bounding box of the given data points. If the connectivity L of data points is
known, e.g. a piecewise linear interpolation is given. Let 4 be a constrained triangulation of Ω with
the piecewise linear segments of the points in D being a part of edges of 4. See Figure 2 for a given
piecewise linear curve L in red as well as triangulation with edges along the L.

Figure 2: An Example of Piecewise Linear Curve L and a Triangulation

In general, the connectivity of a set of given data points may not be given. In this case, we still let
4 be a triangulation of Ω with vertices including the given data points. For simple curves, we may
even use any regular triangulation such as a type 1 triangulation of the rectangular domain Ω. Let

Sr
d(4) = {s ∈ Cr(Ω), s|T ∈ Pd, T ∈ 4}

be the bivariate spline space of smoothness r and degree d, where d > r, e.g. d ≥ 3r + 2. It is known
(cf. [5]) one can use them for scattered data fitting and interpolation as well as numerical solution of
partial differential equations. For how to use multivariate splines for various partial different equations,
we refer the reader to [23], [16], [15], [2], [1], [29], [22], [24], [33], [30] and etc.. Note that our approach
proposed in this paper is completely different from the methods described in [5].

Letting (xi, yi), i = 1, · · · , n be points of vertices of 4 associated with the given piecewise linear
curve L, we find a spline S interpolates or fits the data values, say 1 at the given points and additional
auxiliary data points in the following senses:

S(xi, yi) = 1, i = 1, · · · , n (1)

and
s(xj , yj) = 0, for some j ∈ B and s(xj , yj) = 2, for other j ∈ C (2)

where B and C are auxiliary points in 4, B are near the boundary of the Ω and C are points near the
center of Ω as shown in the left one of Figure 3.

According to the data fitting methods in [5], we use the energy functional

E(s) =

∫
Ω
| ∂

2

∂x2
s|2 + 2| ∂

2

∂x∂y
s|2 + | ∂

2

∂y2
s|2 (3)

to construct the fitting spline by using the following penalized least square method:

min
s∈Sr

d(4)

n∑
i=1

|s(xi, yi)− 1|2 +
∑
i∈B
|s(xi, yi)|2 +

∑
i∈C
|s(xi, yi)− 2|2 + λE(s) (4)
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Figure 3: The data fitting locations and the contour curves of the fitting spline including the level
curve {(x, y) : S(x, y) = 1}

where λ > 0 is a parameter, r ≥ 1 and d ≥ 3r + 2. In general, we can add weights to the first three
summation terms to combine interpolatory and fitting methods together.

Let us say S is the solution. See, e.g. the contour curves of S ∈ S1
5(4) shown in the right one of

Figure 3. The desired curve is the level curve {(x, y), S(x, y) = 1} shown on the left of Figure 4. An
enlarged part of the level curve is shown on the right of Figure 4 to demonstrate the smoothness of
the curve. We can see that the level curve is a good C1 curve passing through the given data points.
For more smooth curve, say, C2 curve, we can use S2

8(4) to fit the given data points in (1) and (2).
Similarly, we can use Sr

3r+2(4) to find any fixed smoothness curve passing through the interpolatory
points in (1). Indeed, the MATLAB programs developed in [24] and [33] are able to find interpolatory
splines in 2D and 3D settings for arbitrary smoothness and arbitrary degree as long as d > r and Sr

d(4
is not empty and the memory of a computer large enough. In particular, a domain decomposition
method is developed in [33] to construct data fitting/interpolatory spline curves and surfaces.

Figure 4: The contour curve {(x, y) : S(x, y) = 1} and an enlarged level curve {(x, y) : S(x, y) = 1}

We shall discuss how to deal with various aspects of curve design in §2 by choosing various purpose-
ful points and values to influence the shape of the interpolatory curves. Also, we shall show that if the
given points are from a circle the level curve will reproduce the circle as long as d ≥ 5 and usnig energy
functional E3 instead of E2. Similar for any ellipse. Next we shall explain how to handle piecewise
smooth curves with corners. More examples will be given in §2 to demonstrate the effectiveness of this
level curve method. However, how to design a curve using tension control and/or convexity/concave
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control is still under investigated.
Similarly, for surface reconstruction from a given data set, e.g. triangular surface in R3, we assume

that Ω = [−1, 1]3 is an enlarged cube containing the given piecewise linear surface S in R3. We
compute a 3D spline fitting or interpolatory function over Ω and then find the level surface called
iso-surface. This approach will produce a smooth desired surface. In particular, if a given surface is
G1, we can use this approach to find a C1 or C2 or smoother surface by using an higher order smooth
spline to interpolate or fit the data locations obtained from G1 surface. In §4 and its appendix,
we present several examples to show the reproduction of the surface of ball, the connection of pipes
in different patterns, and various surfaces from bunny-like data set, human head data set, intestine
data set, and coffee mug data set. These examples demonstrate the effectiveness of this level surface
method. Finally, we end the this paper by giving several remarks on the open problems of how to
handle curves and surfaces with tension control and/or convexity/concave control.

2 Construction of 2D Smooth Curves

When designing a curve, there are many basic requirements for a good software/approach to have.
The most common requirements for a curve are

• (1) the smoothness of the curve;

• (2) interpolatory property;

• (3) locality;

• (4) reproduction of quadratic curves such as conics;

• (5) how to handle corners

• (6) monotonicity preserving property;

• (7) convex/concavity preserving property;

• (8) etc..

It is easy to understand that our bivariate spline method for level curves satisfies the properties (1),
(2), (3). Indeed, we can have Cr curves for r = 1, 2, 3 and etc.. if we use spline space Sr

3r+2(4) for
an appropriate degree d. We can ensure the interpolatory property. As spline functions have a set
of locally supported basis functions when d ≥ 3r + 2, any local change will not affect to the curve
globally.

We next discuss how to reproduce circles/ellipse. The data fitting method in (4) can reproduce
linear polynomials, but not be able to reproduce quadratic polynomials. To overcome this difficulty,
we have to use an higher order energy functional E3.

E3(s) =
∑

i+j=3

∫
Ω
| ∂3

∂xi∂yj
s|2dxdy (5)

and consider the minimization:

min
s∈Sr

d(4)

n∑
i=1

|s(xi, yi)− 1|2 +
∑
i∈B
|s(xi, yi)|2 +

∑
i∈C
|s(xi, yi)− 2|2 + λE3(s). (6)
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To ensure the interpolatory condition of the given data locations, we may add the weights to the first
term of the functional above. That is, we consider

min
s∈Sr

d(4)

n∑
i=1

w1,i|s(xi, yi)− 1|2 +
∑
i∈B

w2,i|s(xi, yi)|2 +
∑
i∈C

w3,i|s(xi, yi)− 2|2 + λE3(s), (7)

where w1,i, w2,i, w3,i > 0 for all i. For example, to interpolate at those (xi, yi), we place a large weight
w1,i while for other (xi, yi), we use a smaller value for w2,i and w3,i. Under this new minimization,
the penalized least square fitting method in (7) will be able to reproduce quadratic polynomials and
hence, reproduce the circle or ellipse from the piecewise linear interpolation of the given points which
are from a circle or ellipse if the number of the given data points is enough.

Next we consider the situation that the desired curve is not smooth overall. It has a few corners.
See Figure 5 and 5 as the spline fitting curve is smooth and simply use this approach without any
modification will not produce a sharp corner. To overcome this difficulty, we can create some holes
inside the domain of interest at the corners so that the minimization will skip the spline functions
inside the holes and hence, create the desired sharp corners.

Example 2.1. In this example, we show how to handle the corners of a curve. First let use use the
level curve method directly to generate a smooth curve. See several corners are not sharp enough as
we use smooth spline functions in Figure 5.

Figure 5: Top row: the given data locations and a triangulation with given locations with auxiliary
points; Bottom row: a contour of the spline fitting based on our approach and the level curve which
interpolates the given data locations.
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We now modify our approach by creating some holes in the triangulation at the corners of the
curve.

Figure 6: Top row: a triangulation with holes and the level curve with corners; Bottom row: magnified
corners

In Figure 7, we can see the smooth tips of the curves in the last row in Figure 5 which can be
compared with the tips of the curves in Figure 6. The tips in Figure 6 are much sharper.

Next we show various points in designing curves in the following examples.

Example 2.2. We are given a piecewise linear curve as shown in the left of Figure 8. We find a
constrained triangulation 4 with the linear curve L as some edges of 4. There is a portion of points
which forms a cluster. Our method is able to follow the given piecewise linear curve L to find a smooth
curve due to the constrained triangulation. See Figure 9.

We can see that the curve in middle section is near to touch itself and the given data locations in
the area are very close to themselves. Our spline method is able to find the desired curve. In general,
because we are able to choose a good triangulation as fine as possible to separate the points and we
can even add auxiliary points in between with values > 1 to separate the curve.

Example 2.3 (Self-Intersected Curve). In this example, we will show that our construction method
of smooth curve is able to find a curve which is self-intersected. Our approach can still work.

Let us enlarge the cross point to see the curve more closely. We can see that the curve of figure 8
intersects itself sharply.

Example 2.4. In this example, we discuss how to make a change of the curve. We start with a circle
like curve. In this example, we do not use the constrained triangulation. Instead, we simply use the
standard triangulation. With value zero at the points around the boundary of the domain, and 1 at
the locations on a circle and 2 in the middle of the domain, we obtain a circle like curve. Next we
start to make a change of the circle. We add a new point shown in blue and choose 1.5 to push the
circle like curve to make a change.

We can see that the value at the auxiliary point and the location of the auxiliary point make a
significant change of the curve. In this way, we can design and modify a curve to our taste.

Finally in this section, let us look at another situation that multiple smooth curves which need
to be expressed. This is an example which is close to a real life application which is included to
demonstrate the performance of our approach. We show that our approach can find multiple curves
at the same time.
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Figure 7: Top row: smooth tips of some corners of curves of Figure 5; Bottom row: tips of some
corners of curves of Figure 6

8



Figure 8: Top row: another set of point cloud and a constrained triangulation; Bottom row: The data
fitting locations and the contour curves of the fitting spline including the level curve {(x, y) : S(x, y) =
1}

Figure 9: The contour curve {(x, y) : S(x, y) = 1} and an enlarged level curve {(x, y) : S(x, y) = 1}
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Figure 10: A contour of the spline fitting based on our approach and the level curve which interpolates
the given data locations

Figure 11: Two enlarged areas of cross point
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Figure 12: The level curve L shown in blue from the a few give locations (in red) and a new curve
based on the red points and a blue point (auxiliary point) which has a value 1.5.

Figure 13: The level curves from the red points together with the blue point (auxiliary points) with
various values

Figure 14: A cartoon panda, the data locations, and data locations with triangulation.
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Example 2.5. Consider a small panda as shown in Figure 14 together with data locations.
Our approach produces smooth curves shown in Figure 15. It is easy to see that this approach

works well. More realistic designs of various curves close to real life can be found in [7].

Figure 15: Our smooth spline level curves and an enlargement of a part of these curves

3 Construction of 3D Smooth Surfaces

In this section, we extend the construction of curves in the previous section to the construction of
smooth surfaces in 3D. Letting D = {(xi, yi, zi), i = 1, · · · , N} be the given vertices in R3, we choose
a cube which is an enlarged bounding cube of the given points in D. We let 4 be a constrained
tetrahedral partition of Ω with each data locations being vertices of 4. If a triangular surface of the
given data is given, we let 4 be a constrained tetrahedral partition with each triangle in the triangular
face T being a triangular face of 4. Although these tetrahedral partitions make spline interpolation
easier, we can use any regular tetrahedral partition 4 of the cube if the targeted surface is simple
enough. That is, we simply use a delaunay tetrahedron 4 based on equally-spaced vertices of the cube
to have a tetrahedral partition of the cube.

For a tetrahedral partition 4 in R3, let

Sr
d(4) = {s ∈ Cr(Ω), s|T ∈ Pd, T ∈ 4}

be the trivariate spline space of smoothness r and degree d, where d > r, e.g. d ≥ 6r + 3. It is
known one can use them for scattered data fitting and interpolation as well as numerical solution of
partial differential equations. We refer the reader to [5] for how to use trivariate splines for various
computation. In particular, we are able to speed up the computation with trivariate splines for
numerical solution of partial differential equations as in [24] and data fitting methods in [33]. We use
the trivariate spline packages developed in [24] and [33] for data interpolating and fitting to find a spline
function which satisfying S(xi, yi, zi) = 1 for all i = 1, · · · , N and S(x̄j , ȳj , z̄j) = 0 for j = 1, · · · ,M1

and S(x̂k, ŷk, ẑk) = 2 for k = 1, · · · ,M2 for auxiliary points (x̄j , ȳj , z̄j) and (x̂k, ŷk, ẑk). All ideas of
constructing 3D surfaces are the same as the constructing curves in the previous section. We only
need to show some surfaces to demonstrate the method in the 3D setting.

Example 3.1. For simplicity, let us use a spherical surface to explain how we do in the 3D setting. See
Figure 16 (left), where we find a tetrahedral partition enclosed the given data of a ball. In Figure 16
(right), we use the auxiliary data around the ball. For auxiliary points inside of the ball, see Figure 17
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(left). By our spline data fitting method, we find the isosurface at level L = 1. See the graph in
Figure 18, where the spline space of d = 6 and r = 1 over the tetrahedral partition was used. One
reason that we are able to use degree 6 spline to achieve C1 surface is that there is such a spline
function which can reproduce the surface of the ball. From the graphs (in particular, the graph on
the right of Figure 18, we can see that the iso-surface is very smooth as it is indeed the surface of the
ball. We used the energy functional E3, the third order functional instead of the standard second order
energy in our data fitting method to achieve the reproduction of the quadratic polynomial surface.

Figure 16: A tetrahedral partition with the vertices in D shown in red and auxiliary points in blue.

Figure 17: Additional (auxiliary) points inside of the ball and the level L = 1 isosurface using E2.

Note that we did not use a constrained tetrahedral partition in the construction above for this
simple surface. That is, we did not use a triangular surface of the ball to guide the construction of this
spline iso-surface as the surface of ball is very simply. When a surface is complicated, e.g. a surface
almost touching itself, a guiding triangular surface may be needed and more complicated tetrahedral
partition will be useful.

To demonstrate the convenience of using this approach to construct various surfaces, we shall
generate more surfaces of various kinds. Let us start with a double torus. For a double torus with
the same radii for both large circles and the same radii for the smaller circle, we refer to [33]. In the
following example, we present a double torus with different radii.
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Figure 18: The iso-surface with given data locations (left) and the iso-surface with rainbow light
on(right). This iso-surface is generated by using E3.

Example 3.2 (Double Torus). In Figure 19, we simply present the surface constructed by using the
3D splines.

Example 3.3. We are given 9907 locations from the surface of 3 pipes connected together which was
generated in [8] by a subdivision scheme. We choose a standard cube containing all the data locations
and find a tetrahedral partition 4 as shown in Figure 20 (right). 4 has 3703 tetrahedra. We use the
trivariate spline space of S1

6(4) to find an interpolatory spline with 1 at the given data locations and
other values at two groups of auxiliary data locations. More precisely, we use zero for the green data
locations and 3 for the red data locations as shown in Figure 21. We can see the isosurface of the
interpolatory spline when level value equal to 1. To see all the given data locations are on the spline
surface, we present a graph on the left of Figure 22.

In Appendix, we shall present more examples to convince the reader that the approach discussed
in this paper is very convenient to use.

4 Conclusions and Remarks

In this paper, we proposed a numerical method to compute smooth interpolatory curves and surfaces.
One of the advantages of this approach is that it can generate smooth interpolatory curves and
surfaces rather easily. In addition, it can find multiple curves and surfaces simultaneously. See, e.g.
Example 2.5. Although the method give us satisfactory results, we have a couple of remarks on this
method in order.

Remark 4.1. We used a rectangular domain containing the curves to do interpolation and fitting.
This way of construction is just for convenience, not necessary. One can certainly use a smaller non-
rectangular domain containing the curves of interest which will enable to save computational time and
storage of spline coefficients. Similar to the 3D setting to construct an isosurface to interpolate/fitting
the given data.

Remark 4.2. For large problems such as surfaces with high smoothness, we have to use spline
functions of large degree. This will lead to an intensive computational problem. One way to do
is to use a domain decomposition method for finding a good data fitting splines in the 2D and 3D
settings. For example, we can extend the DDM method for data fitting explained in [21] to the 3D
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Figure 19: The double torus surface (top), the surface with a cut at the bigger torus to see the inside
of the surface (low-left), and the half surface of the double torus with rainbow light on(low-right).

Figure 20: A given set of scattered vertices in D shown in the left and a tetrahedral partition of the
cube containing the given data locations
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Figure 21: Data interpolation locations (various values for various colors) and the spline isosurface

Figure 22: The spline isosurface with given data locations (left) and an enlarged isosurface to see that
the surface is very smooth
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setting. For another example, in [33], a randomized DDM method for data fitting and numerical
solution of Poisson equations are explained based on bivariate and trivariate splines. We leave the
detail to a future publication.

Remark 4.3. We can extend the construction of a piecewise smooth curve with corners to the con-
struction of piecewise smooth surfaces with corners. However, the nonsmoothness in the 3D surface is
more complicated in general. For example, we need to construct surfaces with ridges, e.g. the rim of
coffee mug. As we use smooth spline functions, the corners are smoothed and the rim of mug is not
sharp enough which can be seen from Figure 27 given in Appendix. In order to have the sharpness,
we can choose a hole at the rim which has to be chosen carefully. More study will be needed.

Remark 4.4. We have shown how to do self-intersection, reproduction of quadratic circle, and use
various values at auxiliary points to adjust the shape of curves. Similar things can be done in the
surface setting. The details are left to the interested reader. However, we do not know how to use this
method to construct convex curves or tension splines.

Remark 4.5. We can compute the curvature of the spline surfaces. It is interesting to use these
curvature information to help design surfaces. For example, instead of the energy functional in (4), we
can use the mean curvature or Gauss curvature functional to find interpolatory surfaces with minimal
mean curvature or minimal Gauss curvature. We leave this topic to a future research.

Remark 4.6. It is interesting to know how to use this approach for curve/surface deformation. We
again leave it to a future research.

Remark 4.7. Finally, let us point out that we are not able to construct 3D curves using this approach.
We leave it to the interested reader.
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5 Appendix

In this section, we collect more examples to convince the reader that the approach discussed in this
paper is very convenient to use. We are able to generate a lot of figures in a very short of time.

Example 5.1. Instead of 9907 data locations in Example 3.3, we now show that only a few data
locations enable us to generate pipe connection surfaces as shown Figures 23 and 24.

Figure 23: The spline isosurfaces(right) with pipes of various sizes and the associated given data
locations (left)

Example 5.2. Next let us work on more realistic examples. We aim to produce a C1 surface fitting
the data from a bunny as shown in Figure 25. We first find a tetrahedral partition around the bunny
data locations shown in Figure 25 (left). Then we choose the additional data locations inside the body
of the bunny as well as the auxiliary data locations near the boundary of the bounding box. We use
S1

8(4) to find a data fitting spline. Then we find the isosurface at level L = 1. See the graphs in
Figure 26 (right).
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Figure 24: The spline pipe isosurfaces(right)

Figure 25: A tetrahedral partition with the bunny vertices in D shown in red (left) and the bunny
data with auxiliary locations in blue and green (right).
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Figure 26: The isosurface of trivariate spline data interpolation using energy functional E2 and using
E3 (top row) and these spline bunny surfaces with given data locations (bottom row)
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From Figure 26, we can see that the trivariate spline interpolates the given data (the size of the
bunny data is 11936) very well. Also, we can see that using energy functional E3 produces more smooth
surface than using using energy functional E2.

Example 5.3. Let us present more examples to show that our method is usual for 3D surface recon-
struction. See Figures 27, 28, 29. In these three cases, we used E3 for the energy functional when
using the penalized least squares method.

Figure 27: A data set of coffee mug-like surface and a spline surface of coffee mug.

Figure 28: A spline surface of human head and a different view with given data locations

Figure 29: A spline surface of human intestine and the surface with given data location

These figures show that the iso-surfaces satisfy the interpolatory condition very well. They are
visually smooth as well as computationally smooth as the smoothness conditions were checked to have
1e− 6 accuracy.
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