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a b s t r a c t

We present a spherical spline method for scattered data interpolation over the unit
sphere which preserves nonnegativity of the data values. The method is based on a classic
constrained minimization approach. The usual side conditions of smoothness and data
interpolation are supplemented by non-negativity constraints. We establish existence and
uniqueness of non-negative minimizers in three cases: C1 spline spaces of odd degree
greater than or equal to five over generic triangulations; C1 cubic spline spaces over
Clough–Tocher triangulations; C1 cubic spline spaces over triangulations of convex quad-
rangulations. We present the results on approximation order of nonnegative minimizers
as well. The method extends to range restricted interpolation. We establish sufficient
conditions on the spline coefficients that guarantee range restrictions on the spherical
splines. Numerical solutions are computed by means of a projected gradient method.
Numerical examples illustrate performance of non-negative and range-restricted data
fitting.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Spherical splines are piecewise smooth homogeneous polynomials with respect to rectangular coordinates. Given a
triangulation △ of the unit sphere S2, a tri-variate homogeneous polynomial can be defined on every triangle in Bernstein–
Bézier form. Coefficients of spherical homogeneous Bernstein–Bézier polynomials are found by satisfying side conditions,
commonly interpolation and smoothness requirements. Usually, these requirements are not sufficient to find a unique
solution, and hence, variational methods are employed. Several minimizing functionals have been successfully used for
bivariate as well as spherical splines, for examples see [1–4], and [5]. In this paper, we explore a method for computing
a smooth interpolating spline minimizing an energy functional and additionally satisfying range constraints. Shape-
preservation of bivariate data has been getting an increasing amount of attention in recent years [6–23]. Many applied
problems require fitting surfaces to have additional properties such that convexity, monotonicity and/or nonnegativity. For
example, the researchers in [22] proposed a method for computing nonnegative splines, and used it to find an interpolant
for deep water oxygen deficit values [24] over a polluted region in the Gulf of Mexico.

Non-negativity of a spherical function, f (x, y, z) ≥ 0, is perhaps the most straight forward concept of shape-preservation
on a plane that can be directly translated into the spherical setting. Some phenomena are range restricted by nature. For
example amount of rain, absolute temperature, or specific humidity are all non-negative values, and are often of interest
in natural sciences. In our numerical experiments we present an example of a nonnegative spline interpolating specific
humidity data collected around the globe. See Fig. 9 and numerical results in Section 5.
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In general, given a set of data {(vi, fi) : vi ∈ S2, fi ≥ 0, i = 1, . . . ,N}, with fi viewed as a value of some smooth function f
at the location on the sphere vi, we wish to construct a spline S(v) which

• interpolates the data, i.e. S(vi) = fi, i = 1, . . . ,N;
• has a desirable smoothness, i.e. S ∈ C r (S2), r ≥ 0;
• is nonnegative, i.e. S(v) ≥ 0, ∀v ∈ S2, or, if the data values fi vary within a range [a, b], then the values of S should be

within the same range;
• improves its approximation of f as the number of available data increases while sustaining uniform coverage of the

domain.

Note that the last item on the list, i.e. the data fidelity, is themost important requirement in the data fitting problem. See [25]
and [26] for spherical spline convergence studies for fitting problems without shape-preservation. Approximation results
for nonnegative spherical splines produced by the proposed method are presented in Section 3.

There are many studies on nonnegative/range-restricted interpolating schemes, for examples see [6,10,12,16,19,21,27–
31] and references therein. In [22] the researchers proposed a global constrained minimization approach for computing
nonnegative interpolating splines. The authors showed that when the interior edges of the given triangulation ∆ are active,
the feasible set in S15 (∆) is nonempty and hence the constrained minimization problem has a unique solution. The projected
gradient method was used to compute the minimizer, and it was proved that the minimizer converges to the sampled
function f if f ∈ C2. In this paper we extend the study to the spherical setting. Let us point out some key differences
between this study and the results presented in [22]. First of all, we introduce a concept of a quasi-active triangulation
refinement. The refinement allows us to drop an active edge requirementwhile keeping the space of splines, and the feasible
set in it, big enough to guarantee the existence of a nonnegative solution. Furthermore, we show how to construct the
nonnegative splines in cubic C1 spline spaces over Clough–Tocher refinements and quadrangulations, as well as odd degree
spline spaces with d ≥ 5 over quasi-active refinements of generic triangulations. At last, we present sufficient conditions on
the coefficients of range-restricted splines which are different from those in the planar setting.

Allow us to review some relevant information on spherical splines. Let ∆ be a triangulation of the unit sphere S2. For two
positive integers r ≥ 0 and d > r ,

Srd(∆) := {s ∈ C r (S2) : s|t ∈ Hd, ∀t ∈ ∆}

is the space of homogeneous spherical splines of smoothness r and degree d over triangulation ∆ (cf. [32]), where Hd is the
space of all homogeneous polynomials of degree d on S2, and t is a spherical triangle in ∆. Piecewise polynomial functions
over a triangulation are very efficient for computation and hence are excellent for numerical approximation. It is known that
Srd(∆) with r ≥ 1 can be used to approximate any function in C1(S2) when the size |∆| of the triangulation decreases to zero.
See [25,26,33] for the results on approximation by spherical splines.

A classic approach to find an interpolating spline is to minimize an energy functional subject to interpolating and
smoothness conditions. In this paper we additionally require that the spline solution is non-negative everywhere on the
sphere whenever the given data values are non-negative. That is, let

E(s) =

∫
S2

⎛⎝∑
|α|=2

|Dαs1|2

⎞⎠ ds, (1)

be the minimizing functional, where Dα stands for partial derivatives of order |α| with respect to the Cartesian coordinates
x, y, z, s1(v) = ∥v∥s

(
v

∥v∥

)
is the order 1 homogeneous extension of the spline s to R3. In the energy functional above, the

spline extension is differentiated first, and then it is restricted back to the sphere before the integration. Let

F := {s ∈ Srd(∆) : s(vi) = fi, i = 1, . . . ,N, and s(v) ≥ 0, ∀v ∈ S2
} (2)

be the subset of the spherical splines in Srd(∆) that preserve nonnegativity and interpolate the data. Our goal is to find the
spline s ∈ F minimizing the energy functional E defined by (1).

Since E(s) is a strictly convex nonnegative functional, the above minimization has a unique minimizer as long as the
feasible set F in (2) is not empty. In Section 2 we show that F ∈ S15 (∆) is not empty on the sphere if the triangulation ∆ is
quasi-active. Additionally we show that F is not empty in the space of C1 cubic splines over a Clough–Tocher refinement of
triangulation ∆, as well as in spaces of C1 cubic splines over triangulated convex quadrangulations. In Section 3 we discuss
approximation power of the nonnegative splines. We extend the study of nonnegative interpolation problem to the range
restricted interpolation problem in Section 4. The main result in this section is a sufficient condition on the coefficients of a
spline that allows us to restrict the values of the spline to the given range. Finally, we outline the projected gradient method
for computing the minimizers, and present numerical results in Section 5.

2. Existence of nonnegative interpolating splines

Let us begin with the concept of an active edge introduced for planar triangulations in [22]. Recall that the size of
a spherical triangle |τ | is defined as the diameter of the smallest spherical cap containing τ . Throughout the paper we
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Fig. 1. The interior edge common for the two triangles is active since the arc connecting the opposite vertices (dashed line) intersects the edge.

commonly assume that the triangulation size |∆| ≤ 1, that is |τ | ≤ 1 for all τ ∈ ∆. Let t1 = ⟨v1, v2, v3⟩ and t2 = ⟨v2, v4, v3⟩

be two spherical triangles in ∆ having a common edge e = v̂2, v3. Under the assumption |∆| ≤ 1 every edge of ∆ is well
defined (as the shortest arc of the great circle through the two points). Additionally, the shortest arc v̂1, v4 is well defined
since its length is bounded by 2. We say the edge e is active if the shortest arc v̂1, v4 intersects e, see Fig. 1.

Note that an edge is not active iff at one of the vertices, v2 or v3, the sum of interior angles is greater than π . If all angles of
the triangulation are ≤ π/2, then all interior edges are active. Our research shows, however, that we do not need to restrict
ourselves to triangulations with angles ≤ π/2. We can relax the requirements of active edges by introducing a new concept
of quasi-active triangulation.

For a triangle τ ∈ ∆, let cτ be the incenter of τ , and connect cτ to the vertices of τ . The three triangles are called the
Clough–Tocher refinement of the triangle τ , see [32] for details.

Definition 2.1. A triangulation ∆ is quasi-active if any interior edge is either active or it is one of the three edges meeting
at a Clough–Tocher split point.

Although the three edges connected to cτ are not active, later in this section we establish that a nonnegative data
preserving interpolating spline exists and can be constructed. We begin by describing an algorithm which converts a given
triangulation into a quasi-active triangulation.

Algorithm 2.1. We convert a triangulation into a quasi-active triangulation by using the following steps. Let E be a list of
all interior edges and T 0 be a list of triangles. Suppose that E has m interior edges. For i = 1, . . . ,m, we do the following 4
steps:
Step 1. Write ei = v̂2, v3 ∈ E , find the triangles t1 = ⟨v1, v2, v3⟩ and t2 = ⟨v2, v4, v3⟩ from T 0 that share ei.
Step 2. Compute the angles α = ̸ v1, v2, v4 and β = ̸ v1, v3, v4.
Step 3. If α ≤ π and β ≤ π , the edge ei is active. Define T i

= T i−1, increment i by 1 and examine the next edge by going to
Step 1.
Step 4. Otherwise, choose the incenter of t1 to split t1 into three triangles using the Clough–Tocher method and similarly,
split t2 into three subtriangles at the incenter of t2 by the Clough–Tocher method. Define T i as T i−1 with t1, t2 replaced by
the 6 newly created triangles. Increment i by 1 and examine the next interior edge in E by going to Step 1.
End the do loop. Let ∆̃ be the resulting collection T m of triangles.

Note that in Step 4 of Algorithm 2.1, the edge ei becomes active according to Lemma 4.19 of [32]. Also, the other edges
of t1 and t2 remain active if they were active before. It is easy to see that the modified triangulation ∆̃ is a quasi-active
triangulation.

We now reformulate our nonnegative data preserving interpolation problem as follows.

Problem 2.1. Let ∆ be a triangulation of the unit sphere and let V = {vi, i = 1, . . . ,N} be a subset of the vertices of ∆. Let I
be a set of indices such that {fi, i ∈ I} is a data value available at vi ∈ V . Find a spline sf ∈ Srd(∆̃), interpolating fi at vi, i ∈ I ,
non-negative everywhere on the unit sphere, and minimizing the functional (1), where ∆̃ is the quasi-active refinement of
∆ defined by the Algorithm 2.1.

We can see that the new formulation is similar to the one presented previously. The only difference is that we allow the
possibility that the spline solution interpolates the data values over a subset of vertices of ∆̃.

Let us explain how to solve Problem 1 in the setting of spherical splines of degree 3 and smoothness 1 first.

Theorem2.2. Let ∆̃ denote a Clough–Tocher refinement of a triangulation∆with in-centers as split points and such that |∆| ≤ 1.
A set of non-negative splines in S13 (∆̃) interpolating non-negative data at the vertices of ∆ is not empty. Therefore there exists a
unique non-negative spline Sf ∈ S13 (∆̃) minimizing (1).
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Fig. 2. Bernstein–Bézier coefficients of a cubic spline defined over a Clough–Tocher triangle.

Proof. Without loss of generality, we may assume that the values are given at all vertices of ∆, otherwise we can define the
missing values to be zeros. Let τ1 be a triangle in ∆ with vertices v1, v2, v3 and the in-center u1. Let τ2 be a triangle in ∆ with
vertices v4, v3, v2 and the in-center u2. Let fi denote a value to be interpolated at vi, for every vertex vi of ∆. Let us assign the
values of the BB-coefficients on τ1, depicted in Fig. 2, as follows. First of all, the conditions c1 = f1, c2 = f2, c3 = f3 guarantee
the interpolation at the vertices of ∆. Setting ∇s(vi) = 0, i = 1, 2, 3 preserves positivity (non-negativity) of the spline and
ensures C1 smoothness at the vertices. In this case the coefficients are computed as

c4 = f1⟨v1, v2⟩,

c5 = f1⟨v1, u1⟩,

c6 = f1⟨v1, v3⟩,

in the first ring of the vertex v1,

c7 = f2⟨v2, v3⟩,

c8 = f2⟨v2, u1⟩,

c9 = f2⟨v2, v1⟩,

in the first ring of the vertex v2, and

c10 = f3⟨v3, v1⟩,

c11 = f3⟨v3, u1⟩,

c12 = f3⟨v3, v2⟩,

in the first ring of the vertex v3. Let us note that |∆| ≤ 1 ensures that all involved dot products above are positive.
Next we enforce the only remaining C1 condition across the edge v̂2, v3 while requiring that the coefficient c14 in τ1 is

equal to the corresponding coefficient of τ2. Let (α, β, γ ) denote the barycentric coordinates of u2 with respect to ⟨v2, v3, u1⟩.
Since the edge v̂2, v3 is active, α > 0, β > 0, γ < 0. Then

c14 =
αf2 + βf3
1 − γ

⟨v2, v3⟩ > 0.

Similarly we can compute c13 > 0 and c15 > 0. Let bi, i = 1, 2, 3 denote the barycentric coordinates of the in-center u1 with
respect to τ1. Then

c16 = b1c5 + b2c13 + b3c15,

and c16 is positive since bi’s are positive for any point interior to τ1. The same holds for ci, i = 17, 18, 19, and we conclude
that the set of non-negative splines in S13 (∆̃) interpolating non-negative data at the vertices of ∆ is not empty. ■

Theorem 2.3. Let r = 1 and d ≥ 5 be an odd integer. The set of non-negative splines in Srd(∆̃) interpolating non-negative data
at VI ⊂ V is not empty, where ∆̃ is a quasi-active triangulation obtained by using Algorithm 2.1 from some triangulation with
|∆| ≤ 1. Therefore there exists a unique spline Sf ∈ Srd(∆̃) minimizing (1).

Proof. Let τ be a triangle in ∆. When ∆̃ is constructed, the triangle τ is either preserved, if all of its edges are active, or it is
split, if one or more of its edges is not active.
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Fig. 3. Bernstein–Bézier coefficients of a quintic spline.

Consider the first possibility. That is we have τ ∈ ∆̃ with all three edges being active. To define a nonnegative C1 quintic
spline over the τ = ⟨v1, v2, v3⟩ and its neighboring triangles, for example τ ′

= ⟨v4, v3, v2⟩, follow the spline coefficients
over the triangles presented in Fig. 3. To interpolate the given function values fi, i = 1, 2, 3 at the vertices of τ we set, as
expected, ci = fi, i = 1, 2, 3.

Define δij = ⟨vi, vj⟩ to be the dot product of vectors vi and vj and note that δij = δji > 0 for every edge of a triangulation
∆ since |∆| ≤ 1. Consider the domain points in the first ring of v1. We set the coefficients c4 = f1δ12 and c5 = f1δ13 to
satisfy ∇s(v1) = 0. The coefficients in the second ring of v1 are set to c10 = f1δ212, c11 = f1δ12δ13, c12 = f1δ213 to satisfy
Dxxs(v1) = Dxys(v1) = Dyys(v1) = 0. Similarly we set the coefficients in the second disks of vi, i = 2, 3.

Before we proceed with defining ci, i = 19, 20, 21, let us note that all the coefficients introduced so far are nonnegative
if and only if fi, i = 1, 2, 3 are nonnegative. To check C1 conditions along the edge v̂2, v3 recall that

v4 = b1v1 + b2v2 + b3v3,

where bi, i = 1, 2, 3 are the spherical barycentric coordinates of v4 with respect to τ . It follows that

⟨v4, v3⟩ = b1⟨v1, v3⟩ + b2⟨v2, v3⟩ + b3⟨v3, v3⟩,

and therefore

f3δ34 = b1f3δ13 + b2f3δ23 + b3f3,

which can be recognized as

c ′

7 = b1c9 + b2c8 + b3c3,

a C1 condition across the edge v̂2, v3 near the vertex v3. Multiply the last equation by δ32 to get onemore C1 condition across
the edge v̂2, v3:

c ′

14 = f3δ34δ32 = b1f3δ13δ32 + b2f3δ232 + b3f3δ32 = b1c17 + b2c16 + b3c8.

Furthermore, when

v4 = b1v1 + b2v2 + b3v3

is dot-multiplied with v2 we get

⟨v4, v2⟩ = b1⟨v1, v2⟩ + b2⟨v2, v2⟩ + b3⟨v3, v2⟩,

and therefore

c ′

9 = f2δ24 = b1f2δ12 + b2f2 + b3f2δ23 = b1c7 + b2c2 + b3c6.

Moreover

c ′

17 = f2δ24δ23 = b1f2δ12δ23 + b2f2δ23 + b3f2δ223 = b1c14 + b2c6 + b3c13

hold as well.
At last, to set up the only remaining C1 condition across the edge v̂2, v3 define c20 to satisfy

c20 = b1c ′

20 + b2f2δ232 + b3f3δ232.
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Fig. 4. Bernstein–Bézier coefficients of a quintic spline defined over a Clough–Tocher triangle.

It suffices to require that c20 = c ′

20 to end up with a positive value for both

c20 = c ′

20 =
b2f2 + b3f3
1 − b1

δ232.

Indeed, since the edge v̂2, v3 of τ is active, v4 lies in the region of the unit sphere defined by b2(v) ≥ 0, b3(v) ≥ 0, b1(v) < 0,
where bi(v), i = 1, 2, 3 are the barycentric coordinates of v with respect to τ . Note that b2 and b3 cannot both be zero, and
therefore if f2, f3 are nonnegative, so are c20 and c ′

20.
In the second case, τ is a triangle similar to the one shown in Fig. 4. Let f0 be the max{f1, f2, f3}. Follow the ideas outlined

above to define the coefficients of the spline on each of the sub-triangles of τ , using f0 for the coefficients in the second
disk around the split point v0. Just like in the case of a non-split triangle, the coefficients in the second discs around
vi, i = 0, 1, 2, 3, as well as those involved in C1 conditions across the outer edges of τ are nonnegative, and the spline
is smooth. Now we show that the remaining coefficients, corresponding to the black dots in Fig. 4, are nonnegative as well,
even though the interior edges v̂0, vi, i = 1, 2, 3 are not active. Consider for example the C1 condition across the edge v̂0, v1
that involves b

f0δ210 = b1f1δ210 + b2b + b3b,

and therefore

b =
f0 − b1f1
b2 + b3

δ210.

Here bi, i = 1, 2, 3 are the spherical barycentric coordinates of v0 with respect to ⟨v1, v2, v3⟩, and δ10 = ⟨v1, v0⟩ > 0. Since
0 < bi < 1, b2 + b3 > 0, and f0 = max{f1, f2, f3} > f1 > b1f1.

On the sphere a quintic polynomial belongs to a space of polynomials of any odd degree greater than or equal to five.
Therefore any space S1d (∆̃), d ≥ 5 odd, contains a non-negative spline interpolating non-negative data at the vertices
of ∆. ■

Finally we can comment on the existence of nonnegative data preserving interpolating C1 cubic splines over triangulated
convex quadrangulations. All edges of triangles interior to quadrangles are active since the interior angles of the quadrangles
are strictly less than π . For an edge e shared by quadrangles Q1 and Q2 observe that e is active if the intersection of the
diagonals of Q2 lies between the extensions of the diagonals of Q1. See Fig. 5 for an example of an inactive edge. It is clear
that for a triangulated quadrangulation it is not enough for the original quadrangulation to be convex. We need additional
constraints described above to have active triangulated quadrangulations.

Theorem 2.4. Let ∆ denote a triangulation obtained from a convex quadrangulation ♦ of the unit sphere by adding the two
diagonals of each quadrilateral in ♦. Suppose that all edges of ∆ are active. The set of non-negative splines in S13 (∆) interpolating
non-negative data at the set of vertices of the ♦ is not empty. Therefore there exists a unique spline Sf ∈ S13 (∆) minimizing (1).

Proof. The elements in the proof are similar to the ones discussed in Theorems 2.2 and 2.3 and we leave it to the interested
reader. ■

3. Approximation properties of nonnegative interpolating splines

Let Sf be the nonnegative preserving interpolating spline constructed in the previous section. Let us study approximation
properties of Sf in this section. Let W 2,∞(S2) be the Sobolev-type space of spherical functions with the derivatives of order
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Fig. 5. An inactive edge shared by Q1 and Q2: the intersection of the diagonals of Q2 is not between the extensions of the diagonals of Q1 .

two or less bounded with respect to maximum norm. Recall that a semi-norm can be defined onW 2,∞(S2) as

|f |2,∞,S2 =

∑
t∈∆

∑
|α|=2

∥Dα f1∥∞,t .

Recall the following approximation property (Theorem 2 in [25]).

Theorem 3.1. Let ∆ be a β-quasi-uniform spherical triangulation with |∆| ≤ 1. Let 1 ≤ p ≤ ∞, d ≥ 3r + 2, and 0 ≤ k ≤ d.
There exists a quasi-interpolating operator Q mapping f ∈ C(S2) into Srd(∆) such that Qf achieves the optimal approximation
order. That is for all f ∈ Wm+1,p(S2) with Qf ∈ W k,p(S2)

|f − Qf |k,p,S2 ≤ C |∆|
m+1−k

|f |m+1,p,S2

Here 0 ≤ m ≤ d, and (d − m) mod 2 = 0. The constant C depends on the degree d, p, and the smallest angle θ∆.

Theorem 3.2. Suppose fi = f (vi), i = 1, . . . , n for a smooth positive function f ∈ W 2,∞(S2). Let d ≥ 3r + 2 be an odd integer
and let ∆ be a triangulation of the data sites {vi, i = 1, . . . ,N} with |∆| ≤ 1. Let Sf denote a spline in Srd(∆)minimizing (1) over
the set

Uf := {s ∈ Srd(∆) : s(vi) = fi, i = 1, . . . ,N, and s(v) ≥ 0, ∀v ∈ S2
}.

Then

∥Sf − f ∥2,S2 ≤ C |∆|
2
|f |2,∞,S2 ,

where C > 0 is a constant dependent on d, and the smallest angle of ∆.

Proof. Since f is positive over S2, let us say f ≥ ϵ > 0 on S2. For every τ ∈ ∆ by Lemma 7 in [25], since f and Sf are equal at
the vertices of τ , we have

∥Sf − f ∥∞,τ ≤ C |τ |
2
|Sf − f |2,∞,τ

≤ C |τ |
2 (

|f |2,∞,τ + |Sf |2,∞,τ

)
.

According to Lemma 4.4 in [33] there exists a positive constant K depending on d, and the smallest angle of τ , such that

A−1/2
τ ∥p∥2,τ ≤ ∥p∥∞,τ ≤ KA−1/2

τ ∥p∥2,τ , (3)

for any trivariate homogeneous polynomial p of degree d, Aτ stands for the area of τ . By (3) and Lemma 10 in [25]

|Sf |2,∞,τ
≤ KA−1/2

τ |Sf |2,2,τ ≤ K ′A−1/2
τ

(
Eτ (Sf )

)1/2
,

where Eτ is the energy functional (1) evaluated on τ . Since for any point v ∈ S2,

f (v) − Qf (v) ≤ ∥f − Qf ∥∞,S2

and f ≥ ϵ > 0 we have

Qf (v) ≥ f (v) − ∥f − Qf ∥∞,S2 ≥ ϵ − C |∆|
m+1

|f |m+1,∞,S2 .

It follows that when |∆| is small enough Qf ≥ 0. Since Qf interpolates f at the vertices of ∆, it belongs to the set of
nonnegative interpolating splines Uf defined above, and thus E(Sf ) ≤ E(Qf ). By Lemma 10 in [25] and (3)

E(Qf ) ≤ |Qf |22,2,S2 =

∑
τ∈∆

|Qf |22,2,τ ≤

∑
τ∈∆

Aτ |Qf |22,∞,τ ≤ 4π |Qf |22,∞,S2 .
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Then

E(Sf ) ≤ E(Qf ) ≤ 4π |Qf |22,∞,S2

≤ 8π |Qf − f |22,∞,S2 + 8π |f |22,∞,S2 ≤ 8π (C2
+ 1)|f |22,∞,S2

by Theorem 2.4 withm + 1 = k = 2. Summarized the discussion above, we have

∥Sf − f ∥2
2,S2 =

∑
τ∈∆

∫
τ

|Sf − f |2ds ≤

∑
τ∈∆

Aτ∥Sf − f ∥2
∞,τ

≤

∑
τ∈∆

Aτ2C2
|τ |

4 (
|f |22,∞,τ + K ′2A−1

τ Eτ (Sf )
)

≤ 2C2
|∆|

4
∑
τ∈∆

Aτ |f |22,∞,S2 + 2C2K ′2
|∆|

4
∑
τ∈∆

Eτ (Sf )

≤ 8πC2
|∆|

4
|f |22,∞,S2 + 2C2K ′2

|∆|
4E(Sf )

≤ 8πC2
|∆|

4
|f |22,∞,S2 + 2C2K ′2

|∆|
48π (C2

+ 1)|f |22,∞,S2

=
(
8πC2

+ 16πC2K ′2(C2
+ 1)

)
|∆|

4
|f |22,∞,S2

Thus we have completed the proof. ■

To prove similar results in C1 cubic spline spaces over triangulated quadrangulations and Clough–Tocher triangulations
we first recall Theorems 6.6 and 6.18 in [32]. One can extend these results to the spherical setting straightforwardly. Let us
write the spherical extension as follows.

Theorem 3.3. Let S be a spherical spline space of degree 3 over either a spherical triangulated quadrangulation or over the
Clough–Tocher refinement of a spherical triangulation. Assume that every macro-triangle or macro-quadrilateral |τ | ≤ 1. Let I
be the Hermite interpolating operator, i.e. If interpolates f and its first order derivatives at the respective nodes, and let 1 ≤ m ≤ 3
with m = 3mod(2). Then for all f ∈ Wm+1,∞(S2)

|f − If |k,∞,Ω ≤ C |∆|
m+1−k

|f |m+1,∞,Ω ,

for all 0 ≤ k ≤ m. If Ω covers S2, the constant C depends on the smallest angle of ∆. Otherwise K may depend on the boundary
∂Ω of Ω .

Similar to Theorem 3.2, we can establish the following

Theorem 3.4. Suppose fi = f (vi), i = 1, . . . , n for a smooth positive function f ∈ W 4,∞(S2). where {vi, i = 1, . . . ,N} are
vertices of macro-triangles, with |∆| ≤ 1. Let Sf denote a spline in S , a C1 cubic spherical spline space over a Clough–Tocher
refinement of ∆ or a triangulated quadrangulation, minimizing (1) over the set

Uf := {s ∈ S : s(vi) = fi, i = 1, . . . ,N, and s(v) ≥ 0, ∀v ∈ S2
}.

Then

∥Sf − f ∥2,S2 ≤ C1|∆|
2
|f |2,∞,S2 + C2|∆|

4
|f |4,∞,S2 ,

where C > 0 is a constant dependent the smallest angle of the underlying triangulation.

Proof. The ideas of the proof are exactly the same as the one for Theorem 3.2. We omit the detail. ■

4. Range restricted interpolation

The non-negativity constraint can be extended to a problem of range restricted interpolation. That is, Problem 1 in the
previous section can be extended as follows.

Problem4.1. Suppose the given data are bounded a ≤ fi ≤ b, i = 1, . . . ,N . Find a spline function s ∈ Srd(∆) that interpolates
the given data and such that a ≤ s(v) ≤ b, ∀v ∈ S2.

In this section we consider the following constrained minimization:

min E(s), s ∈ Fa,b, (4)

where

E(s) =

∫
S2

⎛⎝∑
|α|=2

|Dαs1|2

⎞⎠ ds,
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and

Fa,b := {s ∈ Srd(∆) : s(vi) = fi, i = 1, . . . ,N, and a ≤ s(v) ≤ b, ∀v ∈ S2
}

is the feasible set in spherical spline space Srd(∆).
To solve Problem 2, we convert the range restriction on spline functions to the range restriction on their coefficients. To

this purpose we begin with

Lemma 4.1. Let |τ | denote the size of a spherical triangle τ , and assume that |τ | ≤ 1. The sum of spherical homogeneous
Bernstein–Bézier basis polynomials of degree d with respect to τ satisfies

max
v∈τ

⎛⎝ ∑
i+j+k=d

Bd
ijk(v)

⎞⎠ ≤
1

(cos(|τ |/2))d
.

Proof. Let τ = ⟨v1, v2, v3⟩ be a spherical triangle with |τ | ≤ 1. Let τ̄ denote the planar triangle with the same vertices and
belonging to the plane determined by the vertices vi, i = 1, 2, 3. Notice that for every v̄ ∈ τ̄ the map φ(v̄) = v̄/∥v̄∥ = v

defines the radial projection of v̄ onto τ . The planar barycentric coordinates b̄i of v̄ with respect to τ̄ can be related to the
spherical barycentric coordinates bi(v) with respect to τ as follows. For every v ∈ τ the spherical barycentric coordinates
satisfy

3∑
i=1

bi(v)vi = v =
v̄

∥v̄∥
,

where v̄ is uniquely defined by the inverse of the radial projection map φ. Multiply both sides of the above by ∥v̄∥ to get
3∑

i=1

∥v̄∥bi(v)vi = v̄.

It is not too difficult to check that ∥v̄∥bi(v), i = 1, 2, 3 are the planar barycentric coordinates of v̄ with respect to τ̄ . Next
we relate the spherical homogeneous Bernstein–Bézier (BB) basis polynomials of degree d on τ to the planar BB basis
polynomials of degree d on τ̄ :

B̄d
ijk(v̄) =

d!
i!j!k!

b̄i1(v̄)b̄
j
2(v̄)b̄

k
3(v̄) = ∥v̄∥

d d!
i!j!k!

bi1(v)b
j
2(v)b

k
3(v) = ∥v̄∥

dBd
ijk(v).

We can now conclude that∑
i+j+k=d

Bd
ijk(v) =

1
∥v̄∥d

∑
i+j+k=d

B̄d
ijk(v̄) =

1
∥v̄∥d .

In general ∥v̄∥ ≤ 1, and thus∑
i+j+k=d

Bd
ijk(v) ≥ 1.

For our purposes however we would like to analyze the dependence of ∥v̄∥ on the size of τ . Notice that the smallest value of
∥v̄∥ is the distance from the origin to the plane defined by τ̄ . View the vertices of τ̄ as the base of a triangular pyramid with
the edge lengths from the origin to the base all equal to 1. The foot of the altitude dropped from the origin to the base lies at
the center of the circle out-scribing τ̄ . The projection of the foot onto the sphere is the center of the smallest spherical cap
containing τ , and thus the angle between any of the vectors vi, i = 1, 2, 3 and the altitude is |τ |/2. Therefore the length of
the altitude and therefore the smallest value of ∥v̄∥ on τ̄ is cos(|τ |/2). ■

Lemma 4.2. Let |τ | denote the size of a spherical triangle τ , and suppose that |τ | ≤ 1. Let d ≥ 2 denote the degree of spherical
homogeneous BB-basis polynomials. Let I denote the index set of triples (d, 0, 0), (0, d, 0), (0, 0, d) andJ denote the set of indices
of triples (i, j, k), i + j + k = d that are not in I. There exists a constant 0 < K < 1 depending on |τ | and d such that∑

I

Bd
ijk(v) + K

∑
J

Bd
ijk(v) ≤ 1 (5)

for any point v ∈ τ .

Proof. We begin the proof with the case d = 2. Recall that (Lemma 13.7 in [32]) for spherical barycentric coordinates

b21 + b22 + b23 + 2 cos(α)b1b2 + 2 cos(β)b2b3 + 2 cos(γ )b1b3 = 1,
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where α is the lengths of the edge v̂1, v2 in τ . Since α ≤ |τ |, cos(α) ≥ cos(|τ |), and similarly for β and γ . Then

b21 + b22 + b23 + cos(|τ |)(2b1b2 + 2b2b3 + 2b1b3)
≤ b21 + b22 + b23 + 2 cos(α)b1b2 + 2 cos(β)b2b3 + 2 cos(γ )b1b3 = 1,

and thus (5) holds with K = cos(|τ |), where 0 < cos(|τ |) < 1 as desired.
Next we consider the case of degree d = 3. Recall that for a point v in τ , bi(v) ≤ 1, i = 1, 2, 3. Then∑

I

B3
ijk(v) + K

∑
J

B3
ijk(v) =

3∑
i=1

b3i + 3K (b21b2 + b1b22) + 3K (b21b3 + b1b23) + 3K (b23b2 + b3b22) +

2K (3b1b2b3) ≤

3∑
i=1

b2i + 3K (2b1b2) + 3K (2b1b3) + 3K (2b3b2) +

2K (b1b2 + b1b3 + b2b3) =

3∑
i=1

b2i + 4K (2b1b2 + 2b1b3 + 2b2b3) ≤ 1

with K = cos(|τ |)/4 and using the result for d = 2.
Finally, let us treat the case d ≥ 4. Let K denote the set of triples (i, j, k) such that neither index is zero. Then∑

I

Bd
ijk(v) + K

∑
J

Bd
ijk(v) =

3∑
i=1

bdi + K
d−1∑
i=1

(
d
i

)
bi1b

d−i
2 + K

d−1∑
j=1

(
d
j

)
bj2b

d−j
3 +

K
d−1∑
k=1

(
d
k

)
bk3b

d−k
1 + K

∑
K

d!
i!j!k!

bi1b
j
2b

k
3.

Denote A =
∑d−1

i=1

( d
i

)
and B =

∑
K

d!
i!j!k! . Then using bi < 1, i = 1, 2, 3 as needed∑

I

Bd
ijk(v) + K

∑
J

Bd
ijk(v) ≤

3∑
i=1

b2i + KA(b1b2 + b2b3 + b3b1) + KBb1b2b3 ≤

3∑
i=1

b2i + KA(b1b2 + b2b3 + b3b1) + KB/3(b1b2 + b2b3 + b1b3) =

3∑
i=1

b2i + K (A + B/3)(b1b2 + b2b3 + b3b1) ≤ 1,

with K = 2 cos(|τ |)/(A + B/3) and using the result for d = 2. ■

Theorem 4.3. Let τ be a spherical triangle with |τ | ≤ 1. Let p be a spherical homogeneous Bernstein–Bézier polynomial p of
degree d on the triangle τ . Write c = {cijk, i + j + k = d} to be the vector of the coefficients of p. Let I, J be the subsets of triple
indices defined in Lemma 4.2. Suppose a < b are strictly positive. If

a ≤ cijk ≤ b, (i, j, k) ∈ I,

and

a ≤ cijk ≤ Kb, (i, j, k) ∈ J ,

then

a ≤ p(v) ≤ b

for all v ∈ τ , where K is the constant defined in Lemma 4.2 depending on d and |τ |.
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Proof. Using Lemma 4.2,

p(v) =

∑
i+j+k=d

cijkBd
ijk(v) =

∑
I

cijkBd
ijk(v) +

∑
J

cijkBd
ijk(v)

≤ b
∑
I

Bd
ijk(v) + b

∑
J

KBd
ijk(v) ≤ b,

for every v ∈ τ .
On the other hand, since the sum of spherical homogeneous BB-basis polynomials is greater than or equal to one

p(v) =

∑
i+j+k=d

cijkBd
ijk(v) ≥ a

∑
i+j+k=d

Bd
ijk(v) ≥ a.

We have thus completed the proof. ■

These constraints will be used in our computation to find the range restricted data interpolating spline. That is, for a given
triangulation and a spline degree we first compute K = K (t), t ∈ ∆. Then we define a := min1≤i≤N{fi} and b := max1≤i≤N{fi}
for the given data fi, i = 1, . . . ,N . Let

Ba,b :=

{s ∈ Srd(∆) : s(vi) = fi, i = 1, . . . ,N, a ≤ ctijk ≤ K (t)b, (ijk) ∈ J , t ∈ ∆}

be a new feasible set in a spherical spline space Srd(∆). Instead of (4), we solve the following constrained minimization
problem:

min E(s), s ∈ Ba,b. (6)

As long as the feasible set is not empty, the above minimization has a unique solution. The proof in Section 2 can be
adapted to show that the Ba,b is not empty in S13 (∆̃), where ∆̃ is the Clough–Tocher refinement of∆ as described in Section 2.
Convergence of range restricted splines can be established as well. We leave these considerations to the interested reader.

With the above preparation, we now use the projected gradient method to solve the above minimization problem (6).
Note that E(s) = E(c) can be viewed as cTEcwhere E is an energy matrix corresponding to the functional E , and c is a vector
of the spline coefficients. Respectively, it is easy to see that ∇E(s) = ∇E(c) is equivalent to 2Ec.

Algorithm 4.1. Starting with an initial guess c(0), compute

c(k+1)
= PBa,b

(
c(k) − h∇E(c(k))

)
for k ≥ 0, where h > 0 is a step size and PBa,b (y) is the projection of y into the feasible set Ba,b.

It is known [34] that the above Algorithm 4.1 converges when E is strongly convex. The computation of the gradient
descent method can be accelerated using the technique in [35]. It is easy to verify that E is indeed convex. We omit the
detail.

5. Numerical results

5.1. Simulation results

We implemented the projected gradient method to solve the constrained minimization problems in spherical spline
spaces and tested several examples to assess their performance. The major computational step is the minimization of the
quadratic functional for which we use the Lagrange multiplier method discussed in [1]. We can find the vector c(k+1) using
least squaresmethod as the following systemof linear equations is not of full rank, or applying the iterativemethoddiscussed
in [1]: ⎛⎝ I B⊤ H⊤

B 0 0
H 0 0

⎞⎠⎡⎣c(k+1)

α

γ

⎤⎦ =

⎡⎣c(k) − hEc(k)
z
0

⎤⎦
for Lagrange multipliers α and γ , where I is the identity matrix, B is a matrix associated with interpolating conditions,
i.e. Bc = z with z being the vector of given function values, and H is the matrix associated with smoothness conditions.
See [3] for spherical spline implementation.

Example 5.1. We begin with a simple example. Let ∆0 be a triangulation of the unit sphere based on 6 vertices ±ei, i =

1, 2, 3. Let ∆k stand for the uniform refinement of ∆k+1. We use f (x, y, z) = x2 as a testing function. Note that our spline
spaces S15 (∆k) are not able to reproduce even degree function f (x, y, z) = x2 in the spherical setting. Sample f (x, y, z) = x2
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Table 1
Numerical results for non-negative interpolating splines.

Level of Accuracy of Accuracy of
refinement Interpolation, s+ Interpolation, sm
0 7.42657e−2 7.42668e−2
1 2.22020e−2 2.22020e−2
2 1.95621e−3 1.95621e−3
3 1.43149e−4 1.43150e−4

Fig. 6. Minimal energy spline solution in Example 5.3.

at the vertices of ∆k, k = 0, 1, 2, 3. Compute 1) the non-negative minimal energy interpolant s+, and 2) the classic minimal
energy interpolant sm in S15 (∆k). Compare both interpolants to the original function with respect to ∞ norm.

In this example the tested function is nonnegative everywhere on the sphere, and both solutions are non-negative. As a
result they are very close to each other, see Table 1 for details. This example shows that our MATLAB code works correctly
when the minimal energy solution can be expected to be nonnegative.

Example 5.2. In this example we compare the behaviors of the minimal energy spline solution and the nonnegative spline
solution generated by Algorithm 4.1 in the case when the minimal energy spline is unable to attain nonnegativity. The data
are generated by evaluating f (x, y, z) = 2(x − .5).2 − .1 at the vertices of ∆0. All these values are strictly positive, in fact
f (vi) ≥ 0.4 for every vertex vi, i = 1, . . . , 6 of ∆0. For the minimal energy spline in S15 (∆0) evaluated at more than 5000
locations almost uniformly distributed over the sphere we have min(s) ≈ −0.24, while for the nonnegative spline solution
evaluated at the same locations we have min(s+) ≈ 0.34. The cubic spline solutions over Clough–Tocher refinement of
∆0 have min(s) ≈ −0.44 and min(s+) ≈ 0.23 respectively. For a quadrangulation defined over the same six vertices
(plus 4 in-centers, and thus overall 16 triangles), a cubic C1 minimal energy spline has a minimal value of ≈ −0.48, while
the positive spline solution has a minimum value of ≈ 0.01.

Example 5.3. In this example we compute a range-restricted minimal energy interpolating spline srr in S15 (∆3) for various
values of the constant K of Theorem 4.3, and compare the results to the classic minimal energy interpolating spline s. We
test the function

f (x, y, z) = e
−

x−sin(5z)
2−y3 ,

for which the values at the vertices range from 0.3751 to 2.6660. Fig. 6 shows the classic minimal energy interpolating spline
evaluated at about 30,000 locations on the unit sphere. As expected, for this triangulation the spline approximates the test
function quite well, in fact ∥s − f ∥∞ = 7.98e−2. The range of values for the spline is [0.3516, 2.7671], that is both the
minimal and the maximal values of this solution are outside the data range.

The results for the range-restricted solutions for various values of K are summarized in Table 2. As we decrease the value
of K from 1 to 0.9 the range-restricted spline deviates from the test function more and more. Meanwhile, its maximal value
decreases, and once K ≤ 0.935 the range of srr is contained in the range for the data values. Fig. 7 illustrates visual differences
between two range-restricted solutions: K = 0.9, left, and K = 0.935, right. When the coefficients of the range-restricted
spline are suppressed by the constant K too much (K = 0.9) there is a small dent in the upper left region of the mushroom’s
cap. By adjusting K to 0.935, we keep the values of the spline on the right within the range (under max(f ) = 2.666), while
improving its shape.

5.2. A real life example

One of the characteristics of atmosphere is specific humidity. By the definition specific humidity is a non-negative
quantity, whichmakes it a good candidate for testing performance of non-negative interpolating spline. Data near the ocean
surface are available on National Oceanic and Atmospheric Administration web site at

https://www.ncei.noaa.gov/data/ocean-near-surface-atmospheric-properties/access/.

https://www.ncei.noaa.gov/data/ocean-near-surface-atmospheric-properties/access/
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Table 2
Numerical results for range-restricted interpolating splines.

K ∥srr − f ∥∞ [min(srr ),max(srr )]

1.000 0.8066e−1 [0.3800, 2.7538]
0.960 1.2954e−1 [0.3800, 2.7029]
0.935 1.8479e−1 [0.3800, 2.6625]
0.900 2.7093e−1 [0.3800, 2.6113]

Fig. 7. Range-restricted spline solutions in Example 5.3. Left: K = 0.9, right: K = 0.935.

Fig. 8. Left: data locations, right: global triangulation ∆.

Data are collected at three hour intervals over subsets of fixed locations on a spherical grid. For the purpose of our
experiment we thinned the data, and ended up with a set of 4052 vertices and 8100 triangles over the unit sphere, see
Fig. 8, left. Locations marked by red and green dots are used to construct a global triangulation, Fig. 8, right. For the first
experiment the data are available at the locations marked by green dots only. We worked with the data collected on August
28–29 of 2005, conducting total of 16 experiments. The subset of available data changes from experiment to experiment,
the number of data varies between 2309 and 2332.

We computed global spline solutions, C1 minimal energy s and non-negative s+ interpolants of degree five, thus obtaining
estimates of specific humidity over the continents. After evaluating the splines at about 170,000 locations minimal values
were computed for all data sets and all spline solutions. Results are summarized in Table 3. As can be seen in the table, in six
out of 16 cases minimal energy splines produced negativeminimal values, while s+ spline solutions remained non-negative.
The two spline solutions for the data presented in Fig. 8 are visualized in Fig. 9, the transparent surfaces are defined by triples
((1+ f (x, y, z)/100)x, (1+ f (x, y, z)/100)y, (1+ f (x, y, z)/100)z) with f being the standardminimal energy spline on the left,
and nonnegative spline on the right. This particular visualization shows the region on the globe where the standardminimal
energy spline is negative as a portion of the spline surface buried underneath the surface of the globe. The same region on
the surface visualizing the nonnegative spline lies on top of the surface of the globe.

In all of the experiments the accuracy of satisfying interpolating and smoothness conditions was of the same magnitude
for all splines, and coefficient vector computational times for nonnegative spline solutions tended to be 5–6 times faster than
those for standard minimal energy splines because of the iterative solutions of Algorithm 4.1 while the standard minimal
energy splines are solved by a direct method.
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Fig. 9. Left: minimal energy interpolating spline in S15 (∆) with a negative region (seen in light brown), right: nonnegative minimal energy interpolating
spline in S15 (∆).

Table 3
Minimal spline values, for aminimal energy spline s and a nonnegative spline
s+ , versus minimal specific humidity values for 16 sets.

k min(f ) min(s) min(s+)

1 2.3681 −1.1662 0.0000
2 2.5941 −0.3296 0.0000
3 2.4993 1.0578 1.0386
4 2.3360 1.3691 1.3505
5 2.0181 1.2773 1.2789
6 1.9905 1.9305 1.9094
7 2.3136 2.2312 2.2337
8 2.2986 1.7855 1.8815
9 2.2596 0.7284 0.7071

10 2.6006 −1.1741 0.0000
11 2.5315 −0.3157 0.0000
12 2.6824 −0.8008 0.0000
13 2.4019 −0.8465 0.0000
14 2.3936 0.9652 0.9593
15 2.4218 1.6437 1.7819
16 2.4871 2.1182 2.2126
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