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Abstract

We introduce a redundant basis for numerical solution to the Poisson equation and find a sparse solution to the PDE by using a
compressive sensing approach. That is, we refine a partition of the underlying domain of the PDE several times and use the multi-level
nested spline subspaces over these refinements to express the solution of the PDE redundantly. We then use a compressive sensing
algorithm to find an economical representation of the spline approximation of the PDE solution. The number of nonzero coefficients
of an economical representation is less than the number of the standard spline representation over the last refined partition, i.e. finite
element solution while we will show that the error of the spline approximation with an economical representation is the same to the
standard FEM solution. This approach will be useful, e.g. in the situation when the PDE solver has a much powerful computer than
the users of the solution.

Keywords: Isogeometric analysis, Compressive sensing, Sparse solution, PDEs, Economical representation.

1. Introduction

In the standard weak formulation of the Poisson equation, the
numerical solution is searched in a finite dimensional Sobolev s-
pace by solving the squared system of linear equations. As the
exact solution may change rapidly over one subregion and slowly
over the other, in order to achieve a higher accuracy, traditional-
ly one has to refine the underlying partition/mesh many times.
In this way, the dimension of the solution space increases sig-
nificantly. Thus, one needs to use a lot of coefficients (more
than necessary) to approximate the PDE solution. A straight-
forward way to correct this problem is to use the adaptive finite
element method (AFEM)(cf. [24, 25, 26]). That is, one solves the
PDE based on a reasonably refined partition/mesh together with
adding locally refined basis functions. Indeed, one compares the
right-hand side associated with the numerical solution with the
exact right-hand side to induce an posterior error estimate. If
the error is not within tolerance, one adds a local refinement in
the partition/mesh according to a certain refinement rule and then
repeats the computational procedure again.

Isogeometric analysis (IGA for short) was introduced as a new
approach for solving PDEs (cf. [28, 29]). The essence of IGA is
a collection of methods that uses splines or some of their exten-
sions as approximation spaces which are then used for solving
PDEs numerically. There has been a lot of work on develop-
ing different kinds of splines used in IGA. Some of them can
be found at [29, 31, 32, 33, 34, 35] and the references therein.
And most of these splines are locally refinable splines thus they
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support an adaptive refinement framework when they are used in
IGA (cf. [23, 27, 36]). The refinement is performed on elements
according to a certain refinement rule based on posterior error es-
timates. And the posterior error estimates generally come from
some existing estimates in FEA. See [24, 25, 26].

It can be seen the above adaptive refinement is a greedy and
strategic refinement, thus there are always a lot of redundant el-
ements to be refined. Furthermore, some kinds of splines are
defined over meshes with specific structures, so extra elements
are refined to satisfy the requirement of mesh structures. For
example, the local refinement of T-splines [23] needs extra ele-
ments to keep the exact geometry, analysis suitable T-splines [30]
and PHT-splines [33] need to satisfy the constraints of analysis-
suitable T-meshes and hierarchical meshes respectively. Certain-
ly these specific mesh structures destroy the original uniform
structure of partitions. Different problems require different re-
fined meshes. In this sense, the traditional adaptive method has
some unsatisfactory side effects. Therefore it is necessary to in-
troduce a new adaptive method for selecting basis functions glob-
ally.

In this paper, we propose to use a sparse model to find a so-
lution with an economic number of nonzero coefficients to the
PDE with the similar accuracy as the standard weak solution.
More precisely, we shall use uniformly refined partitions. The
basis functions on different levels are collected together to form
a redundant finite dimensional Sobolev space. From this redun-
dant space, we choose the minimal number of basis functions to
approximate the solution for the same accuracy as the standard
finite element method based on the spline space over the finest
partition, i.e. the last level of refinement of the partition of the
domain. For example, when using bicubic spline functions over
the 6th level of refinement of the unit square Ω to approximate
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the solution of a Poisson equation, if the solution happens to be
x3y3, one can simply use the bicubic spline functions over the
first level of refinement of Ω to represent the solution. The pro-
posed method will find such a simple representation with a much
smaller number of nonzero coefficients (the coefficients for the
basis functions over the first level of refinement) than the solu-
tion from the standard FEM based on the basis functions over the
6th level of refinement of Ω. For another example, if the solution
u to a Poisson equation has a constant value over a subdomain
with large area inside Ω, then u can have a sparser representa-
tion than the standard FEM solution since u can be represented
using fewer basis functions over the previous levels of refined
partitions than that of the basis functions over the last refined
partition. In general, if a solution can be well approximated by
using spline functions over the (n − 1)th refined partition within
the tolerance ε, our proposed method can find this solution when
using all combined spline functions over all the kth refined par-
titions, 1 ≤ k ≤ n. The solution will have a much fewer nonzero
coefficients than the weak-form spline solution over the nth re-
fined partition.

The proposed computation can be done by projecting the basis
functions in all levels of refined spaces into the last refined space
via a Galerkin projection. In this way, we obtain a rectangular
stiffness matrix. This stiffness matrix multiplied by an unknown
vector equals the projection of the right term in the last refined s-
pace. This results in a linear system of rectangular size. Then we
find the sparse solution of this rectangular linear system. These
concepts will be explained in detail in a later section. We focus
on B-splines/tensor product B-splines currently to illustrate the
ideas proposed in this paper. Certainly, the ideas can be extended
to other kinds of splines for numerical solutions of various partial
differential equations.

There are many computational algorithms developed for s-
parse solutions of long rectangular linear system which is an
underdetermined linear system. However, most of these algo-
rithms can only find solutions with a small sparsity, e.g. 30–40%
nonzero entries of the solution. We have to experiment many ap-
proaches to see which one performs the best. After a rather thor-
ough investigation, certainly not an exhausted search, we found a
good approach which is based on a mix of two computational al-
gorithms which can find more 50% nonzero entries of a solution.
This new algorithm will be presented in the next section together
with some convergence analysis and a summary of sparsity re-
covery via many well-known computational algorithms will be
given to demonstrate that our proposed algorithm works the best.
With this tool, we tackle the problem of finding most economic
solution to the PDE.

Another advantage of our method over any local refinemen-
t T-spline schemes is that the proposed method does not create
any T-junction points and has the simplification of evaluation.
Indeed, suppose we use refinement level n = 6. A sparse solu-
tion whose nonzero coefficients will be decoupled into 6 groups
to have 6 spline functions over the 6 nested refinements. Thus,
we use de Boor’s evaluation for 6 spline functions and then add
these values together to have the value for the sparse solution.
Also, the proposed method is more economic than any triangu-
lation based adaptive finite element method since it produces a
set of coefficients as well as a set of particular triangulation (a set
of vertices and a list of triangulation) which usually consists of a
large data file. One major disadvantage of the proposed method
is the computational time, which is much slower than the stan-
dard FEM/adaptive FEM when the refined level is large due to
the nature of the nonlinear iterative steps. The topic is certain-
ly worthy studying how to improve its computational efficiency.

On the other hand, if the person computing the solution to his/her
PDE has a much powerful computer than the users of the solu-
tion, then this method can be useful. Also, if the solution will
be used many times, it is recommended to have a sparse solution
form once for all.

The remainder of this section is organized as follows. In sec-
tion 2, we explain an economical representation of the Poisson
Equation based on a sparse model. In section 3, an error esti-
mate of the sparse solution from our proposed method is proved
to have the similar error estimate of the classic FEM solution.
In section 4, several numerical examples solved by the proposed
method are demonstrated. Section 5 concludes the paper with a
summary and future work.

2. An Economic Representation of PDE Solution

In this section, we propose a method to find an economic rep-
resentation of the spline solution to the PDE based on the com-
pressive sensing approach. Mainly, we shall use the greedy and
l1 minimization algorithm to help find an approximation to the
PDE solution with fewer nonzero spline coefficients.

2.1. Discretization of PDEs
Consider the Poisson equation:

−∆u = f , Ω ⊂ R2

u =g, on ∂Ω (1)

where Ω is a bounded domain with Lipschitz boundary ∂Ω. Let
G be the geometric mapping which maps [0, 1]2 to Ω with s-
mooth inverse, that is

G : ξ ∈ [0, 1]2 → (x, y) ∈ Ω.

See Fig. 1 for a reference. To solve the Poisson equation over Ω
using the weak formulation, we have

a(u, v) := 〈∇u,∇v〉 = 〈 f , v〉, ∀v ∈ H1
0(Ω), (2)

Let us explain the weak formulation more precisely.

〈 f , v〉 =

∫

[0,1]2
f (G(ξ))v(G(ξ))

√
det(J>J)dξ, (3)

where J = ∇ξx with x = (x, y) and similarly,

〈∇u,∇v〉 =

∫

[0,1]×[0,1]
∇ξu(G(ξ)(J>J)−1∇ξv(G(ξ))

√
det(J>J)dξ.

(4)

2.2. The Sparse Model
We use a hierarchy of spline spaces to approximate the solu-

tion u(G(ξ)). Let S n, n ≥ 1 be a sequence of nested finite dimen-
sional subspaces of H1

0(Ω), i.e.

S 1 ⊂ S 2 ⊂ · · · ⊂ S n.

For example, we can choose a nested triangulation 4n of Ω by
the standard uniform refinement strategy and let S n = S 1

d(4n)
be the bivariate spline space of degree d and smoothness 1 over
triangulation 4n. For a theory of splines, see [14] for more detail.
See spline implementations in [1] and [20]. For another example,
one can use the nested tensor product B-spline spaces starting
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Figure 1: The Geometrical Map G from a patch to the physical domain Ω.

with a rectangular parametric domain. This is the approach we
adopt in this paper.

Write S j = span{φ j,1, · · · , φ j,N j }, where N j is the dimension of
S j and φ j,1, · · · , φ j,N j are B-spline basis functions spanning the
spline space S j, j = 1, 2, · · · , n. Denote

Φ j = [a(φ j,1, φn,i), a(φ j,2, φn,i), · · · , a(φ j,N j , φn,i)]i=1,··· ,Nn , (5)

as the rectangular stiffness matrix of size Nn×N j for j = 1, · · · , n,
where a(φ j,1, φn,i) = 〈∇φ j,1,∇φn,i〉 for all j = 1, · · · , n, i =
1, · · · ,Nn. Let Φ be the basis functions on all levels,

Φ = [Φ1,Φ2, · · · ,Φn]

and b = [〈 f , φn,1〉, · · · , 〈 f , φn,Nn〉]>. We look for solution x ∈
RN1+···+Nn such that

min { ‖x‖0, Φx = b }, (6)

where ‖x‖0 is the number of nonzero entries of x, Φ is of size
Nn × (N1 + · · · + Nn) and b is of size Nn × 1. Let xb be the sparse
solution of (6) with ‖xb‖0 < Nn. Write

Ψ = [φ1,1, · · · , φ1,N1 , φ2,1, · · · , φ2,N2 , · · · , φn,1, · · · , φn,Nn ]

and let u∗ = Ψxb. Then u∗ ∈ S n and satisfies

〈∇u∗,∇φn, j〉 = 〈 f , φn, j〉, ∀ j = 1, · · · ,Nn.

By the uniqueness of the weak solution, u∗ is the weak solution
in S n for (1). However, the number of nonzero coefficients is the
smallest. In this way, we can find the most economical repre-
sentation of the weak solution in the nested subspace sequence
{S 1, S 2, · · · , S n}.

We shall present one example of 1D Poisson equations to show
the above sparse model. The exact solution u(x) = −tanh(((x −
0.5)2 − r)/sr) + 1.0, x ∈ [0, 1], where r = 0.0625, sr = 0.01.
f is derived from (1). This u(x) has a sharp gradient around
x = 0.2 and x = 0.8, as shown in Fig. 2(a). In order to recover
this sharp gradient and have an economical representation, more
knots should be located at these two places and less knots are
located at the rest domain, when B-splines are applied in solving
(1). Fig. 2(b) shows the numerical solution uh solved with n = 4,
where the coefficients over each levels are marked by different
colors. It can be seen that uh has much more non-vanishing co-
efficients around the sharp gradient, while only the coefficients
on the first level are non-vanishing on the flat domain. In Table
1, N is equal to N1 + N2 + · · · + Nn, and sparsity here refers to
the number and the percentage of nonzero coefficients. For each
n, the sparsity of our method is much smaller than Nn and the
L2-norm error solved by our method is the same as that of FEM
on each level.
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Figure 2: 1D numerical solution solved by (6) with n = 4 and coefficients on
different levels.

2.3. Computational Algorithms

Sparse solutions of underdetermined linear system has been
actively studied in the last fifteen years. Commonly, the mini-
mization (6) is replaced by

min{ ‖x‖1, Φx = b}, (7)

where ‖x‖1 is the `1 norm of vector x = (x1, · · · , xN)> with ‖x‖1 =∑N
j=1 |x j|, and N = N1 + · · ·+ Nn. This problem can also be recast

as
min{‖Φx − b‖2, ‖x‖0 ≤ s} (8)

for a guessed sparsity s. There are many computational algo-
rithms available based on convex minimization and non-convex
minimization approaches. We refer to [21], [17], [7], [8], [6],
[4], [2], [3], [13], [10], [16], [18], [19], [12], [22], [9], [15], and
etc.. Most of them work well when the sparsity of a sparse solu-
tion is small. However, the sparsity of a PDE solution may not be
very small in general. A straight-forward application of these nu-
merical algorithms does not work well in finding the economical
reprsentation of the PDE solution. In particular, when a PDE in
the 2D and 3D settings, the solution may not have a small spar-
sity. Nevertheless, various ideas behind these algorithms provide
us hints for finding a good new efficient way. We have experi-
mented many approaches mentioned above and find a good one
for economic representation of the PDE solution.

Our method FEM
n N sparsity ‖u − uh‖L2 Nn ‖u − uh‖L2

2 54 27(50%) 2.9137e-2 35 2.9139e-2
3 121 48(39.7%) 1.7916e-3 67 1.7921e-3
4 252 74(29.4%) 3.4741e-4 131 3.4695e-4
5 511 145(28.4%) 1.5292e-6 259 1.4984e-6
6 1026 345(33.6%) 8.8701e-8 515 8.5733e-8

Table 1: number of non-vanishing coefficients solved with different n of the 1D
example.
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The MATLAB version of our approach is concluded in Algo-
rithm 1. The basic idea is to use the levels of the magnitude
of the entries in the sparse solution vector when finding the s-
parse solution. That is, we first compute the largest entries (top
87%) of the sparse solution vector. Then we use 0.1 to put the
columns of the sensing matrix associated with the largest entries
in a less important part to have a modified sensing matrix so that
we can compute the next batch of the entries of the sparse solu-
tion vector. The parameters 0.1 and 0.87 can be adjusted. The
values 0.1 and 0.87 were chosen based on a large amount of our
experiments.

The main computation of Algorithm 1 is done by L1min
which is a revised version of the code discussed in [17] and is
enclosed in the Appendix. The original L1min is used for the
L1 minimization for scattered data interpolation in [17]. Here we
rewrote it to find the sparse solution of underdetermined linear
system instead. The main ingredient is the interior point method
to solve the linear programming problem which is equivalent to
finding the solution to L1 minimization problem.

Algorithm 1 x = lai2012(A,y)
1: Input: a matrix A of size m × n (m < n), a vector y of size

m × 1.
Output: a vector x of size n × 1.

2: NIt=3;
3: [m,n]=size(A); AW=A; W=ones(n,1); iv=zeros(n,1);
4: j0=1; x = iv;
5: for i = 1:NIt
6: x = L1min(AW,y,1e-9,iv);
7: x = x./W;
8: if 1 == i
9: [Mx j0] = max(abs(x));

10: end
11: Mx = Mx*0.87;
12: W = (abs(x) > Mx)/10 + (abs(x)≤Mx);
13: for j = 1:n
14: AW(:,j) = A(:,j)/W(j);
15: end
16: end

The Algorithm 1 is different from the algorithm described in
[13] in the sense that we use L1min instead of the well-known
magicL1. The major reason to use L1min is the better perfor-
mance. Let us illustrate by numerical experiments. Consider a
matrix A of size 64×128 with uniform random variables as its en-
tries. Let xb be a vector of sparsity s with nonzero entries which
are uniform random values. For b = Axb, we use Algorithm 1
to solve x∗ and measure the maximum norm. For simplicity, we
use Gaussian random matrices of 64 × 128 with sparsity from
1 − 45. We test Algorithm 1 with L1min replaced by magicL1
from Candés webpage (called KP in short, see [13]), Algorith-
m 1 (called Lai in short), iteratively reweighted `1 minimization
(called CWB in short, see [6]), the FISTA algorithm (cf. [2]),
hard thresholding pursuit algorithm (called HTP in short, see
[10]). In addition, GAMP stands for the generalized message
passing algorithm (cf. [37]). The method GAMP is very spe-
cial, only working for Gaussian sensing matrices. We have 500
independent runs of such recovery for sparsity s = 1, · · · , 45.
The percentage of recovery (or frequency of successes of recov-
ery) is shown in Fig. 3, where x−axis represents the sparsity s
and y−axis represents frequency of successes of recovery during
experiments. Similar performance can be seen for the uniform

Figure 3: Numerical Results based on Algorithm 1.

random sensing matrices. We omit the graph for convenience.
From Fig. 3, our program Algorithm 1 is able to recover sparse
solutions with nonzero entries more than 50% of the entire en-
tries with very high frequency.

We now give a convergence analysis of Algorithm 1. It is easy
to see that the algorithms above are equivalent to solving

x(k) := arg min{(W (k−1))>|x|, Ax = y}, (9)

where |x| = (|x1|, |x2|, · · · , |xn|)> denotes the absolute value of
x = (x1, x2, · · · , xn)>. Note that W (k−1) divides the indices of x
into two groups: one is the less important portion of the indices
collected in JMk−1 which is scaled by 0.1 and the other is more
important portion of the indices denoted by IMk−1 . Here Mk−1
is equal to the variable Mx at step k iteration in Algorithm 1.
Heuristically, in each step the larger components of the iterative
solution x(k) are found and moved in the less important group
while the smaller components of x(k) are needed to compute more
accurately and hence are moved to the important group.

To study the convergence of the iterative solutions x(k), we first
show that ‖x(k)‖1, k ≥ 1 are bounded. To this end, we define three
functions:

LM(x) =

n∑

i=1

gM(xi) + 0.1 fM(xi), (10)

where gM(x) = min{|x|,M} and fM(x) = max{|x|,M} for any x ∈
(−∞,∞). Note that for each x ∈ (0,∞),

LM(x) = gM(x) + 0.1 fM(x)

is concave. It can be seen as in Fig. 4.
It is easy to see that LM(x) ≤ LN(x) if M ≤ N. A crucial

observation is the subgradients of LM , gM and fM are connected
in the following way:

∂LM(x) = ∂gM(x) + 0.1∂ fM(x) = IM(x) + 0.1JM(x) (11)

for each x ∈ (−∞,∞). Also, LM(x) = (∂LM(x))>|x|. The steps
inside lai2012.m are

x(k) := min
x
{∂LMk−1 (xk−1)>|x|, Ax = y}. (12)

4



Figure 4: Functions gM , fM and LM

where |x| = (|x1|, |x2|, · · · , |xn|)> for any x = (x1, x2, · · · , xn)>.
We now claim that

LMk (x
(k+1)) ≤ LMk−1 (x(k)) (13)

for all k ≥ 1. Indeed, due to the concavity of LM and (12), we
have

LMk (x
(k+1)) ≤ LMk (x

(k)) + ∂LMk (x
(k))>(|x(k+1)| − |x(k)|)

= LMk (x
(k)) + min

x
∂LMk (x

(k))>(|x| − |x(k)|)
≤ LMk (x

(k)) ≤ LMk−1 (x(k))

since Mk ≤ Mk−1. It therefore follows

Lemma 1 Suppose that ‖x(2)‖1 is bounded. Then there exists a
convergent subsequence from x(k), k ≥ 1 and a limit x∗ such that
x(k j) → x∗ as j→ ∞.

Proof. It has gMk−1 (x(k)) + fMk−1 (x(k)) = ‖x(k)‖1 + Mk−1 ≥ ‖x(k)‖1.
By using (13), we have

0.1‖x(k)‖1 ≤ 0.1(gMk−1 (x(k)) + fMk−1 (x(k))) ≤ LMk−1 (x(k))

≤ · · · ≤ LM1 (x(2)) ≤ ‖x(2)‖1
for each k ≥ 1. It follows that x(k), k ≥ 1 are bounded and hence,
there exists a convergent subsequence from x(k), k ≥ 1 and a limit
x∗ such that x(k j) → x∗ for j→ ∞. 2

Lemma 2 Let x̂ be the sparsest vector which satisfies Ax = y.
Then the limit x∗ of any subsequence of x(k) satisfies

‖x∗‖1 ≤ ‖̂x‖1. (14)

Furthermore, if x∗ and y∗ be two limits of the subsequences of
x(k), ‖x∗‖1 = ‖y∗‖1.

Proof. Let α = minx̂i,0 |̂xi| > 0. For k large enough, we have
Mk < α and hence, LMk (x(k+1)) ≤ LMk (̂x) = 0.1‖̂x‖1. It follows
that 0.1‖x∗‖1 ≤ 0.1‖̂x‖1 since LMk j

(x∗) → 0.1‖x∗‖1. Thus, we
have (14).

Similarly, we have 0.1‖x∗‖1 ≤ LMk j
(y∗) for j → ∞. That is,

0.1‖x∗‖1 ≤ 0.1‖y∗‖1. This statement can be reversed. These com-
plete the proof. 2

Therefore, we have obtained the following

Theorem 1 Suppose that the sparse solution x̂ is solved by the
standard `1 minimization:

x̂ := min
x∈Rn
{‖x‖1 : Ax = y}. (15)

For example, the RIC δ2s of Φ satisfies δ2s < 1 or δs of Φ satisfies
δs < 1/3 (see [5]). Then lai2012.m converges and the limit x∗ is
equal to x̂.

Proof. By Lemma 2 above, the limit x∗ of any subsequence from
x(k) obtained inside lai2012.m satisfies ‖x∗‖1 ≤ ‖̂x‖1 and Φx∗ = b.
It follows that x∗ = x̂. Thus, lai2012.m converges. 2

3. Approximation of Our Economical Solution of PDE

Let x∗ be a sparse solution satisfying Φx∗ = b. Let s∗ be the
spline function with coefficient vector x∗. The Φx∗ = b implies
that

〈∇s∗,∇s〉 = 〈 f , s〉,∀s ∈ S n. (16)

It is known that 〈∇u,∇s〉 = 〈 f , s〉 and hence, we have

〈∇(u − s∗),∇s〉 = 0,∀s ∈ S n. (17)

Using the coercivity, we have

‖∇(u − s∗)‖2 = 〈∇(u − s∗),∇(u − s)〉 ≤ ‖∇(u − s∗)‖ · ‖∇(u − s)‖

for any s ∈ S n. In particular, if we choose a quasi-interpolatory
spline s(u) of u, we should have

‖∇(u − s∗)‖ ≤ min
s∈S n
‖∇(u − s)‖ ≤ ‖∇(u − s(u))‖ ≤ Chm

for a positive constant C independent of h when u ∈ Hm+1(Ω)
and h is the size of the partition corresponding to the space S n.
Therefore, we have established the following

Theorem 2 Suppose that the solution u is in Sobolev space
Hm+1(Ω) for a real number m ≥ 1. Let s∗ be the spline solu-
tion with sparse coefficient vector x∗. Then

‖∇(u − s∗)‖ ≤ Chm

for a positive constant C independent of h.

4. Numerical Simulation Results

In this section, we shall give several examples to demon-
strate the efficiency of the proposed method. Denote by DOF =∑n

i=1 Ni the sum of degree of freedom of S i, i = 1, 2, · · · , n. The
sparsity here refers to the number as well as the percentage of
nonzero coefficients of the numerical solution. The convergence
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rate CR with respect to the norm ‖ · ‖ at the refinement level l is
roughly defined as

CR =
2 log(‖eh,l‖/‖eh,l−1‖)

log(nl−1/nl)
,

where nl denotes the number of the degree of freedom and eh,l
denotes the error u − uh at refinement level l.

First of all, we have tested the correctness of our program by
finding the sparse spline approximation of a Poisson equation
whose solution is a polynomial like u = x(1 − x)y(1 − y). Our
sparse solution only needs a very few coefficients (about 9) while
the FEM solution requires more than 1000 nonzero coefficients
when the refinement level is 5. In the same fashion, if a solution
can be approximated very well by using spline functions over the
(n − 1)th refined partition and using the spline functions over the
nth refined partition can not improve the accuracy any more, our
proposed method will find the solution over the (n − 1)th refined
partition instead and hence, have an economic representation of
the PDE solution.

Next we present a table to show the comparison of the sparsity
of the coefficient vectors of the standard FEM and our sparse
solution.

Example 1 Let u = arctan((8x − 4)2 − (8y − 4)2) be the solution
of the Poisson equation (1) with the right-hand side f which is
derived from the exact solution u. We solve it by using the stan-
dard FEM and our sparse solution method (SSM). In Table 2, we
show the accuracies in L2 norm and H1 semi-norm at different
levels of refinement of the two methods. In addition, we show the
number of columns of the stiffness matrix (DOF) for the standard
FEM as well as the number of columns of the rectangular stiff-
ness matrix for our sparse solution method for various levels of
refinement. The sparsity is calculated based on the absolute val-
ue of a coefficient is larger or equal to 1e−6. Finally, we present
the computational times for standard FEM and sparse solution
method.

We have also repeated the above computation for u(x, y) =
tanh(40y− 80x)2)− tanh(40x− 80y)2, (x, y) ∈ [0, 1]× [0, 1]. The
numerical results are similar as shown in Table 3.

From Tables 2 and 3, we can see that our solution presen-
tations have a smaller number of nonzero coefficients than the
standard FEM solution. The higher level of refinement the fewer
nonzero coefficients. This is because of the solutions are con-
stants over several places. The place where the solution has a
constant needs a fewer nonzero coefficients than the FEM solu-
tion. In general, the place where the solution can be well approx-
imated by the spline functions over the first few levels of refine-
ment will have fewer nonzero coefficients than the FEM solution
over the last level of the refinement.

One difficulty is that it takes much more time to find the sparse
solution than the FEM solution. This is still a research problem
how to speed up the computation of sparse solution.

Next we compare our method with IGA based on hierarchical
B-splines (HB-IGA for short) [31]. Hierarchical B-splines, com-
posed of B-splines with different resolution, is a nature way of
refining tensor product splines adaptively. In IGA, the numerical
solution is represented by hierarchical B-splines and a posteri-
or error estimator is constructed to induce the refinement. This
method is integrated into the software GeoPDEs [11]. We use
this software to obtain the solution solved by HB-IGA. We are
going to use three different functions to compare and will make
some conclusive remarks after the following three examples.

Example 2 The exact solution

u(x, y) = −tanh(

√
(x − 0.5)2 + (y − 0.5)2 − r

sr
) + 1.0,

with (x, y) ∈ [0, 1] × [0, 1], r = 0.25, and sr = 0.03. f is derived
from (1).

The exact solution u has a sharp gradient around the circle
(x − 0.5)2 + (y − 0.5)2 = 0.252, referring to Fig. 5. Thus more
degree of freedom is needed to capture this feature. Fig. 6 shows
the non-vanishing coefficients solved by our sparse method when
n = 5. It can be seen our sparse method can adaptively select
the basis functions to get an economical representation. Table
4 shows the result obtained by our sparse method, including the
degree of freedom, sparsity, L2-norm error and H1-norm error.

From Table 4, these two types of solution methods (SSM and
HB-IGA) are really hard to compare with. For any fixed level
of refinement, HB-IGA does not produce the most accurate so-
lution while the SSM finds a near best approximation. On the
other hand, for the similar accuracy, the sparsity of SSM is not
as good as the HG-IGA. However, HB-IGA needs elements from
additional levels of refinement. Thus we compare the conver-
gence rate of our method with HB-IGA and TB-IGA (IGA based
tensor product B-splines) in Fig. 7. It can be seen that the conver-
gence rate of our method is similar to that of HB-IGA, but faster
than TB-IGA under uniform refinement. Also, the partition as-
sociated with HB-IGA solution is complicated as it depends on
a posterior error estimate. The representation of the solution in
HB-IGA format will require, not only coefficients, but also the
structure of the resulting mesh with many T -joints. Evaluation
can be more complicated than the SSM which simply use the de
Boor evaluation algorithm. For the SSM, the coefficients with
additional index component of the level of refinement are needed
as the nested partitions are standard. In these senses, the SSM
gives a more economic representation than that of HB-IGA.

5. Conclusion and Discuss

We have developed a computational algorithm to find a sparse
solution to Poisson equations based on B-splines or tensor prod-
uct of B-splines over uniform refinements of the underlying do-
main. Our the sparse solution has fewer nonzero coefficients than
the standard FEM solution. We have shown that the sparse so-
lution has the same approximation power as the standard FEM
solution. As we use multi-level refined partitions which have
structured basis functions and hence, the evaluation based on
de Boor’s algorithm will be much easier than the hierarchical
T-spline basis functions. In addition, we introduce an effective
sparse solution solver based on a greedy `1 strategy invented in
[13] and an interior point method for the `1 minimization as used
in [17]. Numerical experimental results show that this approach
works well. This approach can certainly be extended to any ellip-
tic partial differential equations by using any other spline spaces.
We leave it to the interested reader to explore. On the other hand,
we are not sure that the number of nonzero coefficients is the
smallest possible. This is not easy to figure out as it depend-
s on the behavior of the PDE solution and the performance of
the sparse solution algorithm. Although we have demonstrate
the performance of our sparse solution solver under the setting
of Gaussian random matrices and uniform random matrices, the
performance of the solver to the rectangular systems from a PDE
is not known. Numerical results from Tables 2 and 3 show that
less than 75% and 65% coefficients for the two PDE solutions,
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methods level L2 error H1 error DOF sparsity time
FEM 4 0.0469378 4.75221 361 361 0.54s
SSM 4 0.0469378 4.75221 556 316 (56.8%) 0.73s
FEM 5 0.0115948 1.94281 1225 1225 1.16s
SSM 5 0.0115948 1.94281 1781 1140 (64.0%) 8.80s
FEM 6 0.00137769 0.422249 4489 4489 3.48s
SSM 6 0.00137769 0.422249 6270 4136 (66.0%) 103.31s
FEM 7 5.71136e-05 0.0351749 17161 17161 11.73s
SSM 7 5.71142e-05 0.0351749 23431 12556 (53.6%) 2169.82s

Table 2: Detailed Comparison between Standard FEM (FEM) and Sparse Solution Method(SSM)

methods level L2 error H1 error DOF sparsity time
FEM 4 0.125646 10.9247 361 361 0.43s
SSM 4 0.125646 10.9247 556 342 (61.5%) 0.71s
FEM 5 0.0471463 6.68833 1225 1225 1.16s
SSM 5 0.0471463 6.68833 1781 1174 (65.9%) 8.88s
FEM 6 0.00993537 2.42931 4489 4489 3.68s
SSM 6 0.00993537 2.42931 6270 3754 (59.9%) 105.05s
FEM 7 0.000674981 0.326701 17161 17161 12.41s
SSM 7 0.000674981 0.326701 23431 10610 (45.3%) 2179.78s

Table 3: Detailed Comparison between Standard FEM and Sparse Solution Method
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Figure 5: The exact solution of Example 2.

Figure 6: The coefficients solved by our method for Example 2.
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methods level L2 error H1 error DOF sparsity time
SSM 4 4.0473e-2 2.5000 556 266 (47.8%) 3.21s
SSM 5 4.3717e-3 5.0432e-1 1781 924 (51.9%) 16.19s
SSM 6 1.1217e-4 3.1969e-2 6270 2592 (41.3%) 65.11s
SSM 7 3.9247e-6 2.6146e-3 23431 6860 (29.3%) 1577.71s

HB-IGA 4 4.0473e-2 2.5000 214 2.48s
HB-IGA 5 4.3728e-3 5.0432e-1 506 5.20s
HB-IGA 6 4.5169e-4 4.8061e-2 1122 15.61s
HB-IGA 7 9.3030e-5 8.4712e-3 2777 39.41s
HB-IGA 8 8.7084e-6 2.1392e-3 5653 85.65s
HB-IGA 9 1.1308e-6 5.9735e-4 10801 177.89s

Table 4: Detailed Comparison between HB-IGA and Sparse Solution Method for Example 2.
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Figure 7: Convergence rate of our method SSM (red), HB-IGA (black) and TB-IGA (blue) under uniform refinement for Example 2.

respectively at refinement level 7 are needed. These indeed are
big save. The major difficulty is the computational time for find-
ing a sparse solution when the size of linear system is large. See
[9] for one attempt. We leave the study how to speed it up to a
future research problem.

We have also compared with the well-known hierarchical
tensor-product B-spline functions for numerical solution of PDE.
For any fixed level of refinement, our method can produce a more
accurate solution than that of the HB-IGA method. However, for
any fixed accuracy, the solution of HB-IGA is less sparse than
our SSM. Especially when the solution does not have a lot of
zeros, this phenomenon is more remarkable. For example the ex-
act solution is chosen as u(x, y) = arctan((8x − 4)2 − (8y − 4)2),
(x, y) ∈ [0, 1] × [0, 1], which is almost constants in several areas.
The graph of this solution is shown in Fig. 8, where the sharp
gradient locates at two diagonal line segments of the square. Ta-
ble 5 shows the result obtained by our sparse method, including
the degree of freedom, L2-norm error and H1 semi-norm. We
compare the convergence rate of our method with HB-IGA and
TB-IGA in Fig. 9. It can be seen that the convergence rate of our
method is faster than IGA under uniform refinement, but is not
so good with that of HB-IGA because of the solution does not
have a lot of zeros. This leads to a grand challenge problem: for
a fixed accuracy, what is the most economic way to solve a PDE?
HB-IGA combing with some techniques of reducing the scale of
the sparse problem (6) (for example the low rank method pro-
posed in [38]) can be a candidate to the challenge problem. We
leave the problem to the interested reader.
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Figure 8: Exact solution(3D and Contour View)
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methods level L2 error H1 error DOF sparsity time
SSM 4 0.04693 4.7522 556 316 (56.8%) 1.79s
SSM 5 1.1594e-2 1.9428 1781 1140 (64.0%) 9.11s
SSM 6 1.3776e-3 0.42224 6270 4130 (65.9%) 105.31s
SSM 7 5.7114e-5 3.5175e-2 23431 12556 (53.6%) 2205.65s

HBIGA 5 0.01395 2.03324 645 7.64s
HBIGA 6 5.3576e-3 0.61194 1197 17.10s
HBIGA 7 1.6565e-4 5.4275e-2 3125 42.46s
HBIGA 8 3.2329e-5 1.4126e-2 4973 89.98s

Table 5: Detailed Comparison between HB-IGA and Sparse Solution Method
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Appendix

The following matlab program was used in our computation.
We make it available so that more people can use it.

%function x=L1min(C,b,tol,x0)
%% This function is to min $\|x\|_1$, subject to
%% $Cx=b$. $tol = 0.0001$, $x0$ is an initial
%% guess satisfying $Cx=b$.
%% It is written based on a paper "L^1 Spline
%% Methods for Scattered Data Interpolation
%% and Approximation", M. J. Lai and P. Wenston
%% Advances in Computational Mathematics,
%% vol. 21 (2004) pp. 293--315.
%[k,m]=size(C); x=x0;
%alpha=norm(b,inf);
%w=(2/(3*alpha))*x;
%it_count=0; max_it=25;
%Z=zeros(m,1);
%cvg=0;
%while ~cvg & it_count <= max_it
%D=spdiags(1-abs(w),0,m,m);
%xnew=[[(D)’*(D),C’];[C,sparse(k,k)];...
% sparse(1,m+k)]\[Z;b;0];
%xnew=xnew(1:m);
%x=xnew;
%p=D^2*x;
%alpha=max(max(p’./(1-w’),-p’./(1+w’)));
%w=w+(2/(3*alpha))*p;
%err=norm(x,1)-w’*x;
%cvg=err<tol;
%it_count=it_count+1;
%end;
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[31] A.-V. Vuong, C. Giannelli, B. Jüttler and B. Simeon, A hierarchical ap-
proach to adaptive local refinement in isogeometric analysis, Comput.
Methods Appl. Mech. Engrg., 200:3554–3567, 2001.

[32] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Huges, S. Lipton,
M.A. Scott, T.W. Sederberg, Isogeometric analysis using T-splines, Com-
put. Methods Appl. Mech. Engrg., 199: 229–263, 2010.

[33] Wang P., Xu J., Deng J., Chen F., Adaptive isogeometrican alysis using
rational PHT-splines, Computer-Aided Design, 43:1438–1448, 2011.

[34] Johannessen K A, Kvamsdal T, Dokken T. Isogeometric analysis using L-
R B-splines, Computer Methods in Applied Mechanics and Engineering,
269:471–514, 2014.

[35] Evans E.J., Scott M.A., Li X., Hierarchical analysis-suitable T-splines: For-
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Highlights

• We find an economical representation of the spline approximation of
the PDE by using a compressive sensing approach.

• The number of nonzero coefficients of the proposed economical repre-
sentation is less than the number of the standard spline representation
over the last refined partition, while the error of the spline approxi-
mation with an economical representation is the same to the standard
FEM solution.

• The sparsity of a PDE solution may not be very small in general. We
present a new way to solve a sparse solution of an underdetermined
system in order to adapt to computing an economic representation of
PDE solution.

1



Conflict of interest

The authors declared that they have no conflicts of interest to this work.

1


