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Abstract. We use splines on spherical triangulations to approxi-
mate the solution of a second order elliptic PDE over the unit sphere.
We establish existence and uniqueness of weak solutions in spherical
spline spaces and estimate convergence of the spline approximations.
We present a computational algorithm and summarize numerical re-
sults on convergence rates.

§1. Introduction

Recently we have used spherical spline functions introduced in [1] to deal
with spherical scattered data interpolation and fitting problems (cf. [6]).
We studied the convergence (or resemblance) of the spherical splines fitting
a given data set under the assumption that the data locations become
dense over the sphere and that the data values are obtained from a smooth
function (cf. [5]). In this paper we use splines on spherical triangulations
to approximate the solution of an elliptic partial differential equation over
the sphere.

Traditionally, the classical solution of an elliptic second order PDE on
the sphere can be expressed in terms of spherical harmonics. As the de-
gree of the spherical harmonic functions increases, the spherical harmonics
become more complicated to compute. The computation of the convolu-
tion of functions with spherical harmonics becomes challenge. See, e.g.,
[7], [13], and [14]. It is therefore necessary to develop other approaches to
approximate solutions of spherical PDEs.

Our study is partially motivated by the recent work in [8], [9], and
[10] where a standard second order elliptic partial differential equation
(PDE) on the unit sphere was solved using spherical radial basis func-
tions. The PDE was discretized using the Galerkin method based on a
linear combination of rotations of a spherical radial basis function. Some
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numerical experiments were presented to demonstrate the effectiveness of
the method. The spherical basis method in [8] overcomes the disadvan-
tage inherited from the zonal kernel method (cf. [11]) for the solution of
pseudo-differential equations on sphere.

In this paper we shall explain how to use spherical spline functions
to obtain numerical solutions of an elliptic second order PDE on the unit
sphere. Although we shall use the standard Galerkin method, we will solve
the spherical PDE without constructing finite element like functions. This
is the main difference from the traditional finite element method for PDE.
We will be able to use spherical polynomials of arbitrary degree d and
arbitrary smoothness r with d > r over an arbitrary triangulation of the
sphere. Finally we shall present some numerical experiments to demon-
strate the effectiveness and efficiency of the spherical spline method. We
compute the numerical solutions of the PDE for several different right-
hand side functions as in [8]. Numerical experiments show that spherical
splines approximate the solution much better than the radial basis func-
tions (see Remark 1 at the end of the paper).

§2. Spherical Harmonics

Let S
2 be the unit sphere in R

3. The 3D Laplace operator ∆ restricted
to the unit sphere is the well-known Laplace-Beltrami operator ∆∗. We
consider the following partial differential equation over the sphere:

−∆∗u + ω2u = f, on S
2. (1)

The equation (1) typically arises from time discretization of the heat equa-
tion

∂u(t, v)

∂t
− ∆∗u(t, v) = g(t, v)

on S
2 × [0, T ], subject to the initial conditions u(0, v) = h(v). Divided

difference approximation of the time derivative

∂u

∂t
(tk, v) ≈ u(tk, v) − u(tk−1, v)

tk − tk−1

results in the implicit scheme

uk − uk−1

tk − tk−1
− ∆∗uk = gk,

or
−∆∗uk + ω2uk = gk + ω2uk−1.

This equation is to be solved at every time step tk, and ω2 = 1
tk−tk−1

. Note

that the time step in the derivative approximation of u has to be small to
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ensure higher accuracy, therefore we are mainly interested in solving the
problem (1) with large ω.

Let Ω be a solid in R
3 bounded by two concentric spheres of radii

0 < r1 < 1 < r2. Suppose f is a continuous function on S
2. Consider the

problem

−∆ũ(v) + ω2 ũ(v)

|v|2 =
f̃(v)

|v|2 , v ∈ Ω, (2)

subject to the boundary conditions ∂ũ
∂r (v) = 0, v ∈ ∂Ω. Here f̃(v) = f( v

|v| )

is the unique homogeneous extension of f to R
3\{0} of degree 0. The

boundary ∂Ω is smooth enough to guarantee the existence of a C2 solution
to the problem (2). The right-hand side of (2) is homogeneous of degree
−2, therefore the solution ũ must be homogeneous of degree 0. By the
definition ∆∗u = ∆u0|S2 , where u0 is a homogeneous extension of u to
R

3\{0} of the degree 0. Therefore by the uniqueness of the homogeneous
extensions u = ũ|S2 solves

−∆∗u + ω2u = f,

since ũ ∈ C2(Ω), u ∈ C2(S2). Uniqueness follows from the fact that
−∆∗u + ω2u = 0 if and only if either u is a spherical harmonic Yjk, in
which case we must have ω2 = −j(j + 1), which is impossible, or u = 0.
This argument generalizes naturally to conclude, that for every f ∈ Ck(S2)
there exists a unique solution u ∈ Ck+2(S2) of the equation (1).

Expand f in terms of spherical harmonics by

f =

∞∑

j=0

2j+1∑

k=1

f̂jkYjk,

where Yjk, k = 1, · · · , 2j +1, j = 0, · · ·∞ are spherical harmonic functions

which form an orthonormal basis for L2(S2), and f̂jk are computed by

f̂jk =

∫

S2

fȲjk.

Let us write u in terms of spherical harmonics as well. That is,

u =

∞∑

j=0

2j+1∑

k=1

ûjkYjk.

Since ∆∗Yjk = −j(j + 1)Yjk we find that

−∆∗u + ω2u =

∞∑

j=0

2j+1∑

k=1

ûjk(j(j + 1) + ω2)Yjk.
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Comparing coefficients of u with coefficients of f we obtain

ûjk =
f̂jk

j(j + 1) + ω2
.

This defines an analytic expression for the solution of (1). To compute an
approximate solution of u represented by an infinite sum, it is customary
to cut off the tail of the series. There are several problems associated
with this approach. The spherical harmonics Yjk become increasingly
complicated to compute as j increases and therefore it is not trivial to
determine f̂jk. The spherical harmonics Yjk have global support on the
sphere and become highly oscillating as j increases. To define partial sums
uN one needs to compute (N + 1)2 coefficients f̂jk, and to evaluate uN at
a point (N + 1)2 evaluations of Yjk have to be performed.

To establish the convergence rate in this approximation let us introduce
appropriate Sobolev spaces and norms (cf. [8]).

The Sobolev space Hs := {f ∈ L2 : ‖f‖Hs < ∞}, with the norm ‖·‖Hs

defined as

‖f‖2
Hs :=

∞∑

j=0

(1 + j(j + 1))s

2j+1∑

k=1

|f̂jk|2.

We claim, that for a function f ∈ Hs

‖u − uN‖L2 < C‖f‖Hs

1

Ns+3/2
,

for a positive constant C depending on s. Indeed, suppose f ∈ Hs. Then

‖f‖2
Hs :=

∞∑

j=0

(1 + j(j + 1))s

2j+1∑

k=1

|f̂jk|2 < ∞,

therefore

(1 + j(j + 1))s

2j+1∑

k=1

|f̂jk|2 ≤ ‖f‖2
Hs ,

for every j.

Since uN =
∑N

j=0

∑2j+1
k=1

bfjk

(ω2+j(j+1))Yjk we have

‖u − uN‖2
L2 =

∞∑

j=N+1

2j+1∑

k=1

|f̂jk|2
(ω2 + j(j + 1))2

≤
∞∑

j=N+1

2j+1∑

k=1

|f̂jk|2(1 + j(j + 1))s

(β + j(j + 1))2+s
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≤ ‖f‖2
Hs

∞∑

j=N+1

1

(β + j(j + 1))2+s

≤ ‖f‖2
Hs

∞∑

j=N+1

1

(j2)2+s

≤ ‖f‖2
Hs

∫ ∞

N

1

x2s+4
dx

= ‖f‖2
Hs

1

(2s + 3)N2s+3

≤ ‖f‖2
Hs

2s + 3

1

N2s+3
. (3)

Here β = min{1, ω2}.
We turn our attention to an alternative approach, namely spline ap-

proximation to a weak solution of (1). We can write a weak formulation
of the equation (1) as

〈−∆∗u + ω2u, v〉 = 〈f, v〉, v ∈ H1, (4)

where 〈f, g〉 =
∫

S2 fgdσ, with dσ being the Lebesgue measure on the unit
sphere.

Lemma 1. There exist positive constants α and β depending on ω such
that

〈(−∆∗ + ω2)u, v〉 ≤ α‖u‖H1‖v‖H1 ,

for all u and v in H1, and

〈(−∆∗ + ω2)u, u〉 ≥ β‖u‖2
H1 ,

for all u in H1.

Proof: By Parseval’s equality, we have

〈(−∆∗ + ω2)u, v〉 =

∞∑

j=0

2j+1∑

k=1

(j(j + 1) + ω2)ûjk v̂jk.

By the Cauchy inequality, we conclude

〈(−∆∗ + ω2)u, v〉 ≤




∞∑

j=0

2j+1∑

k=1

(j(j + 1) + ω2)|ûjk|2



1/2




∞∑

j=0

2j+1∑

k=1

(j(j + 1) + ω2)|v̂jk|2



1/2
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≤ α‖u‖H1‖v‖H1 ,

for α = max{1, ω2}. On the other hand,

〈(−∆∗ + ω2)u, u〉 =

∞∑

j=0

2j+1∑

k=1

(j(j + 1) + ω2)|ûjk|2

≥ min{1, ω2}
∞∑

j=0

2j+1∑

k=1

(j(j + 1) + 1)|ûjk|2

= β‖u‖2
H1 .

This completes the proof.

We are now able to use the well-known Lax-Milgram theorem to con-
clude that the weak formulation has a unique solution for any given f ∈ L2.

Theorem 1. Suppose that ω > 0. There exists a unique u ∈ H1 satisfy-
ing (4).

Note that we can be more precise in relating the inner product 〈(−∆∗+
ω2)u, u〉 to the H1 and L2 norms of u as follows:

〈(−∆∗ + ω2)u, u〉

=

∞∑

j=0

2j+1∑

k=1

(j(j + 1) + ω2)|ûjk|2

=

∞∑

j=0

2j+1∑

k=1

(j(j + 1) + 1)|ûjk|2 + (ω2 − 1)

∞∑

j=0

2j+1∑

k=1

|ûjk|2

= ‖u‖2
H1 + (ω2 − 1)‖u‖2

L2. (5)

Using the considerations above and Theorem 1, we can bound the
solution u in L2 norm by that of f .

Lemma 2. Let u be the solution of (4). Then

‖u‖L2 ≤ ‖u‖H1 ≤ 1

β
‖f‖L2.

In addition when ω > 1 we have

‖u‖L2 ≤ 1

ω2
‖f‖L2.
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Proof: Clearly, since ‖u‖2
L2 =

∑∞
j=0

∑2j+1
k=1 |ûjk|2, we have ‖u‖L2 ≤

‖u‖H1 . By Lemma 1

‖u‖2
L2 ≤ ‖u‖2

H1 ≤ 1

β
〈−(∆∗ + ω2)u,u〉

=
1

β
〈f,u〉 ≤ 1

β
‖f‖L2‖u‖L2

≤ 1

β
‖f‖L2‖u‖H1

by Cauchy’s inequality. Note that if ω < 1, β = ω2, and if ω > 1, β = 1
and ‖u‖L2 ≤ ‖f‖L2. We can improve this bound for ω > 1. Consider

‖u‖2
L2 ≤ ‖u‖2

H1 = 〈−(∆∗ + ω2)u,u〉 − (ω2 − 1)‖u‖2
L2

= 〈f,u〉 − (ω2 − 1)‖u‖2
L2

≤ ‖f‖L2‖u‖L2 − (ω2 − 1)‖u‖2
L2.

Then
‖u‖L2 ≤ ‖f‖L2 − (ω2 − 1)‖u‖L2,

and therefore

‖u‖L2 ≤ 1

ω2
‖f‖L2.

Define Sr
d(∆) to be the space of homogeneous spherical splines of degree

d ≥ 3r + 2 and smoothness r ≥ 1 on a spherical triangulation ∆ (cf. [1]).
Let Hd denote the space of trivariate homogeneous polynomials of degree
d restricted to the unit sphere. Then

Sr
d(∆) := {s ∈ Cr(S2) : s|τ ∈ Hd, τ ∈ ∆}.

We use this finite dimensional vector space to find an approximation of
the weak solution u, i.e. we seek ū ∈ Sr

d(∆) satisfying

〈−∆∗ū + ω2ū, v〉 = 〈f, v〉, ∀v ∈ Sr
d(∆), (6)

for every v ∈ Sr
d(∆).

We first note that spherical splines belong to H1. Let W k,p(S2) denote
the spaces of L2 functions defined in [12] with the semi-norms

|g|k,p,S2 =
∑

|α|=k

‖Dαgk−1‖Lp

and
|g|′k,p,S2 =

∑

|α|=k

‖Dαgk−2‖Lp

defined in [4]. Here gk−1 denotes the homogeneous extension of g to
R

3\{0} of degree k − 1, and similarly for gk−2.
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Lemma 3. W 2,2(S2) ⊂ H1 ⊂ L2. In particular

‖g‖H1 ≤
√

3|g|′2,2,S2 + ‖g‖L2,

for g ∈ W 2,2(S2).

Proof: The right inclusion follows from the definition of H1. Let g ∈
W 2,2(S2). Then ‖g‖L2 < ∞ and |g|′2,2,S2 < ∞. By (5)

‖g‖2
H1 = 〈(−∆∗ + ω2)g, g〉 − (ω2 − 1)‖g‖2

L2

≤ |
∫

S2

∆∗gg| + ω2

∫

S2

|g|2 − (ω2 − 1)‖g‖2
L2

≤ (

∫

S2

|∆∗g|2)1/2(

∫

S2

|g|2)1/2 + ‖g‖2
L2

≤ (‖∆∗g‖L2 + ‖g‖L2)‖g‖L2.

Since ‖g‖L2 ≤ ‖g‖H1 by above we get

‖g‖H1 ≤ ‖∆∗g‖L2 + ‖g‖L2.

Consider
∫

S2

|∆∗g|2 =

∫

S2

|Dxxg0 + Dyyg0 + Dzzg0|2

≤ 3
∑

|α|=2

∫

S2

|Dαg0|2,

therefore
‖∆∗g‖L2 ≤

√
3|g|′2,2,S2 .

We conclude that

‖g‖H1 ≤
√

3|g|′2,2,S2 + ‖g‖L2 < ∞.

Therefore g ∈ H1.

Since Sr
d(∆) ⊂ W 2,2(S2) for r ≥ 1, d ≥ 3r + 2, we can prove the

following

Theorem 2. Suppose that ω > 0, r ≥ 1 and d ≥ 3r + 2. There exists a
unique ū ∈ Sr

d(∆) satisfying (6).

Proof: Since Sr
d(∆) is a finite dimensional vector space we can write

v =
∑

i viφi for any function v ∈ Sr
d(∆) in terms of some basis {φi}i.

The solution exists if we can find a set of coefficients ui such that
∑

i uiφi

satisfies (6) for every basis function φj , i.e.

〈(−∆∗ + ω2)
∑

i

uiφi, φj〉 = 〈f, φj〉.
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This leads to the system of linear equations M~u = ~f where M(i, j) =

〈(−∆∗ + ω2)φi, φj〉, ~u(i) = ui and ~f = 〈f, φj〉. We claim that M is
positive definite and therefore there exists a unique solution of (6). By
Lemma 3 Sr

d(∆) ⊂ H1. Then

~utM~u = 〈(−∆∗ + ω2)u, u〉 ≥ β‖u‖H1 ,

by Lemma 1. Therefore ~utM~u ≥ 0 and equality holds if and only if u = 0.

We now discuss how well ū approximates u. The following is a spherical
version of Céa lemma.

Lemma 4. There exists a constant C1 depending on ω such that

‖u− ū‖H1 ≤ C1 inf
v∈Sr

d
(∆)

‖u− v‖H1 .

Proof: Note that
〈(−∆∗ + ω2)(u − ū), v〉 = 0, (7)

for all v ∈ Sr
d(∆). Consider v = u − ū − (u − ub) ∈ Sr

d(∆) for any
approximation ub of u. Then we have

〈(−∆∗ + ω2)(u − ū),u − ū〉 = 〈(−∆∗ + ω2)(u − ū),u − ub〉. (8)

By Lemma 1 above,

β‖u− ū‖2
H1 ≤ 〈(−∆∗ + ω2)(u − ū),u − ū〉

= 〈(−∆∗ + ω2)(u − ū),u − ub〉
≤ α‖u− ū‖H1‖u− ub‖H1 .

It thus follows
β‖u− ū‖H1 ≤ α‖u− ub‖H1 ,

for any approximation ub in Sr
d(∆).

Let ub be the quasi-interpolation of u in Sr
d(∆) constructed in [12],

with d ≥ 3r + 2 and ∆ being a quasi-uniform triangulation of the unit
sphere. We need the following result (cf. [4]).

Theorem 3. Let d ≥ 3r + 2 and r ≥ 1. Suppose u is in Wm+1,2(S2), for
some m between 0 and d with (d−m) mod 2 = 0. There exists a constant
C2 depending only on d and the smallest angle in ∆ such that

|u − ub|′k,2,S2 ≤ C2

k∑

`=0

(tan
|∆|
2

)m+1−`|u|m+1,2,S2 , (9)

for all 0 ≤ k ≤ δ := min{r + 1, m + 1}. Here |∆| denotes the size of the
largest triangle in ∆ which is assumed to be bounded by 1.
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The following theorem provides an error bound on the difference between
the weak solution of (1) and its spherical spline approximation in H1 norm.

Theorem 4. Let Sr
d(∆) be a homogeneous spline space with d ≥ 3r + 2,

r ≥ 1 and |∆| ≤ 1. Suppose that the solution u ∈ Wm+1,2(S2), 1 ≤ m ≤ d.
Then there exists a constant C3 > 0 depending on d, |∆|, the smallest angle
of ∆ and ω such that

‖u− ū‖H1 ≤ C3(tan
|∆|
2

)m−1|u|m+1,2,S2 .

Here m must satisfy (d − m) mod 2 = 0.

Proof: Since u ∈ Wm+1,2(S2), m ≥ 1, and ub ∈ W r+1,2(S2), we have
u − ub ∈ W δ,2(S2) with δ ≥ 2. By Lemma 3

‖u− ub‖H1 ≤
√

3|u− ub|′2,2,S2 + ‖u− ub‖L2.

By Theorem 3, we have

|u − ub|′2,2,S2 ≤ C2

2∑

`=0

(tan
|∆|
2

)m+1−`|u|m+1,2,S2 ,

and

‖u− ub‖L2 = |u− ub|′0,2,S2 ≤ C2(tan
|∆|
2

)m+1|u|m+1,2,S2 .

Therefore

‖u− ub‖H1 ≤ C2(
√

3 +
√

3 tan
|∆|
2

+ (
√

3 + 1)(tan
|∆|
2

)2)×
(

tan
|∆|
2

)m−1

|u|m+1,2,S2 .

Now we use Lemma 4 to conclude the result.

Note that the constant C3 is a multiple of α
β . For ω � 1 C3 is of

order ω2, for w � 1 C3 is of order 1
ω2 . Therefore C3 is very large for very

large and very small ω. While ū is expected to converge to u as the size
of the triangulation ∆ is decreasing, Theorem 4 implies that best results
are expected when w ∼ 1. As our numerical data suggests this is not the
case. There is evidence that the error in the approximation decreases as ω
grows, moreover the rate of convergence increases as well. The following
theorem provides some explanation of our numerical results.

Theorem 5. Let Sr
d(∆) be a homogeneous spline space of degree d and

smoothness r. Suppose ω > 1 and let ū ∈ Sr
d(∆) be the solution of (6).

Then

‖u− ū‖L2 ≤ 2

ω2
‖f‖L2. (10)
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Proof: Follow the proof of Lemma 2 to conclude that ‖ū‖L2 ≤ 1
ω2 ‖f‖L2.

In the case when the function f is described as a set of values at finitely
many discrete locations, f too can be approximated by spherical splines.
In this case we solve

〈−∆∗u + ω2u, v〉 = 〈f̃ , v〉, ∀v ∈ Sr
d(∆), (11)

where f̃ is a spline approximation of f . Let ũ denote the spline solution
of (11). We are interested in obtaining an error bound for u− ũ. In view
of Theorems 4 and 5 we only need to show that

Lemma 5. Let ū and ũ be solutions of (6) and (11) respectively. Then

‖ū − ũ‖H1 ≤ 1

β
‖f − f̃‖L2, (12)

and

‖ū − ũ‖L2 ≤ 1

ω2
‖f − f̃‖L2 . (13)

Proof: Since e := ū − ũ ∈ Sr
d(∆) we must have

〈−∆∗ū + ω2ū, e〉 = 〈f, e〉,

and

〈−∆∗ũ + ω2ũ, e〉 = 〈f̃ , e〉.
Therefore by Lemma 1

β‖e‖2
H1 ≤ 〈−∆∗e + ω2e, e〉 = 〈−∆∗ū + ω2ū, e〉 − 〈−∆∗ũ + ω2ũ, e〉

= 〈f, e〉 − 〈f̃ , e〉 = 〈f − f̃ , e〉 ≤ ‖f − f̃‖L2‖e‖L2

≤ ‖f − f̃‖L2‖e‖H1 .

Then

β‖ū − ũ‖H1 ≤ ‖f − f̃‖L2.

On the other hand by (5)

‖e‖2
L2 + (ω2 − 1)‖e‖2

L2 ≤ ‖e‖2
H1 + (ω2 − 1)‖e‖2

L2

= 〈−∆∗e + ω2e, e〉
= 〈f − f̃ , e〉 ≤ ‖f − f̃‖L2‖e‖L2,

and therefore ω2‖e‖L2 ≤ ‖f − f̃‖L2 .

The error bound results on spherical data fitting can be found in [5]
and [4].
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§3. A computational Method

Suppose we are given a set of measurements f(v) corresponding to loca-
tions v ∈ V on the unit sphere. Construct a triangulation ∆ based on the
locations V . Recall that on each triangle in ∆ we can define Bernstein-
Bézier spherical homogeneous polynomials of degree d [1]

P =
∑

i+j+k=d

cijkBd
ijk.

Here

Bd
ijk(v) =

d!

i!j!k!
b1(v)ib2(v)jb3(v)k,

and
b1(v)v1 + b2(v)v2 + b3(v)v3 = v

are spherical barycentric coordinates of a point v on the unit sphere rela-
tive to the spherical triangle with vertices v1, v2 and v3. Recall that the
space of such polynomials is Hd [1]. Let

Sr
d(∆) := {s : s|τ ∈ Hd(S2)} ∩ Cr(S2).

be the spline space defined in Section 2. A spline approximation of the
weak solution u in Sr

d(∆) is

ū =
∑

τ∈∆

∑

i+j+k=d

uτ
ijkBτ,d

ijk .

Substituting these two representations in (11) together with v = Bτ,d
rst , r +

s + t = d we obtain
∑

i+j+k=d

uτ
ijk〈(−∆∗ + ω2)Bτ

ijk, Bτ
rst〉 = 〈f, Bτ

rst〉.

Viewing 〈f, Bτ
ijk〉, τ ∈ ∆, i + j + k = d and (uτ

ijk), τ ∈ ∆, i + j + k = d as

vectors ~f and ~u correspondingly we can write

(D + ω2B)~u = ~f,

where the matrices D and B are defined below with indices i and j corre-
sponding to the ordering of ~u and ~f

Dij =

∫

S2

−∆∗BiBj ,

Bij =

∫

S2

BiBj .
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Furthermore let S be the smoothness matrix (cf. [1] and [6]), i.e., S~u = 0
ensures that ū ∈ Sr

d(∆). We need to solve

(D + ω2B)~u = ~f
S~u = 0.

Using the Lagrange multiplier method, we convert the above equations
into the following matrix equation

[
D + ω2B ST

S 0

] [
~u
λ

]
=

[
~f
0

]
.

We use the iterative method introduced in [2] and [3] to solve the above
matrix equation. The convergence is guaranteed since the matrix D+ω2B
is positive definite with respect to the side conditions S~u = 0.

§4. Numerical Examples

Example 1. We first demonstrate that the spline method reproduces
certain solutions of (1). Let ∆ be a triangulation of the unit sphere based
on the vertices (±1, 0, 0), (0,±1, 0), (0, 0,±1) in R

3. Note that if the exact
solution u belongs to Sr

d(∆), (7) and Lemma 1 imply

0 ≤ β‖u − ū‖2
H1 ≤ 〈(−∆∗ + ω2)(u − ū), u − ū〉 = 0.

Therefore we expect to reproduce polynomial solutions of (1) of even de-
gree in spline spaces of even degree, and similarly for odd degrees. We
test the following functions

u1 = 1 f1 = ω2

u2 = x2 f2 = (6 + ω2)x2 − 2
u3 = y4 f3 = (20 + ω2)y4 − 12y2

in S1
4(∆). We compute the spline approximation ū for different values of

ω, and evaluate the relative errors ei = ‖ui−ũi‖∞

‖ui‖∞

, i = 1, 2, 3 in each case.

The results presented in Table 1 demonstrate reproduction of the exact
solutions. Similarly, in spline spaces of odd degree we expect to reproduce
polynomial solutions u of odd degree. We test

u4 = x f4 = (2 + ω2)x
u5 = y3 + z3 f5 = (12 + ω2)(y3 + z3) − 6(y + z)
u6 = x2z3 f6 = (30 + ω2)x2z3 − 2z(x2 + z2)

in S1
5(∆) and list the relative errors in Table 2.
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ω e1 e2 e3

.1 3.3815e− 12 5.3049e− 12 3.3906e− 12
1 8.8818e− 14 9.1404e− 14 8.4936e− 14
10 2.6046e− 13 1.0218e− 13 4.9889e− 14

Tab. 1. Reproduction of exact solutions by spherical splines.

ω e4 e5 e6

.1 6.2355e− 13 3.3546e− 13 4.7145e− 13
1 4.9981e− 13 4.6103e− 13 7.2343e− 13
10 1.7763e− 12 1.5280e− 12 1.1452e− 12

Tab. 2. Reproduction of exact solutions by spherical splines.

Example 2. Next we test how well the spline solution of the PDE with the
right hand side function f(x, y, z) = ex(ω2 +x2 +2x−1) can approximate
the exact solution u(x, y, z) = ex. The initial triangulation ∆0 is based on
6 vertices as in the previous example. The next refined triangulation ∆1 is
obtained from ∆0 by connecting the midpoints of edges of ∆0. Similarly

we form ∆2 and ∆3. The errors of the form ei := e(∆i) = ‖u−ū‖∞

‖u‖∞

are

computed based on a set of 46592 almost uniformly spaced points over the
unit sphere. In Table 3 we list the error results in S1

5(∆). Corresponding
convergence rates ei/ei+1 are listed in Table 4.

ω e0 e1 e2 e3

0.01 4.2791e− 1 5.7706e− 2 8.8282e− 3 1.8378e− 2
0.1 3.1387e− 1 1.0510e− 3 2.4704e− 4 3.5504e− 4
1 2.9608e− 2 5.7173e− 4 7.8374e− 6 1.8207e− 6
10 2.4472e− 2 5.8554e− 4 8.9892e− 6 4.2849e− 7
100 2.4765e− 2 5.8647e− 4 9.8447e− 6 1.6522e− 7

Tab. 3. Error values in S1
5(∆) for u(x, y, z) = ex.

The results of similar experiments using triangulated spherical spline
spaces S1

6(∆) and S2
8(∆) are recorded in Tables 5, 6, 7 and 8, respectively.

Example 3. In this example we test the exact solution

u∗(x, y, z) = (1 −
√

2 − 2z)6+(35(2 − 2z) + 18
√

2 − 2z + 3)

with the right hand side function

f(x, y, z) = 112(1−
√

2 − 2z)4+(25z2 − 9z + 4z
√

2 − 2z − 15)+
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ω e0/e1 e1/e2 e2/e3

0.01 7.4154 6.5366 0.4804
0.1 298.6521 4.2542 0.6958
1 51.7867 72.9489 4.3046
10 41.7951 65.1382 20.9788
100 42.2269 59.5722 59.5854

Tab. 4. Convergence in S1
5(∆) for u(x, y, z) = ex.

ω e0 e1 e2 e3

0.01 2.3526e− 3 1.8382e− 3 5.1806e− 4 2.7671e− 3
0.1 2.3460e− 3 5.7889e− 5 9.7877e− 6 1.2302e− 4
1 2.4370e− 3 4.6854e− 5 2.4196e− 6 4.3631e− 6
10 2.4282e− 3 5.1107e− 5 7.7150e− 7 6.3742e− 7
100 2.3004e− 3 5.9546e− 5 6.9452e− 7 1.8974e− 7

Tab. 5. Error values in S1
6(∆) for u(x, y, z) = ex.

ω2(1 −
√

2 − 2z)6+(35(2 − 2z) + 18
√

2 − 2z + 3).

We compute the spline approximation to the solution u using triangulated
spherical spline space S1

5(∆i) for i = 0, 1, . . . , 4. The maximal error values
are computed based on the 46592 almost uniformly spaced points over
the unit sphere used in the previous examples. The maximal errors are
tabulated in Table 9. Similarly, we also use spline space S1

6(∆i) for i =
0, 1, 2, 3 and several values of ω. The error values, computed based on
the 46592 almost uniformly spaced points on the sphere are recorded in
Table 10, and convergence rates are listed in Table 11. Here N denotes
the number of triangles in ∆i.
Remark 1. (Comparison of Triangulated Spherical Splines and Spherical
Radial Basis Functions) The solution u∗ in Example 3 was tested in [8] and
thus allows us to some extent to compare the results on approximation
by polynomial spherical splines and the spherical basis functions(SBF).
From Tables 9 and 10 we can see that spline functions provide much
better convergence than Table 1 in [Le Gia’04]. Although we have to solve
much large linear systems than that associated with the SBF method, the
numerical solutions in Table 1 in [8] show that the SBF method soon loses
its approximation due to the condition numbers of the linear system when
using 900 points. It seems that the linear systems from our method have
better condition numbers than that from the SBF method. In addition, the
second example in [8] shows how well the SBF method approximates the
spherical polynomials. Our method can reproduce spherical polynomials
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ω e0/e1 e1/e2 e2/e3

0.01 1.2798 3.5483 0.1872
0.1 40.5258 5.9144 0.0796
1 52.0125 19.3642 0.5546
10 47.5112 66.2437 1.2103
100 38.6324 85.7357 3.6604

Tab. 6. Convergence in S1
6(∆) for u(x, y, z) = ex.

ω e0 e1 e2 e3

0.01 1.0845e− 3 2.2059e− 2 1.6706e− 1 3.0517e− 2
0.1 8.4258e− 4 1.7193e− 4 2.5036e− 3 2.1760e− 3
1 8.5125e− 4 8.9492e− 6 8.4661e− 5 1.4490e− 5
10 8.8980e− 4 7.9679e− 6 1.0348e− 5 8.4810e− 6
100 9.0556e− 4 7.6868e− 6 7.3615e− 7 1.8235e− 6

Tab. 7. Error values in S2
8(∆) for u(x, y, z) = ex.

as in Example 1. Thus, our method is again better in this case.

Remark 2. The condition number of the matrix D +ω2B increases with
the degree d of the spline space. It also increases as the triangulation size
∆ becomes smaller and as the parameter ω decreases. We can see that
even though higher convergence rates are expected for higher d the rates
are often not achieved on triangulations with smaller triangles and smaller
ω.
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