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Abstract

We are interested in constructing more generalized barycentric coordinates(GBC) over arbi-
trary polygon in the 2D setting. We propose a constrained minimization over the class of infinitely
differentiable functions subject to the GBC constraints of preserving linear functions and the non-
negativity condition. It includes the harmonic GBC, biharmonic GBC, maximum entropy GBC,
local barycentric coordinates as special cases. We mainly show that the constrained minimization
has a unique solution when the minimizing functional is strictly convex. Next we use a Cr smooth-
ness spline function space Sr

d(4) with r ≥ 2 over a triangulation 4 of a polygon of interest in
R2 to approximate the minimizer. The minimization restricted to the spline space Sr

d certainly
has a unique minimizer. Then we use the standard projected gradient descent (PGD) method to
approximate the spline minimizer. To find the projection of each iteration, we shall explain an
alternating projection algorithm (APA). A convergence of the APA and the convergence of the
PGD with the APA will be presented. As an example of this approach, a new kind of biharmonic
GBC functions which preserve the nonnegativity is defined. Finally, we have implemented the PGD
method based on bivariate splines. The surfaces of many new GBC’s will be shown. Some standard
GBC applications will be demonstrated.

1 Introduction

Given a polygon Pn ∈ R2 of n-sides with vertices vi, i = 1, · · · , n, the functions φi, i = 1, · · · , n
satisfying the following conditions: for any point x = (x, y) ∈ Pn,

∑n
i=1 φi(x) = 1∑n
i=1 φi(x)vi = x

φi(x) ≥ 0, i = 1, · · · , n
(1)

are called generalized barycentric coordinates (GBC). The study of generalized barycentric coordinates
(GBC) started from a seminal work in [26]. Since then, there are many GBCs which have been
constructed. We refer to a recent survey in [9] and a book [12] edited by leading experts K. Hormann
and N. Sukumar. These GBCs have found their applications in geometric design. See, e.g. [13],
[28], and etc.. In addition, they found their applications in numerical solution of partial differential
equations. We refer the interested reader to [20], [23], [10], [16] and etc..
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In this paper, we are interested in constructing more GBC functions. Mainly, we propose to use
a minimization approach to construct GBC functions. Let pn = 〈v1, · · · ,vn〉 be an n-sided polygon
with vertices vi, i = 1, · · · , n ∈ R2. Let f(x1, · · · , xn) be a continuous and convex function in Rn.
Consider the following minimization problem:

min{f(φ1, · · · , φn) : subject to
n∑
i=1

φi(x) = 1,
n∑
i=1

φi(x)vi = x,x ∈ pn, φi ≥ 0, i = 1, · · · , n}. (2)

For example, one can choose f(φ1, · · · , φn) =
n∑
i=1

∫
pn

|∇φi(x)|2dx which leads to a harmonic GBC

as explained in [14]. For another example, one can choose f(φ1, · · · , φn) =
∑n

i=1 φi log(φi) which is
the minimization function for the maximum entropy GBC. See [24] and [15]. Similarly, minimizing

functionals f(φ1, · · · , φn) =

n∑
i=1

∫
pn

|∆φi(x)|2dx and f(φ1, · · · , φn) =

n∑
i=1

∫
pn

|∇φi(x)|dx were used in

[13] and [28], respectively. Let F = {(φ1, · · · , φn) :
∑n

i=1 φi(x) = 1,
∑n

i=1 φi(x)vi = x,x ∈ pn, φi ≥
0, i = 1, · · · , n} ⊂ [C∞(pn)]n be the feasible set. For any convex polygon pn, it is known that
Wachspress coordinates φ1, · · · , φn in [26] satisfy the GBC conditions in (1) and the (φ1, · · · , φn) is
in F . Therefore, the feasible set F is always nonempty for convex polygon pn. For pn is an arbitrary
polygon, we know that the mean value coordinates (φ1, · · · , φn) together with barycentric coordinates
of a triangle (cf. [9]) satisfy (1) and hence, F is not an empty set neither. As the feasible set is not
empty, the minimization (2) will have a solution. Thus we first have the following

Theorem 1 Suppose that the minimizing function f(φ1, · · · , φn) is a continuous and strictly convex
function. Then there exists a unique minimizer (φ1, · · · , φn) solving (2).

See a detailed proof in the next section. This result leads to a method for constructing a set of
GBC functions as long as the minimizing functional f(φ1, · · · , φn) is a strictly convex functional. As
there are many continuous and strictly convex functions available, we will have many kinds of GBC

functions. For example, f(φ1, · · · , φn) =

n∑
i=1

φαi for α ≥ 1. For another example, f(φ1, · · · , φn) =∑n
i=1 φi log(φi + ε) for ε ≥ 0. When ε = 0, it is called the maximum entropy GBC (cf. [24]).

The following are more strictly convex functions: f(φ1, · · · , φn) =
n∑
i=1

−
√
φi + ε for any ε ≥ 0;

f(φ1, · · · , φn) =

n∑
i=1

exp(−φi), f(φ1, · · · , φn) =

n∑
i=1

− log(φi + 1), and etc.. Let us recall that there

are other minimization approaches. For the harmonic GBC and biharmonic GBCs, the computation
can be converted to the computation of Laplace equations and biharmonic equations with specified
boundary conditions. See [14], [13] and [27] for detail. Indeed, the harmonic GBC φi satisfies the
following Laplace equation: {

∆u = 0, x ∈ pn
u = gi, x ∈ ∂pn,

(3)

where pn is the polygon spanned by its vertices v1, · · · ,vn and gi(x) = 1 if x = vi and 0 if x = vj , j 6= i
and g(x) is linear on the boundary of pn. It is known the Laplace equation is the Euler-Lagrange
equation of the following minimization{

minu∈C∞(pn)

∫
pn
|∇u|2,

u = gi, x ∈ ∂pn.
(4)
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Thus letting f(φ1, · · · , φn) =
n∑
i=1

∫
pn

|∇φi|2, we can solve (2) to find these harmonic coordinates

φ1, · · · , φn. Detail can be found later.
Next we discuss how to compute these GBC functions. In general, solving the minimization (2)

explicitly and analytically is very hard. Nowadays computer is so powerful. Let us propose to solve
the minimization (2) numerically. One of the main purposes of this paper is to study how to solve
the constrained minimization in (2). As each φi is an infinitely continuously differentiable function,
we can approximate φi by using a smooth spline function. Indeed, let 4 be a triangulation of pn and
consider

Srd(4) = {s ∈ Cr(4) : s|T ∈ Pd, T ∈ 4} (5)

be the spline space of spline functions of smooth r ≥ 1 and degree d over triangulation 4, where d > r.
See [18] for triangulation of any polygonal domain and spline spaces over 4. Moreover, we shall use
quasi-uniform triangulations to approximate GBC functions. That is, we assume that there exists a
positive number γ > 0 such that

sup
T∈4

|T |
ρT
≤ γ <∞, (6)

where |T | is the diameter of the smallest circle containing T and ρT is the radius of the largest
circle contained in T . Each triangulation 4 satisfies (6) is called γ-quasi-uniform triangulation. In
particular, when d ≥ 3r + 2, the spline space Srd(4) has the following nice approximation property
(cf. [17] or [18]):

Theorem 2 Suppose that 4 is a γ-quasi-uniform triangulation of polygonal domain Ω. Let |4| =
maxT∈4 |T | be the size of triangulation 4. Let d ≥ 3r + 2 be the degree of spline space Srd(4). For
every u ∈ Cm+1(Ω), there exists a quasi-interpolatory spline function Qd(u) ∈ Srd(4) such that

‖Dα
xD

β
y (u−Qd(u))‖∞,Ω ≤ K|4|(m+1−s)|u|m+1,∞,Ω (7)

for α+ β = s, 0 ≤ s ≤ m+ 1, where 0 ≤ m ≤ d, K is a positive constant dependent only on γ, Ω, and
d.

For convenience, fix r ≥ 1 and d ≥ 3r + 2. Let N be the dimension of spline space Srd(4) =
span{bi, i = 1, · · · , N}, where bi, i = 1, · · · , N are linearly independent basis functions. For each
generalized barycentric coordinate function φi, we write

φi ≈ si =
N∑
j=1

cijbj , i = 1, · · · , n. (8)

By Theorem 2 with Ω = pn, we know we can well approximate φi using an appropriate spline, i.e.,
coefficients cij , j = 1, · · · , N as soon as |4| sufficiently small.

Suppose that the minimizer set (φ1, · · · , φn) has a uniform bounded d+ 1 derivative, i.e.

|φi|d+1,∞,Ω ≤ K1 <∞, i = 1, · · · , n

for d sufficiently large, say d ≥ 5. Let us assume that |4| is indeed small enough. By Theorem 2, we
recast (2) as follows.

min
si∈Sr

d
(4)

i=1,··· ,n

{f(φ1, · · · , φn) : subject to

n∑
i=1

si(x) = 1,

n∑
i=1

si(x)vi = x,x ∈ pn, si ≥ 0, i = 1, · · · , n}. (9)
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In the remaining of this paper, we shall address the solution to the minimization (9) above. The
existence and uniqueness of the minimizer of (9) follows from the same arguments of the proof of
Theorem 1. In the following, we mainly discuss the computation of the minimizer. Note that one of
the GBC conditions in (1) can be rewritten as follows:

1 =
n∑
i=1

si(x) =
N∑
j=1

(
n∑
i=1

cij)bj (10)

Since we can choose
∑N

j=1 bj = 1, due to the linear independence of bj , j = 1, · · · , N , we have

n∑
i=1

cij = 1, ∀j = 1, · · · , N. (11)

One can write x =
∑N

j=1 cx,jbj(x) and y =
∑N

j=1 cy,jbj(x). Then the other condition in (1) can be
written as

n∑
i=1

vi

N∑
j=1

cijbj(x) =
N∑
j=1

bj(x)
n∑
i=1

vicij =
N∑
j=1

bj(x)(cx,j , cy,j). (12)

It follows that
n∑
i=1

vicij = (cx,j , cy,j), j = 1, · · · , N. (13)

Finally, the nonnegativity condition and boundedness condition 0 ≤ φi ≤ 1 can be imposed by

cij ∈ [0, 1], j = 1, · · · , N, i = 1, · · · , n. (14)

Then the minimization problem (2) can be recast as follows. Write

F (c1,1, · · · , c1,N , · · · , cn,1, · · · , cn,N ) = f(
N∑
j=1

c1,jbj , · · · ,
N∑
j=1

cn,jbj)

to be the new format for the minimization function in (2) and c = (c1,1, · · · , c1,N , · · · , cn,1, · · · , cn,N )
be the solution vector, our new minimization problem is

min
c∈RnN

{F (c) :
n∑
i=1

cij = 1,
n∑
i=1

vicij = (cx,j , cy,j), j = 1, · · · , N,

0 ≤ cij ≤ 1, j = 1, · · · , N, i = 1, · · · , n}. (15)

To this end we shall discuss a numerical method to solve (15) to approximate the minimizers φ1, · · · , φn
in (2). In particular, for harmonic and biharmonic GBCs, we will present a simpler minimization than
the one in (15) to compute them.

Finally, our contributions in this paper can be summarized as follows. (1) We develop a mini-
mization approach to construct more new GBC functions. This approach extends the construction
of harmonic GBCs, biharmonic GBCs, minimal entropy GBCs, local Barycentric Coordinates to a
more general setting. (2) since the GBCs are belong to C∞ differentiable functions, we employ fi-
nite dimensional spaces of smooth spline functions to approximate them. That is, we explain how
to use bivariate spline functions to approximate these minimizers. Trivariate spline approximation to
these GBC functions will be discussed in a further coming paper as the computation is much more
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complicated. This approach enable us to have a smoother approximation of GBC functions than the
finite element method. One can see clearly from the surface deformation (in the last section) that the
contour lines are smooth during the deformation steps. (3) Due to the minimization is a constrained
minimization, an alternating projection method will be used to project gradients. A convergence
analysis of the alternating projections between a convex set and linear affine spaces will be provided.
Although the convergence of alternating projection algorithm between linear affine spaces and between
convex sets via Dykstra technique is well-known, the convergence of APA between linear affine spaces
and convex sets is new to the best of the authors’ knowledge. (4) In particular, the minimization (2)
with an appropriate functional leads to another kind of biharmonic GBC functions which guarantees
to have nonnegative property. That is, we explain how to use the alternating projection approach to
find nonnegative biharmonic GBCs. This improves the biharmonic GBCs presented in [13] and [27],
where the nonnegativity is not always possible. Based on this minimization approach, examples of
several new and existing GBC functions will be presented together with their numerical applications.

2 Main Existence Results

In this section we shall first give a proof to our main existence result.

Theorem 3 Suppose that the minimizing function f(φ1, · · · , φn) is a continuous and strictly convex
function. Then there exists a unique minimizer (φ1, · · · , φn) solving (2).

Proof. Let Ω = {(φ1, · · · , φn) : 0 ≤ φi ≤ 1, ∀i = 1, · · · , n} be a bounded domain in Rn. Our minimizing
function f is defined over Ω. Since f is a continuous function, we know that f is bounded over Ω and
achieves the minimum in Ω.

As explained in the Introduction section, the feasible set F is nonempty. Next we will prove that
any local minimum is the global minimum. Assuming that Φ′ ∈ Ω is a local minimum, but is not the
global minimum on Ω. That is, f(Φ′) > f(Φ∗), where Φ∗ is the global minimum point. Then there is
θ such that (1− θ)Φ′ + θΦ∗ ∈ Ω. Because f is a convex function, we can obtain

f((1− θ)Φ′ + θΦ∗) ≤ (1− θ)f(Φ′) + θf(Φ∗) < (1− θ)f(Φ′) + θf(Φ′) = f(Φ′)

which contradicts to the fact that Φ′ is a local minimizing point as θ ∈ (0, 1) can be arbitrarily small
and (1− θ)Φ′ + θΦ∗ can be within any neighborhood of Φ′. Therefore the local minimum is just the
global minimum. 2

Similarly, for the finite dimensional minimization (9), i.e. (15) we have

Theorem 4 Suppose that the minimizing function F (c), c ∈ RnN in (15) is a continuous and strictly
convex function. If the size |4| of the underlying triangulation 4 is small enough, then there exists a
unique vector c∗ solving (15). That is, there exists a unique minimizer (s1, · · · , sn) ∈ [Srd(4)]n solving
(9).

Proof. We simply solve Laplace equation in (3) based on a spline space Srd(4) with r ≥ 1 and d ≥ 3r+2
for each i = 1, · · · , n. Therefore, the feasible set is not empty. The rest of the proof is the same as
above Theorem 3. 2

Next we comment on computing GBC by solving (2).
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Remark 1 When constructing GBCs, one often combines two constraints in (1) into one. That is,
one uses

n∑
i=1

φi(vi − x) = 0. (16)

We have to point out that this is not always possible. Consider a minimizing functional f(φ1, · · · , φn) =∑n
i=1 φ

2
i . Then the following minimization problem

min{
n∑
i=1

φ2
i : (16) and φi ≥ 0} (17)

has a unique solution φ1 = φ2 = · · · = φn = 0. However, the minimization (2) has a set of solution
which are not zero. See an example in the Numerical Experimental Section. This explains that the
minimization with only (16) does not always work.

Remark 2 Another confused point in solving (2) is to use Lagrange multiplier method without using
the constraints φi ≥ 0, i = 1, · · · , n. The solution could be negative as seen the following explanation.
We again use f(φ1, · · · , φn) =

∑n
i=1 φ

2
i as an example. Using Lagrange multiplier method, we let

F (φ1, · · · , φn) =

n∑
i=1

φ2
i + ν1(

n∑
i=1

φi − 1) + ν2(

n∑
i=1

φivi,x − x) + ν3(

n∑
i=1

φivi,y − y).

We have the following n+3 equations:

2φi + 2ν1 + ν2vi,x + ν3vi,y = 0, i = 1, · · · , n
n∑
i=1

φi = 1,
n∑
i=1

φivi,x = x,
n∑
i=1

φivi,y = y. (18)

In matrix form, we have

2 0 · · · 0 1 v1,x v1,y

0 2
. . .

... 1 v2,x v2,y
...

. . .
. . . 0

...
...

...
0 · · · · · · 2 1 vn,x vn,y
1 1 · · · 1 0 0 0
v1,x v2,x · · · vn,x 0 0 0
v2,y v2,y · · · vn,y 0 0 0





φ1

φ2
...
φn
ν1

ν2

ν3


=



0
0
...
0
1
x
y


.

Letting I be the identity matrix of size n× n, 0 be the zero matrix of size 3× 3, and

A =

 1 1 · · · 1
v1,x v2,x · · · vn,x
v2,y v2,y · · · vn,y

 ,Φ = [φ1, · · · , φn]>,

and ν = [ν1, ν2, ν3]> and X = [1, x, y]>, the matrix can be recast as[
2I A>

A 0

]
=

[
Φ
ν

]
=

[
0
X

]
.

The solution is [
Φ
ν

]
=

[
1
2I A>(AA>)−1

0 −2(AA>)−1

] [
0
X

]
.

That is, Φ = A>(AA>)−1X and each entry of Φ is a linear polynomial. Our computation shows that
some entries can be negative over a convex polygon pn.
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3 A Bivariate Spline Method for Solution to (15)

In this section, we describe a computational method for (15). Following the computational method of
multivariate splines discussed in [3], we mainly use the spline basis for S−1

d (4) and then couple with
smoothness constraints for the coefficients of a spline function in S−1

d (4) to form a spline function in
Srd(4) for a fixed smoothness r ≥ 0. That is, for each triangle T ∈ 4, let λ1, λ2, λ3 be the barycentric
coordinates with respect to T . Define degree d Bernstein-Bézier polynomials by

BT
ijk =

d!

i!j!k!
λi1λ

j
2λ

k
3 ≥ 0, i+ j + k = d. (19)

Then BT
ijk, i + j + k = d, T ∈ 4 form a basis for S−1

d (4). We let s = (cTijk, i + j + k = d, T ∈ 4) be

the coefficient vector for a spline function s ∈ S−1
d (4):

s =
∑
T∈4

∑
i+j+k=d

cTijkB
T
ijk. (20)

Note that
∑

i+j+k=d

BT
ijk = 1. Together with condition in (19), 0 ≤ cTijk ≤ 1 will imply that 0 ≤ s ≤ 1

over pn.
When s ∈ Srd(4) for a smoothness order r ≥ 0, its coefficient vector s satisfies smoothness condi-

tions across each interior edge of 4. These smoothness conditions are linear and we can write them
in terms of system of linear equations: Hs = 0, where H is called a smoothness matrix. See [3] and
[18] for detail.

In this setting, we have to rewrite our minimization (15). To be more precisely, let N =
1

2
(d +

1)(d + 2)#(4), where #(4) stands for the number of triangles in 4. As we have to approximate n
functions φi, we use si to approximate φi and let us consider all coefficient vectors si, i = 1, · · · , n
together as a new vector: c = (s1; s2; · · · ; sn) ∈ RnN . Since si ∈ Srd(4), we let H = (H;H; · · · ;H)
such that Hc = 0 stands for the smoothness constraints for all s1, · · · , sn.

Next note that BT
ijk, i+ j + k = d, T ∈ 4 satisfy the property of the partition of unit. That is,

1 =
∑
T∈4

∑
i+j+k=d

BT
ijk, (21)

where BT
ijk is only defined on the interior T and is zero outside of T . Then the conditions in (11) imply

that
∑n

i=1 sij = 1, j = 1, · · · , N if si = (si1, · · · , siN )>. Also, it is known that x, y can be reproduced
by spline functions in Srd(4) with d ≥ 1. In fact, let u` = (x`, y`), ` = 1, 2, 3 be the vertices of a
triangle T . Then

x =
∑

i+j+k=d

1

d
(ix1 + jx2 + kx3)BT

ijk and y =
∑

i+j+k=d

1

d
(iy1 + jy2 + ky3)BT

ijk (22)

For convenience, let us write cx,i, i = 1, · · · , N be the values
1

d
(ix1 + jx2 + kx3), i+ j + k = d, T ∈ 4.

Similar for cy,i, i = 1, · · · , N .
Therefore, the feasible set of (15) can be written precisely as follows: recalling vi = (xi, yi), i =
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1, · · · , n are vertices of polygon pn,

F+ = {c ∈ RnN :c ≥ 0,Hc = 0,
n∑
i=1

sij = 1, sij ≥ 0,∀j = 1, · · · , N

n∑
i=1

sijxi = cx,j ,

n∑
i=1

sijyi = cy,j , ∀j = 1, · · · , N} (23)

be a new feasible set.
Suppose that the minimizing functional F defined in (15) is differentiable. It is standard to use

the projected gradient method which can be described in Algorithm 1.

Algorithm 1 (Projected Gradient Method) Given a convex feasible set F+ and a
convex objective function F (·), we solve the minimization in (15) by using the following
iterative step: starting with an initial guess x(1), find

x(k+1) = PF+(x(k) − hk∇F (x(k))), (24)

where the operator PF+ is the projection operator which maps a vector x ∈ RnM to the convex
set F+ and hk > 0 is a step size.

To use Algorithm 1, let us first discuss how to find the projection PF+ . We will use the alternating
projection algorithm (APA) to approximate the projection PF+(y) for any nonzero vector y ∈ RnN .
To this end, let us review some basic properties of hyperplanes and their projections. All details can
be found in [6]. Let X = RnN for simplicity.

Definition 1 (Hyperplanes) A hyperplane in a Hilbert space X is any set of the form

H = {x ∈ X : 〈x,h〉 = c} (25)

for a vector h 6= 0 and a value c ∈ R.

Note that a hyperplane H is never empty. Indeed, since h 6= 0, there exists a vector y such that
〈y,h〉 = d 6= 0. It follows that x = cy/d ∈ H.
Distance to Hyperplane Let H be a hyperplane given in (25). Then the distance of any point
p ∈ X to the hyperplane H is

dist(p, H) =
1

‖h‖
|〈p,h〉 − c|. (26)

Let us find the projection operator PH . For any y ∈ X, let

PH(y) = y − h
〈y,h〉 − c
‖h‖2

(27)

which is the projection of y onto H. Indeed, we can easily check that ‖y − PH(y)‖ = dist(y, H). In
general, we have multiple hyperplanes and we need to find the projection operator to the intersection
of multiple hyperplanes. That is, let

Hm = {x ∈ X : Ax = b}
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be the intersection of multiple hyperplanes, where A is an observation matrix of size m × nN and
b ∈ Rm. When m < nN , the intersection Hm is nonempty. For any point p ∈ X, finding its projection
to Hm is a least squares problem: min{‖p− x‖ : x ∈ Hm}.

Theorem 5 For any p ∈ X, the projection PHm(p) is given by

PHm(p) = p−A>(AA>)−1(Ap− b) (28)

if A is of full rank. If A is not of full rank, we write A = UΣV > and we have

PHm(p) = p−A>U(Σ−2
+ )U>(Ap− b). (29)

Proof. It is easy to see PHm(p) ∈ Hm. Next let Null(A) = {x ∈ X : Ax = 0} be the null space of A.
For any nonzero x ∈ Null(A) and α ∈ R, we know p∗ + αx ∈ Hm. Now we claim that

‖p− p∗‖ = min
α
‖p− (p∗ + αx)‖,

where p∗ is the vector on the right-hand side of the equation in (28). Indeed, we can easily verify that

〈p− p∗,x〉 = 0

since x ∈ Null(A). Therefore, we have the claim. 2

Returning to our computational problem, let us consider the constraints: (11) and (13). Define

H0 = {c ∈ X : Hc = 0}

and

H1 = {c ∈ X :
n∑
i=1

sij = 1,∀j = 1, · · · , N}

which is the intersection of hyperplanes. Similarly, we define

Hx = {c ∈ X :
n∑
i=1

sijxi = cx,j , ∀j = 1, · · · , N}

and

Hy = {c ∈ X :

n∑
i=1

sijyi = cy,j ,∀j = 1, · · · , N}

where vi = (xi, yi), i = 1, · · · , n are vertices of the polygon pn. Finally, the nonnegative condition, i.e.
c ≥ 0 can be found easily. Let

H+ = {c ∈ X : c ≥ 0}.

Define P0,P1,Px,Py,P+ to be the projections to linear spaces H0, H1, Hx, Hy, H+, respectively. We
now introduce the alternating projection method which is also called von Neumann algorithm invented
in 1933 (cf. [6]).

In fact, the above algorithm can be simplified. We use Theorem 5 to define the projection P0,1,x,y

mapping any point p ∈ X into the subspace

H0,1,x,y = H0 ∩H1 ∩Hx ∩Hy.

We now show the following

9



Algorithm 2 (Alternating Projection Method) Let p(1) = p ∈ RnM be a vector. For
k = 1, · · · ,, we do the following

u = P0(p(k))

v = P1(u)

w = Px(v)

x = Py(w)

p(k+1) = P+(x) (30)

until k > a fixed number of iteration.

Theorem 6 Fix r ≥ 1. Suppose d ≥ 1 is sufficiently large. Then the intersection H0,1,x,y is not
empty.

Proof. Consider the number of equations for H0 first. For simplicity, let us say r = 1. Then there are
2d + 1 smoothness conditions across each interior edge of triangulation. By Euler’s relation, letting
EI be the number of interior edges and #(4) be the number of triangles in 4. Then we know
EI/3 = VI + Vb/3− 1 and #(4)/2 = VI + Vb/2− 1. That is,

EI ≤ 3/2#(4).

Thus, Hc = 0 has n(2d + 1)EI smoothness condition equations which is less than or equal n(2d +
1)3#(4)/2. For H1, Hx, Hy, these are 3N linear equations. In total, we have n(2d+ 1)3#(4)/2 + 3N
equations with nN variables. Recall N = (d + 1)(d + 2)#(4)/2. When d ≥ 4, we have n(2d +
1)3#(4)/2 < N . Hence, we have n(2d + 1)3#(4)/2 + 3N < 4N equations with nN unknowns. For
GBCs over polygon pn with n ≥ 4, the total system of linear equations, i.e. all linear constraints
from H0, H1, Hx, Hy is underdetermined. As the underdetermined linear system many solutions, the
intersection H0 ∩ H1 ∩ Hx ∩ Hy is not empty. We can use (28) or (29) to find the projections to
H0, H1, H2, H3, the subspace of vectors satisfying (11) and (13). 2

Then Algorithm 2 can be rewritten as follows.

Algorithm 3 (Alternating Projection Method(II)) Let p(1) = p ∈ RnM be a vector.
For k = 1, · · · ,, we do the following

u(k) = P0,1,x,y(p
(k))

p(k+1) = P+(u(k)) (31)

until k > a fixed number of iteration.

We now show that the above algorithm, Algorithm 3 is convergent and the rate of convergence is
linear. That is, we have
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Figure 1: The convex set H+ is the first quadrant, the hyperplane H0,1,x,y is the line, p(k),u(k)’s are
iterative points based on (31). p∗ is the projection of p(1) in the intersection of H+ and H0,1,x,y.

Theorem 7 Let p(k+1) be the output of the iteration from Algorithm 3. Let p∗ = PF+(p). Then there
exists a positive constant α < 1 and a positive constant C > 0

‖p(k+1) − p∗‖ → Cαk, as k →∞, (32)

where α is dependent on the angles among the subspaces H0, H1, Hx, Hy, H+.

Proof. We use the graph in Figure 1 to guide our proof. By the similar triangles, we have

‖p(3) − p∗‖
‖p(2) − p∗‖

=
‖u(2) − p∗‖
‖u(1) − p∗‖

= 1− cos2(θ),

where we have used the fact that ‖u(2) − p∗‖ = ‖u(1) − p∗‖ − ‖u(1) − p∗‖ cos2(θ) and θ is shown
in Figure 1. That is, ‖p(3) − p∗‖ = (1 − cos2(θ))‖p(2) − p∗‖. We repeat this argument to have the
convergence results in (32) with α = 1− cos2(θ). This completes the proof 2

We remark that the convergence of the alternating projection algorithm between two linear hyerplanes
was established many decades ago. Also, the convergence of the alternating projection algorithm
between two convex sets via Dykstra’s approach was also established. See proofs of these two cases
in [6]. However, the proof of the convergence of the alternating projection algorithm between one
hyperplane and one convex was not found in [6]. According to [7], this result have not been established
to the best of the authors and Prof. Frank Deutsch. Thus, we present a proof to this special case for
our application in Theorem 7. In addition, we remark that if one switch the order of projections, i.e.{

u(k) = P+(p(k))

p(k+1) = P0,1,x,y(u
(k)),

(33)

then the resulting alternating projection algorithm may not converge. See Figure 2.
Once we have the projection PF+ for the constraints in (15). The iterative steps in the projected

gradient Algorithm 1 are well defined. Let us explicit the projection in Algorithm 1 and combine the
alternating projection Algorithm 3 together to have

Let us give a theorem to ensure its convergence of Algorithm 4. To this end, we need concepts on
differentiable function F . F is L-Lipschitz differentiable if

‖∇F (y)−∇F (x)‖ ≤ L‖y − x‖, ∀x,y ∈ X. (34)
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Figure 2: The convex set H+ is the first quadrant, the hyperplane H0,1,x,y is the line, u(1),p(2)’s are
iterative points based on (33). Iterations will terminate at p(2) which is not the projection p∗ of p(1)

Algorithm 4 (Projected Gradient Method (II)) Given a convex feasible set F+ and a
convex objective function F (·), we solve the minimization in (15) by using the following
iterative step: starting with an initial guess x(1), find

u(k) = x(k) − hk∇F (x(k))

x(k+1) = output of Algorithm 3 for a fixed number of iterations

unit a stopping criterion is met.

Also, F is ν-strongly convex if

F (y) ≥ F (x) + 〈∇F (x),y − x〉+
ν

2
‖x− y‖2, ∀x,y ∈ X. (35)

We are now ready to show the convergence of Algorithm 1. The proof is a modification of the standard
proof of the convergence of Algorithm 1 in optimization.

Theorem 8 Suppose that f is L-Lipschitz differentiable and f is ν-strongly convex. Let x∗ be the
minimizer of the problem (15). Suppose that the number of inner iterations in Algorithm 3 is fixed,
say m ≥ 1. Then

‖x(k+1) − x∗‖ ≤ Cγk, ∀k ≥ 1, (36)

where C is a positive constant. Here the step size hk = h > 0 is small enough.

Proof. We first claim that x∗ = PF+(x∗ − h∇f(x∗)). Indeed, for any minimizer w∗ ∈ W ∗, the set of
all minimizers, we have

〈∇F (w∗),w −w∗〉 ≥ 0 (37)

for all w ∈ F+, where W ∗ ⊂ F+ is the set of all minimizers. Denote by y = PF+(x∗ − h∇f(x∗)).
Then we know

〈y − (x∗ − h∇Fx∗)),y − x〉 ≤ 0, ∀x ∈ F+.

From (37), we can see that y = x∗ as h > 0 if we choose x = x∗.

12



Now we have

‖x(k+1) − x∗‖2 = ‖PF+(x(k) − hk∇F (x(k)))− PF+(x∗ − hk∇F (x∗))‖.

Since PF+ is a projection, one knows that PF+ is non-expansive, that is, ‖PF+(x)−PF+(y)‖ ≤ ‖x−y‖.
We leave the proof to the interested reader. Thus the right-hand side of the above equation yields

‖x(k+1) − x∗‖2 ≤ ‖x(k) − x∗ − hk(∇f(x(k))−∇f(x∗))‖2.

and hence, by using the strong convexity,

‖x(k+1) − x∗‖2
≤ ‖x(k) − x∗‖2 − 2hk〈x(k) − x∗,∇f(x(k))−∇f(x∗)〉+ h2

k‖∇f(x(k))−∇f(x∗)‖2
≤ ‖x(k) − x∗‖2(1− 2hkν + h2

kL
2).

It follows that for all k ≥ 1, letting γ = (1− 2hν + h2L2)1/2 < 1, we have

‖x(k+1) − x∗‖ ≤ γ‖x(k) − x∗‖ ≤ · · · ≤ γk‖x(1) − x∗‖.

for all k ≥ 1, where hk = h < 1. 2

We have a few remarks in order.

Remark 3 We can use Algorithm 4 even when F is not strongly convex. As long as F is convex and
is Lipschitz differentiable, Algorithm 4 will converge. The rate of convergence of Algorithm 4 when
F is Lipschitz differentiable is o(1/k), where k is the number of iterative steps. Here we say the kth
error ek = o(1/k) if kek → 0. See [5]. Furthermore, we can accelerate the iterations by using the well-
known Nesterov’s acceleration technique (cf. [21] and [22]) or the recent improved Attouch-Peypouquet
acceleration technique(cf. [2]). Then the rate of convergence will be o(1/k2) which is slightly better
than the rate of convergence based on Nesterov’s acceleration technique.

Remark 4 Note that when pn is not convex, the feasible set F+ is not convex and hence, the con-
vergence of Algorithm 1 is not guaranteed. That is, the minimizer may not satisfy (1) at the reentry
vertex of pn in general. How to tackle this situation will be addressed in the next section.

Remark 5 A disadvantage of this approach is that the system of linear equations for linear preserva-
tion constraints for all GBC functions can be very large when the number n of sides of a polygon pn is
large. Harmonic and biharmonic GBCs have an advantage that each GBC function can be numerically
solved individually and hence, can be done in parallel. Thus it is worthy further developing a more
efficient numerical method for our minimization approach.

4 Numerical New and Known GBC Functions

In this section, we use bivariate splines to solve the minimization (15) to produce some new and
known GBC functions. The implementation of bivariate splines can be found in [3]. In the following
examples, we shall use d = 8 and r = 2 as well as d = 5 and r = 1 with appropriate triangulation
of polygonal domain pn for n ≥ 4. We shall begin with biharmonic functionals and then study the
following two minimizing functionals

f(φ1, · · · , φn) =
1

2

n∑
i=1

∫
pn

|φi(x)|2dx,

f(φ1, · · · , φn) =
n∑
i=1

φi log(φi).
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The graphs of GBC functions obtained by using our bivariate spline method will be presented. Thus,
we have to divide the remaining of this section into a few subsections.

4.1 A New Biharmonic GBCs

Two different kinds of biharmonic GBCs were proposed and studied in [13] and [27], respectively. One
is based on boundary element method (BEM) (cf. [27]) and one is based on finite element method
(FEM). Both kinds of biharmonic GBCs fail to preserve the nonnegativity property. In this subsection,
we shall use our minimization approach to define another kind of biharmonic GBC functions.

Let us use the following minimizing functional

f(φ1, · · · , φn) =

n∑
i=1

1

2

∫
pn

|∆φi|2dxdy (38)

for (2) for our biharmonic GBCs. However, for computational efficiency, we instead use the following

min
φi∈C∞(pn)

∫
pn

|∆φi|2dxdy subject to φi(vj) = δij , j = 1, · · · , n

φi(x) is linear ∀x ∈ ∂pn
0 ≤ φi(x) ≤ 1,x ∈ pn (39)

for each i = 1, · · · , n. Similar to the proof of Theorem 1, we can show that there exists a unique
minimizer φi. As this minimization is very similar to harmonic GBCs, the minimizers si, i = 1, · · · , n
will satisfy (1) as discussed in the previous subsection. For completeness, we shall prove this fact later.

We now discuss how to compute the minimizer of (39) by using multivariate splines. That is, we
consider

min
si∈Sr

d(4)

∫
pn

|∆si|2dxdy subject to si(vj) = δij , j = 1, · · · , n

si is linear on all edges of pn

0 ≤ si ≤ 1 inside pn. (40)

To ensure the property: 0 ≤ si ≤ 1 above, we shall use the alternating projection method discussed
in the previous section. This is indeed possible because our spline functions are defined based on
Bernstein-Bézier basis functions which possesses a partition of unit as discussed before. The projection
of the spline functions which are nonnegative and less than or equal to 1 is simple to implement.

Let us now prove an existence and uniqueness result on the minimization (40).

Theorem 9 Fix any spline space Srd(4) with d ≥ 3r + 2 and r ≥ 2. Then there exists a unique
minimizer si of (40). Furthermore, all these si satisfy the GBC properties (1).

Proof. First of all, since the solution from (??), say hi satisfies the feasible set in (40), we know that
the feasible set of (40) is not empty. Next the minimizing functional F (s) =

∫
Ω |∆s|

2dxdy is coercive.
Indeed, let

S = {s ∈ Srd(4) : 0 ≤ s ≤ 1,

∫
pn

|∆s|2dxdy ≤
∫
pn

|∆hi|2dxdy}.

That is, the minimizer of (40) must be inside of the set S which is clearly a bounded set because each
s ∈ S satisfies 0 ≤ s ≤ 1.
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Next we show the uniqueness of the minimizer. Otherwise, we will have to different spline functions
u1 and u2 such that

m :=

∫
pn

|∆u1|2dxdy =

∫
pn

|∆u2|2dxdy

where m is the minimum value of (39). It follows that uα = αu1 + (1 − α)u2 is in the same spline
space satisfying the feasible conditions in (40). Hence, we have

∫
pn
|∆uα|2dxdy ≥ m. In fact, we can

show that m =
∫
pn
|∆uα|2dxdy. Let g(α) =

∫
pn
|∆uα|2dxdy be a constant. Then g′(α) = 0 for all

α → 0+ implies that
∫
pn

∆u1∆u2dxdy = m and hence, ∆u1 = ∆u2. We see that u1 − u2 is a linear
polynomial. The zero interpolation conditions on the boundary of pn implies that u1 ≡ u2.

Let si ∈ Srd(4) be the minimizer for each i. We finally show that (s1, · · · , sn) will satisfy (1).
Similar to the harmonic GBCs in the previous subsection, let Φ = s1 + · · · + sn. Then we can show
that Φ is the unique minimizer of

∫
pn
|∆Ψ|2dxdy for Ψ ∈ Srd(4) satisfying boundary condition Ψ = 1

on ∂pn. Clearly, 1 is also a minimizer and hence, Φ ≡ 1. The other conditions in (1) can be shown in
the same fashion. We have thus completed the proof. 2

Next we discuss how to solve (40) numerically. In terms of spline space Srd(4) with r ≥ 2, we know∫
pn

|∆si|2dxdy = c>i B4ci,

if si =
∑N

j=1 cijbj , where ci = (ci1, · · · , ciN )> the spline coefficient vector of si and B4 is the bending

matrix in the community of numerical PDEs whose entries are

∫
pn

∆bj∆bkdxdy for j, k = 1, · · · , N .

The constraints 0 ≤ si ≤ 1 can be replaced by 0 ≤ cij ≤ 1 for all j = 1, · · · , N . The boundary
conditions si(x) = gi(x) for a continuous function gi defined on the boundary ∂pn can be enforced
easily. We mainly use the projected gradient method discussed in the previous section to iteratively
solving (40) numerically. Indeed, during our computation, we first use the harmonic GBCs as initial
guesses as they satisfy the feasible conditions. We alternatively project the iterative solution to the
feasible set and the discretized biharmonic equation until the errors are small, e.g. within 1e −
3. Our computational experiments show that when pn is a convex domain, the minimizers of (40)
can be approximated using any reasonably good triangulation and the linear constraints in (1) are
satisfied very accurately, e.g. 1e − 8 over pn and the minimizers are nonnegative. However, when
pn is not convex, the minimizers of (40) for each i are not easy to approximate and we have to
use local refinement scheme at the re-entrance corner as shown in Figure 3. Once we use locally
refined triangulations, the graphs of spline approximation of the minimizers are smooth and the spline
minimizers are nonnegative and satisfy the linear constraints within a tolerance 1e− 3.

We now present an example of biharmonic GBCs.

Example 1 Consider a polygon similar to the one in [1] as shown in Figure 3 (left). We use spline
space S1

5(4) with a triangulation shown in Figure 3 (left) to approximate biharmonic GBCs. Some
of the graphs of these spline approximation of GBCs are shown in Figure ??. We also check that
they satisfy three constraints approximately with maximal errors (0.0053, 0.0028, 0.0033) evaluated over
10,000 uniformly spaced points located within the polygon.

These contour plots can be used to compared with all the GBCs discussed in [1]. Comparing with
the contour lines of harmonic GBCs showed in [1], we can see that the biharmonic GBCs are more
compactly supported than the corresponding harmonic GBC functions. We have to admit that the
computational time for biharmonic GBC is more expensive than the time for harmonic GBCs. This
is because when computing harmonic GBCs, we only need to solve linear systems while to compute
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Figure 3: Triangulation of a domain similar to the domain in [1] and two biharmonic GBCs

Figure 4: 6 biharmonic GBC functions over a domain similar to the one in [1]

16



biharmonic GBCs, we need to do iterative solutions. Also, the accuracy of constraints for harmonic
GBCs is more accurate than that of biharmonic GBCs by using the same spline space.

Finally, let us discuss the limit of these si,4 ∈ Srd(4) as |4| → 0. Starting with an initial
triangulation 4, let 4k be the kth uniform refinement of 4. It is known that |4k| = |4|/2k and
Srd(4k) ⊂ Srd(4k+1) for each k ≥ 0. It follows that∫

pn

|∆si,4k+1
|2dxdy ≤

∫
pn

|∆si,4k
|2dxdy (41)

for all k ≥ 0. That is, si,4k
, k ≥ 0 are a bounded sequence in H2(pn). By Rellich-Kondrashov theorem,

there exists a subsequence from si,4k
, k ≥ 0 and its limit s∗i ∈ H2(pn). Without loss of generality, we

may assume that the whole sequence converges, i.e.

si,4k
→ s∗i , k →∞

weakly in H2(pn) and strongly in H1(pn). The boundedness of s∗i in H2(pn) implies that si ∈ C(pn),
where pn is the closure of pn. We now show that s∗i is the biharmonic GBC function φi which is the
minimizer of (40). By Theorem 2, we know Srd(4k), k → ∞ will be dense in C∞(pn). In fact, using
the same ideas as the proof of Céa lemma, we can prove∫

pn

|∆(si,4k
− φi)|2dxdy ≤

∫
pn

|∆(Qk(φi)− φi)|2dxdy ≤ C|4k|2(d−1) → 0 (42)

for a constant C dependent on φi as k → ∞, where d ≥ 5. Together with the boundary condition:
s∗i |∂pn = φi|∂pn , we conclude that s∗i is φi. Finally, let us explain some regularity of φi. According to
the study on the interior regularity of Laplace equation(cf. [8]), we can show that φi ∈ Hm+2(q) for
any open set q ⊂ pn for all m ≥ 0. That is, we have

Theorem 10 There exists a biharmonic GBC function φi satisfying φi|∂pn = gi and 0 ≤ φi ≤ 1.
Furthermore, φi is Hm

loc(pn) for any integer m ≥ 1. Finally, all these φi, i = 1, · · · , n satisfy the GBC
conditions (1).

Proof. Let us outline a proof here while leaving the detail to the interested reader. For any open
set q ⊂ pn strictly contained in pn, i.e., q ⊂ pn, but q 6= pn, let q̃ ⊂ pn be another open set strictly
contained in pn, but contain q. That is, q ⊂ q̃ ⊂ pn. Define a cutoff function ζ ∈ C∞(R2) such that
ζ(x) = 1 when x ∈ q, ζ(x) = 0 when x ∈ R2\q̃, and between 0 and 1 when x ∈ q̃\q. Next we define
central difference operators

D2
x,hf(x, y) =

f(x+ h, y)− 2f(x, y) + f(x− h, y)

2h2

for h > 0 and similar for D2
y,hf(x, y). When h > 0 is sufficiently small, we have

v = D2
x,h(η2(D2

x,hsi)) ∈ H2(pn) and v|∂pn = 0.

It follows that

0 =

∫
pn

∆si∆vdxdy

=

∫
pn

D2
x,h(∆si)∆[ζ2D2

x,hsi]dxdy

=

∫
pn

D2
x,h∆si∆[ζ2]D2

x,hsidxdy +

∫
pn

D2
x,h∆siζ

2D2
x,h∆sidxdy. (43)
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By Cauchy-Schwarz inequality, we use the above equality to have∫
pn

D2
x,h∆siζ

2D2
x,h∆sidxdy =−

∫
pn

D2
x,h∆si∆[ζ2]D2

x,hsidxdy

≤2

(∫
pn

D2
x,h∆siζ

2D2
x,h∆sidxdy

)1/2(∫
pn

|∆ζ|2|D2
x,hsi|2dxdy

)1/2

.

Similifying the above inequality leads to∫
pn

D2
x,h∆siζ

2D2
x,h∆sidxdy ≤ 4

∫
pn

|∆ζ|2|D2
x,hsi|2dxdy.

Since ζ2 = 1 on q and let C = 4‖∆η‖∞,pn which is dependent on q, we have∫
q
|D2

x,h∆φi|2dxdy ≤
∫
pn

D2
x,h∆φiζ

2D2
x,h∆φidxdy ≤ C

∫
pn

|D2
x,hφi|2dxdy (44)

for all h > 0 sufficiently small. Similar for
∫
q |D

2
y,h∆φi|2dxdy ≤ C

∫
pn
|D2

y,hφi|2dxdy. Letting h→ 0+,
we have ∫

q
|∆2φi|2dxdy ≤ C

∫
pn

|∆φi|2dxdy <∞.

Hence, φi ∈ H4
loc(pn) because the boundedness on the left-hand side of the above inequalities and the

boundedness ‖φi‖L2(pn) imply the boundedness of all derivatives of order between 1 and 4. The above

arguments can be repeated for higher order. This finishes the proof of φi ∈ Hm+2
loc (pn) for m ≥ 0. 2

4.2 Square GBCs

For f(φ1, · · · , φn) =
∑n

i=1

∫
pn
|φi(x)|2dx, we replace it by F (c1, · · · , cn) =

∑n
i=1 ‖ci‖2 as we know

A1‖ci‖∞ ≤ ‖si‖∞,pn ≤ A2‖ci‖∞ (45)

for two positive constants A1, A2 which is dependent on the quasi-uniformality γ of the underlyging
triangulation 4, according to the study in [18]. Thus, we recast the minimization in (9) with F given
by

F (c1, · · · , cn) =
n∑
i=1

‖ci‖2. (46)

Then we use spline space S2
8(4) with |4| = 0.1 and apply Algorithm 4 to find these GBC functions.

The side constraints (1) are satisfied within error 1e − 3. See graphs as shown in Figure 5. We have
also use a spline space S3

11(4) and S4
16(4). Their graphs are similar to those in Figure 5.

4.3 Maximum Entropy GBC Functions

The maximum entropy GBC was invented in [24] and studied in [15], and [9]. The authors used the
minimization to establish the existence of the GBC. However, the solution is not explicitly given. One
has to solve two nonlinear equations which may be done by using Newton’s method. According to our
recipe in the previous section, we can reformulate it as follows:

min
φ1,··· ,φn∈C∞(pn)

n∑
i=1

φi log(φi + ε) : subject to (1), (47)
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Figure 5: Four GBC functions over a quadrilateral based on the minimizing functional F in (46)

where ε ≥ 0. Note that when ε = 0, the solution is the maximum entropy GBC discussed in [24] and
[15]. Clearly, f(φ1, · · · , φn, ε) =

∑n
i=1 φi log(φi + ε) is a strictly convex function. By using Theorem 1,

there exists a unique set of minimizers φ1, · · · , φn for each ε > 0. For simplicity, we shall call them
ε-maximum entropy GBC. When ε = 0, the minimizers are exactly one in [24]. We now discuss how
to find those functions numerically.

By using (45), we use

F (c1, · · · , cn) =

n∑
i=1

N∑
j=1

cij log(cij + ε) (48)

to be the minimizing functional for (15). Our implementation is exactly the same as the one in the
previous subsection except for using the F (c1, · · · , cn) in this subsection instead of F (c1, · · · , cn) =∑n

i=1 ‖ci‖2. Again we use spline space S2
8(4) with a good triangulation with |4| small enough. The

graphs of these ε-minimal entropy GBC are given in Figure 6 over a pentagon p5. The graphs are
almost the same as the one in the previous subsection, where ε = 0.01.

5 Some Applications of GBC functions

In this section, we present a few examples to show an interpolatory surface, polygonal deformation,
and image enhancement using the GBCs obtained by the computational method proposed in this
paper. For convenience, we simply use harmonic GBCs which can be done much faster than other
GBCs. Consider the following polygon with 20 sides shown in Figure 7 together with a triangulation.
We use continuous splines of degree 8 based on the triangulation to approximate the harmonic GBCs.
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Figure 6: Three ε-minimal entropy GBC functions over a hexagon with a triangulation shown based
on the minimizing functional F in (48). The other three are a rotated version of these three shown.

The resulting surfaces are plotted in contour lines which are clearly very smooth. The contour lines
are at values 1e − 6, 1e − 5, 1e − 4, 1e − 3, 1e − 2, 0.02, 0.04, ..., 1. Let us present the contour lines of
each GBC functions in Figures 8–12. Once we obtain these 20 GBC functions, we interpolate a simple
function x2 + y2 at the vertices of the polygon to obtain the graph on the right of Figure 7.

Figure 7: A polygon with a triangulation and the contour lines of an interpolatory surface

Next we present a polygon deformation. Let us begin with the polygon shown in Figure 7. We
deform it to another polygon as shown in Figure 13. That is, for each x ∈ pn with vertices v1, · · · ,vn,
we have GBCs φi(x), i = 1, · · · , n. For a new polygon p̃n with vertices u1, · · · ,un, we simply plot new

point

n∑
i=1

φi(x)ui together with the value f(x).

Finally, we present an application of image enhancement. Let us consider a picture of of the logo
of Hangzhou Dianzi University in Figure 14. The center piece is the sculpture of Tripod. We chose a
pentagon P5 to include the tripod on the left to generate 5 GBC functions and then extend the image
values within P5 to a larger pentagon P̃5 shaded as shown on the right of Figure 14 by using bivariate
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Figure 8: Four harmonic GBC functions over the polygon p20 shown in Figure 7.

Figure 9: Four harmonic GBC functions over the polygon p20 shown in Figure 7.

Figure 10: Four harmonic GBC functions over the polygon p20 shown in Figure 7.

Figure 11: Another four harmonic GBC functions over the polygon p20 shown in Figure 7.

Figure 12: Last four harmonic GBC functions over the polygon p20 shown in Figure 7.
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Figure 13: The polygon p20 shown on the most left of the first row is deformed to the polygon (the
last one) in the second row.

spline function data fitting method. The spline data fitting method is to fit the given image values
at the new locations which are linear combinations of the GBC values with new vertices P̃5 and then
evaluate the fitting splines at all the pixel locations within the new pentagon to have a new image
shown on the right-hand side of Figure 14.

Figure 14: An Image of Hangzhou Dianzi University with the Sculpture of Tripod (left) and an
Enhanced Image with shaded pentagon (right)

6 Conclusion and Remarks

We have established a minimization approach to define new GBC functions which is more general
than the harmonic, biharmonic, and minimal entropy GBCs. We successfully implemented bivariate
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smooth spline functions to approximate the minimizers and obtain good approximations of the new
and existing GBCs. They are very convenient for various GBC applications as presented in the
previous section. We plan to extend the computation, mainly the computation based on bivariate
smooth splines to the 3D setting using trivariate smooth spline functions developed in [3]. More
results will be reported in near future. In addition, we plan to use the minimization (2) based on
f(φ1, · · · , φn) =

∑n
i=1

∫
pn
|φi(x)|dx to construct more interesting GBC functions. Finally, during our

study, we found that when pn is convex, the minimization (39) produces nonnegative GBC functions
without using the non-negativity constraint. We plan to study this conjecture.
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