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Abstract. The convergence of the minimal energy interpolatory

splines on the unit sphere is studied in this paper. An upper bound

on the difference between a sufficiently smooth function and its

interpolatory spherical spline in the infinity norm is given. The error

bound is expressed in terms of a second order spherical Sobolev-type

seminorm of the original function.

§1. Introduction

We study the minimal energy method for scattered data interpolation over
the unit sphere. Mainly, we are interested in the convergence rate of the
minimal energy method based on spherical spline functions. In the planar
setting, such convergence rate was recently determined in [5]. It is natural
to generalise the convergence result to the setting of spherical splines. This
is the purpose of the paper.

To be more precise about what we will study in this paper, let us
introduce some necessary notation and definition. Let S denote the unit
sphere in R

3. Given two points u, v on S that are not antipodal, the
shortest curve connecting them is an arc ûv of the great circle through
them. Given three points v1, v2 and v3 on S such that v1, v2, v3 form a
basis for R

3, a spherical triangle τ is a domain bounded by the arcs v̂1v2,
v̂2v3 and v̂3v1, which are called edges of the spherical triangle τ . The
points v1, v2 and v3 are called vertices of τ .

Given a set V of points on S we can form a triangulation ∆: a collection
of spherical triangles. We will assume that the triangulation ∆ is regular
in the sense that any two triangles do not intersect each other, or share
either a common vertex or a common edge and every edge of ∆ is shared by
exactly two triangles. Under the regularity assumption of ∆, the number
of vertices V = #(V) and the number of triangles T := #({τ ∈ ∆}) are
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related as T = 2(V − 2). The number E of edges of ∆ is related to the
number of triangles as E = 3T/2.

Let

Sr
d(∆) = {s ∈ Cr(S), s|τ ∈ Hd, τ ∈ ∆}

be the homogeneous spherical spline space of degree d and smoothness r
over a regular triangulation ∆ whose vertices are the given scattered points
on S. Here Hd denotes the space of spherical homogeneous polynomials
of degree d (cf. [2]).

Suppose we are given values {f(v), v ∈ V} of an unknown function f
on the set V . Let

Uf := {s ∈ Sr
d(∆) : s(v) = f(v), v ∈ V}

be the set of all splines in Sr
d(∆) that interpolate f at the points of V .

Then a commonly used way to create an approximation of f is to choose
a spline Sf ∈ Sr

d(∆) such that

E(Sf ) = min
s∈Uf

E(s), (1)

where E is an energy functional which will be defined later. We refer to
Sf as the minimal energy interpolating spline.

It is interesting to see if Sf converges to f as the points in V become
dense on S. More precisely, we shall prove that for a spline space Sr

d(∆)
defined on a β-quasi-uniform triangulation ∆ with size |∆| ≤ 1 and d ≥
3r +2, there exist constants D8, D9, D10 depending only on d and β, such
that the minimal energy interpolant Sf , defined in (1), satisfies

||f − Sf ||∞,S ≤ D8(tan
|∆|
2

)2|f |2,∞,S, (2)

if f ∈ C2(S) for odd integer d and

||f − Sf ||∞,S ≤ D9(tan
|∆|
2

)2|f |2,∞,S + D10(tan
|∆|
2

)3|f |3,∞,S, (3)

for all f ∈ C3(S) for even integer d.
The concept of quasi-uniform triangulations will be given in Section 2.

The spaces W k,p(S) and associated norms ||·||k,p,S and semi-norms |·|k,p,S

will be defined in Section 3. In order to prove the convergence of Sf ,
we need several preliminary results concerning spherical triangulations in
Sections 2, the approximation properties of interpolatory polynomials in
Section 4, and the approximation properties of Sr

d(∆) which are mainly
based on the results in [8] in Section 5. Finally we prove the main result
in Section 6. Some numerical examples are considered in Section 7.
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§2. Natural Radial Projection

In order to obtain bounds on convergence of the minimal energy splines,
we need to constrain spherical triangulations. Let us introduce a concept
of a quasi-uniform triangulation on S similar to the planar case.

Define a diameter of a spherical cap C as supu,v∈C arccos(u ·v). Given
a spherical triangle τ , let |τ | denote the diameter of the smallest spherical
cap containing τ , and let ρτ denote the diameter of the largest spherical
cap contained in τ . Then

|∆| = max{|τ |, τ ∈ ∆} and ρ∆ = min{ρτ , τ ∈ ∆}

are correspondingly the diameter of the largest triangle in ∆ and the diam-
eter of the smallest spherical cap inscribed in ∆.

Definition 1. Let β be a positive real number. A triangulation ∆ is said
to be β-quasi-uniform provided that

|∆|
ρ∆

≤ β.

It is wellknown that in the planar case, the smallest angle of a quasi-
uniform triangulation is bounded below by 1/β [7]. We make use of a
concept of a natural radial projection developed in [8] to relate properties
of planar quasi-uniform triangulations to the spherical ones.

Fix a spherical triangle τ with |τ | ≤ 1. Define rτ to be the center
of a spherical cap of smallest possible radius containing τ , and let Tτ be
the tangent plane touching S at rτ (cf. Figure 1). We define the radial
projection from Tτ into S by

w := Rτ w̄ :=
w̄

|w̄| ∈ S, w̄ ∈ Tτ .

Since Rτ is one-to-one, R−1
τ is well-defined. Let τ̄ be the image of τ under

R−1
τ . It is not too difficult to check that

|τ | ≤ |τ̄ | ≤ K1|τ |, and K−1
2 ρτ ≤ ρτ̄ ≤ K2ρτ , (4)

for some positive constants K1 and K2. In this paper however we make
use of the following

Lemma 1. Let τ be a spherical triangle with |τ | ≤ 1. Let τ̄ denote the
image of τ under the map R−1

τ . Then

2 tan
|τ |
2

= |τ̄ | (5)

and

2 tan
ρτ

2
≤ ρτ̄ . (6)
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Fig. 1. Spherical triangle and its planar projection.

Proof: By the definition of Rτ , the center of the smallest spherical cap
containing τ is the center of the circle outscribing τ̄ . Let v̄ be one of the
vertices of τ̄ . The center of the unit sphere O, v̄ and rτ form a right triangle

with the leg Orτ of length 1, the leg v̄rτ having length
|τ̄ |
2

and the angle

∠v̄Orτ having radian measurement
|τ |
2

. Then (5) follows immediately.

The largest spherical cap σ contained in τ is mapped onto an ellipse
ε in the plane Tτ which is contained in τ̄ . The largest circle σ̄ contained

in τ̄ has a radius
ρτ̄

2
greater than or equal to rε, the radius of the largest

circle contained in the ellipse. Let o be the center of σ and v be any point
on the boundary δσ of the cap. Let ō and v̄ be the images of o and v under
R−1

τ correspondingly. Then rε can defined by rε := minv∈δσ{|ō− v̄|}. Note
now that

|ō − v̄| ≥ tan |o − v|, ∀v ∈ δσ.

Therefore
ρτ̄

2
≥ rε ≥ tan

ρτ

2
,

and we have (6).

Note also that since great circles are mapped into straight lines under
the inverse of the radial projection Rτ , any cluster of spherical triangles
ω with |ω| ≤ 1 is mapped into a planar triangulation ω̄.

Lemma 2. Let ∆ be a β-quasi-uniform triangulation of the unit sphere
with |∆| ≤ 1. Let Θ∆ denote the smallest angle of ∆. There exists a
constant A1 such that

Θ∆ ≥ 1

A1β
. (7)
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Proof: Fix a spherical triangle τ ∈ ∆, and construct the radial projection
Rτ . By Lemma 1 we have

|τ̄ |
ρτ̄

≤ tan |τ |
2

tan ρτ

2

≤ 2 tan
1

2
β.

Since τ̄ is a planar triangle, its every angle is bounded below by 1
A1β with

A1 := 2 tan 1
2 . Since the corresponding spherical angles are even greater,

(7) follows. We have thus established Lemma 2.

We will need another lemma comparing areas Aτ of spherical triangles
to the size parameters |∆| and ρ∆ characterising spherical triangulations.

Lemma 3. For every spherical triangle τ ∈ ∆ with |∆| ≤ 1

πρ2
∆

5
≤ Aτ ≤ π|∆|2

4
. (8)

Proof: The area Aτ of a spherical triangle is bounded above by the area
of the smallest spherical cap containing τ . The diameter of this cap is |τ |.
Without loss of generality we assume that the center of this cap is located
at the north pole. Then

Aτ ≤
∫ 2π

0

∫ |τ |/2

0

sin ηdηdθ = 2π(1 − cos(|τ |/2)) ≤ π
|∆|2

4
.

Here the last inequality holds since |τ | ≤ |∆| ≤ 1. Similarly, Aτ is bounded
below by the area of the largest spherical cap contained in τ , which by the
definition has a diameter ρτ . Therefore

Aτ ≥ 2π(1 − cos(ρτ/2)) ≥ πρ2
∆

5
.

Another result that we need concerning β-quasi-uniform triangulations
is a bound on the number of triangles nk in the k-th disk around τ .
We denote star1(v) the union of all triangles in ∆ that share the ver-
tex v, star`(v) := ∪{star1(w) : w is a vertex of star`−1(v)}, ` > 1, and
star`(τ) := ∪{star`(w) : w is a vertex of τ}, ` > 1.

Lemma 4. Suppose ∆ is a β-quasi-uniform triangulation such that |∆| ≤
1. Then for any triangle τ ∈ ∆ and any k ≥ 0, the number nk of triangles
in stark(τ) is

nk ≤ 5β2

4
(2k + 1)2. (9)

If, in addition, ∆ is regular, then

nk ≥ 2

πβ2
(2k + 1)2. (10)
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Proof: Note that stark(τ) is contained in a spherical cap of radius R =

(2k + 1) |∆|
2 with area denoted AR. Also by Lemma 3 we have

πρ2
∆

5
≤ Aτ .

Then

nk
πρ2

∆

5
≤ AR = 2π(1 − cos(R)) ≤ πR2.

Therefore

nk ≤ 5β2(2k + 1)2

4
.

If ∆ is total, then stark(τ) contains a spherical cap of radius r = (2k+1)ρ∆

2
with area denoted as Ar. Then by Lemma 3

2r2 ≤ 2π(1 − cos(r)) = Ar ≤ nk
π|∆|2

4
,

and therefore

nk ≥ 2(2k + 1)2

πβ2
.

This completes the proof of Lemma 4.

§3. Spherical Sobolev Space Seminorms

In this section we start by following the construction in [8] to define
Sobolev-type norms and seminorms for functions on the unit sphere. This
construction uses a concept of a homogeneous extension.

Definition 2. Given any spherical function f and any integer n, the ho-
mogeneous extension of f of degree n to R

3\{0} is a function fn defined
by

fn(u) = |u|nf(
u

|u| ). (11)

We next recall that a trivariate function f(v) is homogeneous of degree n
if

f(αv) = αnf(v), ∀α ∈ R. (12)

Fix 0 ≤ p ≤ ∞, k nonnegative integer and let B denote an open set in
R

2. Recall that the corresponding classical Sobolev space W k,p(B) is the
space of functions on B whose derivatives up to order k belong to Lp(B)
[1]. A norm on W k,p(B) can be defined as

||g||k,p,B :=
∑

γ1+γ2≤k

||Dγ1

ξ Dγ2

η g||p,B, (13)
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where Dγ1

ξ Dγ2
η = ∂γ1+γ2

∂ξγ1∂ηγ2
.

Let Ω be a subset of the unit sphere with |Ω| ≤ 1. Suppose that
{(Γj , φj)} is an atlas for Ω. Let {αj} be a partition of unity subordinate
to the atlas. We define spherical Sobolev spaces W k,p(Ω) as follows:

W k,p(Ω) := {f : (αjf) ◦ φ−1
j ∈ W k,p(φj(Γj)), for all j}. (14)

Let f ∈ W k,p(Ω) and let fk−1 denote the unique homogeneous extension
of f of degree k − 1 as in Definition 2. Then

|f |k,p,Ω :=
∑

|α|=k

||Dαfk−1||p,Ω (15)

is a Sobolev-type seminorm of f on W k,p(Ω). Here ||Dαfk−1||p,Ω is under-
stood as the Lp-norm of the restriction of the trivariate function Dαfk−1

to Ω. For k = 0 the above seminorm reduces to the usual Lp-norm.

§4. Basic Inequalities

Let Hd denote the space of trivariate homogeneous polynomials of degree
d. It was shown in [2] that the set

Bd
ijk(v) =

d!

i!j!k!
b1(v)ib2(v)jb3(v)k, i + j + k = d (16)

of Bernstein-Bézier basis polynomials of degree d forms a basis for Hd.
Here b1(v), b2(v), b3(v) are trihedral barycentric coordinates of a point
v ∈ R

3 satisfying and uniquely defined by

v = b1(v)v1 + b2(v)v2 + b3(v)v3

in terms of a triple of linearly independent unit vectors v1, v2 and v3. The
restrictions of the trihedral barycentric coordinates to a spherical triangle
with the vertices v1, v2 and v3 are called spherical barycentric coordinates.
The restriction of a homogeneous Bernstein-Bézier polynomial of degree
d to the points on the unit sphere is called a spherical Bernstein-Bézier
(SBB-) polynomial of degree d. Any homogeneous polynomial P of degree
d and its restriction to a spherical triangle τ have a Bernstein-Bézier (BB-)
representation with respect to τ

P (v) =
∑

i+j+k=d

cijkBd
ijk(v). (17)

Given a homogeneous trivariate polynomial P in BB form (17), let c
be a vector of its coefficients. Let ||c||∞,τ and ||c||p,τ denote its `∞ and `p

norms on a spherical triangle τ respectively.
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Lemma 5. Any homogeneous polynomial P of degree d in Bernstein-
Bézier form (17) with respect to a spherical triangle τ with |τ | ≤ 1 satisfies
the property

A2 ||c||∞,τ ≤ ||P ||∞,τ ≤ A3||c||∞,τ (18)

and
A4A

1/p
τ ||c||p,τ ≤ ||P ||p,τ ≤ A5A

1/p
τ ||c||p,τ (19)

for any 1 ≤ p < ∞. Here A2, A3 and A5 are positive constants independent
of τ , P and p. A4 depends d, p and the smallest angle of τ .

Proof: Proof of (18) can be found in [8]. For (19) fix 1 ≤ p < ∞. By
Lemma 4.4 in [8], there exists a positive constant K3 depending on d, p
and the smallest angle Θτ of τ such that

A−1/p
τ ||P ||p,τ ≤ ||P ||∞,τ ≤ K3A

−1/p
τ ||P ||p,τ . (20)

Then using (18) we get

A
1/p
τ

K3
A2

(
d + 2

2

)−1/p

||c||p,τ ≤ A
1/p
τ

K3
A2||c||∞,τ ≤ A

1/p
τ

K3
||P ||∞,τ ≤ ||P ||p,τ .

Similarly, by (20)

||P ||p,τ ≤ A1/p
τ ||P ||∞,τ ≤ A3A

1/p
τ ||c||∞,τ ≤ A3A

1/p
τ ||c||p,τ .

Therefore we obtain (19) with A4 := A2

K3

(
d+2
2

)−1/p
and A5 := A3.

Next we need Markov-type inequalities.

Lemma 6. Let P be a trivariate homogeneous polynomial of degree d
defined on a spherical triangle τ with |τ | ≤ 1. There exist constants A6

depending on d and Θτ only, and A7 depending on d, such that

|P |k,∞,τ ≤ A6

(tan ρτ

2 )k
||P ||∞,τ , (21)

and

|P |k,p,τ ≤ A7

(tan ρτ

2 )k
||P ||p,τ (22)

for 1 ≤ p < ∞. Here ρτ is a the diameter of the largest spherical cap
contained in τ .

Proof: For (22) we follow the proof of Proposition 4.3 in [8]. Modify the
proof by replacing (4) with (6). To prove (21), we apply (20) to both sides
of (22) to get

|P |k,∞,τ ≤ A7K4

(tan ρτ

2 )k
||P ||∞,τ
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for some K4 depending on d−k and Θ∆. We obtain (21) with A6 = A7K4.

Finally we express a bound on the values of a smooth spherical function
in terms of its 2nd Sobolev seminorm over a spherical triangle.

Lemma 7. Let τ be a spherical triangle such that |τ | ≤ 1, and suppose
f ∈ W 2,p(τ) vanishes at the vertices of τ , that is f(vi) = 0, i = 1, 2, 3.
Then for all v ∈ τ ,

|f(v)| ≤ A8(tan
|τ |
2

)2|f |2,∞,τ (23)

for some positive constant A8 independent of f and τ . Moreover, if f is a
homogeneous polynomial of degree d, then

|f(v)| ≤ A9A
−1/p
τ (tan

|τ |
2

)2|f |2,p,τ (24)

for some positive constant A9 dependent only on d, p and the smallest
angle in τ .

Proof: Let Rτ be the radial projection defined before. Let v̄i, i = 1, 2, 3
denote the vertices of a planar triangle τ̄ , which is the image of τ under

the inverse of Rτ and v̄ = R−1
τ v for v ∈ τ . Recall that |τ̄ | = 2 tan |τ |

2 by
Lemma 1.

Let f1(v) = |v|f( v
|v| ) be the linear homogeneous extension of f to

R
3\{0} and let f̄1 denote its restriction to the planar triangle τ̄ . By

Lemma 3.2 in [8], f̄1 belongs to W 2,p(τ̄ ). Note also that f̄1(v̄i) = |v̄i|f(vi) =
0, i = 1, 2, 3. Therefore by Lemma 6.1 in [5], we have for every v̄ ∈ τ̄

|f̄1(v̄)| ≤ 12|τ̄ |2|f̄1|2,∞,τ̄ . (25)

Since f(v) = f̄1(v̄)
|v̄| and |v̄| ≥ 1 for all v̄ ∈ τ̄ ,

|f(v)| ≤ |f̄1(v̄)| ≤ 48(tan
|τ |
2

)2|f̄1|2,∞,τ̄ ,

by (25). By Proposition 3.4 in [8], there exists a positive constant K5 such
that we get

|f(v)| ≤ 48K5(tan
|τ |
2

)2|f |2,∞,τ ,

and therefore A8 = 48K5.
If f is a homogeneous polynomial of degree d, then its second deriva-

tives are homogeneous polynomials of degree d − 2, then by (20) we have

|f |2,∞,τ ≤ K6A
−1/p
τ |f |2,p,τ ,
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for some K6 depending on d, p and the smallest angle in τ . Hence

|f(v)| ≤ 48K5(tan
|τ |
2

)2|f |2,∞,τ ≤ A9A
−1/p
τ (tan

|τ |
2

)2|f |2,p,τ .

This completes the proof with A9 = 48K5K6.

§5. Stable Local Basis and Existence of a Quasi-Interpolant

We now describe the stable local bases that the spline spaces possess. We
shall use the spline spaces that have a local basis to solve the interpolation
problem on the sphere. Let

D := ∪τ∈∆{ξτ
ijk, i + j + k = d}, (26)

with ξτ
ijk := iu+jv+kw

d for τ =< u, v, w > be the set of domain points asso-

ciated with ∆ and d. It is well known that each spline in S0
d(∆) is uniquely

determined by associating one Bézier coefficient with each domain point.
A subset M ⊂ D is called a minimal determining set for Sr

d(∆) if the val-
ues of the coefficients of s ∈ Sr

d(∆) associated with domain points in M
uniquely determine all of the coefficients of s.

Definition 3. A basis {Bξ}ξ∈M for a space S of splines on a triangulation
∆ is a stable local basis, if there exists an integer ` and constants 0 < C1 <
C2 < ∞ depending only on d and the smallest angle θ∆ in the triangulation
∆ such that

1) for each ξ ∈ M, supp(Bξ) ⊆ star`(vξ) for some vξ of ∆,

2) for all {cξ}ξ∈M,

C1 max
ξ∈M

|cξ| ≤ ||
∑

ξ∈M

cξBξ||∞,S ≤ C2 max
ξ∈M

|cξ|. (27)

A construction of a stable local basis using the Bernstein-Bézier repre-
sentation of splines in Sr

d(∆) when d ≥ 3r + 2 is outlined in [8] with a
reference to [4]. Given a minimal determining set, we can construct a basis
{Bξ}ξ∈M for Sr

d(∆) by requiring

µηBξ = δξ,η, η ∈ M, (28)

where µη is the linear functional which picks the coefficient associated
with the domain point η. In particular, Bξ has the property that the
coefficient associated with ξ is 1 while the coefficients associated with all
other points in M are zero. The remaining coefficients of Bξ are computed
using smoothness conditions.
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For any given spline space Sr
d(∆), there are many possible choices for

a minimal determining set M. A choice of M presented in [4] leads to a
basis with the following properties, where for each ξ, Ωξ := supp(Bξ) and
τξ is the triangle in which ξ lies.

Lemma 8. Let {Bξ}ξ∈M be the basis for Sr
d(∆) corresponding to the

minimal determining set M described in [4]. Then there exist constants
C3, ..., C9 depending only on d, p and the minimal angle in ∆ such that
for each ξ ∈ M,

1) there exists a vertex vξ ∈ ∆ such that Ωξ ⊆ star3(vξ),

2) ||Bξ||∞,S ≤ C3,

3) |µξs| ≤ C4||s||∞,τξ
, for all s ∈ Sr

d(∆),

4) |µξs| ≤ C5A
−1/p
τξ ||s||p,τξ

, for all s ∈ Sr
d(∆), and for every τ ∈ ∆,

5) ||Bξ||p,τ ≤ C6A
1/p
τ ,

6) #Iτ ≤ C7, where Iτ := {ξ : τ ⊂ Ωξ},
7) |Bξ|k,∞,τ ≤ C8ρ

−k
τ , for all 0 ≤ k ≤ d

8) |Bξ|k,p,τ ≤ C9ρ
−k
τ A

1/p
τ , for all 0 ≤ k ≤ d.

The proof of the above lemma can be found in [8]. Furthermore the
analysis of the proof of 8) of the above lemma allows the following change
in 8). Using (22) instead of (4.3) in [8] one gets

|Bξ|k,p,τ ≤ C9(tan
ρτ

2
)−kA1/p

τ (29)

with C9 = A7C6.
It was shown in [8] that with the basis defined above one can construct

a quasi-interpolation operator Q : Lp(S) → Sr
d(∆) which achieves the

optimal approximation property. Indeed, extend the linear functionals µξ

to all of Lp(S) using Hahn-Banach theorem. Then for every f ∈ Lp(τξ),

|µξf | ≤ C5A
−1/p
τξ

||f ||p,τξ
, ξ ∈ M. (30)

This inequality implies that for each ξ, the carrier of the extended func-
tional µξ is contained in τξ, i.e., if f ≡ 0 on τξ, then µξf = 0. With (29)
in mind we modify the proof of Proposition 5.2 in [8] accordingly to get
the following

Lemma 9. For each f ∈ Lp(S), let

Qf :=
∑

ξ∈M

(µξf)Bξ. (31)
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Then Qg = g for all g ∈ Hd(S). Moreover, there exists a constant C10

depending only on d, p and the smallest angle in ∆ such that for each
triangle τ ∈ ∆,

|Qf |k,p,τ ≤ C10(tan
ρτ

2
)−k||f ||p,Ωτ

, (32)

where Ωτ := ∪ξ∈Iτ
Ωξ and Iτ := {ξ : τ ⊂ Ωξ}.

Theorem 1. Suppose τ ∈ ∆ is a spherical triangle with |τ | ≤ 1. Let
f ∈ Wm+1,p(τ) for 0 ≤ m ≤ d such that (d − m)mod 2 = 0. There exists
a spherical homogeneous polynomial s of degree d such that for every
0 ≤ k ≤ m

|f − s|k,p,τ ≤ C11(tan
|τ |
2

)m+1−k|f |m+1,p,τ . (33)

Here C11 is a constant that depends on p, m and θ∆. Moreover

|f − s|k,p,Ωτ
≤ C11(tan

|∆|
2

)m+1−k|f |m+1,p,Ωτ
. (34)

Proof: Fix m. By Theorem 4.2 in [8], there exists a spherical homoge-
neous polynomial s′ of degree m such that for every 0 ≤ k ≤ m

|f − s′|k,p,τ ≤ C11|τ |m+1−k|f |m+1,p,τ . (35)

If we slightly modify the proof of Theorem 4.2 [8], i.e. replace (4) by (5),
we can get

|f − s′|k,p,τ ≤ C11(tan
|τ |
2

)m+1−k|f |m+1,p,τ . (36)

Since (d−m)mod 2 = 0, s = |v|d−ms′ is a homogeneous spherical polyno-
mial of degree d. Since on the unit sphere s′ ≡ s, their k− 1-st extensions
are the same, and we have (33). To get (34), sum (33) over triangles in
Ωτ . This completes the proof.

Theorem 2. Let ∆ be a β-quasi-uniform spherical triangulation with
|∆| ≤ 1. Let 1 ≤ p ≤ ∞, d ≥ 3r + 2, and 0 ≤ k ≤ d. Then there
exists a constant C12 depending only on d, p and the smallest angle in ∆,
such that

|f − Qf |k,p,τ ≤ C12(tan
|∆|
2

)m+1−k|f |m+1,p,Ωτ
, (37)

for all f ∈ Wm+1,p(S) and all τ ∈ ∆. Moreover, there exists a constant
C13 such that

|f − Qf |k,p,S ≤ C13(tan
|∆|
2

)m+1−k|f |m+1,p,S, (38)

for all f ∈ Wm+1,p(S) and all 0 ≤ k ≤ d such that Qf ∈ W k,p(S). Here
m is taken between 0 and d with (d − m) mod 2 = 0.
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Proof: Let τ ∈ ∆ with |τ | ≤ 1. By Theorem 1 there exists a spherical
homogeneous polynomial s of degree d such that (33) holds. By the lin-
earity of Q and the fact that Q reproduces polynomials of degree d, we
can write

|f − Qf |k,p,τ ≤ |f − s|k,p,τ + |Q(f − s)|k,p,τ .

We now consider the last term in the above inequality. Since ∆ is assumed

to be β-quasi-uniform, |ρτ | ≥ |τ |
β , and therefore

tan
ρτ

2
≥ tan

|τ |
2β

≥ 1

β2
tan

|τ |
2

.

By (32) and Theorem 1

|Q(f − s)|k,p,τ ≤ C10(tan
ρτ

2
)−k||f − s||p,Ωτ

≤ C10C11(tan
|τ |
2β

)−k(tan
|∆|
2

)m+1|f |m+1,p,Ωτ

≤ C10C11(β)2k(tan
|∆|
2

)m+1−k|f |m+1,p,Ωτ
.

Therefore we get (37) with C12 = C11(1 + C10β
2k).

To prove (38), we sum (37) over all triangles in ∆.

|f − Qf |k,p,S =
∑

τ∈∆

|f − Qf |k,p,τ ≤ C12(tan
|∆|
2

)m+1−k
∑

τ∈∆

|f |m+1,p,Ωτ

≤ C12(tan
|∆|
2

)m+1−k
∑

τ∈∆

∑

τ ′⊂Ωτ

|f |k,p,τ ′

= C12(tan
|∆|
2

)m+1−k
∑

τ ′∈∆

#{τ : τ ′ ⊂ Ωτ}|f |m+1,p,τ ′

≤ C12K7(tan
|∆|
2

)m+1−k
∑

τ ′∈∆

|f |m+1,p,τ ′.

Here K7 := max{#{τ : τ ′ ⊂ Ωτ}, τ ′ ∈ ∆} which is bounded by Lemma 4.
Therefore (38) holds with C13 = C12K7. This completes the proof.

§6. Minimal Energy Interpolating Splines

Suppose we are given values {f(v), v ∈ V} of an unknown function f at a
set V of scattered points on the unit sphere. To approximate f , we choose
a linear space S ⊆ Sr

d(∆) of polynomial splines of degree d defined on a
triangulation ∆ with vertices at the points of V . Recall that

Uf := {s ∈ S : s(v) = f(v), v ∈ V}
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is the set of all splines in S that interpolate f at the points of V . We
assume that S is big enough so that Uf is not empty. Recall a commonly
used way to create an approximation of f is to choose a spline Sf such
that

E(Sf ) = min
s∈Uf

E(s), (39)

where for a spherical triangle τ ∈ ∆

Eτ (s) :=
∑

|α|=2

||Dαs1||22,τ and E(s) :=
∑

τ∈∆

Eτ (s). (40)

Here s1 is the linear homogeneous extension of s to R
3\{0}, α is a triple

index with entries running through x, y, z, e.g., D(1,1,1) = DxDyDz. That
is, Sf is the minimal energy interpolating spline.

Let
X := {f ∈ B(S) : f |τ ∈ C2(τ), ∀τ ∈ ∆},

where B(S) is the set of all bounded real-valued functions on the sphere.
For each triangle τ ∈ ∆, let

〈f, g〉τ :=

∫

τ

∑

|α|=2

Dαf1 Dαg1.

Then
〈f, g〉 := 〈f, g〉S =

∑

τ∈∆

〈f, g〉τ

is a semidefinite inner product on X . Let ||f ||τ and ||f || be the associated
seminorms. We refer to them as energy or X -norms.

It is easy to see that < ·, · > is an inner product on the linear space

W := {s ∈ S : s(v) = 0, v ∈ V}. (41)

Indeed, if < w, w >= 0 for some w ∈ W , then w is a linear homogeneous
polynomial on ∆ and since w vanishes at all vertices, w ≡ 0. Since W
is finite-dimensional, it follows that W equipped with the inner product
< ·, · > is a Hilbert space.

Given f , suppose sf is any spline in the set Uf defined above. Then it
is easy to see that the solution Sf to the minimal energy problem is equal
to sf − Psf , where P is the linear projector P : X → W defined by

E(f − Pf) = min
w∈W

E(f − w), (42)

for all f ∈ X . Since W is a Hilbert space with respect to 〈·, ·〉, Pf is
uniquely defined and is characterised by

〈f − Pf, w〉 = 0, ∀w ∈ W . (43)
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Moreover

E(Pf) ≤ E(f) (44)

for all f ∈ X .
We now establish a lemma showing the equivalence of certain semi-

norms on the space X defined above.

Lemma 10. Let τ be a spherical triangle with |τ | ≤ 1 and f ∈ X . Let Eτ

be the functional defined in (40). There exists a constant D1 such that

D1|f |22,2,τ ≤ Eτ (f) ≤ |f |22,2,τ . (45)

Proof: By the definition

|f |22,2,τ = (
∑

|α|=2

||Dαf1||2,τ )2 ≥
∑

|α|=2

||Dαf1||22,τ = Eτ (f).

Since the number of elements in the sum (40) is 8,

|f |22,2,τ = (
∑

|α|=2

||Dαf1||2,τ )2 ≤ 8
∑

|α|=2

||Dαf1||22,τ ≤ 8 Eτ (f).

Next we establish reproductive property of the energy functional Eτ .

Lemma 11. Let τ be a spherical triangle with |τ | ≤ 1. Suppose f ∈
X . Then Eτ (f) = 0 if and only if f is a trivariate homogeneous linear
polynomial on τ .

Proof: Apply the definition of Eτ .

In addition to Lemma 11 we need to establish the equivalence of energy
and L2 norms on the Hilbert space W .

Theorem 3. Suppose S ⊆ S0
d(∆) is a spline space defined on a β-quasi-

uniform triangulation ∆ with |∆| ≤ 1, and let W be the associated Hilbert
space (41). Then there exist constants 0 < D2 ≤ D3 < ∞ depending only
d and β such that

D2E(f) ≤ (tan
|∆|
2

)−4||f ||22,S ≤ D3E(f), (46)

for all f ∈ W , where ‖f‖2
2,S :=

∫

S

|f |2.

Proof: By Lemmas 7 and 10 for every f ∈ W ,

∫

τ

|f |2 ≤ A2
9(tan

|τ |
2

)4|f |22,2,τ ≤ D1
−1A2

9(tan
|τ |
2

)4Eτ (f).
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Summing over all τ ∈ ∆, we get

||f ||22,S =

∫

S

|f |2 ≤ D1
−1A2

9(tan
|∆|
2

)4E(f).

By Lemma 10 and Lemma 6,

Eτ (f) ≤ |f |22,2,τ ≤ A2
7

(tan ρτ

2 )4
||f ||22,τ .

Sum over τ ∈ ∆ to get

E(f) ≤ A2
7

(tan ρ∆

2 )4
||f ||22,S.

Since ∆ is β-quasi-uniform, |ρ∆| ≥ |∆|
β , and therefore

tan
ρ∆

2
≥ tan

|∆|
2β

≥ 1

β2
tan

|∆|
2

.

Then

E(f) ≤ A2
7β

8

(tan |∆|
2 )4

||f ||22,S.

Let D3 := D−1
1 A2

9 and D2 := A−2
7 β−8 to get the result.

Next we want to show that under certain conditions on S, the X -norm
on the Hilbert space W is also equivalent to a certain coefficient norm.

Corollary 1. Suppose S ⊆ Sr
d(∆) is a spline space defined on a β-quasi-

uniform triangulation ∆, and that {Bξ}ξ∈M is a stable local basis for S
defined in Lemma 8. Then {Bξ}ξ∈N is a Riesz basis (with respect to the
X -norm) for the linear space W defined in (41). Here N is the subset of
the minimal determining set M excluding the set of vertices V of ∆. In
particular, there exist constants D4, D5 depending on d, β such that

D4

∑

ξ∈N

|cξ|2 ≤ (tan
|∆|
2

)−2||
∑

ξ∈N

cξBξ||22,S ≤ D5

∑

ξ∈N

|cξ|2, (47)

for all {cξ}ξ∈N .

Proof: Let us note first that for any spline s ∈ W , s =
∑

ξ∈M cξBξ =∑
ξ∈N cξBξ due to the zero interpolating conditions and (28). By Lemma 8,

4) there exists a positive constant C5 depending only on d and θ∆, such
that on each triangle τ ∈ ∆ and for all domain point ξ ∈ N which are on
τ ,

∑

ξ∈N∩τ

|cξ|2 ≤
(

d + 2

2

)
C2

5A−1
τ

∫

τ

|
∑

ξ∈Nτ

cξBξ|2,
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where Nτ = {ξ ∈ N , Bξ|τ 6= 0}. Then summing over τ ∈ ∆

1(
d+2
2

)
C2

5

πρ2
∆

∑

ξ∈N

|cξ|2 ≤
∫

S

|
∑

ξ∈N

cξBξ|2. (48)

Similarly, by Lemma 8, 5) there exists a positive constant C6, depending
only on d and θ∆, such that

∫

τ

|
∑

ξ∈Nτ

cξBξ|2 ≤
∫

τ

∑

ξ∈Nτ

|cξ|2
∑

ξ∈Nτ

|Bξ|2 ≤
(

d + 2

2

)
n3C

2
6Aτ

∑

ξ∈Nτ

|cξ|2

by using Lemma 8,1). Then
∫

S

|
∑

ξ∈N

cξBξ|2 ≤
(

d + 2

2

)
C2

6n3

∑

τ∈∆

Aτ

∑

ξ∈Nτ

|cξ|2. (49)

By Lemmas 3 and 8, 6), we get

π(
d+2
2

)
C2

5

ρ2
∆

∑

ξ∈N

|cξ|2 ≤ ||
∑

ξ∈N

cξBξ||22,S

≤ D3

(
d + 2

2

)2

C2
6n2

3(tan(
|∆|
2

)2C7

∑

ξ∈N

|cξ|2.

Therefore, we obtain (47) with

D4 =
1(

d+2
2

)
C2

5

1

β2

and

D5 = D3n
2
3

(
d + 2

2

)2

C2
6C7.

Next, we estimate X -norm of the projection operator P in (43) outside
of τ - the support of an interpolant f ∈ X . Here we follow a similar result
for bivariate splines that can be found in [6], making several adjustments
for the spherical splines. Before we proceed with the result we need the
following lemma, which can be found in [3].

Lemma 12. If the sequence {ai}∞i=1 satisfies |am| ≥ γ
∑

j≥m

|aj | for all

m ≥ 0 and some γ ∈ (0, 1), then |am| ≤ a0
(1 − γ)m

γ
.

Proof: See [3].

It is established in Section 5 of [8] that {Bξ}ξ∈M is a local basis with
a local support size ` equal to 3. The following theorem, however, holds
in general for any fixed `.
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Theorem 4. There exist constants 0 ≤ σ ≤ 1 and D6, depending only
on `, d, β, such that for any triangle T ∈ ∆ and any function f ∈ X with
supp(f) ⊆ T

Eτ (Pf) ≤ D6σ
kE(f), (50)

whenever τ ∈ star2(k+2)`+1(T )\star2(k+1)`+1(T ) with k ≥ 1.

Proof: Let

MT
0 : = {ξ ∈ M : supp(Bξ) ∩ T 6= ∅},

MT
k : = {ξ ∈ M : supp(Bξ) ∩ star2k`(T ) 6= ∅},

N T
0 : = MT

0 ,
N T

k : = MT
k \MT

k−1.

Suppose Pf =
∑

ξ∈M cξBξ, and let

uk :=
∑

ξ∈MT
k

cξBξ, wk := Pf − uk, ak :=
∑

ξ∈NT
k

c2
ξ,

for k ≥ 0. Since Pf ∈ W , by Corollary 1

∑

j≥k+1

aj =
∑

ξ 6∈MT
k

c2
ξ ≤ (tan

|∆|
2

)−2D4
−1||wk||22,S ≤ (tan

|∆|
2

)2
D3

D4
E(wk).

Note that wk ∈ W as well, then using (43) we have < f − Pf, wk >= 0.
Moreover, < f, wk >= 0, since supp(f) ⊆ T and supp(wk) lies outside T .
In fact, supp(wk) ∩ ∪ξ∈MT

k−1
supp(Bξ) = ∅ for k ≥ 1, it follows that

E(wk) = 〈Pf − uk, wk〉 = 〈f − uk, wk〉 = −〈uk, wk〉
= −〈

∑

ξ∈NT
k

cξBξ, wk〉 ≤ E(
∑

ξ∈NT
k

cξBξ)
1/2 E(wk)1/2,

and therefore by (46) and (47)

E(wk) ≤ E(
∑

ξ∈NT
k

cξBξ) ≤
1

D2(tan |∆|
2 )4

||
∑

ξ∈NT
k

cξBξ||22,S ≤ D5

D2
(tan

|∆|
2

)−2ak.

Hence ∑

j≥k+1

aj ≤ D5D3

D4D2
ak.

Let γ := D4D2

D4D2+D5D3
. Then by Lemma 12

ak ≤ a0
(1 − γ)k

γ
=

a0

γ
σ2k,
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with σ :=
√

1 − γ. It is easy to see that by our assumption on ∆ and
definition of D4 and D5, both γ and σ are positive and bounded above by
1. Since (44) holds for f , by Corollary 1 we have

a0 ≤
∑

j≥0

aj =
∑

ξ∈M

c2
ξ ≤ (tan |∆|

2 )−2

D4
||Pf ||22,S ≤ (tan |∆|

2 )2

D4
D3E(f).

Let τ ∈ star2(k+2)`+1(T )\star2(k+1)`+1(T ) for some k ≥ 1. If ξ ∈ MT
k ,

then supp(Bξ) ⊆ star2(k+1)`(T ), and therefore τ ∩ supp(Bξ) = ∅. Using
(47) again,

Eτ (Pf) ≤ 1

D2(tan |∆|
2 )4

||Pfχτ ||22,S =
1

D2(tan |∆|
2 )4

||
∑

ξ 6∈Mτ
k

cξBξ||22,S ≤

D5

D2
(tan

|∆|
2

)−2
∑

ξ 6∈Mτ
k

c2
ξ =

D5

D2
(tan

|∆|
2

)−2
∑

j≥k+1

aj ≤ D5D3

γD4D2
σ2kE(f).

We obtained (50) with D6 = D5D3

γD4D2
.

As a consequence of the last result, we can now compare Sobolev semi-
norms of Pf and f . Analogous result for bivariate polynomials can be
found in [5], and a similar proof holds.

Theorem 5. There exists a constant D7 depending only on d, ` and β,
such that for every f ∈ X

|Pf |2,∞,S ≤ D7|f |2,∞,S. (51)

Proof: Let τ be a fixed triangle in ∆, and let

Ωτ
0 := star4`+1(τ), Ωτ

k := star2(k+2)`+1(τ)\star2(k+1)`+1(τ).

Let nk denote the number of triangles in Ωτ
k, k ≥ 0. For any homogeneous

polynomial P of degree with d we have, by Lemma 10 and (20)

ET (P ) ≥ D1|P |22,2,T ≥ D1AT

K2
6

|P |22,∞,T ,

where T is a triangle in ∆. Similarly, for any function f ∈ X , by Lemma
10, we have

ET (f) ≤ AT |f |22,∞,T . (52)

Write f =
∑

T∈∆ fT with supp(fT ) ⊆ T . Since P is a linear operator,

|Pf |2,∞,τ ≤
∑

T∈∆

|PfT |2,∞,τ ≤ K6

(D1Aτ )1/2

∑

T∈∆

Eτ (PfT )1/2.
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Then by (50) and (52)

|Pf |2,∞,τ ≤ K6

(D1Aτ )1/2

∑

k≥0

∑

T∈Ωτ
k

Eτ (PfT )1/2

≤ K6D6

(D1Aτ )1/2
(

∑

T∈Ωτ
0

E(fT )1/2 +
∑

k≥1

∑

T∈Ωτ
k

σkE(fT )1/2)

≤ K6D6

(D1Aτ )1/2
(max

τ∈∆
A

1/2
T )(n0 +

∑

k≥1

σknk)|f |2,∞,S.

Since σ < 1,
∑

k≥1 σknk < ∞, and

maxτ∈∆ A
1/2
τ

minτ∈∆ A
1/2
τ

≤
√

5

4

|∆|
ρ∆

≤
√

5

4
β,

by Lemma 3, (51) follows by taking the supremum over all τ ∈ ∆.

We are finally in a position to prove the main result of this paper.

Theorem 6. Suppose S ⊆ Sr
d(∆) is a spline space defined on a β-quasi-

uniform triangulation ∆ with |∆| ≤ 1 and d ≥ 3r + 2. For d odd there
exists a constant D8 depending only on d and β, such that the minimal
energy interpolant Sf , defined in (1), satisfies

||f − Sf ||∞,S ≤ D8(tan
|∆|
2

)2|f |2,∞,S, (53)

for all f ∈ C2(S). For d even there exist constants D9 and D10 depending
only on d and β, such that the minimal energy interpolant Sf satisfies

||f − Sf ||∞,S ≤ D9(tan
|∆|
2

)2|f |2,∞,S + D10(tan
|∆|
2

)3|f |3,∞,S, (54)

for all f ∈ C3(S).

Proof: Given a function f ∈ X , let sf ∈ Uf be the quasi-interpolant
defined in Section 5. If d is odd, by Theorem 2 there exists a constant K7

depending on d and the smallest angle of ∆ such that

||f − sf ||∞,S ≤ K7(tan
|∆|
2

)2|f |2,∞,S, (55)

and
|f − sf |2,∞,S ≤ K7|f |2,∞,S.

Then

|sf |2,∞,S ≤ |f − sf |2,∞,S + |f |2,∞,S
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≤ (K7 + 1)|f |2,∞,S. (56)

Since Psf = sf − Sf , by Theorem 5

|sf − Sf |2,∞,S = |Psf |2,∞,S ≤ D7|sf |2,∞,S, (57)

and by (56)
|sf − Sf |2,∞,S ≤ D7(K7 + 1)|f |2,∞,S.

Since both Sf and sf interpolate f , their difference satisfies the hypothesis
of Lemma 7 and thus

||sf − Sf ||∞,S ≤ A8(tan
|∆|
2

)2|sf − Sf |2,∞,S

≤ A8D7(K7 + 1)(tan
|∆|
2

)2|f |2,∞,S.

Then by (55)

||f − Sf ||∞,S ≤ ||f − sf ||∞,S + ||sf − Sf ||∞,S

≤ K7(tan
|∆|
2

)2|f |2,∞,S + A8D7(K7 + 1)(tan
|∆|
2

)2|f |2,∞,S

= D8(tan
|∆|
2

)2|f |2,∞,S

With D8 = K7 + A8D7(K7 + 1) we get (53). Similarly, if d is even, we
have to consider even m in Theorem 2 and hence, there exists a constant
K8 depending on d and the smallest angle of ∆ such that

||f − sf ||∞,S ≤ K8(tan
|∆|
2

)3|f |3,∞,S, (58)

and

|f − sf |2,∞,S ≤ K8(tan
|∆|
2

)|f |3,∞,S.

Then

|sf |2,∞,S ≤ K8(tan
|∆|
2

)|f |3,∞,S + |f |2,∞,S, (59)

and by (57) and (59)

|sf − Sf |2,∞,S ≤ D7(K8(tan
|∆|
2

)|f |3,∞,S + |f |2,∞,S).

Since both Sf and sf interpolate f , their difference satisfies the hypothesis
of Lemma 7 and thus

||sf − Sf ||∞,S ≤ A8(tan
|∆|
2

)2D7(K8(tan
|∆|
2

)|f |3,∞,S + |f |2,∞,S).

Then by (58)

||f − Sf ||∞,S ≤ D9(tan
|∆|
2

)2|f |2,∞,S + D10(tan
|∆|
2

)3|f |3,∞,S.

We have thus established the result of our main theorem in this paper.
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Fig. 2. Test functions f1, f2, f3.

§7. Numerical Experiments

We have implemented spherical splines of arbitrary degree and arbitrary
smoothness over any given spherical triangulation in MATLAB. In partic-
ular, we have coded the minimal energy method for scattered data inter-
polation using spherical splines. In this section we provide a description
of three sets of experiments. 1) We numerically test the convergence rate
of the minimal energy method over a sequence of uniformly refined trian-
gulations. Our test confirms the second order convergence rate. 2) We do
the same test as in 1) for spherical splines of various degrees for a single
function to show that the convergence rate is the same no matter which
degree is used. 3) We demonstrate a spherical spline interpolation to a
given set of scattered data which represent the geopotential of the earth.

Let us describe our experiments in detail. The initial triangulation ∆1

in the first two examples consists of 8 triangles with vertices being unit
coordinate vectors and their antipodes. Its first refinement ∆2 is obtained
by connecting the midpoints of all edges in ∆1 such that each triangle is
split in four subtriangles. Similarly ∆3 and ∆4 are obtained from ∆2 and
∆3 correspondingly. Note that with such a refinement the size |∆i+1| of a
refinement is not a half of |∆i|, i = 1, 2, 3 as it happens in the planar case.

Instead tan |∆i|
2 , i = 1, 2, 3 is reduced in half as illustrated in Table 1.

i 1 2 3 4
|∆| 1.91063 1.23095 0.67967 0.34994

(tan |∆|
2 )2 2 0.5 0.125 0.03125

Tab. 1. Triangulation parameters.

In the following example we shall test several functions:

f1(x, y, z) = x2 − (y3 + z7)

f2(x, y, z) = 0.1x8 + e2y3

f3(x, y, z) = ln(2 + x2) − sin(4z − y).
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These functions are displayed in Figure 2.

Example 1. We use spherical splines of degree 5 and smoothness 1 to
find the minimal energy interpolants over the triangulation ∆1, ∆2, ∆3

and ∆4. Then we evaluate the splines at 5120 evenly spaced points w and
record the relative errors for these three test functions. The relative error
on ∆i is defined by e(∆i) := ||s(w)−f(w)||∞

||f(w)||∞
, s ∈ Sr

d(∆i). The errors are

listed in Table 2. In Table 3 we list ratios of the form e(∆i)
e(∆i+1)

, i = 1, 2, 3

for all three functions. The numerical convergence rates are close to the
convergence rate we derived in the previous section.

f\i 1 2 3 4
f1 1.0317e− 00 1.8164e− 01 2.8386e− 02 2.8290e− 03
f2 0.3834e− 00 0.6344e− 01 1.7466e− 02 2.5500e− 03
f3 1.0496e− 00 4.3803e− 01 0.5142e− 01 0.5150e− 02

Tab. 2. Experimental errors for C1 quintic splines.

f\i 1 2 3
f1 5.6799 6.3989 10.0339
f2 6.0435 3.6322 6.8494
f3 2.3962 8.5187 9.9845

Tab. 3. Convergence rates of the C1 quintic splines.

Example 2. In this example we work with one function only and vary
the degree d of the spline space. That is, we use S1

d(∆i), d = 3, 4, 5, 6, 7,
i = 1, 2, 3, 4. Even though we cannot apply Theorem 6 in S1

3(∆) and
S1

4(∆), the experimental result are similar to the ones we obtain for higher
degrees. Errors are computed as in Example 1 and are recorded in Table
4. The corresponding convergence rates are displayed in Table 5. The
numerical rates show that increasing the degree of the spline space will
not result in a better rate.

d\i 1 2 3 4
5 3.8334e− 01 0.6344e− 01 1.7466e− 02 2.5500e− 03
6 3.8057e− 01 0.6315e− 01 1.8148e− 02 2.6871e− 03
7 3.8286e− 01 0.6254e− 01 1.8429e− 02 2.7489e− 03

Tab. 4. Splines of various degrees interpolating f2(x, y, z) = 0.1x8 + e2y3

.
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Fig. 3. Geopotential data and minimal energy C1 cubic interpolant.

d\i 1 2 3
5 6.0435 3.6322 6.8494
6 6.0265 3.4797 6.7538
7 6.1225 3.3934 6.7045

Tab. 5. Convergence rates for splines of various degrees interpolating f2.

Example 3. We present an example of scattered data interpolation over
the earth. We are given a set of locations with geopotential values collected
by a satellite. The total amount of data values is 5760. The left graph
in Figure 3 shows the set of scattered data and the right graph shows the
minimal energy interpolatory spherical spline surface. Both the original
data and the spline solution are scaled in this figure for convenience. We
use C1 cubic spherical splines since the data set is very large. The spline
surface represents the given data quite well by visual inspection.
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