Accepted Manuscript

An Economical Representation of PDE Solution by using Compressive Sensing Approach

PII: \quad S0010-4485(19)30195-2
DOI: https://doi.org/10.1016/j.cad.2019.05.021
Reference: JCAD 2707
To appear in: Computer-Aided Design

Please cite this article as: H. Kang, M.-J. Lai and X. Li, An Economical Representation of PDE Solution by using Compressive Sensing Approach. Computer-Aided Design (2019), https://doi.org/10.1016/j.cad.2019.05.021

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

An Economical Representation of PDE Solution by using Compressive Sensing Approach

Hongmei Kang
School of Mathematical Sciences, Soochow University, No. 1 Shizi Street, Suzhou 215006, Cr
Ming-Jun Lai*
Department of Mathematics, The University of Georgia, Athens, GA 30602, United Su
Xin Li*
School of Mathematical Sciences, University of Science and Technology of China, No. 96 Jinzu ${ }^{\text {Por ., Hefei 230026, China }}$

Abstract

We introduce a redundant basis for numerical solution to the Poisson equation and find asparse solution to the PDE by using a compressive sensing approach. That is, we refine a partition of the underlying doma. of the PDE several times and use the multi-level nested spline subspaces over these refinements to express the solution of the PDE rec indantly. We then use a compressive sensing algorithm to find an economical representation of the spline approximation or he PDF solution. The number of nonzero coefficients of an economical representation is less than the number of the standard spı. ${ }^{\circ}$ repıcoentation over the last refined partition, i.e. finite element solution while we will show that the error of the spline approximation ith an economical representation is the same to the standard FEM solution. This approach will be useful, e.g. in the situa. 'u wnen the PDE solver has a much powerful computer than

 the users of the solution.Keywords: Isogeometric analysis, Compressive sensing, Sparse so. 'tuun. Es, Economical representation.

1. Introduction

In the standard weak formulation of the Poisson equation, \therefore a numerical solution is searched in a finite dimensional Sobolev space by solving the squared system of linear equations As the exact solution may change rapidly over one subregior and SIL 1 ly over the other, in order to achieve a higher accurac: tradition 1ly one has to refine the underlying partition/mesh ma. tir is. In this way, the dimension of the solution spar : increases significantly. Thus, one needs to use a lot of ' seffi' ents 'more than necessary) to approximate the PDE sclutic A raightforward way to correct this problem is to r , e the ada a_{t}, ve finite element method (AFEM)(cf. [24, 25, 26]) in. 'is, one solves the PDE based on a reasonably refined partition/mesı. 'gether with adding locally refined basis functions. tu d , one compares the right-hand side associated with the r amer cal solution with the exact right-hand side to induce an pu^{\bullet} or error estimate. If the error is not within tolerance, ne adds. 'ocal refinement in the partition/mesh according to : verta a refinement rule and then repeats the computational proce. eo agair

Isogeometric analysis (IGA ${ }^{f} r$ r shu. ${ }^{\text {. }}$, vas introduced as a new approach for solving PDEs cf. [28, 39]). The essence of IGA is a collection of methods th: uses spl les or some of their extensions as approximation spac whi. 4 are then used for solving PDEs numerically. T' $\mathrm{T}^{\text {cec has been a lot of work on develop- }}$ ing different kinds o splines sed in IGA. Some of them can be found at $[29,31, ~, ~, 33,3<35]$ and the references therein. And most of these splint. - ocally refinable splines thus they
"Corresponding author $_{\quad \text { Email addresses: mjlaicuga.edu (Ming-Jun Lai*), }}^{\text {lixustc@ustc.edu.cn (Xin Li*) }}$
Preprint submitted to SPM 2019
s. Dort an adaptive refinement framework when they are used in 'GA (cf. [23, 27, 36]). The refinement is performed on elements uicording to a certain refinement rule based on posterior error estimates. And the posterior error estimates generally come from some existing estimates in FEA. See [24, 25, 26].

It can be seen the above adaptive refinement is a greedy and strategic refinement, thus there are always a lot of redundant elements to be refined. Furthermore, some kinds of splines are defined over meshes with specific structures, so extra elements are refined to satisfy the requirement of mesh structures. For example, the local refinement of T-splines [23] needs extra elements to keep the exact geometry, analysis suitable T-splines [30] and PHT-splines [33] need to satisfy the constraints of analysissuitable T-meshes and hierarchical meshes respectively. Certainly these specific mesh structures destroy the original uniform structure of partitions. Different problems require different refined meshes. In this sense, the traditional adaptive method has some unsatisfactory side effects. Therefore it is necessary to introduce a new adaptive method for selecting basis functions globally.
In this paper, we propose to use a sparse model to find a solution with an economic number of nonzero coefficients to the PDE with the similar accuracy as the standard weak solution. More precisely, we shall use uniformly refined partitions. The basis functions on different levels are collected together to form a redundant finite dimensional Sobolev space. From this redundant space, we choose the minimal number of basis functions to approximate the solution for the same accuracy as the standard finite element method based on the spline space over the finest partition, i.e. the last level of refinement of the partition of the domain. For example, when using bicubic spline functions over the 6 th level of refinement of the unit square Ω to approximate
the solution of a Poisson equation, if the solution happens to be $x^{3} y^{3}$, one can simply use the bicubic spline functions over the first level of refinement of Ω to represent the solution. The proposed method will find such a simple representation with a much smaller number of nonzero coefficients (the coefficients for the basis functions over the first level of refinement) than the solution from the standard FEM based on the basis functions over the 6th level of refinement of Ω. For another example, if the solution u to a Poisson equation has a constant value over a subdomain with large area inside Ω, then u can have a sparser representation than the standard FEM solution since u can be represented using fewer basis functions over the previous levels of refined partitions than that of the basis functions over the last refined partition. In general, if a solution can be well approximated by using spline functions over the $(n-1)$ th refined partition within the tolerance ϵ, our proposed method can find this solution when using all combined spline functions over all the k th refined partitions, $1 \leq k \leq n$. The solution will have a much fewer nonzero coefficients than the weak-form spline solution over the nth refined partition.

The proposed computation can be done by projecting the basis functions in all levels of refined spaces into the last refined space via a Galerkin projection. In this way, we obtain a rectangular stiffness matrix. This stiffness matrix multiplied by an unknown vector equals the projection of the right term in the last refined space. This results in a linear system of rectangular size. Then we find the sparse solution of this rectangular linear system. These concepts will be explained in detail in a later section. We focus on B-splines/tensor product B-splines currently to illustrate the ideas proposed in this paper. Certainly, the ideas can be extended to other kinds of splines for numerical solutions of various parti. differential equations.

There are many computational algorithms developed for sparse solutions of long rectangular linear system which in an underdetermined linear system. However, most of these algorithms can only find solutions with a small sparsity, e.g. $30-40 \%$ nonzero entries of the solution. We have to experimer . maı, qpproaches to see which one performs the best. After rather th rough investigation, certainly not an exhausted search, . four a good approach which is based on a mix of two cr nputation. algorithms which can find more 50% nonzero en' les c a so ${ }^{1}$ ution. This new algorithm will be presented in the nexı • ion ${ }^{+}$, gether with some convergence analysis and a sur nary or arsity recovery via many well-known computatio a algorithms will be given to demonstrate that our proposed aisorithn. orks the best. With this tool, we tackle the problem r - ding most economic solution to the PDE.

Another advantage of our methou ve any local refinement T-spline schemes is that the pre osed in thod does not create any T-junction points and has f^{\prime}.e sir plification of evaluation. Indeed, suppose we use refinei. it ' vel $=6$. A sparse solution whose nonzero coefficients wil o r scoupled into 6 groups to have 6 spline functions, rer the 5 nested refinements. Thus, we use de Boor's evaluatic , for 6 sp ine functions and then add these values together to ha, the $\mathrm{v}^{\text {r }}$ ue for the sparse solution. Also, the proposed me. ${ }^{1}$ is nuve economic than any triangulation based adaptive innite el nent method since it produces a set of coefficients as n . 11 as a sf of particular triangulation (a set of vertices and a list of ω an ation) which usually consists of a large data file. C \quad nr disadvantage of the proposed method is the computation ${ }^{1} t^{i}$ ne, which is much slower than the standard FEM/adaptive 1 M when the refined level is large due to the nature of the nonli..ar iterative steps. The topic is certainly worthy studying how to improve its computational efficiency.

On the other hand, if the person computing the solution to his/her PDE has a much powerful computer than the users of the solution, then this method can be useful. Also, if the solution will be used many times, it is recommend ' to have a sparse solution form once for all.
The remainder of this section ic \sim rganized as follows. In section 2, we explain an economic . 1 re J esentation of the Poisson Equation based on a sparse m. del. in section 3, an error estimate of the sparse solution from Ou. nroposed method is proved to have the similar error estimin - of the classic FEM solution. In section 4 , several numf . ${ }^{1}$ exatı ${ }_{1}$ les solved by the proposed method are demonstrate .. Se .u 5 concludes the paper with a summary and future wu.

2. An Economic epresen Ition of PDE Solution

In this section we ${ }_{r}$ - - ee a method to find an economic representation of the sr ${ }^{r}$ e solution to the PDE based on the compressive sens ıg sprot :h. Mainly, we shall use the greedy and l_{1} minimization algor' am to help find an approximation to the PDE solution ith tewer nonzero spline coefficients.

2.1. Disc, tizatir of PDEs

Consir r the Poisson equation:

$$
\begin{align*}
-\Delta u & =f, & & \Omega \subset \mathbb{R}^{2} \\
u & =g, & & \text { on } \partial \Omega \tag{1}
\end{align*}
$$

${ }^{\text {n }}$. re Ω is a bounded domain with Lipschitz boundary $\partial \Omega$. Let G . the geometric mapping which maps $[0,1]^{2}$ to Ω with s1. ๆth inverse, that is

$$
\mathbf{G}: \xi \in[0,1]^{2} \rightarrow(x, y) \in \Omega
$$

See Fig. 1 for a reference. To solve the Poisson equation over Ω using the weak formulation, we have

$$
\begin{equation*}
a(u, v):=\langle\nabla u, \nabla v\rangle=\langle f, v\rangle, \quad \forall v \in H_{0}^{1}(\Omega), \tag{2}
\end{equation*}
$$

Let us explain the weak formulation more precisely.

$$
\begin{equation*}
\langle f, v\rangle=\int_{[0,1]^{2}} f(\mathbf{G}(\xi)) v(\mathbf{G}(\xi)) \sqrt{\operatorname{det}\left(J^{\top} J\right)} \mathrm{d} \xi, \tag{3}
\end{equation*}
$$

where $J=\nabla_{\xi} \mathbf{x}$ with $\mathbf{x}=(x, y)$ and similarly,

$$
\begin{equation*}
\langle\nabla u, \nabla v\rangle=\int_{[0,1] \times[0,1]} \nabla_{\xi} u\left(\mathbf{G}(\xi)\left(J^{\top} J\right)^{-1} \nabla_{\xi} v(\mathbf{G}(\xi)) \sqrt{\operatorname{det}\left(J^{\top} J\right)} \mathrm{d} \xi .\right. \tag{4}
\end{equation*}
$$

2.2. The Sparse Model

We use a hierarchy of spline spaces to approximate the solution $u(\mathbf{G}(\xi))$. Let $S_{n}, n \geq 1$ be a sequence of nested finite dimensional subspaces of $H_{0}^{1}(\Omega)$, i.e.

$$
S_{1} \subset S_{2} \subset \cdots \subset S_{n}
$$

For example, we can choose a nested triangulation Δ_{n} of Ω by the standard uniform refinement strategy and let $S_{n}=S_{d}^{1}\left(\Delta_{n}\right)$ be the bivariate spline space of degree d and smoothness 1 over triangulation Δ_{n}. For a theory of splines, see [14] for more detail. See spline implementations in [1] and [20]. For another example, one can use the nested tensor product B-spline spaces starting

Figure 1: The Geometrical Map \mathbf{G} from a patch to the physical domain Ω.
with a rectangular parametric domain. This is the approach we adopt in this paper.

Write $S_{j}=\operatorname{span}\left\{\phi_{j, 1}, \cdots, \phi_{j, N_{j}}\right\}$, where N_{j} is the dimension of S_{j} and $\phi_{j, 1}, \cdots, \phi_{j, N_{j}}$ are B-spline basis functions spanning the spline space $S_{j}, j=1,2, \cdots, n$. Denote

$$
\begin{equation*}
\Phi_{j}=\left[a\left(\phi_{j, 1}, \phi_{n, i}\right), a\left(\phi_{j, 2}, \phi_{n, i}\right), \cdots, a\left(\phi_{j, N_{j}}, \phi_{n, i}\right)\right]_{i=1, \cdots, N_{n}}, \tag{5}
\end{equation*}
$$

as the rectangular stiffness matrix of size $N_{n} \times N_{j}$ for $j=1, \cdots, n$, where $a\left(\phi_{j, 1}, \phi_{n, i}\right)=\left\langle\nabla \phi_{j, 1}, \nabla \phi_{n, i}\right\rangle$ for all $j=1, \cdots, n, i=$ $1, \cdots, N_{n}$. Let Φ be the basis functions on all levels,

$$
\Phi=\left[\Phi_{1}, \Phi_{2}, \cdots, \Phi_{n}\right]
$$

and $\mathbf{b}=\left[\left\langle f, \phi_{n, 1}\right\rangle, \cdots,\left\langle f, \phi_{n, N_{n}}\right\rangle\right]^{\top}$. We look for solution $\mathbf{x} \in$ $\mathbb{R}^{N_{1}+\cdots+N_{n}}$ such that

$$
\begin{equation*}
\min \left\{\|\mathbf{x}\|_{0}, \quad \Phi \mathbf{x}=\mathbf{b}\right\} \tag{6}
\end{equation*}
$$

where $\|\mathbf{x}\|_{0}$ is the number of nonzero entries of \mathbf{x}, Φ is c^{\cdots} $N_{n} \times\left(N_{1}+\cdots+N_{n}\right)$ and \mathbf{b} is of size $N_{n} \times 1$. Let $\mathbf{x}_{\mathbf{b}}$ be the spat. solution of (6) with $\left\|\mathbf{x}_{\mathbf{b}}\right\|_{0}<N_{n}$. Write

$$
\Psi=\left[\phi_{1,1}, \cdots, \phi_{1, N_{1}}, \phi_{2,1}, \cdots, \phi_{2, N_{2}}, \cdots, \phi_{n, 1}, \cdots \phi_{\left.n, N_{n}\right\lrcorner}\right.
$$

and let $u^{*}=\Psi \mathbf{x}_{\mathbf{b}}$. Then $u^{*} \in S_{n}$ and satisfies

$$
\left\langle\nabla u^{*}, \nabla \phi_{n, j}\right\rangle=\left\langle f, \phi_{n, j}\right\rangle, \quad \forall j=1, \cdots, N_{n}
$$

By the uniqueness of the weak solution, u^{*} is t_{c} • eak slution in S_{n} for (1). However, the number of nonz io coethi its is the smallest. In this way, we can find the m sentation of the weak solution in the nested sul. ace sequence $\left\{S_{1}, S_{2}, \cdots, S_{n}\right\}$.

We shall present one example of 1Γ Pois on equations to show the above sparse model. The exact su 'ti $\mathrm{n} u(x)=-\tanh (((x-$ $\left.\left.0.5)^{2}-r\right) / s r\right)+1.0, x \in[0,1]$, , here $r \quad 0.0625, s r=0.01$. f is derived from (1). This $u($) ha a sharp gradient around $x=0.2$ and $x=0.8$, as shown - F^{\prime} s. 2($\%$. In order to recover this sharp gradient and have an econ ni 11 representation, more knots should be located at nese tvo praces and less knots are located at the rest domain, vhen $\mathrm{B}-\mathrm{s}$ 'ines are applied in solving (1). Fig. 2(b) shows the nun. rical sr ution u_{h} solved with $n=4$, where the coefficients .ar eacı revels are marked by different colors. It can be seer that $u_{h} \stackrel{\text { 's much more non-vanishing co- }}{ }$ efficients around the ' harp grar ient, while only the coefficients on the first level are non ning on the flat domain. In Table $1, N$ is equal to $\quad{ }_{r}+\cdots+N_{n}$, and sparsity here refers to the number and the ne entage of nonzero coefficients. For each n, the sparsity of ou. method is much smaller than N_{n} and the L_{2}-norm error solved b, our method is the same as that of FEM on each level.

(a) exa ${ }^{\wedge}$ t solut. $u(x)$

(b) .aumerical solution $u_{h}(x)$

Figure 2: 1D numerı, 1 solution solved by (6) with $n=4$ and coefficients on different. 1 l .

2.2 Cnmal. ional Algorithms

Spa. - solutions of underdetermined linear system has been -tivelv sudied in the last fifteen years. Commonly, the mininiz aon (6) is replaced by

$$
\begin{equation*}
\min \left\{\|\mathbf{x}\|_{1}, \quad \Phi \mathbf{x}=\mathbf{b}\right\} \tag{7}
\end{equation*}
$$

here $\|\mathbf{x}\|_{1}$ is the ℓ_{1} norm of vector $\mathbf{x}=\left(x_{1}, \cdots, x_{N}\right)^{\top}$ with $\|\mathbf{x}\|_{1}=$ $\sum_{j=1}^{N}\left|x_{j}\right|$, and $N=N_{1}+\cdots+N_{n}$. This problem can also be recast as

$$
\begin{equation*}
\min \left\{\|\Phi \mathbf{x}-\mathbf{b}\|^{2},\|\mathbf{x}\|_{0} \leq s\right\} \tag{8}
\end{equation*}
$$

for a guessed sparsity s. There are many computational algorithms available based on convex minimization and non-convex minimization approaches. We refer to [21], [17], [7], [8], [6], [4], [2], [3], [13], [10], [16], [18], [19], [12], [22], [9], [15], and etc.. Most of them work well when the sparsity of a sparse solution is small. However, the sparsity of a PDE solution may not be very small in general. A straight-forward application of these numerical algorithms does not work well in finding the economical reprsentation of the PDE solution. In particular, when a PDE in the 2D and 3D settings, the solution may not have a small sparsity. Nevertheless, various ideas behind these algorithms provide us hints for finding a good new efficient way. We have experimented many approaches mentioned above and find a good one for economic representation of the PDE solution.

	Our method			FEM					
n	N	sparsity	$\left\\|u-u_{h}\right\\|_{L^{2}}$	N_{n}	$\left\\|u-u_{h}\right\\|_{L^{2}}$				
2	54	$27(50 \%)$	$2.9137 \mathrm{e}-2$	35	$2.9139 \mathrm{e}-2$				
3	121	$48(39.7 \%)$	$1.7916 \mathrm{e}-3$	67	$1.7921 \mathrm{e}-3$				
4	252	$74(29.4 \%)$	$3.4741 \mathrm{e}-4$	131	$3.4695 \mathrm{e}-4$				
5	511	$145(28.4 \%)$	$1.5292 \mathrm{e}-6$	259	$1.4984 \mathrm{e}-6$				
6	1026	$345(33.6 \%)$	$8.8701 \mathrm{e}-8$	515	$8.5733 \mathrm{e}-8$				

Table 1: number of non-vanishing coefficients solved with different n of the 1D example.

The MATLAB version of our approach is concluded in Algorithm 1. The basic idea is to use the levels of the magnitude of the entries in the sparse solution vector when finding the sparse solution. That is, we first compute the largest entries (top 87%) of the sparse solution vector. Then we use 0.1 to put the columns of the sensing matrix associated with the largest entries in a less important part to have a modified sensing matrix so that we can compute the next batch of the entries of the sparse solution vector. The parameters 0.1 and 0.87 can be adjusted. The values 0.1 and 0.87 were chosen based on a large amount of our experiments.

The main computation of Algorithm 1 is done by L1min which is a revised version of the code discussed in [17] and is enclosed in the Appendix. The original L1min is used for the L_{1} minimization for scattered data interpolation in [17]. Here we rewrote it to find the sparse solution of underdetermined linear system instead. The main ingredient is the interior point method to solve the linear programming problem which is equivalent to finding the solution to L_{1} minimization problem.

```
Algorithm \(1 \mathrm{x}=\) lai2012(A,y)
    Input: a matrix \(A\) of size \(m \times n(m<n)\), a vector \(y\) of size
    \(m \times 1\).
    Output: a vector \(x\) of size \(n \times 1\).
        NIt=3;
        \([\mathrm{m}, \mathrm{n}]=\operatorname{size}(\mathrm{A}) ; \mathrm{AW}=\mathrm{A} ; \mathrm{W}=\) ones(n,1); iv=zeros(n,1);
        \(\mathrm{j} 0=1\); \(\mathrm{x}=\mathrm{iv}\);
        for \(\mathrm{i}=1\) :NIt
            \(\mathrm{x}=\mathbf{L 1 m i n}(\mathrm{AW}, \mathrm{y}, 1 \mathrm{e}-9, \mathrm{iv})\);
            \(\mathrm{x}=\mathrm{x} . / \mathrm{W}\);
            if \(1==\mathrm{i}\)
                \(\left[\begin{array}{ll}\mathrm{Mx} & \mathrm{j} 0\end{array}\right]=\max (\operatorname{abs}(\mathrm{x}))\);
            end
            \(\mathrm{Mx}=\mathrm{Mx}^{*} 0.87\);
            \(\mathrm{W}=(\operatorname{abs}(\mathrm{x})>\mathrm{Mx}) / 10+(\operatorname{abs}(\mathrm{x}) \leq \mathrm{Mx})\);
            for \(\mathrm{j}=1: \mathrm{n}\)
                \(\mathrm{AW}(:, \mathrm{j})=\mathrm{A}(:, \mathrm{j}) / \mathrm{W}(\mathrm{j}) ;\)
            end
        end
```

The Algorithm 1 is different from the al orithm u ribed in [13] in the sense that we use L1min instr in of the well-known magicL1. The major reason to use L1n,in is tis. hetter performance. Let us illustrate by numerical _riments. Consider a matrix A of size 64×128 with uniforr rand m variables as its entries. Let $\mathbf{x}_{\mathbf{b}}$ be a vector of sparsity s, ${ }^{+h}$. Ionzero entries which are uniform random values. For ${ }^{\prime}=A \mathbf{x}_{\mathbf{b}}$, ve use Algorithm 1 to solve \mathbf{x}^{*} and measure the may mur norm. For simplicity, we use Gaussian random matrices $f 6 \times 1^{\prime} 8$ with sparsity from $1-45$. We test Algorithm 1 with $\perp{ }^{\prime} \eta^{\prime}$, replaced by magicL1 from Candés webpage (cal^{\prime} _d $\mathbf{K P}$ in short, see [13]), Algorithm 1 (called Lai in short), i sratively sweighted ℓ_{1} minimization (called CWB in short, see ${ }^{-17}$), the IISTA algorithm (cf. [2]), hard thresholding pure algonum (called HTP in short, see [10]). In addition, C IMP st. ids for the generalized message passing algorithm (ci [37]). he method GAMP is very special, only working for c independent run $\because \quad$ recovery for sparsity $s=1, \cdots, 45$. The percentage of acr lery (or frequency of successes of recovery) is shown in Fig. 3, where x-axis represents the sparsity s and y-axis represents t.equency of successes of recovery during experiments. Similar performance can be seen for the uniform

random su. -ing matrices. We omit the graph for convenience. F $1 \mathrm{~s} . \boldsymbol{\nu}$, vur program Algorithm 1 is able to recover sparse soluu ns with nonzero entries more than 50% of the entire entries witt cery high frequency.
\checkmark - un w give a convergence analysis of Algorithm 1. It is easy t. ee that the algorithms above are equivalent to solving

$$
\begin{equation*}
\mathbf{x}^{(k)}:=\arg \min \left\{\left(W^{(k-1)}\right)^{\top}|\mathbf{x}|, \quad A \mathbf{x}=y\right\} \tag{9}
\end{equation*}
$$

here $|\mathbf{x}|=\left(\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{n}\right|\right)^{\top}$ denotes the absolute value of $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}$. Note that $W^{(k-1)}$ divides the indices of \mathbf{x} into two groups: one is the less important portion of the indices collected in $J_{M_{k-1}}$ which is scaled by 0.1 and the other is more important portion of the indices denoted by $I_{M_{k-1}}$. Here M_{k-1} is equal to the variable $M x$ at step k iteration in Algorithm 1. Heuristically, in each step the larger components of the iterative solution $\mathbf{x}^{(k)}$ are found and moved in the less important group while the smaller components of $\mathbf{x}^{(k)}$ are needed to compute more accurately and hence are moved to the important group.

To study the convergence of the iterative solutions $\mathbf{x}^{(k)}$, we first show that $\left\|\mathbf{x}^{(k)}\right\|_{1}, k \geq 1$ are bounded. To this end, we define three functions:

$$
\begin{equation*}
L_{M}(\mathbf{x})=\sum_{i=1}^{n} g_{M}\left(x_{i}\right)+0.1 f_{M}\left(x_{i}\right) \tag{10}
\end{equation*}
$$

where $g_{M}(x)=\min \{|x|, M\}$ and $f_{M}(x)=\max \{|x|, M\}$ for any $x \in$ $(-\infty, \infty)$. Note that for each $x \in(0, \infty)$,

$$
L_{M}(x)=g_{M}(x)+0.1 f_{M}(x)
$$

is concave. It can be seen as in Fig. 4.
It is easy to see that $L_{M}(x) \leq L_{N}(x)$ if $M \leq N$. A crucial observation is the subgradients of L_{M}, g_{M} and f_{M} are connected in the following way:

$$
\begin{equation*}
\partial L_{M}(x)=\partial g_{M}(x)+0.1 \partial f_{M}(x)=I_{M}(x)+0.1 J_{M}(x) \tag{11}
\end{equation*}
$$

for each $x \in(-\infty, \infty)$. Also, $L_{M}(\mathbf{x})=\left(\partial L_{M}(\mathbf{x})\right)^{\top}|\mathbf{x}|$. The steps inside lai2012.m are

$$
\begin{equation*}
\mathbf{x}^{(k)}:=\min _{\mathbf{x}}\left\{\partial L_{M_{k-1}}\left(\mathbf{x}^{k-1}\right)^{\top}|\mathbf{x}|, \quad A \mathbf{x}=y\right\} \tag{12}
\end{equation*}
$$

Figure 4: Functions g_{M}, f_{M} and L_{M}
where $|\mathbf{x}|=\left(\left|x_{1}\right|,\left|x_{2}\right|, \cdots,\left|x_{n}\right|\right)^{\top}$ for any $\mathbf{x}=\left(x_{1}, x_{2}, \cdots, x_{n}\right)^{\top}$.
We now claim that

$$
\begin{equation*}
L_{M_{k}}\left(\mathbf{x}^{(k+1)}\right) \leq L_{M_{k-1}}\left(\mathbf{x}^{(k)}\right) \tag{13}
\end{equation*}
$$

for all $k \geq 1$. Indeed, due to the concavity of L_{M} and (12), we have

$$
\begin{aligned}
L_{M_{k}}\left(\mathbf{x}^{(k+1)}\right) & \leq L_{M_{k}}\left(\mathbf{x}^{(k)}\right)+\partial L_{M_{k}}\left(\mathbf{x}^{(k)}\right)^{\top}\left(\left|\mathbf{x}^{(k+1)}\right|-\left|\mathbf{x}^{(k)}\right|\right) \\
& =L_{M_{k}}\left(\mathbf{x}^{(k)}\right)+\min _{\mathbf{x}} \partial L_{M_{k}}\left(\mathbf{x}^{(k)}\right)^{\top}\left(|\mathbf{x}|-\left|\mathbf{x}^{(k)}\right|\right) \\
& \leq L_{M_{k}}\left(\mathbf{x}^{(k)}\right) \leq L_{M_{k-1}}\left(\mathbf{x}^{(k)}\right)
\end{aligned}
$$

since $M_{k} \leq M_{k-1}$. It therefore follows
Lemma 1 Suppose that $\left\|\mathbf{x}^{(2)}\right\|_{1}$ is bounded. Then there exists a convergent subsequence from $\mathbf{x}^{(k)}, k \geq 1$ and a limit \mathbf{x}^{*} such th. $\mathbf{x}^{\left(k_{j}\right)} \rightarrow \mathbf{x}^{*}$ as $j \rightarrow \infty$.

Proof. It has $g_{M_{k-1}}\left(\mathbf{x}^{(k)}\right)+f_{M_{k-1}}\left(\mathbf{x}^{(k)}\right)=\left\|\mathbf{x}^{(k)}\right\|_{1}+M_{k-1} \geq\|.\|_{1}$. By using (13), we have

$$
\begin{aligned}
0.1\left\|\mathbf{x}^{(k)}\right\|_{1} & \leq 0.1\left(g_{M_{k-1}}\left(\mathbf{x}^{(k)}\right)+f_{M_{k-1}}\left(\mathbf{x}^{(k)}\right)\right) \leq L_{M_{k-1}} \\
& \leq \cdots \leq L_{M_{1}}\left(\mathbf{x}^{(2)}\right) \leq\left\|\mathbf{x}^{(2)}\right\|_{1}
\end{aligned}
$$

for each $k \geq 1$. It follows that $\mathbf{x}^{(k)}, k \geq 1$ are bou ded and i. ice, there exists a convergent subsequence from $\mathbf{x}^{(k)} k \geq$ and ~ limit \mathbf{x}^{*} such that $\mathbf{x}^{\left(k_{j}\right)} \rightarrow \mathbf{x}^{*}$ for $j \rightarrow \infty$.

Lemma 2 Let $\widehat{\mathbf{x}}$ be the sparsest vector $w . h$ satisfies $A \mathbf{x}=y$. Then the limit \mathbf{x}^{*} of any subsequence of $\mathbf{~}{ }^{.}$satu, "s

$$
\begin{equation*}
\left\|\mathbf{x}^{*}\right\|_{1} \leq\|\mathbf{x}\| \tag{14}
\end{equation*}
$$

Furthermore, if \mathbf{x}^{*} and \mathbf{y}^{*} be two limı. if the subsequences of $\mathbf{x}^{(k)},\left\|\mathbf{x}^{*}\right\|_{1}=\left\|\mathbf{y}^{*}\right\|_{1}$.

Proof. Let $\alpha=\min _{\widehat{\mathbf{x}}_{i} \neq 0}\left|\widehat{\mathbf{x}}_{i}\right|>$, F , $k 1$ rge enough, we have $M_{k}<\alpha$ and hence, $L_{M_{k}}\left(\mathbf{x}^{(k+1)} \leq L_{M_{\Lambda}} \digamma^{\circ}\right)=0.1\|\mathbf{x}\|_{1}$. It follows that $0.1\left\|\mathbf{x}^{*}\right\|_{1} \leq 0.1\|\mathbf{x}\|_{1}$ si ce $\left.L_{M_{k_{j}}} \mathrm{Y}^{*}\right) \rightarrow 0.1\left\|\mathbf{x}^{*}\right\|_{1}$. Thus, we have (14).

Similarly, we have $0.1\left\|\mathbf{x}^{*}\right\|_{.}<I_{k_{k j}}\left(\mathbf{y}^{*}\right)$ for $j \rightarrow \infty$. That is, $0.1\left\|\mathbf{x}^{*}\right\|_{1} \leq 0.1\left\|\mathbf{y}^{*}\right\|_{1}{ }^{\top}$ ' ais statf ment can be reversed. These complete the proof.

Therefore, we have oblanud the following
Theorem 1 Suppe $\quad t$ at the sparse solution $\widehat{\mathbf{x}}$ is solved by the standard ℓ_{1} minimiza on:

$$
\begin{equation*}
\widehat{\mathbf{x}}:=\min _{\mathbf{x} \in \mathbb{R}^{n}}\left\{\|\mathbf{x}\|_{1}: \quad A \mathbf{x}=y\right\} \tag{15}
\end{equation*}
$$

For example, the $R C \delta_{2 s}$ of 4 satisfies $\delta_{2 s}<1$ or δ_{s} of Φ satisfies $\delta_{s}<1 / 3$ (see [5]). . 'ทen lai' 012.m converges and the limit \mathbf{x}^{*} is equal to $\widehat{\mathbf{x}}$.

Proof. By Lelı. . a 2 ab ve, the limit \mathbf{x}^{*} of any subsequence from $\mathbf{x}^{(k)}$ obtaine. ' ${ }^{\text {s side }}$ '. .2012 .m satisfies $\left\|\mathbf{x}^{*}\right\|_{1} \leq\|\mathbf{x}\|_{1}$ and $\Phi \mathbf{x}^{*}=\mathbf{b}$. It follows that $\mathbf{x}=\widehat{\mathbf{x}}$. Thus, lai2012.m converges.

3. Appı imation of Our Economical Solution of PDE

L. ' \mathbf{x}^{*} be a sparse solution satisfying $\Phi \mathbf{x}^{*}=\mathbf{b}$. Let s^{*} be the spline tu. tion with coefficient vector \mathbf{x}^{*}. The $\Phi \mathbf{x}^{*}=\mathbf{b}$ implies that

$$
\begin{equation*}
\left\langle\nabla s^{*}, \nabla s\right\rangle=\langle f, s\rangle, \forall s \in S_{n} \tag{16}
\end{equation*}
$$

${ }^{\tau_{+}}$is ..nown that $\langle\nabla u, \nabla s\rangle=\langle f, s\rangle$ and hence, we have

$$
\begin{equation*}
\left\langle\nabla\left(u-s^{*}\right), \nabla s\right\rangle=0, \forall s \in S_{n} \tag{17}
\end{equation*}
$$

Using the coercivity, we have

$$
\left\|\nabla\left(u-s^{*}\right)\right\|^{2}=\left\langle\nabla\left(u-s^{*}\right), \nabla(u-s)\right\rangle \leq\left\|\nabla\left(u-s^{*}\right)\right\| \cdot\|\nabla(u-s)\|
$$

for any $s \in S_{n}$. In particular, if we choose a quasi-interpolatory spline $s(u)$ of u, we should have

$$
\left\|\nabla\left(u-s^{*}\right)\right\| \leq \min _{s \in S_{n}}\|\nabla(u-s)\| \leq\|\nabla(u-s(u))\| \leq C h^{m}
$$

for a positive constant C independent of h when $u \in H^{m+1}(\Omega)$ and h is the size of the partition corresponding to the space S_{n}. Therefore, we have established the following

Theorem 2 Suppose that the solution u is in Sobolev space $H^{m+1}(\Omega)$ for a real number $m \geq 1$. Let s^{*} be the spline solution with sparse coefficient vector \mathbf{x}^{*}. Then

$$
\left\|\nabla\left(u-s^{*}\right)\right\| \leq C h^{m}
$$

for a positive constant C independent of h.

4. Numerical Simulation Results

In this section, we shall give several examples to demonstrate the efficiency of the proposed method. Denote by DOF $=$ $\sum_{i=1}^{n} N_{i}$ the sum of degree of freedom of $S_{i}, i=1,2, \cdots, n$. The sparsity here refers to the number as well as the percentage of nonzero coefficients of the numerical solution. The convergence
rate $C R$ with respect to the norm $\|\cdot\|$ at the refinement level l is roughly defined as

$$
C R=\frac{2 \log \left(\left\|e_{h, l}\right\| /\left\|e_{h, l-1}\right\|\right)}{\log \left(n_{l-1} / n_{l}\right)},
$$

where n_{l} denotes the number of the degree of freedom and $e_{h, l}$ denotes the error $u-u_{h}$ at refinement level l.

First of all, we have tested the correctness of our program by finding the sparse spline approximation of a Poisson equation whose solution is a polynomial like $u=x(1-x) y(1-y)$. Our sparse solution only needs a very few coefficients (about 9) while the FEM solution requires more than 1000 nonzero coefficients when the refinement level is 5 . In the same fashion, if a solution can be approximated very well by using spline functions over the ($n-1$)th refined partition and using the spline functions over the nth refined partition can not improve the accuracy any more, our proposed method will find the solution over the $(n-1)$ th refined partition instead and hence, have an economic representation of the PDE solution.

Next we present a table to show the comparison of the sparsity of the coefficient vectors of the standard FEM and our sparse solution.

Example 1 Let $u=\arctan \left((8 x-4)^{2}-(8 y-4)^{2}\right)$ be the solution of the Poisson equation (1) with the right-hand side f which is derived from the exact solution u. We solve it by using the standard FEM and our sparse solution method (SSM). In Table 2, we show the accuracies in L_{2} norm and H^{1} semi-norm at different levels of refinement of the two methods. In addition, we show the number of columns of the stiffness matrix (DOF) for the standa; FEM as well as the number of columns of the rectangular stiffness matrix for our sparse solution method for various levols of refinement. The sparsity is calculated based on the absolute Iue of a coefficient is larger or equal to $1 e-6$. Finally, we presen the computational times for standard FEM and sparse solution method.

We have also repeated the above computation ir $u(x, y)=$ $\left.\tanh (40 y-80 x)^{2}\right)-\tanh (40 x-80 y)^{2},(x, y) \in[0,1] \times_{\llcorner }$(1]. 7 ue numerical results are similar as shown in Table .

From Tables 2 and 3, we can see that oul solu on r-esentations have a smaller number of nonzero coe $e_{\text {J. }}$. ints tan the standard FEM solution. The higher level of efinemer. ne fewer nonzero coefficients. This is because of w olutions are constants over several places. The place wnere the olution has a constant needs a fewer nonzero coeffic ... than the FEM solution. In general, the place where thes lutio can be well approximated by the spline functions over tir. fi st few levels of refinement will have fewer nonzero coef cients ı. ท the FEM solution over the last level of the refinem it.

One difficulty is that it takes n. -h nore ime to find the sparse solution than the FEM solutinn Thı 'c cill a research problem how to speed up the compu ation of sarse solution.

Next we compare our me nd wit' IGA based on hierarchical B-splines (HB-IGA for ...Jt) $\left[J_{1}\right]$. Hierarchical B-splines, composed of B-splines w d differ it resolution, is a nature way of refining tensor produc splines : laptively. In IGA, the numerical solution is represented u h: archical B-splines and a posterior error estimatc .atructed to induce the refinement. This method is integrat. 4 j to the software GeoPDEs [11]. We use this software to obta. the solution solved by HB-IGA. We are going to use three diffe. ent functions to compare and will make some conclusive remarks after the following three examples.

Example 2 The exact solution

with $(x, y) \in[0,1] \times[0,1], r=0.25$ and $s r=0.03 . f$ is derived from (1).
The exact solution u has a harp gradient around the circle $(x-0.5)^{2}+(y-0.5)^{2}=0.25^{2}$, $几$, rring to Fig. 5. Thus more degree of freedom is needed to , nture .nis feature. Fig. 6 shows the non-vanishing coefficirsolve. 'y our sparse method when $n=5$. It can be seen c ir sp method can adaptively select the basis functions to ${ }_{0}{ }^{+}$ar economical representation. Table 4 shows the result obtainea *our sparse method, including the degree of freedom, , jarsity, L_{2}-וorm error and H_{1}-norm error.

From Table 4, th se two t pes of solution methods (SSM and HB-IGA) are r^{1} ly ha. ..Δ compare with. For any fixed level of refinement $\mathrm{HB}^{-} \because$ does not produce the most accurate solution while , $\wedge^{\prime} s M \dagger$ nds a near best approximation. On the other hand for the siv alar accuracy, the sparsity of SSM is not as good as the , T -IGA. However, HB-IGA needs elements from additional levels, f refinement. Thus we compare the convergence ralc ${ }^{f}$ our rethod with HB-IGA and TB-IGA (IGA based tensor ${ }_{r}$-duct \boldsymbol{v}-splines) in Fig. 7. It can be seen that the convergence rate ${ }^{\prime}$ ' vur method is similar to that of HB-IGA, but faster tí. - IB-IGA under uniform refinement. Also, the partition associalc with HB-IGA solution is complicated as it depends on -ncterior error estimate. The representation of the solution in TB GA format will require, not only coefficients, but also the st. cture of the resulting mesh with many T-joints. Evaluation -an . e more complicated than the SSM which simply use the de Burr evaluation algorithm. For the SSM, the coefficients with Iditional index component of the level of refinement are needed as the nested partitions are standard. In these senses, the SSM gives a more economic representation than that of HB-IGA.

5. Conclusion and Discuss

We have developed a computational algorithm to find a sparse solution to Poisson equations based on B-splines or tensor product of B-splines over uniform refinements of the underlying domain. Our the sparse solution has fewer nonzero coefficients than the standard FEM solution. We have shown that the sparse solution has the same approximation power as the standard FEM solution. As we use multi-level refined partitions which have structured basis functions and hence, the evaluation based on de Boor's algorithm will be much easier than the hierarchical T-spline basis functions. In addition, we introduce an effective sparse solution solver based on a greedy ℓ_{1} strategy invented in [13] and an interior point method for the ℓ_{1} minimization as used in [17]. Numerical experimental results show that this approach works well. This approach can certainly be extended to any elliptic partial differential equations by using any other spline spaces. We leave it to the interested reader to explore. On the other hand, we are not sure that the number of nonzero coefficients is the smallest possible. This is not easy to figure out as it depends on the behavior of the PDE solution and the performance of the sparse solution algorithm. Although we have demonstrate the performance of our sparse solution solver under the setting of Gaussian random matrices and uniform random matrices, the performance of the solver to the rectangular systems from a PDE is not known. Numerical results from Tables 2 and 3 show that less than 75% and 65% coefficients for the two PDE solutions,

methods	level	L_{2} error	H^{1} error	DOF	sparsity	time
FEM	4	0.0469378	4.75221	361	361	0.54 s
SSM	4	0.0469378	4.75221	556	$316(56.8 \%)$	0.7
FEM	5	0.0115948	1.94281	1225	1225	$1 . \mathrm{s}$
SSM	5	0.0115948	1.94281	1781	$1140(64.0 \%)$	8.80 s
FEM	6	0.00137769	0.422249	4489	4489	$3 .-3 \mathrm{~s}$
SSM	6	0.00137769	0.422249	6270	$4136(66.0 \%)$	103.4 s
FEM	7	$5.71136 \mathrm{e}-05$	0.0351749	17161	17161	1.73 s
SSM	7	$5.71142 \mathrm{e}-05$	0.0351749	23431	$12556(53.6 \%)$	-49.82 s

Table 2: Detailed Comparison between Standard FEM (FEM) and Sparse Solutior , Nethe '.- M)

methods	level	L_{2} error	H^{1} error	DOF	sparsity	
FEM	4	0.125646	10.9247	361	361	time
SSM	4	0.125646	10.9247	556	$342(6.5 \%)$	0.43 s
FEM	5	0.0471463	6.68833	1225	1225	0.71 s
SSM	5	0.0471463	6.68833	1781	$1 / 4(650 \%)$	1.16 s
FEM	6	0.00993537	2.42931	4489	8.88 s	
SSM	6	0.00993537	2.42931	6270	$3754\left(599^{r} \%\right)$	105.05 s
FEM	7	0.000674981	0.326701	17161	1,61	12.41 s
SSM	7	0.000674981	0.326701	23421	$10611(45.3 \%)$	2179.78 s

Table 3: Detailed Comparison between Standard FEir. nd Sparse Solution Method

igure 5: . \quad xact solution of Example 2.

Figure 6: The coefficients solved by our method for Example 2.

methods	level	L_{2} error	H^{1} error	DOF	sparsity	time
SSM	4	$4.0473 \mathrm{e}-2$	2.5000	556	$266(47.8 \%)$	3.21 s
SSM	5	$4.3717 \mathrm{e}-3$	$5.0432 \mathrm{e}-1$	1781	$924(51.9 \%)$	16.19 s
SSM	6	$1.1217 \mathrm{e}-4$	$3.1969 \mathrm{e}-2$	6270	$2592(41.3 \%)$	65.11,
SSM	7	$3.9247 \mathrm{e}-6$	$2.6146 \mathrm{e}-3$	23431	$6860(29.3 \%)$	1577.1 s
HB-IGA	4	$4.0473 \mathrm{e}-2$	2.5000		214	.4 o
HB-IGA	5	$4.3728 \mathrm{e}-3$	$5.0432 \mathrm{e}-1$		506	5.20
HB-IGA	6	$4.5169 \mathrm{e}-4$	$4.8061 \mathrm{e}-2$		1122	$1 \mathrm{~s} . \mathrm{s}$
HB-IGA	7	$9.3030 \mathrm{e}-5$	$8.4712 \mathrm{e}-3$		2777	-41 s
HB-IGA	8	$8.7084 \mathrm{e}-6$	$2.1392 \mathrm{e}-3$		5653	85.0
HB-IGA	9	$1.1308 \mathrm{e}-6$	$5.9735 \mathrm{e}-4$		108 c	$1 . \mathrm{o}_{\mathrm{s}}$

Table 4: Detailed Comparison between HB-IGA and Sparse Solution Method for Ex.. nle 2.

Figure 7: Convergence rate of our method SSM (red), HB-IGA (blach ar . TB-IGA (blue) under uniform refinement for Example 2.
respectively at refinement level 7 are needed. These indeed are big save. The major difficulty is the computational time foi ing a sparse solution when the size of linear system is large. Su. [9] for one attempt. We leave the study how to speed it up to a future research problem.

We have also compared with the well-knu - hier schical tensor-product B-spline functions for numer val solut. of PDE. For any fixed level of refinement, our meth 心 ${ }^{\text {n }}$ produce a more accurate solution than that of the HB-IG\& methu. However, for any fixed accuracy, the solution of $\mathrm{H}^{\mathrm{F}},{ }^{4}$ A is less sparse than our SSM. Especially when the solut on d es not have a lot of zeros, this phenomenon is more remar. 'h' \therefore. For example the exact solution is chosen as $\left.\left.u(x, y)=\operatorname{rrctan}^{\prime}{ }^{\wedge}-4\right)^{2}-(8 y-4)^{2}\right)$, $(x, y) \in[0,1] \times[0,1]$, which is a^{\prime} nost ionstants in several areas. The graph of this solution is $\mathrm{s}_{\mathrm{t}} \mathrm{wr}$ in $\mathrm{F}, .8$, where the sharp gradient locates at two diagonal line eonts of the square. Table 5 shows the result obtai ed by rur sparse method, including the degree of freedom, L_{2} norm err r and H_{1} semi-norm. We compare the convergence ra_{a}, of ou method with HB-IGA and TB-IGA in Fig. 9. It c? seen mat the convergence rate of our method is faster than IGA unc r uniform refinement, but is not so good with that of IB-IGA ecause of the solution does not have a lot of zeros. This ind a grand challenge problem: for a fixed accuracy, the most economic way to solve a PDE? HB-IGA combing itt some techniques of reducing the scale of the sparse problem () (for example the low rank method proposed in [38]) can be a candidate to the challenge problem. We leave the problem to the interested reader.

(a) Exact Solution in 3D

(b) Contour View

Figure 8: Exact solution(3D and Contour View)

Figure 9: Convergence rate of our method (red), HB-IGA (black) and TB-IGA (blue) under uniform refinement

methods	level	L_{2} error	H^{1} error	DOF	sparsity	time
SSM	4	0.04693	4.7522	556	316 (56.8\%)	1.79 s
SSM	5	$1.1594 \mathrm{e}-2$	1.9428	1781	1140 (64.0\%)	9.11s
SSM	6	$1.3776 \mathrm{e}-3$	0.42224	6270	4130 (65.9\%)	105.3^{+}
SSM	7	$5.7114 \mathrm{e}-5$	$3.5175 \mathrm{e}-2$	23431	12556 (53.6\%)	2205.65 s
HBIGA	5	0.01395	2.03324		645	. 0 -
HBIGA	6	$5.3576 \mathrm{e}-3$	0.61194		1197	17.15
HBIGA	7	$1.6565 \mathrm{e}-4$	$5.4275 \mathrm{e}-2$		3125	4L. is
HBIGA	8	$3.2329 \mathrm{e}-5$	$1.4126 \mathrm{e}-2$		4973	\bigcirc ? 988

Table 5: Detailed Comparison between HB-IGA and Sparse Solution M nod

Acknowledgement

The authors thank the reviewers for providing useful comments and suggestion. Hongmei Kang is supported by the National Natural Science Foundation of China (No. 11801393) and the Natural Science Foundation of Jiangsu Province (No. BK20180831). Ming-Jun Lai is supported by the National Science Foundation under the grant \#DMS 1521537. Xin Li is supported by the NSF of China (No.61872328), NKBRPC (2011CB302400), SRF for ROCS SE, and the Youth Innovation Promotion Association CAS.

Appendix

The following matlab program was used in our computation. We make it available so that more people can use it.
\%function $\mathrm{x}=\mathrm{L} 1 \mathrm{~min}(\mathrm{C}, \mathrm{b}, \mathrm{tol}, \mathrm{x} 0)$
$\% \%$ This function is to min $\$ \backslash|x \backslash| _1 \$$, subject to
$\% \% \$ \mathrm{Cx}=\mathrm{b} \$. \$$ tol $=0.0001 \$$, $\$ \mathrm{x} 0 \$$ is an initial
$\% \%$ guess satisfying \$Cx=b\$.
$\%$ It is written based on a paper "L^1 Spline
\%\% Methods for Scattered Data Interpolation
$\% \%$ and Approximation", M. J. Lai and P. I anstc.
\%\% Advances in Computational Mathematic
$\% \%$ vol. 21 (2004) pp. 293--315.
$\%[\mathrm{k}, \mathrm{m}]=\operatorname{size}(\mathrm{C}) ; \mathrm{x}=\mathrm{x} 0$;
\%alpha=norm(b,inf);
$\% \mathrm{w}=(2 /(3 * a l \mathrm{pha})) * \mathrm{x}$;
\%it_count=0; max_it=25;
$\% Z=\operatorname{zeros}(\mathrm{m}, 1)$;
\%cvg=0;
\%while ~cvg \& it_count <= max \rightarrow
$\% \mathrm{D}=$ spdiags (1-abs (w) , 0,m,m);
$\%$ xnew $=\left[\left[(D)^{\prime} *(D), C^{\prime}\right] ;\left[C\right.\right.$, spars $\left.\left.{ }^{\prime} \mathrm{l}, \mathrm{k}\right)\right] ; \ldots$
$\% \operatorname{sparse}(1, m+k)] \backslash[Z ; b ; 0]$;
\%xnew=xnew (1:m);
$\%$ x=xnew;
$\% \mathrm{p}=\mathrm{D}^{\wedge} 2 * \mathrm{x}$;
$\% \operatorname{alpha}=\max \left(\max \left(\mathrm{p}, /\left(1 \mathrm{w}^{\prime}\right),-{ }^{\prime} . /\left(1+\mathrm{w}^{\prime}\right)\right)\right)$;
$\% \mathrm{w}=\mathrm{w}+(2 /(3 * a l \mathrm{pha})) * \mathrm{p}$.
$\% e r r=n o r m(x, 1)-w ' * x$;
\%cvg=err<tol;
\%it_count=it_cou t+1;
\%end;

References

[1] G. Awanou, M. J. La, D. Wenston, The multivariate spline method for numerical solution of partal differential equations, in Wavelets and Splines, Nashboro Press, Brentwood, 24-74, 2006.
[2] A. Beck and M. T vurle, A Fas iterative Shrinkage-Thresholding Algorithm for Linear I verse Prot ms, SIAM J. Imaging Sciences, 2:183-202, 2009.
[3] T. Blumensath and $1, ~$ Dar is, Iterative hard thresholding for compressed sensing, Ap .. comput. Harmon. Anal., 27:265-274, 2009.
[4] J.-F. Cai, § Oshe anc. Z. Shen, Convergence of the Linearized Bregman Iteration $\mathrm{fc}{ }^{\circ}$ Norm Iinimization, Math. Comp., 78(268):2127-2136, 2009.
[5] T. T. Cai at. 7hang, A., Sharp RIP bound for sparse signal and low-rank matrix recovery, Applied And Computational Harmonic Analysis, 35:74-$93,-13$.
[6] I Canc B. Wakin, and S. Boyd, Enhancing sparsity by reweighted ℓ_{1} n. : mization, Journal of Fourier Analysis and Applications, 14:877905 301.
L. E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. li.. -m. Theory, 51(12):4203-4215, 2005.
rel Candes, E. J., J. K. Romberg, and T. Tao, Stable signal recovery from ac.uplete and inaccurate measurements, Comm. Pure Appl. Math., 59:1207-1223, 2006.
[[. Deng, W., Lai, M. J., Peng, Z. M. and Yin, W. T., Parallel Multi-Block ADMM with $o(1 / k)$ Convergence, Journal of Scientific Computing, 71:712736, 2017.
$\left.{ }^{1} 0\right]$ S. Foucart, Hard thresholding pursuit: an algorithm for compressive sensing, SIAM Journal on Numerical Analysis, 49(6):2543-2563, 2011.
[11] C. de Falco, A. Reali, R. Vázquez, GeoPDEs: A research tool for Isogeometric Analysis of PDEs, Advances in Engineering Software, 42(12), 2011.
[12] P. Gong, C. Zhang, Z. Lu, J. Huang, J. Ye, A general iterative shrinkage and thresholding algorithm for non-convex regularized optimization problems, The 30th International Conference on Machine Learning (ICML), 37-45, 2013.
[13] K. Kozlov and A. Petukhov, Sparse solution of underdetermined linear systems, in Handbook of Geomathematics, W. Freeden, M.Z. Nashed, T. Sonar (Eds.), Springer, 1243-1259, 2010.
[14] M. -J. Lai and L. L. Schumaker, Spline Functions over Triangulations, Cambridge University Press, 2007.
[15] M. -J. Lai and A. Varghese, On Convergence of the Alternating Projection Method for Matrix Completion and Sparse Recovery Problems, submitted , 2018.
[16] M. -J. Lai and J. Wang, An unconstrained ℓ_{q} minimization for sparse solution of under determined linear systems, SIAM J. Optimization, 21:82-101, 2011.
[17] M. -J. Lai, and Wenston, P., L^{1} Spline Methods for Scattered Data Interpolation and Approximation, Advances in Computational Mathematics, 21:293-315, 2004.
[18] M. -J. Lai, Xu, Y. Y. and Yin, W. T., Improved Iteratively Reweighted Least Squares for Unconstrained Smoothed ℓ_{p} Minimization, SIAM Journal on Numerical Analysis, 51:927-957, 2013.
[19] M. -J. Lai and Yin, W. T., Augmented ℓ_{1} and Nuclear-Norm Models with a Globally Linearly Convergent Algorithm, SIAM Journal Imaging Sciences, 6:1059-1091, 2013.
[20] L. L. Schumaker, Spline Functions: Computational Methods, SIAM Publication, 2015.
[21] J. A. Tropp, Greed is good: algorithmic results for sparse approximation, IEEE Trans. Inform. Theory, 50(10):2231-2242, 2004.
[22] J. Wang, P. Wonka, and J. Ye, Lasso screening rules via dual polytope projection, J. Machine Learning Research, 16(1):1063-1101, 2015.
[23] Michael R. Döfel, Bert Jütler, Bernd Simeon, Adaptive isogeometric analysis by local h-refinement with T-splines, Comput. Methods Appl. Mech.

Eng., 199(5-8):264-275, 2010.
[24] I. Babuska, W.C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., 15:736-754, 1987.
[25] M. Ainswort, J. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley-Interscience, New York, 2002.
[26] R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Meshrefinement Techniques, Wiley-Teubner, Chichester, UK, 1996.
[27] Y. Bazilevs, L. Beirao da Veiga, J.A. Cottrell, T.J.R. Hughes, G. Sangalli, Isogeometric analysis: Approximation, stability and error estimates for hrefined meshes, Math. Models Methods Appl. Sci., 16(7):1031-1090, 2006.
[28] T. J. R. Hughes, J. A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer methods in applied mechanics and engineering, 194(39-41): 4135-4195, 2005.
[29] J. A. Cottrell, T. J. R. Hughes, Y. Bazilevs, Isogeometric analysis: toward integration of CAD and FEA, John Wiley \& Sons, 2009.
[30] Xin Li, M. A. Scott, Analysis-suitable T-splines: Characterization, Refinablility and Approximation, Mathematical Models and Methods in Applied Sciences, 24, 2014.
[31] A.-V. Vuong, C. Giannelli, B. Jüttler and B. Simeon, A hierarchical approach to adaptive local refinement in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 200:3554-3567, 2001.
[32] Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Huges, S. Lipton, M.A. Scott, T.W. Sederberg, Isogeometric analysis using T-splines, Comput. Methods Appl. Mech. Engrg., 199: 229-263, 2010.
[33] Wang P., Xu J., Deng J., Chen F., Adaptive isogeometrican alysis using rational PHT-splines, Computer-Aided Design, 43:1438-1448, 2011.
[34] Johannessen K A, Kvamsdal T, Dokken T. Isogeometric analysis using LR B-splines, Computer Methods in Applied Mechanics and Engineering, 269:471-514, 2014.
[35] Evans E.J., Scott M.A., Li X., Hierarchical analysis-suitable T-splines: Formulation, Bézier extraction, and application as an adaptive basis for isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 284:1-20, 2015.
[36] Cottrell J.A., Hughes T.J.R., Reali A., Studies of refinement and continuity in isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 196(41-44):4160-4183, 2007.
[37] David Donoho and Andrea Montanari, High dimensional robust Mestimation: asymptotic variance via approximate message passing. Probab. Theory Related Fields, 166(3-4):935-969, 2016.
[38] Angelos Mantzaflaris, Bert Jïttler, Boris N.Khoromskij, Ulrich Lnger, Lu. rank tensor methods in Galerkin-based isogeoemtric analysis, Computer Methods in Applied Mechnics and Engineering, 316:1062-108= $\cap 17$.

Highlights

- We find an economical representati $\sim \eta^{\circ}{ }^{+h} r$ spline approximation of the PDE by using a compressive sensing ${ }^{\circ}$ nproach.
- The number of nonzero coefficients v^{n} the proposed economical representation is less than the numi 10°.hn standard spline representation over the last refined partition, ${ }^{1}$.le the error of the spline approximation with an economical r ase tation is the same to the standard FEM solution.
- The sparsity of a PDE solutın may not be very small in general. We present a new way tr colve a sparse solution of an underdetermined system in order to sdapt , $)$ computing an economic representation of PDE solution.

Conflict of interest

The authors declared that they have r \urcorner con. ${ }^{\text {ºnt }}$, of interest to this work.

